On Privacy and Intersections

Constantinos Patsakis Department of Informatics, University of Piraeus, Greece Interdisciplinary Workshop on Data Privacy 2015 Maynooth University

October 7, 2015

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Scope of this talk

Discuss about the problems of **Private Equality Testing**, **Private Set Intersection** and **Private Set Similarity**.

C. Patsakis On Privacy and Intersections

イロン イヨン イヨン

Э

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Private Equality Testing

PET

Let us assume that we have Alice and Bob who have a value and are willing to share **only one bit of information** whether their values are the same or not.

C. Patsakis On Privacy and Intersections

・ロト ・回ト ・ヨト ・ヨト

Preliminaries

Applications Stalking/Vulnerabilities Biometrics

Private Proximity Testing

PPT

Alice and Bob want to test whether they are in proximity or not.

C. Patsakis On Privacy and Intersections

・ロト ・回 ト ・ヨト ・ヨト

Preliminaries Applications Stalking/Vulnerabilities

Biometrics

Private Set Intersection

PSI

Let us assume that we have Alice and Bob who are willing to share their common elements, but **nothing** more with each other.

C. Patsakis On Privacy and Intersections

イロン イヨン イヨン

Preliminaries

Applications Stalking/Vulnerabilities Biometrics

Private Set Similarity

PSS

Let us assume that we have Alice and Bob are willing to share how many common elements they do have but **nothing** more with each other.

・ロト ・回ト ・ヨト ・ヨト

Э

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Excesive use of PSI/S

What happens after many queries?

Alice may start comparisons with 000...0 and 100...0 to find Bob's set using PSS

C. Patsakis On Privacy and Intersections

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Applications Stalking/Vulnerabilities Biometrics

What can we do with them?

- Determine if two people are in the same area or in proximity (more on this next).
- Determine if two people know each other in a OSN.
- Determine if Alice has a bank account in Bank ABC.
- Determine if a suspect is in a flight.
- Determine if a person is in two suspect lists.
- Document similarity
- Biometric authentication (more on this next)
- DNA similarity/queries
- Private distributed Uber-like services (under development)

イロト イポト イヨト イヨト

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Location-awareness of OSNs

・ロト ・回ト ・ヨト ・ヨト

Э

C. Patsakis On Privacy and Intersections

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Questions

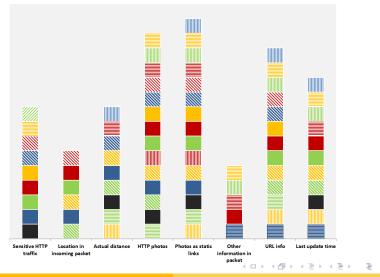
- How accurate are these distances?
- Do these applications allow location-based attacks?
- Could we locate people from the reported distances? If so, with what accuracy?
- What kind of data are they sending?
- How do they send this data?
- What others can infer?

イロト イポト イヨト イヨト

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Numbers...

Application	Version	Installations	Code	Application	Version	Installations	Code
ChatOn	3.0.2	100m-500m		Singles around me	3.3.1	500K-1m	
Grindr	2.0.24	5m-10m		SKOUT	4.4.2	10m-50m	
Hornet	2.0.14	1m-5m		Tagged	7.3.0	10m-50m	
I-Am	3.2	500K-1m		Tango	5.8	100m-500m	
LOVOO	2.5.6	10m-50m		Tinder	4.0.9	10m-50m	
MeetMe	9.2.0	10m-50m		Tingle	1.12	-	
МоМо	5.4	1m-5m		Waplog	3.0.3	5m-10m	
POF	2.40	10m-50m		WeChat	6.0.1	100m-500m	
SayHi	3.6	10m-50m		Zoosk	8.6.21	10m-50m	


C. Patsakis On Privacy and Intersections

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Vulnerabilities

C. Patsakis

On Privacy and Intersections

DQC

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Authentication

With passwords we authenticate users using something that they *know*. Another approach is to authenticate users by something that they *are*, something that cannot be forgotten or forged.

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Biometric authentication

- Iris
- Retina
- Fingerprint
- Face
- Vains
- Gait
- Ear
- Palm
- . . .

