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ABSTRACT
Control of large distributed cloud-based services is a chal-
lenging problem. The Distributed Rate Limiting (DRL)
paradigm was recently proposed as a mechanism for tack-
ling this problem. The heuristic nature of existing DRL
solutions makes their behavior unpredictable and analyti-
cally untractable. In this paper we treat the DRL prob-
lem in a mathematical framework and propose two novel
DRL algorithms that exhibit good and predictable perfor-
mance. The first algorithm Cloud Control with Constant
Probabilities (C3P) solves the DRL problem in best effort
environments, emulating the behavior of a single best-effort
queue in a fully distributed manner. The second problem
we approach is the DRL in processor sharing environments.
Our algorithm, Distributed Deficit Round Robin (D2R2),
parameterized by parameter α, converges to a state that is,
at most, O( 1

α
) away from the exact emulation of central-

ized processor sharing queue. The convergence and stability
properties are fully analyzed for both C3P and D2R2. An-
alytical results are validated empirically through a number
of representative packet level simulations. The closed-form
nature of our results allows simple design rules which, to-
gether with extremely low communication overhead, makes
the presented algorithms practical and easy to deploy.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
management

General Terms
Algorithms, Management, Performance

Keywords
Rate limiting, CDN, Cloud control, Consensus agreement,
Stability and convergence
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Many internet services are structured around a large num-
ber of servers that are distributed worldwide to improve the
content availability, fault robustness, end-to-end delays and
data transmission rates. Services of this type are some-
times referred to as cloud based services and examples of
those include most of Yahoo! and Google services, Amazon’s
Simple Simple Storage Service (S3), and Akamai’s content-
distribution network (CDN). Some other applications, such
as Google Docs or Microsoft Groove Office, have integrated
software-as-a-service paradigm and allow desktop users to
utilize cloud-based services in hosted environments.

The ability to control network usage is critical for sev-
eral important functions of a cloud-based service provider
(CBSP):

(1) Pricing of service by most of the existing CBSPs is
usage-based [1, 26]. Namely, services are charged at
a rate that is an increasing (usually concave) function
of the total resources used. However, in the history
of communications, pricing of various services (eg. or-
dinary mail, the telegraph, the telephone, and the In-
ternet) followed similar pattern: it started with usage-
based pricing and converged at some form of flat-fee
pricing. Moreover, enterprises tend to prefer fixed cost
of an IT service rather than unlimited/unpredictable
usage-based cost, see [12] and [23]

(2) Provisioning of high quality services depends on the
nature of the service demand pattern. The ability
to regulate the usage of individual service allows CB-
SPs to design networks with predictable performance
bounds.

(3) Fault tolerance of large-scale distributed services is an
important performance objective that is enhanced by
resource control by means of fast fault discovery and
quick response to these faults.

The paper [26] introduces the notion of Distributed Rate
Limiting (DRL) as a mechanism for resource control in cloud-
based services. Briefly, DRL stands for any mechanism that
controls the aggregate network bandwidth used by a cloud-
based service. The idea is to enhance a set of local lim-
iters with the ability to exchange information among them
towards the global goal: control of the aggregate network
bandwidth that a cloud-based service uses. The main obsta-
cle in the design of a DRL algorithm is the fairness postulate
[26]:



Fairness postulate: Flows arriving at different limiters
should achieve the same rates as they would if they were
traversing a single, shared rate limiter.

Thus, in DRL, a flow traversing one limiter competes for
bandwidth with flows that traverse the same limiter and
with all other flows traversing other limiters. The worldwide
scale1 of such clouds raises important issues as to how to
efficiently control resource usage in such large distributed
environments.

Two DRL algorithms are proposed in [26]: Global Ran-
dom Drop (GRD) and Flow Proportional Share (FPS). Even
though both GRD and FPS are decentralized, the main in-
formation needed by a local limiter to adjust its behavior is
the information on the global demand/weight. This global
demand/weight information is obtained by the decentral-
ized epidemic algorithm from [17] and that information is
utilized by each of the local limiters in the quest of emulat-
ing global token bucket. The ad-hoc nature of the proposed
algorithms makes the following important questions analyt-
ically untractable: Does system converge to the desired op-
erating point? If it does, how quickly? How does cloud
topology affects stability and responsiveness of the system?
What are the performance guarantees in terms of aggregate
utilization, loss rates and bandwidth allocation?

In this paper we propose a rigorous mathematical frame-
work for the design of fully decentralized DRL algorithms.
We use our approach to design two DRL algorithms; one
for best effort environments - Cloud Control with Constant
Probabilities (C3P) and the other for processor-sharing en-
vironments Distributed Deficit Round Robin (D2R2). Both
algorithms are fully decentralized (meaning that each node
utilizes only state information from its neighbors) which in
turn results in significant reduction of the communication
overhead and increased fault tolerance compared to GRD
and FPS.

1.1 Problem formulation
Let a CBSP controls N hosting centers with each host-

ing center i ∈ {1, 2, . . . , N} being able to limit locally the
bandwidth of a particular service, serving the flow popula-
tion Fi, at level Ci. The first constraint of DRL is to keep
the aggregate bandwidth at a prescribed level C:

N∑
i=1

Ci = C. (1)

Then the local limiters should collaborate to achieve the
fairness postulate. In order to formalize the fairness postu-
late we need to have a reference point, the service experi-
enced by a user of a single shared rate limiter. In this paper
we discuss the following two cases.

1. Best effort single shared rate limiter. Denote by
r1(f) the rate a flow f ∈ ∪N

i=1Fi would obtain by traversing
a (virtual) single best effort limiter with capacity C. Since
r1(f) is a random variable (whose distribution is determined
by loss rate) it is meaningless to require that rate of flow
f be exactly equal to r1(f). We rather require that the

1For example, Google’s services run on several hundreds of
thousands servers distributed worldwide [26, 6]. Akamai’s
content distribution network utilized more than 12 thousand
servers in the year of 2002 [8].

expected value of flow’s f rate be equal to its expected value
in centralized best effort limiter:

E(rate(f)) = E(r1(f)) ∀f ∈ ∪N
i=1Fi. (2)

Since, there is a strong connection between expected through-
put of a flow f and loss rate2, condition (2) can be expressed
as

pi = p̄ ∀i ∈ {1, 2, . . . , N}, (3)

where pi = p(Ci,Fi) is the loss rate at the limiter i, and
p̄ = p(C,∪N

i=1Fi) is the loss rate achievable with the cen-
tralized best effort limiter. Thus, in the best-effort case,
the fairness postulate translates into condition (3) subject
to (1).

