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Abstract

Data Privacy

Scenario: a database needs to be released to third parties for its
analysis. The database contains sensitive information about
individuals.

Solution: the data is modified (anonymized or masked) to avoid
disclosure of the sensitive information.

A popular approach for protecting data in table form is to mask the data
set, so that it satisfies k-anonymity – ensuring a certain level of privacy.

In case it can be assumed that the adversary has certain limitations in
memory or in computational power, k-anonymity can be relaxed without
affecting the privacy level.

I will show how this is possible and discuss some related combinatorics.
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Introduction

Tables and k-Anonymity

A database table is a collection of records that correspond to
individuals or entities.

A record is divided into attributes (name, personal number, weight,
etc). In the context of k-anonymity, attributes are either public or
confidential.

An attribute with a unique entry for every record is an identifier.

Naive anonymization of tables consists in removing identifiers.
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Introduction

Tables and k-Anonymity

Quasi-identifier

A collection of (public) attributes that is enough for identifying at least
one individual in a population is called a quasi-identifier. This term was
coined by the Swedish statistician Tore Dalenius in 1986.

k-anonymity

A table is k-anonymous if every combination of entries in any
quasi-identifier is repeated at least k times.

As a result a record can not be linked to a set of less than k individuals
(its anonymity set) so there is no reidentification.
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Introduction

k-Anonymity provides unconditional anonymity if the quasi-identifiers
are correctly determined.

But what exactly does correctly determined mean?

Unconditional (theoretical) anonymity requires all public attributes of the
table to be considered quasi-identifying in combination with each other.

So, strictly speaking, a k-anonymous table has at least k copies of each
record (when restricted to the set of public attributes).
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(k, ℓ)-Anonymity

Assumption.

Let T be the table we want to protect. Assume the adversary only has
information about at most ℓ of the attributes of each individual in T .
(The ℓ attributes do not have to be the same for different individuals.)

Definition. A table T satisfies (k , ℓ)-anonymity if it is k-anonymous with
respect to every subset of attributes of cardinality at most ℓ.
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(k, ℓ)-Anonymity

Example.

A B C D E F G H I J K L M N O P

1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
2 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
3 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
4 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
5 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
6 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
7 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
8 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
9 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
10 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
11 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
12 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
13 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
14 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
15 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0
16 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0
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(k, ℓ)-Anonymity

A B C D E F G H I J K L M N O P

1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
2 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
3 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
4 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
5 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
6 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
7 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
8 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0
9 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0
10 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0
11 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0
12 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1
13 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
14 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
15 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1
16 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
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(k, ℓ)-Anonymity

Assumption.

Let T be the table we want to protect. Assume the adversary only has
information about at most ℓ of the attributes of each individual in T .
(The ℓ attributes do not have to be the same for different individuals.)

Proposition. Let T be a table and let Tkℓ be a (k , ℓ)-anonymous table
that is (somehow) based on T . Under the above Assumption, we have
that Tkℓ offers the same degree of anonymity as would a k-anonymous
table Tk based on T .

The nature of the assumption makes (k , ℓ)-anonymity to a concept of

computational anonymity,

to be contrasted with the

unconditional or theoretical anonymity

of k-anonymity.
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(k, ℓ)-Anonymity

Goal: an algorithm which, given a table T , outputs a (k , ℓ)-anonymous
table, similar to T .

Tool: Hypergraphs.

A hypergraph, or a set system, is

a set P , with elements called points or vertices, and

a subset E of the power set of P , with elements called edges

(A hypergraph with two points in each edge is a graph.)

The degree of a point p is the number of edges containing p.

The rank of an edge e is the number of points in e.
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(k, ℓ)-Anonymity

Let

X be the set of all record entries of the table T , with both values and
metadata, and let

Xℓ be the set of all subsets of X of cardinality ℓ.

Define a hypergraph H(T ) = (P(T ),E (T )):

Points P(T ): the elements in Xℓ.

Edges E (T ): the records of T .