・ロト ・回 ト ・ヨト ・ヨト

E

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Drawbacks

They are not exact

Regardless of the underlying data, every measurement is not exactly the same as the one registered.

They are permanent

While one could easily pick another password if it has been compromised, what should a user do if her biometrics are lost?

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Copy+Paste

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Copy+Paste

▲ロト ▲圖ト ▲屋ト ▲屋ト

Э

DQC

Preliminaries Applications Stalking/Vulnerabilities Biometrics

Copy+Paste

"Research is needed in order to explore whether it is possible to use other biometric data (potentially already used in another context and in another domain) than fingerprint, iris or facial picture to store in the e-Passport chip, which would guarantee the same or higher level of security, but would be more accurate and could be retrieved in a more efficient manner than in the case of the conventionally used biometric data types."

From BES-06-2015 H2020 Border crossing points topic 2: Exploring new modalities in biometric-based border checks

イロト イポト イヨト イヨト

Preliminaries Applications Stalking/Vulnerabilities Biometrics

The need

We need protocols which do *not* leak any information about the biometrics, or at least minimize the exposure.

イロン イヨン イヨン

Preliminaries Applications Stalking/Vulnerabilities Biometrics

The need – refined

We need protocols which do *not* leak any information when exchanging sensitive information about individuals, or at least minimize the exposure.

イロン イヨン イヨン

Э

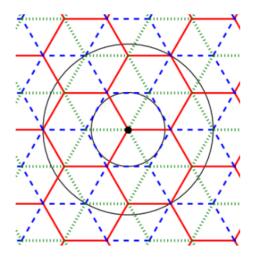
General Cryptographic primitives Applications

Related work

The PET problem was first introduced by Huberman, Franklin, and Hogg in 1999. Their proposed solution used the DH key agreement scheme.

Why don't you simply use hashes?

・ロト ・回ト ・ヨト ・ヨト


General Cryptographic primitives Applications

Related work (cont)

The PSI problem was introduced by Freedman, Nissim, and Pinkas in 2004. The proposed solution used polynomial interpolation. Currently, there are many approaches using e.g. Yao's garbled circuits, Bloom filters and Oblivious Transfer. However, one work that must be mentioned is the work of De Cristofaro who reduced the complexity of the problem to linear.

General Cryptographic primitives Applications

The Narayanan et al. grid

◆□ > ◆□ > ◆豆 > ◆豆 >

Э

General Cryptographic primitives Applications

Narayanan et al. protocol

Alice picks a random r and calculates $C_A = (g_r, h^{a+r})$ and sends it to Bob. On receiving $C_A = (g_1, g_2)$, Bob picks two random numbers s and t and computes: $C_B = (g_1^s g^t, g_2^s h^{(t-sb)})$ and sends it to Alice. When Alice receives $C_B = (u_1, u_2)$, she computes $m = u_2 u_1^{-x}$. If m = 1, Alice knows that she is in proximity to Bob, otherwise, she cannot deduce anything more about Bob's whereabouts.

・ロト ・回ト ・ヨト ・ヨト

General Cryptographic primitives Applications

NTRU

A lattice-based encryption algorithm, very good homomorphic properties (Semi Homomorphic Encryption), extremely fast and secure, even from quantum attacks.

C. Patsakis On Privacy and Intersections

・ロト ・回ト ・ヨト ・ヨト

General Cryptographic primitives Applications

NTRU: Setup

We then select two random polynomials f and g with small coefficients (-1, 0 and 1). We also require f to be invertible in $\mathbb{Z}_q[x]/(x^N-1)$ and $\mathbb{Z}_p[x]/(x^N-1)$, and we denote these inverses f_q and f_p respectively. The public key h is defined as $h = pgf_q$, while f and f_p are the private key.