2. Processor sharing single shared rate limiter. In the
processor sharing case, the throughput of a flow f is a deter-
ministic function of the “fair share”. Denote by v∗ the “fair
share”3 of the centralized processor sharing limiter with ca-
pacity C serving population of flows ∪N

i=1Fi. In order to get

some understanding on the nature of v∗, lets denote by u
(i)
s

the demand of a flow f
(i)
s ∈ Fi: the rate that flow would

achieve if limiter i had infinite bandwidth. We will also use
the following notation:

gi(v) =

ni∑
s=1

min(u(i)
s , v), (4)

and

G(v) =

N∑
i=1

gi(v). (5)

The function gi(v) represents the throughput of the lim-
iter i when the “fair-share” is equal to v and G(v) represents
the aggregate throughput that centralized processor sharing
limiter would obtain if the ‘fair-share” is equal to v. Now v∗

is simply the solution of the following equation:

G(v) = C. (6)

Note that if the aggregate demand is lower than capacity

(
∑N

i=1

∑ni
s=1 u

(i)
s ≤ C) no such v exists. However, a more

interesting problem occurs when the aggregate demand is
greater than the available capacity and then the problem of
interest translates to distributed computing of v∗ such that

rate of flow f
(i)
s is equal to

rate(f (i)
s ) = min(u(i)

s , v∗) ∀f (i)
s ∈ ∪N

j=1Fj . (7)

Let G be a connected undirected graph with nodes given
by N limiters. We allow each limiter i to cooperate with
its neighbors in G in adapting its bandwidth limit Ci. The
goal of our work is to develop fully distributed algorithms
that converge to the bandwidth allocation (C1, C2, . . . , CN )
for which the constraint (1) and either (3) (best effort DRL
case) or (7) (in the processor sharing DRL case) are satisfied.

2In TCP case, this relationship is expressed by square root
formula: E(rate(f)) = θ√

p
. For any other elastic loss-based

protocol such relationship exist as well, although it may not
be explicitly known in the literature. For nonelastic flow f ,
the expected throughput is simply (1− p)SendingRate(f).
3The maximal flow throughput or “fair share” is easily mea-
surable at any processor sharing emulator. It is simply the
maximum forwarding rate among all flows utilizing the PS
queue.



1.2 Our contributions
As we have said, the main concern of this paper is a prin-

cipled design of algorithms for DRL. Briefly, the main con-
tributions of our work are following:

• We propose two simple, fully decentralized algorithms:
Cloud Control with Constant Probabilities (C3P) and
Distributed Deficit Round Robin (D2R2). C3P solves
best-effort DRL problem while D2R2 gives an asymp-
totic solution to the processor sharing DRL problem.

• The stability and convergence properties are analyzed
for both C3P and D2R2 and the closed-form nature of
our results allows simple design rules.

• Empirical evaluation of the proposed schemes is pre-
sented, that supports our analytical findings.

We note also that both C3P and D2R2 are easy to imple-
ment, computationally light and have extremely low commu-
nication requirements. Namely, the only information used
by local limiter i are states (loss rate in C3P case, and “fair
share” in D2R2 case) from its immediate neighbors in the
communication graph G.

The dynamical systems that describe the dynamics of C3P
and D2R2 are nonlinear and implicit. This makes the task of
analysis quite challenging. Namely, standard theory of con-
sensus algorithms (see [14] and references therein) cannot be
employed in our case. The convergence results established
in Theorem 1 (for C3P) and Theorem 4 (for D2R2) are non-
trivial and represent the main theoretical contributions of
this paper.

We also embedded C3P and D2R2 in ns2 and performed a
number of representative packet level simulations. We found
that various performance metrics closely match our analyt-
ical predictions capturing one of the goals of present paper:
principled and performance-predictable design of DRL algo-
rithms.

Finally, we note that the fairness postulate, formalized
by (3) for best effort DRL and by (7) for processor sharing
DRL, have very interesting interpretation. Namely, the so-
lution (C1, C2, . . . , CN ) to the processor sharing DRL prob-
lem, maximizes the minimal“fair-share”(among N limiters).
While this feature of processor sharing DRL can be expected
the following property of best effort DRL is quite surprising.
Among all N -tuples (C1, C2, . . . , CN ) that satisfy the con-
straint (1) one that satisfies (3) enforces the least number
of drops globally in the TCP environments. This feature of
C3P is specific only to TCP-like environments in which the
square root formula holds, and the proof is given in Section
2.2.

1.3 Related work
The problem of distributed resource allocation has been

studied in different application domains in the past. For
example, in distributed admission control [4] end users can
test for and book bandwidth across a set of network paths.
DRL can be seen as a reservation-free version of distributed
admission control: each end-user can pick an arbitrary re-
source to connect to and DRL ensures that service obtained

is independent of the choice of the resource. Capacity provi-
sioning in hose model [9] of virtual private networks (VPNs)
is another topic that have attracted significant attention in
the last decade. In the hose model, a number of nodes have
fixed capacities that sums up to a constant C. Two main
issues are: (1) provisioning the network infrastructure [20]
and (2) routing [19], such that various QoS requirements
are met across all traffic matrices that satisfy hose model
constrains.

An early DRL-like proposal appeared in [15] which dis-
cussed general framework for monitoring and control of dis-
tributed systems, with a particular application on Planetlab
DRL control. The paper [26] introduces DRL in context of
cloud-based service control. Here we briefly overview two al-
gorithms proposed in [26]: Global Random Drop (GRD) and
Flow Proportional Share (FPS). GRD works as follows: each
local limiter tracks its demand and broadcasts that informa-
tion using the algorithm from [17]. Then the total demand
T is computed as a sum of demands at all limiters and an
arriving packet is dropped with probability (T − C)/T . As
it is noted in [26], GRD exhibits poor performance for large
number of limiters. To cite [26]: ”... Beyond 50 limiters,
GRD fails to limit aggregate rate, but this is not assuaged
with an increasing communication budget. Instead it indi-
cates GRD’s dependance on swiftly converging global arrival
rate estimates.”.

In FPS, each local limiter i uses a token bucket with ser-
vice rate Ci and tracks the “weight” wi defined as wi =
Ci/MaxRatei, where MaxRatei is the maximal rate among
all flows that use limiter i. The “weights” are broadcasted
and, in steady state, Ci is updated as:

Ci =
wi∑N

j=1 wj

C.

The value wi is used as an estimate of number of unbotle-
necked4 flows. In practice, wi does not say much about the
number of unbotlenecked flows at a token bucket limiter i.
To see this lets consider case with two limiters one serving
5 TCP flows f1 − f5 with RTT equal 100ms and another
serving 4 TCP flows f6 − f9 with RTT equal 100ms and
one TCP flow f10 with RTT equal 10ms; none of the flows
f1 − f10 is bottlenecked elsewhere. From the square-root
formula in best-effort environments (see eq. (8)) we know
that rate of flow f10 is 10 times greater than rate of flows
f6 − f9. Therefore in steady state:

w1 = 5

and

w2 = 1 + 4 · 0.1 = 1.4.

