Computational anonymity and some combinatorics

Klara Stokes

Interdisciplinary Workshop on Data Privacy Maynooth, September 28, 2015

Abstract

Data Privacy

- Scenario: a database needs to be released to third parties for its analysis. The database contains sensitive information about individuals.
- *Solution:* the data is modified (**anonymized** or **masked**) to avoid disclosure of the sensitive information.

A popular approach for protecting data in table form is to mask the data set, so that it satisfies k-anonymity – ensuring a certain level of privacy.

In case it can be assumed that the adversary has certain limitations in memory or in computational power, *k*-anonymity can be relaxed without affecting the privacy level.

I will show how this is possible and discuss some related combinatorics.

Table of Contents

(2) (k, ℓ) -Anonymity

Table of Contents

2 (k, ℓ) -Anonymity

3 *k*-Anonymity in graphs

Tables and k-Anonymity

- A database **table** is a collection of records that correspond to individuals or entities.
- A **record** is divided into attributes (name, personal number, weight, etc). In the context of *k*-anonymity, attributes are either **public** or **confidential**.
- An attribute with a unique entry for every record is an **identifier**.

Naive anonymization of tables consists in removing identifiers.

Tables and k-Anonymity

Quasi-identifier

A collection of (public) attributes that is enough for identifying at least one individual in a population is called a **quasi-identifier**. This term was coined by the Swedish statistician Tore Dalenius in 1986.

k-anonymity

A table is k-anonymous if every combination of entries in any quasi-identifier is repeated at least k times.

As a result a record can not be linked to a set of less than k individuals (**its anonymity set**) so there is no reidentification.

k-Anonymity provides **unconditional anonymity** if the quasi-identifiers are correctly determined.

But what exactly does correctly determined mean?

Unconditional (theoretical) anonymity requires all public attributes of the table to be considered quasi-identifying in combination with each other.

So, strictly speaking, a k-anonymous table has at least k copies of each record (when restricted to the set of public attributes).

Assumption.

Let T be the table we want to protect. Assume the adversary only has information about at most ℓ of the attributes of each individual in T. (The ℓ attributes do not have to be the same for different individuals.)

Definition. A table T satisfies (k, ℓ) -anonymity if it is *k*-anonymous with respect to every subset of attributes of cardinality at most ℓ .

 (k, ℓ) -Anonymity

Example.

	A	В	С	D	Ε	F	G	Η	1	J	Κ	L	М	Ν	0	Ρ
1	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0
2	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0
3	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0
4	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0
5	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0
6	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0
7	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
8	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
9	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0
10	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0
11	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0
12	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0
13	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0
14	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0
15	0	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0
16	0	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0

 (k, ℓ) -Anonymity

	Α	В	С	D	Ε	F	G	Н	1	J	Κ	L	М	Ν	0	Ρ
1	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0
2	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0
3	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0
4	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
5	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0
6	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0
7	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0
8	0	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0
9	0	0	0	0	1	0	0	0	0	1	0	1	1	0	0	0
10	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0
11	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0
12	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	1
13	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1
14	0	1	0	0	0	0	0	0	0	1	0	0	1	0	1	0
15	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	1
16	0	0	0	1	0	0	0	0	0	0	0	1	1	0	1	0

Assumption.

Let T be the table we want to protect. Assume the adversary only has information about at most ℓ of the attributes of each individual in T. (The ℓ attributes do not have to be the same for different individuals.)

Proposition. Let T be a table and let $T_{k\ell}$ be a (k, ℓ) -anonymous table that is (somehow) based on T. Under the above Assumption, we have that $T_{k\ell}$ offers the same degree of anonymity as would a k-anonymous table T_k based on T.

The nature of the assumption makes (k, ℓ) -anonymity to a concept of

computational anonymity,

to be contrasted with the

unconditional or theoretical anonymity

of k-anonymity.

Goal: an algorithm which, given a table T, outputs a (k, ℓ) -anonymous table, similar to T.

Tool: Hypergraphs.

A hypergraph, or a set system, is

• a set P, with elements called points or vertices, and

• a subset E of the power set of P, with elements called edges

(A hypergraph with two points in each edge is a graph.)