イロト イポト イヨト

General Cryptographic primitives Applications

NTRU: parameters

Level(bits)	р	q	n	D_1	D_2	D ₃	Dg	D _m
128	3	2048	439	9	8	5	146	112
192	3	2048	593	10	10	8	197	158
256	3	2048	743	11	11	15	247	204

C. Patsakis On Privacy and Intersections

◆□ > ◆□ > ◆豆 > ◆豆 >

Э

General Cryptographic primitives Applications

NTRU: Encrypt/Decrypt

Encrypt

We map the message to a polynomial m with small coefficients and pick a random "small" polynomial r, and send the message $c = hr + m \in \mathbb{Z}_q[x]/(x^N - 1).$

Decrypt

The recipient multiplies it with f and rearranges the coefficients to reside within [-q/2, q/2] and reduces it modulo p. Finally, she multiplies the result with f_p .

・ロト ・回ト ・ヨト ・ヨト

General Cryptographic primitives Applications

Privacy-Preserving Biometric Authentication

Many approaches such as:

- Blanton et al. [1] exploit the homomorphic properties of the encryption method of Damgard et al. [2].
- Shahandashti et al. [3] the Paillier homomorphic scheme for private fingerprint matching.

These methods are too slow and consume a lot of bandwidth.

General Cryptographic primitives Applications

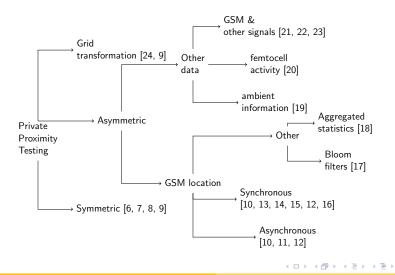
Blundo et al. sampling

Blundo et al. [4] proposed a probabilistic protocol for the privacy-preserving evaluation of "sample set similarity". They use MinHash to sample each set, and perform the protocol of De Cristofaro et al. [5] to determine the *cardinality* of the common elements of both sets.

・ロト ・回ト ・ヨト ・ヨト

PET Lattice PET Private Similarity Testing

From PET to PPT


Private Equality Testing (PET)

- Alice and Bob that want to reveal **only a single** bit of information: whether they have the same secret value or not.
- PET is a potential building block for a PPT protocol. Locations are represented by geographical cells.
- Then each cell is mapped to a unique value in a finite set (a unique id for each "cell").
- Problem: What happens if users **are in proximity** but they reside at the edges of **neighboring cells**?

・ロト ・回ト ・ヨト ・ヨト

PET Lattice PET Private Similarity Testing

A roadmap of PPT protocols

C. Patsakis On Privacy and Intersections

PET Lattice PET Private Similarity Testing

Setup

- We use the idea of overlapping grids of Narayanan et al. [10], to reduce PPT to PET.
- For simplicity we describe the procedure in one grid. In each grid, each cell is marked as ℓ_i .
- The scope of the protocol is to determine whether two users, Alice and Bob are in the same cell or not.
- The set of all possible cells is denoted as \mathcal{L} , so $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_k\}$ where $|\mathcal{L}| \leq \mathcal{O}(2^{32})$.

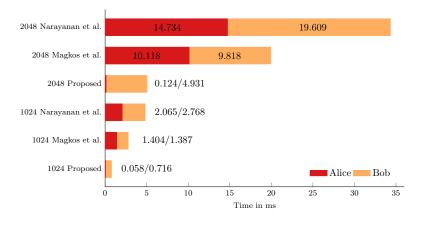
PET Lattice PET Private Similarity Testing

A factoring based protocol

Alice (the initiator of the protocol) has published $n_A = p_A \cdot q_A$ (where p_A, q_A are kept private) and she currently uses the private key pair $d_A (\equiv l_A)$ and e_A . In the same way, Bob has published $n_B = p_B \cdot q_B$ and he currently uses the private key pair $d_B (\equiv l_B)$ and e_B .

・ロット (日) ・ (日) ・ (日)

PET Lattice PET Private Similarity Testing

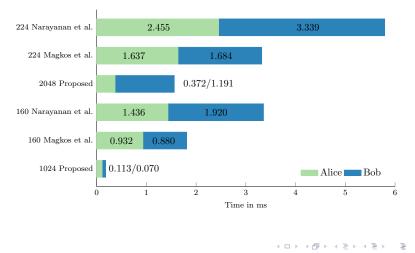

A factoring based protocol (cont.)