Thus, although both limiters serve 5 unbotlenecked flows
the values of w1 and w2 are significantly different. Simple
calculations show that flows f1−f5 and flow f10 obtain rates
1

6.4
C while flows f6−f9 receive rates 0.1

6.4
C, which violates the

fairness postulate (for both best effort and processor sharing
cases).

Both best-effort and processor sharing versions of our prob-
lem, formulated in Section 1.1, can be seen as instances of

4The term unbotlenecked flow is used in [26] as a flow that
is not bottlenecked elsewhere. In the congestion control lit-
erature (such as [29]) it has a rather opposite meaning. We
use the terminology of [26].



1 UpdateCapacities()
2 Once every ∆ units of time do
3 for i = 1 : N
4 Ci ← Ci + η

∑
(i,j)∈E(pi − pj)

5 endfor
6 enddo

7 InitializeCapacities()
8 for i = 1 : N
9 Ci ← C

N
10 endfor

Figure 1: Pseudo-code of C3P

the consensus agreement. Consensus algorithms have at-
tracted significant attention over last several years being
applied in various topics, such as flocking [27], time syn-
chronization, multi-agent coordination [14], sensor, peer-to-
peer and ad hoc networks [5]. In most existing applications
consensus algorithms can be modelled as positive linear sys-
tems, which then allows the elegant theory of Nonnegative
matrices and Markov chains to be employed to capture the
convergence properties of the algorithms. However, little
is known about implicit nonlinear consensus problems (see
[18]moreau) and one of the main contributions of this paper
is the proof of global stability for the implicitly given nonlin-
ear systems describing the dynamics of algorithms presented
in the next two sections.

2. CLOUD CONTROL WITH CONSTANT
PROBABILITIES (C3P)

We now present the C3P algorithm that solves best-effort
DRL problem introduced in Section 1.1: allocate the net-
work resources in a manner that equalizes loss rates amongst
local-limiters; the rational for doing this is to ensure that all
end-users experience a similar quality of service.

Our basic setup is as follows. We use N local limiters to
control aggregate network bandwidth at level C. The local
limiter i has a capacity Ci that can be adjusted, and this
limiter can exchange information with the neighbor limiter
j. (i, j) is an edge in the communication graph G = (N, E)
and we write (i, j) ∈ E. For a given capacity Ci, and a
family Fi of flows utilizing the limiter i, the loss rate pi at
limiter i can be directly measured, and is a function of Fi

and Ci:

pi = p(Ci,Fi).

The goal here is to obtain a fully decentralized algorithm,
for adjusting the Ci such that

p1 = p2 = · · · = pN .

At each limiter we use a virtual queue (see [11]) with ser-
vice rate Ci: on each arrival the packet size is placed in
virtual queue. If the packet is discarded from the virtual
queue, then the arriving packet is dropped, otherwise it is
forwarded to the appropriate output line. Thus, no queueing
delay is caused by any limiter. The loss rate is measurable
directly, and it depends on the traffic pattern: in general
the more flows exist at the limiter (meaning that aggregate
aggressiveness is bigger) the higher loss rate is. Note also
that pi is a decreasing function of Ci.

The pseudo-code for control of (C1, . . . , CN ) is given in
Figure 1. Initially, all the Ci are set by the 1/N rule. Then

Ci is updated in discrete time steps by the simple rule:
Ci ← Ci +η

∑
(i,j)∈E(pi−pj). The rationale for this update

step is the following. The loss rate is the main performance
indicator of the quality of service in best-effort token buck-
ets. If the loss rate pi at limiter i is higher than loss rate pj

at some neighbor j of i (in G), then this indicates that some
extra bandwidth should be allocated to limiter i which must
be compensated by reducing the capacity of limiter j. Giv-
ing more bandwidth to limiters with high loss rates affects
reducing their loss rates. The parameter η > 0 determines
responsiveness and stability properties of the algorithm and
its choice is discussed in the next subsection.

While the basic algorithm makes sense intuitively, many
questions need to be answered before it can be deployed.
Paramount among these concerns under which conditions
does the algorithm C3P converge to the desired (unique)
equilibrium, and if so, how fast. These questions provide
the focus for the investigation presented in the next section.

2.1 Model and analysis of C3P
In this section we analyze the model of C3P utilized by

standard TCP end-users. The result for general traffic mix
is given by Theorem 2.

The starting point of our model is well known square-root
formula, that relates the loss rate and the expected sending
rate of TCP flow with round-trip time given by RTT [10,
24]:

x(p, RTT ) =
θ

RTT
√

p
. (8)

This formula is widely accepted as explaining many obser-
vations in networks characterised by TCP traffic5.

Now, suppose that limiter i serves population Fi of ni

TCP flows with round-trip times RTT
(i)
1 , . . . , RTT

(i)
ni . Then

the limiter i is utilized with capacity Ci if the sum of sending
rates from all ni flows is equal to Ci:

Ci =

ni∑
j=1

θ

RTT
(i)
j

√
pi

. (9)

Equation (9) represents the key relationship between Ci

and pi. Given this, the dynamical system describing the
evolution of Ci(t), in time t, is given by:

C1(0) = C2(0) = · · · = CN (0) = C/N, (10)

Ci(t + 1) = Ci(t) + η
∑

(i,j)∈E

(
β2

i

C2
i (t)

− β2
j

C2
j (t)

)
(11)

where, we used the notation:

βi =

ni∑
j=1

θ

RTT
(i)
j

.

The following lemma is a straightforward consequence of
the fact that G is an undirected graph.

Lemma 1. For all t, the capacity constraint is satisfied:

C1(t) + C2(t) + · · ·+ CN (t) = C. (12)

5In [10], the value of θ is explicitly computed for TCP flows
without delayed acking: θ = 1.3098. If TCP delayed acking
is turned on, then the value θ = 0.87 is used.



Proof. For t = 0 the statement is true from the defini-
tion. Suppose that it is valid for t = k, then for t = k + 1:

N∑
i=1

Ci(t + 1) =

N∑
i=1


Ci(t) + η

∑

(i,j)∈E

(
β2

i

C2
i (t)

− β2
j

C2
j (t)

)
 =

N∑
i=1

Ci(t)+η
∑

(i,j)∈E

(
β2

i

C2
i (t)

− β2
j

C2
j (t)

)
+

(
β2

j

C2
j (t)

− β2
i

C2
i (t)

)
=

=

N∑
i=1

Ci(t) = C.

The following theorem gives a sufficient condition under
which system (10)-(11) converge.

Theorem 1. Let di be the degree of node i in the com-
munication graph G and let η satisfies:

0 < η <
1

3

(
C

N

)3
1

max1≤i≤N β3
i

min
1≤i≤N

βi

di
. (13)

Then

lim
t→∞

Ci(t) =
βi∑N

j=1 βj

C (14)

and

lim
t→∞

pi(t) = p∗ =

(∑N
j=1 βj

C

)2

. (15)

Proof. We find it more convenient to write the dynamics
of (11) in terms of pi(t):

βi√
pi(t + 1)

=
βi√
pi(t)

+ η
∑

(i,j)∈E

(pi(t)− pj(t)), (16)

or

pi(t + 1) =
pi(t)(

1 +
√

pi(t)
η
βi

∑
(i,j)∈E(pi(t)− pj(t))

)2 . (17)

We denote

m(t) = min
1≤i≤N

pi(t),

and

M(t) = max
1≤i≤N

pi(t).