If the number of records of T is m, then this hypergraph is uniform of
rank

(

m
ℓ

)

, and the degree of each point equals the number of records with
the corresponding ℓ entries.

If T is (k , ℓ)-anonymous, then the degree of each point is either 0 or
greater than k .
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(k, ℓ)-Anonymity

Problem: Given a hypergraph H(T ) representing a table, transform it
into a hypergraph H̃ such that the degree of each point is either 0 or

greater than k .

Algorithm.

While ∃p ∈ P(T ): 0 < deg(p) < k do

Choose q ∈ P(T ), minimizing d(N(p),N(q));
Generalize values and metadata (globally) for the points p and q,
making them one point p ∨ q;

The neighborhood N(p) of a point p is the multiset containing the points
on edges with p.

There are several ways to define a distance between two neighborhoods.
Example: use cardinality of the symmetric difference of the two sets.
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(k, ℓ)-Anonymity

Example.

Assume k = 2, ℓ = 3. Fix

p = {[married, yes], [hair colour, brown], [height, 180 cm]}.

Some neighbours to p:

{[married, yes], [height, 180 cm], [age, 34]}
{[married, yes], [sports, taekwando], [age, 34]}
{[myopia, no], [sports, taekwando], [age, 34]}

So there is a record [married, yes], [height, 180 cm], [age, 34], [hair colour, brown], [sports, taekwando], [myopia,no].

Say q is a point with very similar neighbourhood:

q = {[married, yes], [hair colour, blond], [height, 180 cm]}.

Generalization (for example):

p ∨ q = {[married, yes], [hair colour, brown or blond], [height, 180 cm]}.
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k-Anonymity in graphs
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k-Anonymity in graphs

Social Network Data and Graphs

Graphs are frequently used to represent networks.

Social network data, or data containing relations between people, can be
represented using a labeled graph: network data with additional data
attached.

It is known that the graph structure can be used as a quasi-identifier for
this type of data, so anonymous release is complicated.

What is k-anonymity for graphs?
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k-Anonymity in graphs

k-Anonymity for Graphs

k-Anonymity is based on the concept of a partition of the records in
anonymity classes. Therefore, k-anonymity for graphs should be something
like:

Sketch of how to achieve k-anonymity for graphs

Classify vertices according to property P . Replace the vertices with an
aggregate value (e.g. a median).

Actually, it was observed by Lorrain and White already in 1971 that the
computationally correct quasi-identifier (i.e. P) for social networks is the
neighborhood of the vertices.

However, this result was never discussed in the context of data privacy and
the concept of quasi-identifier was not yet defined then.
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k-Anonymity in graphs

k-Anonymity for Graphs

Several suggestions in the literature for the correct choice of property P .

Vertex degree.

Local neighborhood structure around vertex.

Distance to a set of vertices with high degree and betweenness
centrality (hubs);

Graphs metrics or structural properties in general.

There are also approaches in which the edges are clustered instead of the
vertices.

Important observation: a graph that is k-anonymous with respect to one
quasi-identifier P may fail to be so for another one.
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k-Anonymity in graphs

Graphs

First things first: what is a graph?

Graph

A graph is a set of vertices and a set of edges connecting pairs of
vertices. It is simple if it has no loops nor multiple edges.

Equivalently:

Graph

A graph is a square symmetric matrix with entries in {0, 1}. It is simple if
it has 0-diagonal.

This matrix is called the adjacency matrix of the graph and is a lossless

representation of the graph.

Multiple edges ⇒ Matrix entries in N ∪ {0}.

Loops ⇒ Non-zero entries on the diagonal.
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k-Anonymity in graphs

Graphs: A Small Example

1 2 3 4

1 0 1 0 1
2 1 0 0 1
3 0 0 0 1
4 1 1 1 0

1

2

34

A simple graph on 4 vertices.

Observe: row v represents neighborhood N(v) of vertex v .
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k-Anonymity in graphs

k-Anonymity for Graphs

k-Anonymity for graphs (in terms of records)

A graph is k-anonymous if every row (record) in the adjacency matrix is
repeated at least k times.