- **Step 1:** Alice picks a random integer r_A of high entropy (say, 1024 bit) and computes: $c_A = (r_A^{l_A} \mod n_B)^{e_A} \mod n_A$ and sends it to Bob.
- **Step 2:** Bob computes $x = (c_A^{l_B} \mod n_A)^{e_B} \mod n_B$ and $c_B = H(x)$ and sends c_B to Alice.
- **Step 3:** Alice checks whether $c_B \stackrel{?}{=} H(r_A \mod n_B \mod n_A)$. If the equality holds, Alice is convinced that $I_A = I_B$. If not, Alice learns nothing about Bob's private input.

・ロト ・回ト ・ヨト ・ヨト

PET Lattice PET Private Similarity Testing

Efficiency


C. Patsakis On Privacy and Intersections

イロト イヨト イヨト イヨト

Э

PET Lattice PET Private Similarity Testing

Efficiency with EC

PET Lattice PET Private Similarity Testing

Communication cost

	Alice	Bob
Narayanan et al.	1024	2048
Magkos et al.	1024	1280
Proposed protocol	1024	256

C. Patsakis On Privacy and Intersections

< □ > < □ > < □ > < □ > < □ > = □

590

PET Lattice PET Private Similarity Testing

Description

Let Alice be located in ℓ_A and Bob in ℓ_B .

- **Step 1:** Alice sends the message $c_A = rh + \ell_A$ to Bob, where *r* is a random invertible polynomial in $\mathbb{Z}_q[x]/(x^N 1)$.
- **Step 2:** Bob picks a random polynomial ρ with small coefficients and sends Alice $c_B = \rho(c_A \ell_B)$.
- **Step 3:** Alice receives it and checks whether $r^{-1}c_B$ decrypts to zero.

イロト イポト イヨト イヨト

PET Lattice PET Private Similarity Testing

Correctness

Assume that $I_A = I_B$. Let *m* denote the expected encrypted message.

• In step 2, Bob computes:

$$c_B \equiv \rho(c_A - \ell_B) \equiv rh\rho$$

that he will sent to Alice.

• When Alice in step 3 decrypts:

$$r^{-1}c_B = r^{-1}rh\rho \equiv h\rho$$

the result will be 0, otherwise it will be a random polynomial.

PET Lattice PET Private Similarity Testing

Protocol implementation

- We compare our protocol with the Narayanan et al. in an Intel Core i3-2100 CPU(3.1GHz) with 6GB of RAM, running on 64-bit linux using Sage¹.
- The protocol of Narayanan et al. has been implemented over elliptic curves, using Curve25519 [25] for 128-bits of security, and for 192 and 256 bits security we used the curves M-383 and M-511 respectively [26].
- For NTRU we have used the latest parameters proposed by SecurityInnovation [27].

Level(bits) D_g D_m р q n D_1 D_2 D_3 128 3 2048 439 9 8 5 146 112 192 3 2048 593 10 10 8 197 158 201 256 С 2010 712 11 C. Patsakis **On Privacy and Intersections**

Table: NTRU parameters for different security levels

PET Lattice PET Private Similarity Testing

Computation and communication costs

	Nar	ayanan et	: al.	F	Propose	d	D
Security	Alice	Bob	Total	Alice	Bob	Total	К
128	80.718	99.194	179.912	7.362	1.051	8.413	21
192	102.267		236.140				19
256	155.329	193.887	349.216	12.733	1.745	14.478	24

Table: Time in ms and Security in bits.

Security	Narayana	n et al.	Proposed		
128		128	1208		
192		192	1630		
256		256	<u>2044</u>		୬୯୯
	C. Patsakis	On Privacy	and Intersections		

PET Lattice PET Private Similarity Testing

Setup

We assume that Alice has created an NTRU key pair, so h is her public key and f, f_p her private.

Both parties split their feature vectors in blocks of length λ , creating k blocks.

Moreover, we assume that both of them know a function $\chi : \{0,1\}^{\lambda} \to \mathbb{D}$, where \mathbb{D} contains the polynomials of $\mathbb{Z}_q[x]/(x^N-1)$ with coefficients -1, 0 and 1. For the sake of simplicity instead of $\chi(m)$ we will write m.

PET Lattice PET Private Similarity Testing

Description

Let α_i and $\beta_i, i \in [1, k]$ denote the blocks of Alice and Bob respectively.