Step 1. First we prove that under condition (13) the
sequence m(t) is nondecreasing and the sequence M(t) is
nonincreasing.

Let pi(t) = M(t) − λ. Then from the equation (17) we
have:

pi(t + 1) =
M(t)− λ(

1 +
√

pi(t)
η
βi

∑
(i,j)∈E(M(t)− λ− pj(t))

)2 ≤

M(t)− λ(
1−

√
pi(t)

diη
βi

λ
)2 ≤

M(t)− λ

1− 2
√

pi(t)
diη
βi

λ
=

M(t)−
λ

(
1− 2

√
pi(t)

diη
βi

M(t)
)

1− 2
√

pi(t)
diη
βi

λ
≤ M(t)−

λ
(
1− 2

√
M(t)3 diη

βi

)

1− 2
√

pi(t)
diη
βi

λ

For t = 0, M(0) = max1≤i≤N (Nβi
C

)2, and from (13)

we have that 1 > 2
√

M(0)3 diη
βi

, concluding that M(1) ≤
M(0). Now, we use the mathematical induction principle.
If M(t) ≤ M(t − 1) for all t < k for t = k, M(k) ≤ M(0)

and thus 1 > 2
√

M(k)3 diη
βi

and therefore

M(k + 1) ≤ M(k).

Thus, we showed that sequence M(t) is nonincreasing.
Now we show that m(t) is nondecreasing. Let, pi(t) =

m(t) + λ, for λ ≥ 0. Then:

pi(t + 1) =
m(t) + λ(

1 +
√

pi(t)
η
βi

∑
(i,j)∈E(m(t) + λ− pj(t))

)2 ≥

m(t) + λ(
1 +

√
pi(t)

diη
βi

λ
)2

Now we prove that the last expression is not smaller than
m(t).

m(t)

(
1 +

√
pi(t)

diη

βi
λ

)2

=

m(t)

(
1 + 2

√
pi(t)

diη

βi
λ +

(√
pi(t)

diη

βi
λ

)2
)
≤

m(t) + 2λM(t)
3
2

diη

βi
+ λ

(
M(t)

3
2

diη

βi

)2

≤

m(t) + 2λ
1

3
+ λ(

1

3
)2 = m(t) +

7

9
λ ≤ m(t) + λ.

Above we used λ = pi(t)−m(t) ≤ M(t)−m(t) ≤ M(t) and

M(t)
3
2 diη

βi
≤ M(0)

3
2 diη

βi
≤ 1

3
.

Step 2. In this step we rewrite the dynamics of pi(t) in
a more practical form. Consider the representation of dy-
namics of pi(t) given by (16). From the Lagrange’s mean
value theorem, applied to the function h(s) = 1√

s
, differen-

tiable on the interval (pi(t), pi(t+1)) (from Step 1, we know
that pi(t) ≥ m(0) > 0 which implies the differentiability of
function h(s) on the interval (pi(t), pi(t+1))), we have that

1√
pi(t + 1)

− 1√
pi(t)

= (pi(t+1)−pi(t))

(
− 1

2qi(t)
√

qi(t)

)

for some qi(t) ∈ (pi(t), pi(t + 1)). From the last relationship
we conclude that the dynamics of pi(t) satisfies:

pi(t + 1) = pi(t)− 2qi(t)
3
2 η

βi

∑

(i,j)∈E

(pi(t)− pj(t)).

Therefore, the evolution of the vector P (t) = (p1(t), . . . , pN (t))
can be written as:

P (t + 1) = B(t)P (t),

where matrix B(t) is given by B(t) =






1− 2q1(t)
3
2 d1η

β1

2q1(t)
3
2 η

β1
e1,2 · · · 2q1(t)

3
2 η

β1
e1,N

2q2(t)
3
2 η

β2
e2,1 1− 2q2(t)

3
2 d2η

β2
· · · 2q2(t)

3
2 η

β2
e2,N

...
...

. . .
...

2qN (t)
3
2 η

βN
eN,1 · · · · · · 1− 2qN (t)

3
2 dnη

βN




with ei,j being the elements of the adjacency matrix of G,
ie. if (i, j) ∈ E, then ei,j = 1 otherwise ei,j = 0.

Step 3. We now use the monotonicity of sequences M(t)
and m(t) proved in Step 1, to prove that nonzero elements
of B(t) are positive and uniformly bounded away from zero.
Indeed, recall that qi(t) ∈ (pi(t), pi(t + 1)), and therefore
qi(t) ≤ max(M(t), M(t + 1)) ≤ M(0), and therefore for
diagonal entries we have that

1− 2qi(t)
3
2 diη

βi
≥ 1− 2M(0)

3
2 diη

βi
≥ 1− 2

3
=

1

3
.

For nonzero off-diagonal entries note that qi(t) ≥ min(m(t), m(t+
1)) ≥ m(0) > 0 and thus

2qi(t)
3
2 η

βi
≥ 2m(0)

3
2 η

βi
= δi > 0.

Take δ = min{ 1
3
, δ1, . . . , δN} > 0. Then for all t, all

nonzero elements of B(t) are not smaller than δ.
Step 4. Finally, we use the fact that G is connected to

show that M(t)−m(t) converges to zero. This implies that
limt→∞m(t) = limt→∞M(t) = limt→∞ pi(t) = p∗. Let k be
the diameter of graph G, i.e. the smallest integer such that
there exist a path in G between each two nodes of length
not greater than k. Then for all t:

D(t) = B(t + k − 1)B(t + k − 2) · · ·B(t)

is a stochastic matrix6 with strictly positive entries and each
entry of D(t) is greater or equal than δk.

pi(t + k) =

N∑
i=j

Dij(t)pi(t) ≤ M(t)(1− δk) + m(t)δk

and

pi(t + k) =

N∑
i=j

Dij(t)pi(t) ≥ m(t)(1− δk) + M(t)δk.

Thus

M(t + k)−m(t + k) ≤ (1− 2δk)(M(t)−m(t)). (18)

Since M(t)−m(t) is a nonincreasing sequence and δ > 0
is independent of t, we conclude that M(t) −m(t) → 0, as
t →∞. Now, convergence of Ci(t) and (14) and (15) follow
directly from the constraint (10).

Comment 1. From the bound (18), we can observe that
the system converges to the equilibrium exponentially, with

a rate bounded above by (1− δk)
1
k .

