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The Normal Distribution

The normal distribution is one of the most commonly used
probability distribution for applications.

1 When we repeat an experiment numerous times and average
our results, the random variable representing the average or
mean tends to have a normal distribution as the number of
experiments becomes large.

2 The previous fact, which is known as the central limit
theorem, is fundamental to many of the statistical techniques
we will discuss later.

3 Many physical characteristics tend to follow a normal
distribution. - Heights, weights, etc.

4 Errors in measurement or production processes can often be
approximated by a normal distribution.

Random variables with a normal distribution are said to be normal
random variables.
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The Normal Distribution

The normal distribution N(µ, σ) has two parameters associated
with it:

1 The mean µ

2 The standard deviation σ.

The probability density function f (x) of N(µ, σ) is

f (x) =
1√
2πσ

e
−(x−µ)2

2σ2 .

The normal density function cannot be integrated in closed form.
We use tables of cumulative probabilities for a special normal
distribution to calculate normal probabilities.
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The Normal Distribution - Properties

1 Expected Value: E (X ) = µ for a normal random variable X .

2 Variance: V (X ) = σ2.

3 Symmetry: The probability density function f of a normal
random variable is symmetric about the mean. Formally

f (µ− x) = f (µ+ x)

for all real x .
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The Normal Distribution
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The parameter µ determines the location of the distribution while
σ determines the width of the bell curve.
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The Standard Normal Distribution

The normal distribution with mean 0 and standard deviation 1

N(0, 1)

is called the standard normal distribution.

A random variable with the standard normal distribution is called a
standard normal random variableand is usually denoted by Z .

The cumulative probability distribution of the standard normal
distribution

P(Z ≤ z)

has been tabulated and is used to calculate probabilities for any
normal random variable.
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The Standard Normal Distribution
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The shape of the standard normal distribution is shown above.
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Standard Normal Distribution

P(Z ≤ z0) gives the area under the curve to the left of z0.

P(z0 ≤ Z ≤ z1) = P(Z ≤ z1)− P(Z ≤ z0).

The distribution is symmetric. P(Z ≤ z0) = P(Z ≥ −z0).
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The Standard Normal Distribution

Example

Suppose Z is a standard normal random variable. Calculate

(i) P(Z ≤ 1.1);

(ii) P(Z > 0.8);

(iii) P(Z ≤ −1.52);

(iv) P(0.4 ≤ Z ≤ 1.32).

(v) P(−0.2 ≤ Z ≤ 0.34).
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The Standard Normal Distribution

Example

(i) P(Z ≤ 1.1): This can be read directly from the table.
P(Z ≤ 1.1) = 0.864.

(ii) P(Z > 0.8) = 1− P(Z ≤ 0.8) = 1− 0.788 = 0.212.

(iii) P(Z ≤ −1.52):

Again, we can read this directly from the
table. P(Z ≤ −1.52) = 0.064
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The Standard Normal Distribution

Example

(iv) P(0.4 ≤ Z ≤ 1.32).

To calculate this, we note that

P(0.4 ≤ Z ≤ 1.32) = P(Z ≤ 1.32)− P(Z < 0.4)

= 0.907− 0.655

= 0.252

(v) Similarly,

P(−0.2 ≤ Z ≤ 0.34) = P(Z ≤ 0.34)− P(Z < −0.2)

= 0.633− 0.421

= 0.212
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Standard Normal Distribution

Example

Determine the value of z0 such that:

(i) P(−z0 ≤ Z ≤ z0) = 0.95;

(ii) P(Z ≤ z0) = 0.95;

(iii) P(−z0 ≤ Z ≤ z0) = 0.99;

(iv) P(Z ≤ z0) = 0.99
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Standard Normal Distribution

Example

(i) If P(−z0 ≤ Z ≤ z0) = 0.95, then
P(Z > z0) + P(Z < −z0) = 0.05. By symmetry, this means that

P(Z > z0) = 0.25 or P(Z ≤ z0) = 0.975.

From the table of cumulative normal probabilities, the value of z0

is 1.96

(ii) This time, we require that

P(Z ≤ z0) = 0.95.

Using the table again, we find that the value of z0 is 1.645.
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Standard Normal Distribution

Example

(iii) As in part (i), we are looking for a value z0 such that

P(Z ≤ z0) = 0.995.