Step 1: Alice sends Bob the message

$$M_{A} = \{hs_{i} + \alpha_{i}\}, \forall i \in [1, k]$$

where s_i are random polynomials in \mathbb{D} .

Step 2: Bob computes the vector

$$M_B = \{M_{A_i} - (hs'_i + \beta_i)\}, \forall i \in [1, k]$$

where s'_i are random polynomials in \mathbb{D} . Bob picks a random permutation π and sends Alice $M'_B = \pi(M_B)$.

Step 3: Alice decrypts each $M_{B'_i}$ and computes the weight w_i of each recovered message. If $\sum_{i=1}^{k} w_i < \tau$ then Alice deduces that $d_H(\mathcal{A}, \mathcal{B}) < \tau$.

PFT Lattice PET Private Similarity Testing

Protocol implementation

- We compare our protocol with the Narayanan et al. in an Intel Core i3-2100 CPU(3.1GHz) with 6GB of RAM, running on 64-bit linux using $Sage^2$.
- For NTRU we have used the latest parameters proposed by SecurityInnovation [27].

Level(bits)	р	q	n	D_1	D_2	D ₃	Dg	D_m
128	3	2048	439	9	8	5	146	112
192	3	2048	593	10	10	8	197	158
256	3	2048	743	11	11	15	247	204

Table:	NTRU	parameters	for	different	security	levels
--------	------	------------	-----	-----------	----------	--------

sagematin.org

PET Lattice PET Private Similarity Testing

Parameters

Security	RSA			N	TRU
Level		р	q	n	Public key (bits)
128	3072	3	2048	439	4829
192	7680	3	2048	593	6523
256	15360	3	2048	743	8173

Parameters for the most popular security levels (in bits). For RSA the numbers denote the length (in bits) of the underlying modulo field according to NIST [28]. For NTRU, the numbers are precise and recommended by SecurityInnovation (https://github.com/NTRUOpenSourceProject/ ntru-crypto/blob/master/doc/NewParameters.pdf).

PET Lattice PET Private Similarity Testing

Computation cost

Security	В	Blundo et al.			Propose	d
	Alice	Bob	Total	Alice	Bob	Total
128	0.024	2.227	2.251	0.187	0.115	0.302
192	0.066	12.352	12.418	0.250	0.153	0.403
256	0.183	59.421	59.605	0.299	0.220	0.519

C. Patsakis On Privacy and Intersections

・ロト ・回 ト ・ヨト ・ヨト

Э

590

PET Lattice PET Private Similarity Testing

Communication cost

Security	Blundo et al.	Proposed
128	78.125	75.453
192	190.625	101.922
256	378.125	127.703
Approvim	to communicatio	n cost in KR

Approximate communication cost in KB. Security in bits.

C. Patsakis On Privacy and Intersections

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

590

PET Lattice PET Private Similarity Testing

A generic attack

Alice performs one execution of the protocol with Bob using firstly the sequence 00...000 and then 10...000. She can tell which one is closest...

C. Patsakis On Privacy and Intersections

イロン イヨン イヨン イヨン

Э

PET Lattice PET Private Similarity Testing

A patch

Let $\mathcal{F}(k, x)$ denote a Pseudo Random Function (PRF), where k is the PRF key and x is the point at which the function is evaluated. Bob proposes a random seed s so Alice and Bob compute the following for their sequences: $\mathcal{F}(s, m_i || i) \mod 2, i \in \{1, 2, ..., k\}$.

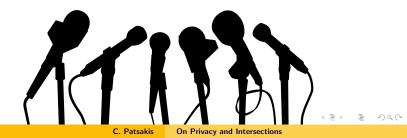
・ロット (日) ・ (日) ・ (日)

PET Lattice PET Private Similarity Testing

Where to find these results

- C. Patsakis, J. van Rest, M. Choras and M. Bouroche Privacy-Preserving Biometric Authentication and Matching via Lattice-Based Encryption 10th International Workshop on Data Privacy Management (DPM 2015), Vienna, Austria -September 21-22, 2015.
- C. Patsakis, P. Kotzanikolaou and M. Bouroche, Private Proximity Testing on Steroids: An NTRU-based protocol", 11th International Workshop on Security and Trust Management (STM 2015), 21-22 September 2015, Vienna, Austria.
- C. Patsakis, A. Zigomitros, A. Solanas, "Analysis of Privacy and Security Exposure in Mobile Dating Applications", International Conference on Mobile, Secure and Programmable Networking (MSPN'2015), Paris, France, June 15-17, 2015.