6Stochastic matrix is square matrix with nonnegative entries
and sum of each row is 1. Since each of B(t) is stochastic,
their product is stochastic as well [2].

Comment 2. In the networking community, a widely used
approach (see [21, 30]) for analysis of nonlinear dynamical
systems is linearization around the equilibrium, and presen-
tation of some kind of local stability result: if system is close
to equilibrium then it will stay there. We stress that our
result posses an extra feature, it says that the system will
actually reach the equilibrium.

Comment 3. While in the presented model we assume
synchronous updates of Ci, this property of the model is not
critical. See Section 5 for more details.

The model analyzed, relies on the assumption that traffic
mix is consisted of only TCP flows, which gives an exact
relationship (9) between loss rate and the forwarding rate.
However, this assumption is not necessary for the stability
of C3P. Namely, suppose that Ci and pi are related by a
general relationship

Ci = gi(pi),

where gi : (0, 1) → (0,∞). Then the following theorem gives
a sufficient condition for η under which the C3P converge to
equilibria. The proof follows the same lines as the proof of
Theorem 1 and is omitted here.

Theorem 2. Let di be the degree of limiter i in the com-
munication graph, and suppose that gi(·) is a differentiable,
convex function on (0,1), for all 1 ≤ i ≤ N . Then if η
satisfies:

0 < η <
1

2
min

1≤i≤N
(−g′i(pi(0))) min

1≤i≤N

1

di
, (19)

the following limits exist

lim
t→∞

Ci(t) = C∗i

and

lim
t→∞

pi(t) = p∗.

Comment 4. C3P as well as the algorithm presented in
the next section, D2R2, can be seen as instances of “dis-
tributed equation solving”. Suppose that N agents want to
solve the following equation in a distributed manner

G(x) =

N∑
i=1

gi(x) = C.

If each agent i is able to solve the equation gi(x) = y for
every y (in C3P this translates to: for a given capacity y,
x is measured loss rate for which the forwarding rate gi(x)
is equal to y) then C3P-like algorithm with appropriate η
converges to the solution of the above equation.

2.2 C3P minimizes the total number of drops
in the TCP environments

C3P resource allocation exhibits a surprising feature in
the TCP AIMD environments.

Theorem 3. Suppose that end-users employ AIMD con-
gestion control algorithms. Then the allocation of bandwidth
among N best-effort local limiters (C1, . . . , CN ) which min-
imize the total number of drops across all N limiters is the
one that C3P converges to.



Proof. From the assumption that all users use AIMD
congestion control, we have that capacity Ci and loss rate
pi at the limiter i are related through a square root formula:

Ci =
βi√
pi

.

The number of drops at limiter i is NDi(Ci) = Cipi, and
the total number of drops across all limiters is:

ND(C1, . . . , CN ) =

N∑
i=1

NDi(Ci) =

N∑
i=1

Cipi =

=

N∑
i=1

β2
i

Ci
.

From the Cauchy-Schwartz inequality:

N∑
i=1

x2
i

N∑
i=1

y2
i ≥

(
N∑

i=1

xiyi

)2

used for xi = βi√
Ci

and yi =
√

Ci we get:

ND(C1, . . . , CN )·C =

N∑
i=1

(
βi√
Ci

)2 N∑
i=1

√
Ci

2 ≥
(

N∑
i=1

βi

)2

.

Thus

ND(C1, . . . , CN ) ≥

(∑N
i=1 βi

)2

C

with equality if and only if there exist some γ such that for
all i: xi = γyi which is equivalent to

pi =

(
βi

Ci

)2

=

(
xi

yi

)2

= γ2.

Therefore, we showed that the vector (C1, . . . , CN ) that min-
imizes total number of drops is the one for which the loss
rates among all local limiters are equal.

3. DISTRIBUTED DEFICIT ROUND ROBIN
(D2R2)

The design of D2R2 is in some sense similar to the de-
sign of C3P. The terminology is the same: N local limiters
need to control aggregate bandwidth at level C. The local
limiter i has a controllable capacity Ci, and can exchange
information with limiters j, such that (i, j) is an edge in the
communication graph G = (N, E) which is undirected and
connected. However, the reference point in the formulation
of the fairness postulate require that flows located at differ-
ent limiters emulate global processor sharing. Formally it is
given by (7).

To achieve this, we require that each limiter utilizes a pro-
cessor sharing emulator; in our implementation it is Deficit
Round Robin (DRR) [28]. While in the best-effort case the
global objective was distributed emulation of a single best-
effort queue in the PS case the global objective is distributed
emulation of a single processor sharing queue.

At each limiter we use a number of virtual queues em-
ulating token buckets of DRR scheduler. If the packet is
discarded from the virtual DRR scheduler, then the arriving
packet is dropped, otherwise it is forwarded to the appropri-
ate output line. Thus, no queueing delay is caused by any

1 UpdateCapacities()
2 Once every ∆ units of time do
3 for i = 1 : N
4 ṽi ← v0(Ci,Fi)
5 Ri ← Ci − gi(ṽi)
6 vi ← ṽi + αRi

7 Ci ← Ci + η
∑

(i,j)∈E(vj − vi)

8 endfor
9 enddo

10 InitializeCapacities()
11 for i = 1 : N
12 Ci ← C

N
13 endfor

Figure 2: Pseudo-code of D2R2
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Figure 3: The piecewise-linear dependance between
“fair share” and the forwarding rate of a PS sched-
uler. n = 4 flows with demands u1 = 10Kbps,
u2 = 40Kbps, u3 = 80Kbps, u4 = 120Kbps.

limiter. The “fair-share” is measurable directly, and it de-
pends on the traffic pattern. Roughly speaking, for a given
bandwidth, the more flows exist at the limiter (meaning that
aggregate aggressiveness is bigger) the lower “fair-share” is.

Before we proceed, we need to explore the nature of the
relationship between the demand, “fair-share” and the ca-
pacity of a DRR scheduler. Let Fi = {f1, f2, . . . , fni} a

family of ni flows, with demands u
(i)
s , and gi : R+ → R+ be

a function given by

gi(v) =

ni∑
s=1

min(u(i)
s , v).

Without loss of generality we can assume that u
(i)
1 ≤ u

(i)
2 ≤

· · · ≤ u
(i)
ni . Then, gi(·) is a piecewise linear concave func-

tion on (0,∞) and its graph has a form depicted in Figure
3. The “fair-share”, v0(Ci,Fi), defined as the maximal rate
across the all flows from Fi utilizing DRR scheduler with
bandwidth Ci is either:

(1) (the unique) solution of the equation gi(v) = Ci if∑ni
s=1 u

(i)
s > Ci, or

(2) v0(Ci,Fi) = u
(i)
ni , if

∑ni
s=1 u

(i)
s ≤ Ci.

