
Applied Probability and Stochastic Processes NUI Maynooth - Summer 2011

Solutions 4

1. Notice first that there is exactly one event in [0, t] if and only if Nt = 1 (but it is wrong to say
that there is exactly one event on [0, t] if and only if T1 ≤ t). So the probaility we are looking for
is:

P(Ns = 1|Nt = 1) =
P(Ns = 1, Nt = 1)

P(Nt = 1)
=

P(Ns = 1, Nt −Ns = 0)

P(Nt = 1)
.

By independence, we further obtain

P(Ns = 1|Nt = 1) =
P(Ns = 1)P(Nt −Ns = 0)

P(Nt = 1)
=

λs e−λs e−λ(t−s)

λt e−λt
=

s

t
.

So given that exactly one event takes place during the time interval [0, t], its distribution is uniform
over [0, t].

2. Notice first that is T if a non-negative random variable, then E(T ) =

∫ ∞

0
dtP(T ≥ t). Indeed,

E(T ) = E

(
∫ T

0
dt

)

= E

(
∫ ∞

0
1{T≥t} dt

)

=

∫ ∞

0
dtE(1{T≥t}) =

∫ ∞

0
dtP(T ≥ t)

(provided that we allow ourselves to shamelessly commute the expectation and the integral). The
following equality can be shown in a similar manner:

E(T |T ≥ a) =

∫ ∞

0
dtP(T ≥ t|T ≥ a).

Using this together with the fact that

P(T ≥ t|T ≥ a) =
P(T ≥ max{t, a})

P(T ≥ a)
=



















1, if t ≤ a,

P(T ≥ t)

P(T ≥ a)
, if t > a,

we obtain for a)

E(T |T ≥ a) = a+

∫ ∞

a

dt exp(−(t− a)) = a+ 1 = 1 + a.

While for b), we have

E(T |T ≥ a) = a+

∫ 2

a

dt
2− t

2− a
= a+ 1− a/2 = 1 + a/2.

c) So the expected time in a) is clearly the largest. This can be interpreted as follows. In a), T
is exponentially distributed and can therefore be considered as the first arrival time of a Poisson
process. As the exponential distribution is memoryless, knowing that T ≥ a just adds the value a
to the expectation of T .

In the second case b), T is uniform between 0 and 2, which means that T can also be interpreted
as the first arrival time of a Poisson process, given that there is exactly one arrival between 0 and

2 (see Exercise 1). Conditioning now on T ≥ a reduces therefore the expectation with respect to
the former case, as in this case, we know “in advance” that the time T will occur before t = 2.
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3. We have

P(T ≤ t) = P(min{T1, T2} ≤ t) = 1− P(min{T1, T2} > t) = 1− P({T1 > t} ∩ {T2 > t})

= 1− P(T1 > t)P(T2 > t) = 1− exp(−(λ1 + λ2)t).

So the pdf of T is given by

pT (t) =

{

(λ1 + λ2) exp(−(λ1 + λ2)t), if t ≥ 0,

0, otherwise.

which is an exponential random variable with parameter λ1 + λ2. This is in concordance with the
fact that the superposition of two Poisson processes with intensity λ1 and λ2 respectively is again
a Poisson process, with intensity λ1 + λ2 (the first arrival time of this new process is the minimum
of the first arrival times of the two original processes).

4. T is the random variable describing the time elapsed between the arrival of the first student and
the departure of the second, and let T1 and T2 be the random variables describing the respective
durations of the first and second meetings, which are two exponential random variables with the
common parameter λ = 1/30 min−1. We have

E(T ) = E(T |T1 ≤ 5)P(T1 ≤ 5) + E(T |T1 > 5)P(T1 > 5)

= E(5 + T2|T1 ≤ 5)P(T1 ≤ 5) + E(T1 + T2|T1 > 5)P(T1 > 5)

= (5 + E(T2))P(T1 ≤ 5) + (5 + E(T1) + E(T2))P(T1 > 5)

= 5 + E(T2) + E(T1)P(T1 > 5),

where we have used the independence of T1 and T2, as well as the fact that the exponential random
variable T1 is memoryless. This gives finally:

E(T ) = 5 +
1

λ
+

1

λ
exp(−5λ) = 35 + 30 exp(−1/6) ≃ 60.4 minutes

(remember that 1/λ = 30 minutes).

5. a) The embedded discrete-time Markov chain is actually a deteministic process moving from k
to k + 1 with probability 1 at each time step.

b) The Kolmogorov equations read:

dπ0
dt

(t) = −λπ0(t),
dπ1
dt

(t) = λπ0(t)− λπ1(t),
dπ2
dt

(t) = λπ1(t)− λπ2(t), . . .

with the initial conditions

π0(0) = 1, π1(0) = 0, π2(0) = 0, . . .

The solution is found by induction:

π0(t) = e−λt, π1(t) = λ t e−λt, π2(t) =
(λ t)2

2
e−λt, . . . , πn(t) =

(λt)n

n!
e−λt.
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c) The Poisson process does not admit a stationary distribution, because it is transient. Alterna-
tively, it can be argued that if we set dπn

dt
(t) = 0 in the above equations, then all π∗

n become equal
to zero, which is impossible for a distribution.

6. a) This is the two-state Markov chain example covered in class. We consider r to be the “under
repair” state, while w is the “working” state. µ is the rate at which a machine breaks down and λ
is the rate at which it is repaired (measured in number of events per day). For each machine, we
have

πw(t) =
λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t,

πr(t) =
µ

λ+ µ
−

µ

λ+ µ
e−(λ+µ)t.

For the Windows machine, µ = 1 and λ = 24, so πw(1) ≈ 0.960.
For the Linux machine, µ = 1

7 and λ = 4, so πw(1) ≈ 0.966.

b) This probabillity is given by e−µ. So for the Windows machine, it is approx. 0.368, while for the
Linux machine, it is approx. 0.867.

7. a) From the transition graph of the Markov chain, it is clear that the student will spend more
time on the information theory class than on the probability class.

b) Let us denote the states of the system as p for probability, i for information theory and w
for wireless communications. From the problem set, we see that νp = 1/2, νi = 1/4, νw = 1/6
(hour−1), and also that q̂pi = 1/2, q̂pw = 1/2, q̂iw = 1 (so q̂ip = 0), q̂wp = 2/3 and q̂wi = 1/3. So
the transition matrix Q of the continuous-time Markov chain reads

Q =





−1/2 1/4 1/4
0 −1/4 1/4
1/9 1/18 −1/6



 .

Solving the stationary distribution equation π∗Q = 0 (along with the condition π∗
p + π∗

i + π∗
w = 1)

gives

(π∗
p, π

∗
i , π

∗
w) =

(

2

15
,
4

15
,
3

5

)

and the corresponding average numbers of hours spent in each class are given by

(Tp, Ti, Tw) = (3.2, 6.4, 14.4).
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