590


Where to find these results(cont)

- C. Patsakis, A. Zigomitros, A. Solanas, "Analysis of Privacy and Security Exposure in Mobile Dating Applications", International Conference on Mobile, Secure and Programmable Networking (MSPN'2015), Paris, France, June 15-17, 2015.
- C. Patsakis, A. Zigomitros, A. Solanas, Privacy-Aware Genome Mining: Server-Assisted Protocols for Private Set Intersection and Pattern Matching", 28th International Conference on Computer-Based Medical Systems, CBMS 2015, 22-25 June, Sao Paulo, Brazil.
- P. Kotzanikolaou, C. Patsakis, E. Magkos, M. Korakakis, "Lightweight Private Proximity Testing for Geospatial Social Networks", Computer Communications, Special Issue on Online Social Networks (Imprint)

PET Lattice PET Private Similarity Testing

Thank you!

Q&A kpatsak@{unipi.gr/gmail.com/protonmail.com} www.cs.unipi.gr/kpatsak

PET Lattice PET Private Similarity Testing

Bibliography I

- M. Blanton, P. Gasti, Secure and efficient protocols for iris and fingerprint identification, in: Computer Security–ESORICS 2011, Springer, 2011, pp. 190–209.
- I. Damgard, M. Geisler, M. Kroigard, Homomorphic encryption and secure comparison, International Journal of Applied Cryptography 1 (1) (2008) 22–31.
- S. F. Shahandashti, R. Safavi-Naini, P. Ogunbona, Private fingerprint matching, in: Information Security and Privacy, Springer, 2012, pp. 426–433.

PET Lattice PET Private Similarity Testing

Bibliography II

- C. Blundo, E. De Cristofaro, P. Gasti, EsPRESSo: efficient privacy-preserving evaluation of sample set similarity, in: Data Privacy Management and Autonomous Spontaneous Security, Springer, 2013, pp. 89–103.
- E. De Cristofaro, P. Gasti, G. Tsudik, Fast and private computation of cardinality of set intersection and union, in: Cryptology and Network Security, Springer, 2012, pp. 218–231.
- L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu,
 O. Andersen, A location privacy aware friend locator, in: Advances in Spatial and Temporal Databases, Springer, 2009, pp. 405–410.

PET Lattice PET Private Similarity Testing

Bibliography III

- L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, Private and flexible proximity detection in mobile social networks, in: Mobile Data Management (MDM), 2010 Eleventh International Conference on, IEEE, 2010, pp. 75–84.
- S. Mascetti, D. Freni, C. Bettini, X. S. Wang, S. Jajodia, Privacy in geo-social networks: proximity notification with untrusted service providers and curious buddies, The VLDB journal 20 (4) (2011) 541–566.
- K. P. Puttaswamy, S. Wang, T. Steinbauer, D. Agrawal, A. El Abbadi, C. Kruegel, B. Y. Zhao, Preserving location privacy in geosocial applications, Mobile Computing, IEEE Transactions on 13 (1) (2014) 159–173.

PET Lattice PET Private Similarity Testing

Bibliography IV

- A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, D. Boneh, Location privacy via private proximity testing, in: NDSS, The Internet Society, 2011. URL http://www.isoc.org/isoc/conferences/ndss/11/
- E. Novak, Q. Li, Near-pri: Private, proximity based location sharing, in: INFOCOM, 2014 Proceedings IEEE, IEEE, 2014, pp. 37–45.
- G. Zhong, I. Goldberg, U. Hengartner, Louis, lester and pierre: Three protocols for location privacy, in: Privacy Enhancing Technologies, Springer, 2007, pp. 62–76.