The residual bandwidth Ri(Ci) = Ci − gi(v0(Ci,Fi)) is

strictly positive if the demand
∑ni

s=1 u
(i)
s is strictly smaller

than capacity (otherwise Ri(Ci) = 0).
Now we are ready to present the Distributed DRR (D2R2)

algorithm. Its pseudo-code is given in Figure 2. The algo-
rithm has two parameters α ≥ 1 and η > 0. The param-
eter α determines the accuracy of the algorithm, while η



determines responsiveness and stability properties of the al-
gorithm. The algorithm updates the local limiter’s rates
(C1, . . . , CN ) in discrete time steps. In each time step, “fair-
share” ṽi and the residuum Ri is computed at each limiter.
The augmenting “fair-share” is the sum vi = ṽi + αRi. The
algorithm uses a consensus approach similar to those of C3P
to equalize all vi at some value v∗α. The key observation is
that, v∗α is at most O( 1

α
) away from the solution v∗ of the

equation (6) (Theorem 5).

3.1 Model and analysis of D2R2
The goal of this section is to analyze the dynamics and

the convergence properties of the D2R2 algorithm. For a
given α we will establish sufficient conditions on η under
which set of local limiter rates converge (to some C(α) =
(C1(α), . . . , CN (α))) in Theorem 4. Then, in Theorem 5,
we will show that vector C(α) is at most O( 1

α
) away to the

vector C∗ for which (7) is satisfied.
Denote by Ci(t) and vi(t) the capacity of the limiter i and

the augmenting“fair-share” (vi) at the time step t. From the
initialization step we know that: Ci(0) = C/N . The update
rule (line 7 in Figure 2) allows us to write the dynamics of
Ci in the following form:

Ci(t + 1) = Ci(t) + η
∑

(i,j)∈E

(vj(t)− vi(t)). (20)

Note that since G is an undirected graph the capacity
constraint (12) is satisfied for all t. From the definition of
the augmenting “fair-share” (lines 4-6 in Figure 2), we have
that Ci(t) and vi(t) are related in the following manner:

Ci(t) = hi(vi(t)), (21)

where hi : R+ → R+ is the following, strictly increasing
function:

hi(v) = gi(v) +
1

α
max(0, v −

ni∑
s=1

us)

The following lemma is an obvious consequence of the
definition of hi(·).

Lemma 2. Let α ≥ 1. Then:
(1) hi(·) is a piecewise linear, strictly increasing, concave
function on the whole domain (0,∞).
(2) For any x, y ∈ R+:

|hi(x)− hi(y)| ≥ 1

α
|x− y|. (22)

The following result gives simple sufficient condition under
which the D2R2 algorithm is stable, and that augmenting
“fair-shares” at all local limiters are equal in steady-state.

Theorem 4. Let α ≥ 1. If

0 < η ≤ min
1≤i≤N

1

2αdi
,

then the system (20)-(21) converges to a stable point (C(α), v(α))

and all components of vector v(α) are equal.

Proof. We will write the system the system (20)-(21) in
terms of vi only:

hi(vi(t + 1)) = hi(vi(t)) + η
∑

(i,j)∈E

(vj(t)− vi(t)). (23)

From the Lemma 2, for the increasing function hi, we have
that there exists qi(t) ≥ 1

α
such that:

hi(vi(t + 1))− hi(vi(t)) = qi(t)(vi(t + 1)− vi(t)).

Thus

vi(t + 1) = vi(t) +
η

qi(t)

∑

(i,j)∈E

(vj(t)− vi(t)),

which can be rewritten in vector form as

v(t + 1) = B(t)v(t)

where:

B(t) =




1− d1η
q1(t)

η
q1(t)

e1,2 · · · η
q1(t)

e1,N

η
q2(t)

e2,1 1− d2η
q2(t)

· · · η
q2(t)

e2,N

...
...

. . .
...

η
qN (t)

eN,1 · · · · · · 1− dN η
qN (t)




.

For the diagonal elements of B(t) we have:

1− diη

qi(t)
≥ 1− αdiη ≥ 1− 1

2
=

1

2
.

For nonzero off-diagonal entries of B(t) we have

η

qi(t)
≥ αη.

Thus, for every t ≥ 0, all nonzero entries of B(t) are greater
than δ = min( 1

2
, αη). Thus B(t) is a stochastic matrix,

and therefore M(t) = max1≤i≤N (vi(t)) is nonincreasing se-
quence and m(t) = min1≤i≤N (vi(t)) is a nondecreasing se-
quence. Now, after establishing that all nonzero elements of
B(t) are uniformly bounded away from zero, using the same
argument from the proof of Theorem 1 (step 4) we have
that M(t) − m(t) → 0 as t → ∞. Thus, limt→∞M(t) =

limt→∞m(t) = v(α) for some v(α) and for all i:

lim
t→∞

vi(t) = v(α). (24)

And also:

lim
t→∞

Ci(t) = hi(v
(α)) = C

(α)
i . (25)

From the definition of the augmenting“fair-share”we know
that the rate of the flow f i

s at the limiter i, with steady-state

capacity C
(α)
i is

rate(f i
s) = min(ui

s, v
(α)).

From the capacity constraint we know that

N∑
i=1

hi(v
(α)) =

N∑
i=1

C
(α)
i = C (26)

Thus v(α) is the unique solution of the equation

N∑
i=1

hi(v) = C. (27)

Since v∗ is the solution of the equation (6) and gi(v) ≤
hi(v) for all v > 0, we conclude that:

v(α) ≤ v∗.
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Figure 4: Loss rates of three oblivious C3P, GRD
and FPS. Different lines correspond to loss rates at
10 different local limiters.

The next theorem gives a conservative bound, on how far
is v(α) from v∗.

Theorem 5. Let α ≥ 1 and M be the number of flows in
F with demand not less than v∗. Then:

0 ≤ v∗ − v(α)

v∗
≤ N

Mα
.

Proof. To begin the proof, note that for all v > 0:

hi(v) = gi(v) +
1

α
max(0, v −

ni∑
s=1

us) ≤ gi(v) +
1

α
v.

Then, from the fact that v(α) is the solution of the equa-
tion (27) we have:

C =

N∑
i=1

hi(v
(α)) ≤

N∑
i=1

(gi(v
(α)) + v(α) 1

α
).

Thus

G(v(α)) =

N∑
i=1

gi(v
(α)) ≥ C − Nv(α)

α
. (28)

The right-hand derivative of G(v) at v = v∗ is equal to

G′+(v∗) =

N∑
i=1

ni∑
s=1

(min(u(i)
s , v∗))′+ = M.

From the concavity of G we have that

G(v∗)−G(v(α)) ≥ G′+(v∗)(v∗ − v(α)) = M(v∗ − v(α)).

Combining the last inequality with (28) and using fact that
G(v∗) = C and we obtain:

M(v∗ − v(α)) ≤ C −G(v(α)) ≤ Nv(α)

α
≤ Nv∗

α
,

which implies the statement of the theorem.

