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1. Consider the following congestion control algorithm:

ẋr = κr

(
wr

xr
− qr

)
,

ṗl = hl (yl − cl)+pl
,

where qr =
∑

l:l∈r pl, yl =
∑

r:l∈r xr, and κr and hl are positive constants. This algorithm is called
the primal-dual algorithm for congestion control.

(a) Show that the equilibrium points of the above congestion control equation solve a utility
maximization problem. What type of fairness property (such as max-min fairness, proportional
fairness, etc.) does the equilibrium possess?

(b) Assume that the equilibrium point is unique and show that the congestion controller is
globally asymptotically stable by using the Lyapunov function

V (x, p) =
∑
r

(xr − x̂r)2

κr
+
∑

l(pl − p̂l)2

hl
,

where (x̂, p̂) denotes the equilibrium point. To do this, show that (i) V̇ ≤ 0 and (ii) that V̇ = 0
implies (x(t), p(t)) = (x̂, p̂). The result then follows from LaSalle’s invariance principle (see “Intro
and Background” notes).

2. Consider the following discrete-time version of the dual congestion control algorithm: at each
time slot k, each source chooses a transmission rate xr(k) which is the solution to

max
0≤xr≤Xmax

Ur(xr)− qr(k)xr,

where Xmax is the maximum rate at which any user can transmit. Each link l computes its
price pl(k) according to the following update rule which is a discretization of the continuous-time
algorithm used in the notes:

pl(k + 1) = (pl(k) + ε(yl − cl))+ ,

where ε > 0 is a small step-size parameter. The variables yl and qr are defined as usual:

qr(k) =
∑
l:l∈r

pl(k), yl(k) =
∑
r:l∈r

xr(k).

We will show that, on average, the above discrete-time algorithm is nearly optimal in the sense
that it approximately solves the utility maximization problem.

(a) Consider the Lyapunov function

V (k) =
1
2

∑
l

p2
l (k).

Show that
V (k + 1)− V (k) ≤ Kε2 + ε

∑
r

qr(xr − x∗r),

for some constant K > 0.
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(b) Next, show that

V (k + 1)− V (k) ≤ Kε2 + ε
∑
r

(Ur(xr)− Ur(x̂r)),

where x̂ is the solution to the utility maximization problem

max
x≥0

∑
r

Ur(xr), subject to
∑
r:l∈r

xr ≤ cl.

Assume that Xmax > maxr x̂r.
(c) Finally, show that ∑

r

Ur(x̂r) ≤
∑
r

Ur(x̄r) +Kε,

where

x̄r := lim
N→∞

1
N

N∑
k=1

xr(k).

Assume that Ur is concave (but it doesn’t have to be strictly concave for the results of this problem
to hold).

3. Consider a Markov chain whose state space is the set of non-negative integers and whose
transition matrix satisfies Pij = 0 if |i− j| > 1. Such Markov chains are called birth-death chains.
Consider a birth-death chain with Pi,i+1 = λi and Pi+1,i = µi, and assume that λi, µi > 0 for all i.
Further assume that Pii > 0 for all i.

(i) Show that the Markov chain is irreducible and aperiodic.
(ii) Obtain conditions under which the Markov chain is (a) positive recurrent and (b) not

positive recurrent.

4. Consider the simple infinite-buffer queueing model of a wireless channel discussed in class with
µ ∈ (0, 1). Instead the arrival rate being constant, assume that the number of arrivals per time
slot is Bernoulli with mean µ when the queue length is less than or equal to B and is equal to λ
otherwise. Compute the stationary distribution and the expected queue length in steady-state of
this Markov chain when it is positive recurrent. Clearly identify the conditions under which the
Markov chain is positive recurrent and the conditions under which it is not.

5. Consider the discrete-time queueing model discussed in class to obtain the Kingman bound:

q(k + 1) = (q(k) + a(k)− s(k))+ .

Another way to represent the above queueing dynamics is to define a non-negative random variable
u(k), which denotes unused service in a time slot, and rewrite the above equation as

q(k + 1) = q(k) + a(k)− s(k) + u(k).

Note that u(k) ≤ s(k). For the rest of this problem, we will assume that the initial probability
distribution for this system is the steady-state distribution, i.e., we consider the system in steady-
state.

(i) Using the fact that, in steady-state, E(q(k + 1)− q(k)) = 0, show that E(u(k)) = µ− λ.
(ii) We now show that the Kingman upper bound on E(q(k)) obtained in class is tight in heavy-

traffic under the assumption that s(k) ≤ Smax for all k, where Smax is some positive constant.
Obtain a lower bound on E(q(k)) and show that the upper and lower bounds on E(q(k))(µ − λ)
coincide when λ→ µ.
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6. In discrete-time systems, one can make different assumptions on the order in which arrivals and
departures can occur. In this problem, we will assume

q(k + 1) = (q(k)− s(k))+ + a(k).

Thus, unlike in problem 5, we assume that departures occur first, followed by arrivals. As in class,
assume that the arrivals and departures are i.i.d. over time, the mean arrival rate (λ) is less than
the mean service rate (µ), and E

[
(a(k)− s(k))2

]
is finite.

(a) Show that the Markov chain q is positive recurrent and hence, has a stationary distribution.
(As in class, we implicitly assume that the arrival and service processes are such that q is irreducible
and aperiodic.)

(b) Now assume that the Markov chain is in steady-state and obtain an upper bound on the
expected queue length.

(c) Assume s(k) ≤ Smax and show that the upper bound is tight in the heavy-traffic sense
described in problem 5.
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