
1Bakground Notes on Real analysisLet �R = [�1;1℄ = (�1;1) [ f�1;1g denote the extended real line and let E � �R be anon-empty subset of the extended real line.De�nition 1 (Supremum and in�mum of a set) The supremum of E, whih is writtenin several di�erent ways supE = supx2E x = supfx : x 2 Eg;is the smallest element y in �R suh that y � x for all x 2 E. The supremum is also knownas the least upper bound of the set E.The in�mum of E, whih an be written as any ofinf E = infx2E x = inffx : x 2 Eg;is the greatest element y 2 �R suh that y � x for all x 2 E. The in�mum is also known asthe greatest lower bound of the set E.Comment 1: For any E � �R , it an be proven that both inf E and supE always exist, althoughthey an be �1 and 1 respetively. For example if E = R = (�1;1), then inf R = �1and supR = +1.Comment 2: Note that neither infE nor supE need be elements of E. For example, witha < b onsider the interval [a; b), whih ontains a and every element from a to, but notinluding, b. Then inffx : x 2 [a; b)g = a 2 [a; b) and supfx : x 2 [a; b)g = b =2 [a; b).Comment 3: If E � F � �R then inf F � inf E � supE � supF .In�mum and supremum pay the key role in determining if the limit of a sequene exists and,if it exists, identifying its valueLet fxn 2 R : n 2 Ng be a sequene of real numbers.De�nition 2 (Limit superior and limit inferior of a sequene) De�ne limit superiorlim supn!1 xn := infn�1 supm�n xm 2 [�1;1℄and limit inferior lim infn!1 xn := supn�1 infm�nxm 2 [�1;1℄:
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infFigure 1: lim inf and lim sup for a sequene of real numbersComment 4: To understand lim inf xn and lim supxn, onsider Figure 1. Let the solid line de-note our sequene and onsider lim supxn = infn�1 supm�n xn. For eah n, yn := supm�n xnis the least upper bound on the value the sequene takes after n, whih is also denoted inthe piture. Note that, from Comment 3, yn is a non-inreasing sequene. We then take anin�mum over the sequene yn, whih is its greatest lower bound, to determine the lim supxn.The lim inf xn is determined in a similar fashion. For eah n, yn := infm�n xn is the greatestlower bound on the value the sequene takes after n, whih is denoted in the piture. Wethen take a supremum over the sequene yn, whih is its least upper bound, to determine thelim inf xn. For the piture given, lim inf xn and lim supxn oinide, but this is not neessarilythe ase. Consider what happens if our solid line was a sine wave osillating between �1 and1. Then supm�n xm = 1 for all n and thus lim supxn = infn�1 supm�n xn = 1. Similarlylim inf xn = �1.Comment 5: Note that if z > lim supxn, then there exists N suh that z > xn for all n > N .That is, z > xn for all suÆiently large n. Similarly if z < lim inf xn, then there exists Nsuh that z < xn for all n > N . That is, z < xn for in�nitely many n.De�nition 3 (Limit of a sequene) If �1 < lim inf xn = lim supxn <1, then the limitis said to exist and is de�ned bylimxn := lim inf xn = lim supxn:A sequene fxng is said to be onvergent if limn xn exists.Comment 6: A sequene fxng is onvergent with x� := limn xn if and only if given � > 0,there exists N� > 0 suh that jxn � x�j < � for all n > N�. Thus if a sequene is onvergent,ultimately all elements of the sequene are arbitrarily lose to its limit.



3De�nition 4 (Continuous funtion) A funtion f : R 7! R is ontinuous if, for all on-vergent sequenes fxng, limn!1 f(xn) exists and equalsf � limn!1xn� :Comment 7: >From the de�nition, a funtion is ontinuous if the limit of the funtion evalu-ated at the elements of a onvergent sequene equals the value of the funtion evaluated atthe limit of the sequene. This must hold true for every onvergent sequene. For example,f(x) = x2 is ontinuous, but the Heaviside step funtionf(x) := 8><>:0 if x < 01=2 if x = 01 if x > 0is not. To see this, onsider the sequene xn = 1=n whih is onvergent with limxn = 0. Wehave that f(xn) = 1 for all n, so that lim f(xn) = 1, but f(limxn) = f(0) = 1=2 so thatlim f(xn) 6= f(limxn) for this onvergent sequene and thus the Heaviside step funtion isnot ontinuous.Convex Funtions - e.g. Roberts and Varberg's Convex Funtions orRokafeller's Convex AnalysisReall that R := (�1;1).De�nition 5 (Convex funtion) A funtion  : R ! R is onvex on an open interval(a; b) � R if (tx+ (1� t)y) � t(x) + (1� t)(y);for all t 2 [0; 1℄, x; y 2 (a; b). A funtion is stritly onvex if(tx+ (1� t)y) < t(x) + (1� t)(y);for all t 2 (0; 1), x; y 2 (a; b).Comment 8: To understand onvexity, onsider Figure 2. The funtion (x) is onvex on theinterval (a; b) as for any x and y in (a; b), the hord (line segment) joining (x) and (y)(mathematially desribed as t(x) + (1 � t)(y), t 2 [0; 1℄) does not lie below the funtion.As drawn, this funtion is not onvex outside (a; b), but is stritly onvex within (a; b).Comment 9: It is a standard result of invex analysis that  is ontinuous on all subsets ofthe set on whih it is onvex (a; b).
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Figure 2: A funtion that is onvex on (a; b)Comment 10: Consider (x) := jxj, it is onvex, but not di�erentiable at 0. Convex funtionsare di�erentiable exept on a ountable set.Comment 11: If a funtion  is twie di�erentiable on (a; b), a suÆient ondition for  to beonvex on (a; b) is that d2dx2 (x) � 0;for all x 2 (a; b).De�nition 6 (AÆne funtion) A funtion L : R ! R, is aÆne if and only if there existsa; b 2 R suh that L(x) = ax+ b for all x 2 R.Comment 12: It is a result in onvex analysis that onvex funtions an be represented bythe supremum of a sequene of aÆne funtions: if  is onvex, then there exists a sequenefLn; n � 1 and Ln aÆneg suh that  = supn�1 Ln.De�nition 7 (Conave funtion) A funtion  is onave on an open interval (a; b) if �is onvex on (a; b). That is if(tx+ (1� t)y) � t(x) + (1� t)(y);for all t 2 [0; 1℄, x; y 2 (a; b).



5Comment 11: If a funtion  is twie di�erentiable on (a; b), a suÆient ondition for  to beonave on (a; b) is that d2dx2 (x) � 0;for all x 2 (a; b).