Comment 5. The parameter α, does not affect the algo-
rithm as long as the demands at the limiters are greater than
their capacities, since in that case the residuum bandwidth,
Ri, is actually zero. In that case the augmenting fair-share

is equal to the fair-share and v(α) = v∗ for any α ≥ 1 mean-
ing that D2R2 converges exactly to the solution of processor
sharing DRL problem. It is only in low demand regimes
when the need of introducing α and augmenting fair-share
arises.

4. EVALUATION
In this section we present empirical results obtained by

ns2 packet level simulation. We first compare C3P and
D2R2 with existing DRL algorithms (GRD and FPS) using
several performance metrics. We then validate our theoret-
ical results experimentally and present a number of results
that shows the behavior of our DRL algorithms under more
dynamic traffic-mix settings. Finally, we discuss the effects
of the cloud size and topology on the speed of convergence
of C3P and D2R2.

The DRL algorithms are implemented and evaluated using
ns2. The results presented assume loss-free communication
between the limiters. Some small loss (say less than 1%)
of information between limiters have negligible effects on all
four algorithms evaluated here and will not be discussed in
the rest of this section.

4.1 Comparison with GRD and FPS
The first set of experiments compare the proposed algo-

rithms with schemes from [26], Global Random Drop (GRD)
and Flow Proportional Share (FPS), over a number of per-
formance metrics. The simulation setup is the following.
There are N = 10 local limiters indexed with numbers 1,2,
. . . ,10. Limiter i communicates with limiters (i− 1) mod 10
and (i + 1) mod 10 (which means that the communication
graph is the ring). Limiters collaborate in order to achieve
aggregate rate limiting at the level of C = 40Mbps. The lim-
iter i serves i TCP flows (therefore there are 1+2+· · ·+10 =
55 flows in total) with packet sizes 1000 bytes and round trip
times

RTT
(i)
j = (8 · i + 30 · j)ms for j ∈ {1, 2, . . . , i}.

The choice of GRD and FPS parameters is based on the
suggestions from [26]. The estimate intervals for GRD and
FPS are 100ms and 500ms respectively and exponential
weighted mean averaging (EWMA) is performed once ev-
ery 1 second with EWMA parameter 0.1. The parameter
ηC3P = 200000bps is just under the upper bound (13) for
stability. For D2R2 we use α = 1 and ηD2R2 = 0.1. The ex-
change of information between limiters is ∆ = 2sec in both
C3P and D2R2.

We evaluate the following performance parameters.
(a) Loss rates. Per-limiter loss rates provide information

on the aggregate bandwidth allocation. From the discussion
in Section 1.1 we know that a DRL algorithm emulates a
centralized best effort FIFO queue if and only if loss rates
at all limiters are equal. Thus, by looking at per-limiter
loss rates it is easy to test whether a DRL algorithm emu-
lates centralized best effort queue or not. We look at three
DRL schemes with token bucket local limiters: C3P, GRD
and FPS. In case of D2R2, local limiters use processor shar-
ing queues and therefore each flow has its own loss rate, so
per-limiter loss rate is not a meaningful performance met-
ric. The results are presented in Figure 4. The C3P and
GRD algorithms have relatively uniform loss rates, indicat-
ing that they emulate the behavior of the centralized limiter
relatively well. We also note that loss rates in GRD case are



. C3P GRD FPS D2R2
mean(Mbps) 39.98 35.68 38.66 40.00
std(Mbps) 2.98 2.72 2.57 1.82

Table 1: Mean and standard deviation (std) of the
500ms-aggregate forwarding rates in C3P, GRD, FPS
and D2R2.
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Figure 5: Achieved flow rates of 55 concurrent flows.

slightly bigger, and have a larger variance than in C3P. This
is a consequence of the “synchronization” effect observed in
[26]: when aggregate forwarding rate reaches aggregate limit
C many flows experience (unnecessary) multiple losses. On
the other hand, FPS per-limiter loss rates vary greatly in-
dicating that FPS does not match the behavior of the cen-
tralized best effort limiter.

(b) Aggregate rate control. A major performance fea-
ture of a DRL algorithm is its ability to control the aggregate
forwarding rate at the prescribed level C. Table 4.1 contains
the mean and standard deviation of time series representing
the 500ms-aggregate-forwarding-rate. We can notice high
accuracy of C3P and D2R2 in terms of achieving the mean
aggregate forwarding rate very close to C. GRD exhibits
almost 10% smaller aggregate rate mainly because of the
“synchronization” effect (see previous paragraph).

(c) Flow rate allocation. Figure 5 depicts the aver-
age flow rates of 55 flows7 utilizing 10 limiters employing
four architectures C3P, GRD, FPS and D2R2. The Jain’s
fairness indices (JFI) [16] of r flows achieving sending rates
x = (x1, . . . , xr) is given by

JFI(x) =

(∑r
i=1 xi

)2

r
∑r

i=1 x2
i

. (29)

JFI’s under each of four schemes are given in Table 4.1.
We note the following facts. (1) In C3P and GRD case,

7Flows with FlowID from i(i−1)
2

+ 1 to i(i+1)
2

are served by
limiter i.

. C3P GRD FPS D2R2
JFI 0.702 0.722 0.871 0.996

Table 2: Jain’s fairness indices for four schemes.
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Figure 6: C3P under dynamic traffic. Aggregate
forwarding rate (top), per-limiter loss rates (middle)
and the number of active flows (bottom).

per-limiter loss rates are almost identical which implies that
bandwidth allocated to each flow is inversely proportional to
its round-trip time8. (2) Jain’s fairness index under D2R2
is close to 1 indicating that problem of distributed proces-
sor sharing discussed in Section 1.1 is successfully solved by
D2R2 in the given example. (3) The heuristic nature of FPS
that uses per-limiter weight (defined as the ratio between the
capacity of the limiter and the maximum flow-rate among
all flows utilizing the limiter) as an estimator of the number
of flows exhibits unpredictable bandwidth allocation among
flows that use different limiters.

(d) Communication overhead. Since all four algo-
rithms use UDP packets (with size of approximately 50 bytes)
the communication overhead of any of those DRL algorithms
is inversely proportional to the update interval ∆. Suggested
values from [26] are ∆GRD = 0.1sec and ∆FPS = 0.5sec.
Those sub-second update intervals in GRD and FPS are
necessary because their actions require instantaneous infor-
mation of the global aggregate demand/weight. In contrast,
C3P and D2R2, emulate centralized queue on a longer time
scale requiring less frequent updates. In our implementa-
tions we use ∆C3P = ∆D2R2 = 2sec.