The **degree** of a point p is the number of edges containing p.

The **rank** of an edge *e* is the number of points in *e*.

Let

- X be the set of all record entries of the table T, with both values and metadata, and let
- X_{ℓ} be the set of all subsets of X of cardinality ℓ .

Define a hypergraph H(T) = (P(T), E(T)):

- Points P(T): the elements in X_{ℓ} .
- Edges E(T): the records of T.

If the number of records of T is m, then this hypergraph is uniform of rank $\binom{m}{\ell}$, and the degree of each point equals the number of records with the corresponding ℓ entries.

If T is (k, ℓ) -anonymous, then the degree of each point is either 0 or greater than k.

Problem: Given a hypergraph H(T) representing a table, transform it into a hypergraph \tilde{H} such that **the degree of each point is either 0 or greater than** k.

Algorithm.

```
While \exists p \in P(T): 0 < \deg(p) < k do
Choose q \in P(T), minimizing d(N(p), N(q));
Generalize values and metadata (globally) for the points p and q,
making them one point p \lor q;
```

The **neighborhood** N(p) of a point p is the multiset containing the points on edges with p.

There are several ways to define a distance between two neighborhoods. Example: use cardinality of the symmetric difference of the two sets.

Example.

Assume k = 2, $\ell = 3$. Fix

 $p = \{[married, yes], [hair colour, brown], [height, 180 cm]\}.$

Some neighbours to *p*:

So there is a record [married, yes], [height, 180 cm], [age, 34], [hair colour, brown], [sports, taekwando], [myopia,no].

Say q is a point with very similar neighbourhood:

 $q = \{[married, yes], [hair colour, blond], [height, 180 cm]\}.$

Generalization (for example):

 $p \lor q = \{[married, yes], [hair colour, brown or blond], [height, 180 cm]\}.$

Table of Contents

1 Introduction

2 (k, ℓ) -Anonymity

Social Network Data and Graphs

Graphs are frequently used to represent networks.

Social network data, or data containing relations between people, can be represented using a labeled graph: network data with additional data attached.

It is known that the graph structure can be used as a quasi-identifier for this type of data, so anonymous release is complicated.

What is *k*-anonymity for graphs?

k-Anonymity for Graphs

k-Anonymity is based on the concept of a partition of the records in anonymity classes. Therefore, k-anonymity for graphs should be something like:

Sketch of how to achieve k-anonymity for graphs Classify vertices according to property *P*. Replace the vertices with an aggregate value (e.g. a median).

Actually, it was observed by Lorrain and White already in 1971 that the computationally correct quasi-identifier (i.e. P) for social networks is the neighborhood of the vertices.

However, this result was never discussed in the context of data privacy and the concept of quasi-identifier was not yet defined then.

k-Anonymity for Graphs

Several suggestions in the literature for the correct choice of property P.

- Vertex degree.
- Local neighborhood structure around vertex.
- Distance to a set of vertices with high degree and betweenness centrality (hubs);
- Graphs metrics or structural properties in general.

There are also approaches in which the edges are clustered instead of the vertices.

Important observation: a graph that is k-anonymous with respect to one quasi-identifier P may fail to be so for another one.

Graphs

First things first: what is a graph?

Graph

A graph is a set of **vertices** and a set of **edges** connecting pairs of vertices. It is **simple** if it has no loops nor multiple edges.

Equivalently:

Graph

A graph is a square symmetric **matrix** with entries in $\{0,1\}$. It is **simple** if it has 0-diagonal.

This matrix is called the **adjacency matrix** of the graph and is a **lossless** representation of the graph.

- Multiple edges \Rightarrow Matrix entries in $\mathbb{N} \cup \{0\}$.
- Loops \Rightarrow Non-zero entries on the diagonal.

Graphs: A Small Example

A simple graph on 4 vertices.

Observe: row v represents neighborhood N(v) of vertex v.

k-Anonymity for Graphs

k-Anonymity for graphs (in terms of records)

A graph is k-anonymous if every row (record) in the adjacency matrix is repeated at least k times.

(Observe that the matrix is symmetric, so we could have taken the columns instead of the rows.)