PET Lattice PET Private Similarity Testing

Bibliography V

- S. Chatterjee, K. Karabina, A. Menezes, A new protocol for the nearby friend problem, in: Proceedings of the 12th IMA International Conference on Cryptography and Coding, Springer-Verlag, 2009, pp. 236–251.
- J. D. Nielsen, J. I. Pagter, M. B. Stausholm, Location privacy via actively secure private proximity testing, in: Pervasive Computing and Communications Workshops (PERCOM Workshops), 2012 IEEE International Conference on, IEEE, 2012, pp. 381–386.

PET Lattice PET Private Similarity Testing

Bibliography VI

- E. Magkos, P. Kotzanikolaou, M. Magioladitis, S. Sioutas, V. S. Verykios, Towards secure and practical location privacy through private equality testing, in: Privacy in Statistical Databases, Springer, 2014, pp. 312–325.
- P. Kotzanikolaou, C. Patsakis, E. Magkos, M. Korakakis, Lightweight private proximity testing for geospatial social networks, Computer Communications(Accepted for publication).

PET Lattice PET Private Similarity Testing

Bibliography VII

- P. Palmieri, L. Calderoni, D. Maio, Spatial bloom filters: Enabling privacy in location-aware applications, in: D. Lin, M. Yung, J. Zhou (Eds.), Information Security and Cryptology - 10th International Conference, Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Selected Papers, Vol. 8957 of Lecture Notes in Computer Science, Springer, 2014, pp. 16–36.
- R. A. Popa, A. J. Blumberg, H. Balakrishnan, F. H. Li, Privacy and accountability for location-based aggregate statistics, in: Proceedings of the 18th ACM conference on Computer and communications security, ACM, 2011, pp. 653–666.

PET Lattice PET Private Similarity Testing

Bibliography VIII

- T. Halevi, D. Ma, N. Saxena, T. Xiang, Secure proximity detection for nfc devices based on ambient sensor data, in: Computer Security-ESORICS 2012, Springer, 2012, pp. 379–396.
- J. Brassil, R. Netravali, S. Haber, P. Manadhata, P. Rao, Authenticating a mobile device's location using voice signatures, in: Wireless and Mobile Computing, Networking and Communications (WiMob), 2012 IEEE 8th International Conference on, IEEE, 2012, pp. 458–465.
- G. Saldamli, R. Chow, H. Jin, B. Knijnenburg, Private proximity testing with an untrusted server, in: Proceedings of the sixth ACM conference on Security and privacy in wireless and mobile networks, ACM, 2013, pp. 113–118.

イロン イヨン イヨン ・ ヨン

PET Lattice PET Private Similarity Testing

Bibliography IX

- Y. Zheng, M. Li, W. Lou, Y. T. Hou, Sharp: Private proximity test and secure handshake with cheat-proof location tags, in: Computer Security–ESORICS 2012, Springer, 2012, pp. 361–378.
- Z. Lin, D. F. Kune, N. Hopper, Efficient private proximity testing with gsm location sketches, in: Financial Cryptography and Data Security, Springer, 2012, pp. 73–88.
- M. Li, H. Zhu, Z. Gao, S. Chen, K. Ren, L. Yu, S. Hu, All your location are belong to us: Breaking mobile social networks for automated user location tracking, arXiv preprint arXiv:1310.2547.

PET Lattice PET Private Similarity Testing

Bibliography X

- D. J. Bernstein, Curve25519: new diffie-hellman speed records, in: Public Key Cryptography-PKC 2006, Springer, 2006, pp. 207–228.
- D. F. Aranha, P. S. L. M. Barreto, G. C. C. F. Pereira, J. E. Ricardini, A note on high-security general-purpose elliptic curves, Cryptology ePrint Archive, Report 2013/647, http://eprint.iacr.org/ (2013).
- J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, Z. Zhang, Choosing parameters for ntruencrypt, Cryptology ePrint Archive, Report 2015/708, http://eprint.iacr.org/ (2015).

イロト イポト イヨト

PET Lattice PET Private Similarity Testing

Bibliography XI

E. Barker, Q. Dang, NIST special publication 800-57 part 3: Application-specific key management guidance, NIST Special Publication 800 (57).

C. Patsakis On Privacy and Intersections

・ロト ・回ト ・ヨト ・ヨト

3