4.2 Dynamic traffic distributions
The previous subsection dealt with static traffic conditions

and compares the main performance metrics over four DRL
schemes. Internet traffic changes its traffic mix patterns and
here we evaluate the ability of C3P and D2R2 to adapt their
behavior under those changes. The basic setup is the same
as in the previous subsection: there are N = 10 limiters,
with limiter i serving i long-lived TCP flows. In addition
to those long-lived TCP flows each limiter serves 50 on-off
sources with demand of 100Kbps during on-times. On and
off times are drown with Pareto distributions with shape 1.5
and means 1sec and 9sec respectively. Those on-off sources
introduce low-intensity changes on short time scales. To
evaluate how algorithms behave under more abrupt traffic
changes, we duplicate the number of long-lived TCP flows
at time t1 = 200sec and reduce this to 55 long-lived flows at

8This follows directly from the square root formula (8).
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Figure 7: D2R2 under dynamic traffic. Aggregate
forwarding rate (top), per-limiter fair share (middle)
and the number of active flows (bottom).

time t2 = 400sec.
The resulting per-limiter loss rates (in C3P) and fair-

shares (in D2R2) are depicted in Figure 6 and 7, along
with aggregate forwarding rate and number of active flows
(summed over all limiters). From those figures we can see
that: (1) short-time scale changes of traffic mix, induced by
on-off sources have negligible effect in the stability of C3P
and D2R2, as both of them adapt to those changes in an
instantaneous manner. (2) more abrupt traffic changes re-
quire some time for the algorithms to converge to the desired
regime. However, Theorems 1 and 4 guarantee convergence
and this is empirically confirmed by the presented simula-
tions.

4.3 Speed of convergence
To evaluate how fast the algorithms converge to the equi-

librium one requires a metric that measures how equalized
are the loss rates (in C3P) and “fair shares” (in D2R2). We
find it convenient to use Jain’s fairness index given by (29)
to measure the discrepancies between per-limiter loss rates
(p(t)) and per-limiter fair shares (v(t)).

The simulation setup is the following. There are N lo-
cal limiters, and limiter i serves ni TCP flows, where ni is
randomly drown from the interval [1,10] with uniform dis-
tribution. The TCP flows have a packet size of 1000 bytes
and RTT randomly drown from the interval [100ms,500ms]
with uniform distribution. The communication graph is a
random d-regular graph9. The update interval is ∆ = 2sec,
and the total capacity is CN = (N)Mbps. The η is chosen at
the upper bounds from the Theorems 1 (for C3P) and 4 (for
D2R2). Two choices of N and two choices of d are evaluated,
and the evolution of JFI(p(t)) and JFI(v(t)) are depicted
in Figures 8 and 9. From those Figures we can observe: (1)
It takes a couple of minutes for JFI(p(t)) to converge to
a value close to 1 in C3P while the convergence of D2R2
is faster (less than a minute in the presented simulations).
(2) More surprising and a rather intriguing observation is
that for the choice of η given by the upper bounds from the
Theorems 1 and 4, the convergence speed (in terms of JFI

9An undirected graph is d-regular if its every node has de-
gree d.

dynamics) does not appear to depend on the size of cloud
or density of the communication graph, but rather on the
traffic mix distributions.

5. IMPLEMENTATION ISSUES
Asynchronous updates. The algorithms C3P and D2R2

assume that local-limiter capacities are updated in a syn-
chronized manner using a connected undirected communi-
cation graph G. However, this is not necessary to ensure
convergence. To see this, suppose that in each time instant
t only some subset of nodes exchange information, and that
that information exchange is characterized by an undirected
graph Gt. If there is some T > 0 such that for every τ ,
∪τ+T

t=τ Gt is connected, then the method developed in [14]
can be used to establish the convergence of the C3P and
D2R2.

Message passing. Communication between two local
limiters is performed via small UDP packets. Each packet
should contain a field for loss rate in C3P case (augmenting
fair share in D2R2 case), as well as some control overhead
to ensure that if a loss of a communication packet occurs
no local limiter gains or loses extra capacity, and that the
capacity constraint (1) is not violated.

Communication delays. The message passing between
two local limiters causes some communication delay on a
time scale from few milliseconds up to a couple of hundreds
of milliseconds. These communication delays could cause
some issues related to the stability of the distributed algo-
rithms if the update interval is on some small time scale.
However, the time between updates, given by ∆, is on the
order of magnitude of several seconds. This is necessary to
obtain a good estimate of loss rates (“fair share” in D2R2).
This resulting separation of time-scales ensures that effects
of the communication delays on the stability of our algo-
rithms may be neglected. Notwithstanding this fact, the
issue of delays is a topic for future research.

Node Failures. In cases of a node (local-limiter) fail-
ure, it is possible for a loss of aggregate bandwidth to occur
(since the capacity constraint (1) would be violated). A sim-
ple method for resolving this issue is the following. Let each
local-limiter i chose a best-friend local-limiter10 bi among
neighbor nodes in the communication graph G, and let each
node inform node bi of its local rate limit Ci. In the case of
failure, local limiter bi inherits bandwidth of node i, by sim-
ply setting Cbi = Cbi + Ci. Then the algorithms themselves
will eventually adapt capacities of the non-failed limiters to
the desired regime.

6. SUMMARY
Issues related to service reliability, service availability, and

fault tolerance, have encouraged many service providers in
the Internet to shift from traditional centric services to cloud
based services. This trend appears to be a dominant mecha-
nism for ensuring robustness of internet services with many
“big players”, such as Google, Yahoo!, Akamai, Amazon, al-
ready offering a suit of cloud-based services.

Pricing, usage control, and resource allocation of cloud
based services represent important technical challenges for
the networking community. The Distributed Rate Limiting
paradigm is a step forward in resolving those issues. The

10Note that if j is best-friend of node i, that it does not
necessarily mean that i is the best-friend of node j.
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two algorithms, GRD and FPS, presented in [26] are de-
signed in an ad hoc manner using some global information
(obtainable via some distributed algorithm). The heuris-
tic nature of those algorithms gives rise to unpredictable
performance (in terms of aggregate utilization, loss rates,
bandwidth allocation etc.) and, equally importantly, makes
those algorithms analytically untractable. In this paper we
make a step forward in the design of DRL algorithms. Our
first algorithm, Cloud Control with Constant Probabilities
(C3P) gives an elegant, fully decentralized, solution to the
DRL problem in best effort environments. The dynamics
of C3P is analyzed and closed-form sufficient conditions are
obtained that ensure global stability of the nonlinear system
describing the dynamics of C3P.

The DRL problem in processor sharing environments sim-
ply states that we need a distributed algorithm for emulating
centralized processor sharing queue on each local limiter. It
turns out that this is slightly harder problem to solve com-
pared to the best effort environments. Our algorithm Dis-
tributed Deficit Round Robin (D2R2), parameterized with
parameter α, converges to a solution that is O( 1

α
) away from

the global optimum. We note here, that in case of large de-
mands D2R2 indeed converge to the global optimum and it
is only in low demand case when we cannot ensure the exact
convergence. However, it would be interesting to obtain a
distributed algorithm that converge to the global optimum
(rather than O( 1

α
) neighborhood of it) in all cases.
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