(Observe that the matrix is symmetric, so we could have taken the
columns instead of the rows.)

Every row in the adjacency matrix represents the neighborhood N(v) of a
vertex v .

k-Anonymity for graphs (in terms of neighborhoods)

A graph is k-anonymous if every vertex has the same neighborhood as at
least k − 1 other vertices.
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k-Anonymity in graphs

Open and Closed Neighborhoods

The open neighborhood of a vertex v ∈ V is the set
N(v) = {u ∈ V : (v , u) ∈ E}.

The closed neighborhood of v is N(v ) = N(v) ∪ {v}.

Example: In a graph representing friendships, my open neighborhood is
the set of my friends and my closed neighborhood is the set of my friends
and I.

Graphs that are k-anonymous with respect to these quasi-identifiers are
different!
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k-Anonymity in graphs

Structural equivalence

Two vertices u and v in G are structurally equivalent if u relates to each
vertex in exactly the same way as v does. Then u and v are absolutely
equivalent/substitutable within the graph.

Open/closed neighborhoods is the strictest QI for non-reflexive/reflexive
relations.

Two vertices with the same neighborhood share the same degree,
centrality, etc.
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k-Anonymity in graphs

Example: A 3-Anonymous Graph (Open Neighborhoods)
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k-Anonymity in graphs

Example: A 3-Anonymous Graph (Open Neighborhoods)

0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
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k-Anonymity in graphs

Example: A 3-Anonymous Graph (Open Neighborhoods)

0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
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k-Anonymity in graphs

Example: A 3-Anonymous Graph (Open Neighborhoods)

0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
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k-Anonymity in graphs

Example: A 3-Anonymous Graph (Open Neighborhoods)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
2 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
3 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

4 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
5 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
6 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

10 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
11 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
12 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

13 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
14 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
15 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

1

2

3
4

5

6

789

10

11

12

13 14

15
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k-Anonymity in graphs

Example: A 3-Anonymous Graph (Open Neighborhoods)

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

2 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
2 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
2 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

5 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
5 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
5 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

1
2

3

4

5
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k-Anonymity in graphs

Modular Decomposition of graphs
A module in a graph G = (V ,E ) is a subset of vertices M ⊆ V that share
the same neighbors in V \M.

A strong module is a module that does not overlap other modules.

A congruence partition is a partition of V in which the parts are modules.
It is a maximal modular partition if the modules are strong and maximal
w.r.t. inclusion.

A factor is the induced graph on the vertices in one part of a congruence
partition.

The modules of a graph define a decomposition scheme for the graph with
an associated decomposition tree representing the graphs strong modules.

This tree represents the structure of the graph and is a first step in many
algorithms.
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k-Anonymity in graphs

k-Anonymous Graphs in Terms of Modular Decomposition

Theorem

Let G be a graph. If G is k-anonymous with respect to the open
(closed) neighborhoods, then G has a maximal modular partition

P = {V1, . . . ,Vm} such that |Vi | ≥ k for all i = 1, . . . ,m and such that
the factors of G with respect to P are completely disconnected (complete
graphs).

Efficient way of testing for k-anonymity in graphs:

Apply an algorithm for modular decomposition to obtain the maximal
modular partition and check that factors are as required.
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k-Anonymity in graphs

Relaxing k-Anonymity in Graphs

In general, the factors of the maximal modular partition of a graph can be
any graph.

If we do not require factors to be completely disconnected /complete
graphs, we get a more flexible definition of k-anonymity, in which only
edges between modules are anonymized.

Useful in cases when some edges are more sensitive than others.
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k-Anonymity in graphs

Conclusions

We have seen a relaxation of k-anonymity for tables, called
(k , ℓ)-anonymity, which is useful when there are many public attributes
and it is hard to correctly determine the quasi-identifiers (big data).

We have also discussed k-anonymity in graphs, and related it to the
concept of modular decomposition.

Note that (k , ℓ)-anonymity can be applied as it is for graphs. Actually, we
first defined it for graphs.
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k-Anonymity in graphs
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