EE304 Probability and Statistics - Tutorial 2 Solutions

Question 1

(i) A country has 7 major cities. Each pair of these cities is connected by a direct rail link. How many rail links are needed?
Solution: The number of rail links is equal to the total number of pairs of cities. This is $\binom{7}{2}=\frac{7(6)}{2(1)}=21$.
(ii) How many distinct arrangements of the word "allegorical" are possible?

Solution: The total number of letters is 11 . However, there are 3 'l's and 2 'a's. Therefore the total number of distinct arrangements is $\frac{11!}{3!2!}$.
(iii) A password for a computer system must consist of 3 letters (all lower case) followed by 3 digits. Letters and digits can be repeated. How many distinct passwords are possible?
Solution: As letters can be repeated and the order of selection matters, we can choose the first 3 letters in 26^{3} ways. Similarly the three digits can be selected in 10^{3} ways. The total number of passwords is then $\left(26^{3}\right)\left(10^{3}\right)$.
(iv) A password for a computer system must consist of 6 distinct characters, 3 of which must be letters and 3 of which must be digits. How many distinct passwords are possible?
Solution: We can choose the 3 letters in $\binom{26}{3}$ ways and the 3 digits in $\binom{10}{3}$ ways. For each selection of 3 distinct letters and 3 distinct digits, there are 6 ! distinct passwords corresponding to different rearrangements of the characters. Thus the answer is $6!\binom{26}{3}\binom{10}{3}$.
(v) A password consists of 6 distinct characters, at least one of which must be a digit and at least 1 of which must come from the special characters $\#,{ }^{*}, \&$. How many passwords are possible?

Solution:

There are a total of $39=26+10+3$ characters to choose from. The total number of different arrangements of these characters taken 6 at a time is $6!\binom{39}{6}$. We next calculate the total number of arrangements that do NOT contain at least 1 special character and at least 1 digit.

This will be given by

$$
6!\left(\binom{29}{6}+\binom{36}{6}-\binom{26}{6}\right)
$$

Therefore the answer is

$$
6!\left(\binom{39}{6}-\binom{29}{6}-\binom{36}{6}+\binom{26}{6}\right)
$$

There is also a much longer way of doing this by counting separately all of the different ways in which we can get at least 1 special character and at least 1 digit. It is worth checking that this will give the same answer as we have here. (It will.)

Question 2

3 Maths books, 4 History books and 2 Computing books are to be arranged side by side on a shelf. If the arrangement is done randomly so that every arrangement is equally likely calculate the probability that:
(i) the 3 maths books are all next to each other;

Solution:

The total number of different arrangements is 9 !. If the three maths books are next to each other in a specified order we would have a total of 7 ! arrangements (treating the maths books as a single book). However for each of these, we can permute the maths books in 3 ! ways giving a total of $3!7$!. The desired probability is

$$
\frac{3!7!}{9!}
$$

(ii) the 2 books at the ends of the arrangement are computing books;

Solution:

There are 2 possible arrangements of the computing books at the ends. For each of these, there are a total of 7 ! arrangements of the books in the centre. Thus, the desired probability is

$$
\frac{2!7!}{9!}
$$

(iii) the two books at the ends of the arrangement are History books.

Solution:

There are $4(3)=12$ possible arrangements of the two "end" books. For each
of these, there are 7 ! arrangements of the books in the centre. Thus the desired probability is

$$
\frac{12(7!)}{9!}
$$

Question 3

A simple communications system sends the two symbols 0,1 over a noisy channel. The probability of a bit being received incorrectly is 0.05 . If 55% of all the bits transmitted are 0 , calculate:
(i) the probability that a 1 is recieved;

Solution:

Let $1 R, 1 S$ denote the events that a 1 is received and sent respectively. Similarly, let $0 R, 0 S$ be the events that a 0 is received and sent. Then from the law of total probability

$$
\begin{aligned}
P(1 R) & =P(1 R \mid 1 S) P(1 S)+P(1 R \mid 0 S) P(0 S) \\
& =(0.95)(0.45)+(0.05)(0.55)=0.455 .
\end{aligned}
$$

(ii) the probability that a 0 is received.

Solution:

This can be computed in the same way as above but also as every bit received is either 0 or 1 , we have

$$
P(0 R)=1-P(1 R)=0.545
$$

If the probability of a transmitted 1 being received as a 0 is 0.05 but the probability of a 0 being received as a 1 is 0.08 and a 1 is received, what is the probability that a 1 was actually transmitted?

Solution:

We want $P(1 S \mid 1 R)$. By Bayes law this is

$$
\begin{aligned}
P(1 S \mid 1 R) & =\frac{P(1 R \mid 1 S) P(1 S)}{P(1 R \mid 1 S) P(1 S)+P(1 R \mid 0 S) P(0 S)} \\
& =\frac{(0.95)(0.45)}{(0.95)(0.45)+(0.92)(0.55)} \\
& =0.45795
\end{aligned}
$$

