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1. We first look for the stationary distribution π∗ = (π∗0, π
∗
1, π
∗
2, π
∗
3) satisfying the equations:

π∗ = π∗ P,
3∑

i=0

π∗i = 1.

If the solution exists, we check if the detailed balance equations of the form

π∗i pij = π∗j pji

are satisfied for all pairs of states, in order to conclude whether the chain is reversible or not. Notice
that, in general,

1) they will not be satisfied if there exists a pair i, j such that pij = 0 and pji > 0;
(as it can actually be shown that if the chain is irreducible and π∗ exists, then π∗i > 0 for all i ∈ S)

2) they will be automatically satisfied for all i, j such that pij = pji = 0 (and a fortiori for i = j).

- Solving the stationary distribution equations for P1, we obtain (remember that 0 < p, q < 1);

π∗ =

(
q2

q2 + q + p+ p2
,

q

q2 + q + p+ p2
,

p

q2 + q + p+ p2
,

p2

q2 + q + p+ p2

)
Checking the detailed balance equations, we see that they hold for all pairs of states, so the chain
is reversible.

- Solving the stationary distribution equations for P2, we obtain

π∗ =

(
1

2 + q
,

p

2 + q
,

q

2 + q
,

q

2 + q

)
As p13 = q > 0 and p31 = 0, the detailed balance equations are not satisfied, so the chain is not
reversible (another take on this is that in stationary state, the chain is “circulating” in the direction
{0} → {1, 2} → {3} → {0}).

- The matrix P3 satisfies
∑

i∈S pij = 1, for all j ∈ S, so the corresponding stationary distribution
π∗ is the uniform distribution, as seen in the course. In this case, the chain is reversible if and only
if the matrix P3 is symmetric, which only occurs when p = q = 1/2 (when this condition is not met,
we observe again that the chain is circulating in the direction {0} → {1} → {2} → {3} → {0}).

- The matrix P4 satisfies also
∑

i∈S pij = 1, for all j ∈ S, and it is symmetric for all values of p and
q, so the chain is reversible.
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2. a) 0 and N are the two absorbing (and recurrent) states, while all the others are transient. We
are interested in finding hi,0 for 1 ≤ i ≤ N − 1. Writing down the equations, we obtain

h0,0 = 1, hi,0 = p hi+1,0 + q hi−1,0, i = 1, . . . , N − 1, hN,0 = 0.

Using the hint from the problem set, the general solution of this system of equations has the form
hi,0 = αyi1 + β yi2 where y1, y2 are the roots of the quadratic equation

y = p y2 + q, i.e. y1 = 1 and y2 = q/p,

(these two roots are different, as we assumed that p 6= q). The solution has therefore the general
form hi,0 = α + β (q/p)i. The boundary condition h0,0 = 1 imples now that h1,0 = p h2,0 + q, so
after replacing h1,0 and h2,0 by their above expression, we obtain that α = 1− β, hence

hi,0 = 1− β
(
1− (q/p)i

)
.

Similarly, the boundary condition hN,0 = 0 implies that hN−1,0 = q hN−2,0, so after replacing
hN−2,0 and hN−1,0 by their above expression, we obtain that

β =
1

1− (q/p)N
, hence finally hi,0 = 1− 1− (q/p)i

1− (q/p)N
.

b*) Following a similar procedure, we obtain that for A = {0, N},

µi.A =
1

p− q

(
N

1− (q/p)i

1− (q/p)N
− i
)
,

which corresponds to the average duration of the game starting from a fortune of i francs.

3. a) The state space S = {0, . . . , N} and the transition graph is given by

b) Again, 0 is the only absorbing (and therefore recurrent) state, while the others are transient.
We are interested in computing here µN,0 = the average time it takes for the ball to reach the hole
form distance N . This requires to solve the system of equations:

µ0,0 = 0, µk,0 = 1 +
1

k

k−1∑
j=0

µj,0, 1 ≤ k ≤ N.
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Using twice this equation (once for k and once for k − 1), we obtain

µk,0 = 1 +
1

k

k−1∑
j=0

µj,0 = 1 +
1

k
µk−1,0 +

k − 1

k

 1

k − 1

k−2∑
j=0

µj,0


= 1 +

1

k
µk−1,0 +

k − 1

k
(µk−1,0 − 1) = µk−1,0 +

1

k
,

so µN,0 = 1 + 1
2 + . . .+ 1

N ' log(N).

c) In this case, we have

µ0,0 = 0, µ2k,0 = 1 +
1

2
µ2k−1,0, k = 1, . . . ,M,

i.e. µ1,0 = 1, µ2,0 = 1 + 1
2 , µ4,0 = 1 + 1

2 + 1
4 , so

µ2M ,0 =
M∑
k=0

1

2k

(this can be shown by induction). Therefore, as N = 2M gets large, µN,0 =
∑M

k=0
1
2k
' 2 remains

constant; the average time it takes to reach the hole indeed decreases with respect to the former
case.
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