From the table of normal probabilities, the value of z0 is 2.58.

(iv) Finally, using the table, the value of z0 for which
P(Z ≤ z0) = 0.99 is 2.33.
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Standardising

The key fact needed to calculate probabilities for a general normal
random variable is the following.

Theorem

If X is a normal random variable with mean µ and standard
deviation σ, then

Z =
X − µ
σ

is a standard normal random variable.

This means that to calculate P(X ≤ x) is the same as calculating

P(Z ≤ x − µ
σ

).
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Normal Distribution Examples

Example

The actual volume of soup in 500ml jars follows a normal
distribution with mean 500ml and variance 16ml. If X denotes the
actual volume of soup in a jar, what is

(i) P(X > 496)?;

(ii) P(X < 498)?;

(iii) P(492 < X < 512)?

(iv) P(X > 480)?
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Normal Distribution Examples

Example

(i)

P(X > 496) = P(Z >
496− 500

4
)

= P(Z > −1) = 1− 0.159 = 0.841.

(ii)

P(X < 498)

= P(Z <
498− 500

4
)

= P(Z < −0.5) = 0.309
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Normal Distribution Examples

Example

(iii)

P(492 < X < 506) =

P(
492− 500

4
< Z <

506− 500

4
)

= P(−2 < Z < 1.5)

= P(Z < 1.5)− P(Z ≤ −2)

= 0.933− 0.023 = 0.91.

(iv)

P(X > 493) = P(Z >
493− 500

4
)

= P(Z > −1.75)

= 1− P(Z ≤ −1.75) = 1− 0.04 = 0.96.
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Normal Distribution Examples

Example

In the previous example, suppose that the mean volume of soup in
a jar is unknown but that the standard deviation is 4. If only 3% of
jars are to contain less than 492ml what should the mean volume
of soup in a jar be?

We want the value of µ for which

P(Z <
492− µ

4
) = 0.03.

From the table
P(Z < −1.88) = 0.03.

So

492− µ
4

= −1.88

µ = 492 + 4(1.88) = 499.52.
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Normal Approximation to the Binomial Distribution

1 The normal distribution can be used to approximate binomial
probabilities when there is a very large number of trials and
when both np and n(1− p) are both large.

2 A rule of thumb is to use this approximation when both np
and n(1− p) are greater than 5. If both are greater than 15
then the approximation should be good.

In this case, when X is a binomial random variable,

Z =
X − np√
np(1− p)

is approximately a standard normal random variable.
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Normal Approximation to the Binomial Distribution
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The two examples shown above are graphs of binomial probabilities
with n = 90, 120 and p = 0.12, 0.8 respectively.
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Normal Approximation to the Binomial Distribution

To improve the accuracy of the approximation, we usually use a
correction factor to take into account that the binomial random
variable is discrete while the normal is continuous.

The basic idea is to treat the discrete value k as the continuous
interval from k − 0.5 to k + 0.5.

Example

12% of the memory cards made at a certain factory are defective.
If a sample of 150 cards is selected randomly, use the normal
approximation to the binomial distribution to calculate the
probability that the sample contains:

(i) at most 20 defective cards;

(ii) between 15 and 23 defective cards;

(iii) exactly 17 defective cards.
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Normal Approximation to the Binomial Distribution

Example

(i) With the correction factor, we wish to calculate P(X ≤ 20.5).
This is approximated by

P(Z ≤ 20.5− 18√
150(.12)(.88)

) = P(Z ≤ 0.63)

= 0.736.

(ii) This time we want

P(
14.5− 18√

150(.12)(.88)
≤ Z ≤ 23.5− 18√

150(.12)(.88)
)

= P(−0.88 ≤ Z ≤ 1.38) = 0.916− 0.189 = 0.727.
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Normal Approximation to the Binomial Distribution

Example

(iii) Using the continuous correction factor, the probability we want
is P(16.5 ≤ X ≤ 17.5), which is

P(
16.5− 18√

150(.12)(.88)
≤ Z ≤ 17.5− 18√

150(.12)(.88)
)

= P(−0.38 ≤ Z ≤ −0.13) = 0.448− 0.352 = 0.096
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