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kground Notes on Real analysisLet �R = [�1;1℄ = (�1;1) [ f�1;1g denote the extended real line and let E � �R be anon-empty subset of the extended real line.De�nition 1 (Supremum and in�mum of a set) The supremum of E, whi
h is writtenin several di�erent ways supE = supx2E x = supfx : x 2 Eg;is the smallest element y in �R su
h that y � x for all x 2 E. The supremum is also knownas the least upper bound of the set E.The in�mum of E, whi
h 
an be written as any ofinf E = infx2E x = inffx : x 2 Eg;is the greatest element y 2 �R su
h that y � x for all x 2 E. The in�mum is also known asthe greatest lower bound of the set E.Comment 1: For any E � �R , it 
an be proven that both inf E and supE always exist, althoughthey 
an be �1 and 1 respe
tively. For example if E = R = (�1;1), then inf R = �1and supR = +1.Comment 2: Note that neither infE nor supE need be elements of E. For example, witha < b 
onsider the interval [a; b), whi
h 
ontains a and every element from a to, but notin
luding, b. Then inffx : x 2 [a; b)g = a 2 [a; b) and supfx : x 2 [a; b)g = b =2 [a; b).Comment 3: If E � F � �R then inf F � inf E � supE � supF .In�mum and supremum pay the key role in determining if the limit of a sequen
e exists and,if it exists, identifying its valueLet fxn 2 R : n 2 Ng be a sequen
e of real numbers.De�nition 2 (Limit superior and limit inferior of a sequen
e) De�ne limit superiorlim supn!1 xn := infn�1 supm�n xm 2 [�1;1℄and limit inferior lim infn!1 xn := supn�1 infm�nxm 2 [�1;1℄:
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e of real numbersComment 4: To understand lim inf xn and lim supxn, 
onsider Figure 1. Let the solid line de-note our sequen
e and 
onsider lim supxn = infn�1 supm�n xn. For ea
h n, yn := supm�n xnis the least upper bound on the value the sequen
e takes after n, whi
h is also denoted inthe pi
ture. Note that, from Comment 3, yn is a non-in
reasing sequen
e. We then take anin�mum over the sequen
e yn, whi
h is its greatest lower bound, to determine the lim supxn.The lim inf xn is determined in a similar fashion. For ea
h n, yn := infm�n xn is the greatestlower bound on the value the sequen
e takes after n, whi
h is denoted in the pi
ture. Wethen take a supremum over the sequen
e yn, whi
h is its least upper bound, to determine thelim inf xn. For the pi
ture given, lim inf xn and lim supxn 
oin
ide, but this is not ne
essarilythe 
ase. Consider what happens if our solid line was a sine wave os
illating between �1 and1. Then supm�n xm = 1 for all n and thus lim supxn = infn�1 supm�n xn = 1. Similarlylim inf xn = �1.Comment 5: Note that if z > lim supxn, then there exists N su
h that z > xn for all n > N .That is, z > xn for all suÆ
iently large n. Similarly if z < lim inf xn, then there exists Nsu
h that z < xn for all n > N . That is, z < xn for in�nitely many n.De�nition 3 (Limit of a sequen
e) If �1 < lim inf xn = lim supxn <1, then the limitis said to exist and is de�ned bylimxn := lim inf xn = lim supxn:A sequen
e fxng is said to be 
onvergent if limn xn exists.Comment 6: A sequen
e fxng is 
onvergent with x� := limn xn if and only if given � > 0,there exists N� > 0 su
h that jxn � x�j < � for all n > N�. Thus if a sequen
e is 
onvergent,ultimately all elements of the sequen
e are arbitrarily 
lose to its limit.



3De�nition 4 (Continuous fun
tion) A fun
tion f : R 7! R is 
ontinuous if, for all 
on-vergent sequen
es fxng, limn!1 f(xn) exists and equalsf � limn!1xn� :Comment 7: >From the de�nition, a fun
tion is 
ontinuous if the limit of the fun
tion evalu-ated at the elements of a 
onvergent sequen
e equals the value of the fun
tion evaluated atthe limit of the sequen
e. This must hold true for every 
onvergent sequen
e. For example,f(x) = x2 is 
ontinuous, but the Heaviside step fun
tionf(x) := 8><>:0 if x < 01=2 if x = 01 if x > 0is not. To see this, 
onsider the sequen
e xn = 1=n whi
h is 
onvergent with limxn = 0. Wehave that f(xn) = 1 for all n, so that lim f(xn) = 1, but f(limxn) = f(0) = 1=2 so thatlim f(xn) 6= f(limxn) for this 
onvergent sequen
e and thus the Heaviside step fun
tion isnot 
ontinuous.Convex Fun
tions - e.g. Roberts and Varberg's Convex Fun
tions orRo
kafeller's Convex AnalysisRe
all that R := (�1;1).De�nition 5 (Convex fun
tion) A fun
tion 
 : R ! R is 
onvex on an open interval(a; b) � R if 
(tx+ (1� t)y) � t
(x) + (1� t)
(y);for all t 2 [0; 1℄, x; y 2 (a; b). A fun
tion is stri
tly 
onvex if
(tx+ (1� t)y) < t
(x) + (1� t)
(y);for all t 2 (0; 1), x; y 2 (a; b).Comment 8: To understand 
onvexity, 
onsider Figure 2. The fun
tion 
(x) is 
onvex on theinterval (a; b) as for any x and y in (a; b), the 
hord (line segment) joining 
(x) and 
(y)(mathemati
ally des
ribed as t
(x) + (1 � t)
(y), t 2 [0; 1℄) does not lie below the fun
tion.As drawn, this fun
tion is not 
onvex outside (a; b), but is stri
tly 
onvex within (a; b).Comment 9: It is a standard result of 
invex analysis that 
 is 
ontinuous on all subsets ofthe set on whi
h it is 
onvex (a; b).
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Figure 2: A fun
tion that is 
onvex on (a; b)Comment 10: Consider 
(x) := jxj, it is 
onvex, but not di�erentiable at 0. Convex fun
tionsare di�erentiable ex
ept on a 
ountable set.Comment 11: If a fun
tion 
 is twi
e di�erentiable on (a; b), a suÆ
ient 
ondition for 
 to be
onvex on (a; b) is that d2dx2 
(x) � 0;for all x 2 (a; b).De�nition 6 (AÆne fun
tion) A fun
tion L : R ! R, is aÆne if and only if there existsa; b 2 R su
h that L(x) = ax+ b for all x 2 R.Comment 12: It is a result in 
onvex analysis that 
onvex fun
tions 
an be represented bythe supremum of a sequen
e of aÆne fun
tions: if 
 is 
onvex, then there exists a sequen
efLn; n � 1 and Ln aÆneg su
h that 
 = supn�1 Ln.De�nition 7 (Con
ave fun
tion) A fun
tion 
 is 
on
ave on an open interval (a; b) if �
is 
onvex on (a; b). That is if
(tx+ (1� t)y) � t
(x) + (1� t)
(y);for all t 2 [0; 1℄, x; y 2 (a; b).



5Comment 11: If a fun
tion 
 is twi
e di�erentiable on (a; b), a suÆ
ient 
ondition for 
 to be
on
ave on (a; b) is that d2dx2 
(x) � 0;for all x 2 (a; b).