Every row in the adjacency matrix represents the neighborhood N(v) of a vertex v.

k-Anonymity for graphs (in terms of neighborhoods) A graph is k-anonymous if every vertex has the **same neighborhood** as at least k - 1 other vertices.

Open and Closed Neighborhoods

- The **open neighborhood** of a vertex $v \in V$ is the set $N(v) = \{u \in V : (v, u) \in E\}.$
- The closed neighborhood of v is $\overline{N(v)} = N(v) \cup \{v\}$.

Example: In a graph representing friendships, my open neighborhood is the set of my friends and my closed neighborhood is the set of my friends and I.

Graphs that are k-anonymous with respect to these quasi-identifiers are different!

Structural equivalence

Two vertices u and v in G are **structurally equivalent** if u relates to each vertex in exactly the same way as v does. Then u and v are absolutely equivalent/substitutable within the graph.

 $\mathsf{Open}/\mathsf{closed}$ neighborhoods is the strictest QI for non-reflexive/reflexive relations.

Two vertices with the same neighborhood share the same degree, centrality, etc.

k-Anonymity in graphs

k-Anonymity in graphs

0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	1	1	1	1	1	1	0	0	0

0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
1	1	1	0	0	0	1	1	1	1	1	1	0	0	0

k-Anonymity in graphs

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
2	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
3	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
4	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
5	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
6	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
8	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
9	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
10	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
11	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
12	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
13	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
14	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
15	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0

k-Anonymity in graphs

	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5
1	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
1	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
1	0	0	0	1	1	1	0	0	0	1	1	1	1	1	1
2	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
2	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
2	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
4	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
4	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
4	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1
5	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
5	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0
5	1	1	1	0	0	0	1	1	1	1	1	1	0	0	0

Modular Decomposition of graphs

A **module** in a graph G = (V, E) is a subset of vertices $M \subseteq V$ that share the same neighbors in $V \setminus M$.

A **strong module** is a module that does not overlap other modules.

A congruence partition is a partition of V in which the parts are modules. It is a **maximal modular partition** if the modules are strong and maximal w.r.t. inclusion.

A **factor** is the induced graph on the vertices in one part of a congruence partition.

The modules of a graph define a decomposition scheme for the graph with an associated decomposition tree representing the graphs strong modules.

This tree represents the structure of the graph and is a first step in many algorithms.

k-Anonymous Graphs in Terms of Modular Decomposition

Theorem

Let G be a graph. If G is k-anonymous with respect to the open (closed) neighborhoods, then G has a maximal modular partition $P = \{V_1, \ldots, V_m\}$ such that $|Vi| \ge k$ for all $i = 1, \ldots, m$ and such that the factors of G with respect to P are completely disconnected (complete graphs).

Efficient way of testing for *k*-anonymity in graphs:

Apply an algorithm for modular decomposition to obtain the maximal modular partition and check that factors are as required.

Relaxing *k*-Anonymity in Graphs

In general, the factors of the maximal modular partition of a graph can be any graph.

If we do not require factors to be completely disconnected /complete graphs, we get a more flexible definition of k-anonymity, in which only edges between modules are anonymized.

Useful in cases when some edges are more sensitive than others.

Conclusions

We have seen a relaxation of k-anonymity for tables, called (k, ℓ) -anonymity, which is useful when there are many public attributes and it is hard to correctly determine the quasi-identifiers (big data).

We have also discussed k-anonymity in graphs, and related it to the concept of modular decomposition.

Note that (k, ℓ) -anonymity can be applied as it is for graphs. Actually, we first defined it for graphs.

- K. Stokes. Graph k-Anonymity through k-means and as modular decomposition. Proc. of the 18th Nordic Conference on Secure IT Systems (NORDSEC), Ilulissat, Greenland, 18-21 October 2013, LNCS, Springer (2013), pp. 263–278.
- K. Stokes. On computational anonymity. Proc. of Privacy in statistical databases (PSD 2012), Palermo, Italy, 2628 September 2012, LNCS, Springer, (2012), pp. 336–347.
- K. Stokes and V. Torra. Reidentification and k-anonymity: a model for disclosure risk in graphs. Soft Computing, Springer, 16:10, (2012), pp 1657–1670.