
Question 1

Consider the Lyapunov Function:

V (q) =
1
2

∑
ij

q2i,j

The Lyapunov drift is:

∆Vk = E[V (q(k + 1))− V (q(k))|q[k] = q]

∆Vk =
1
2
E[
∑
ij

((qij(k) + aij(k)− Iij(k))+)2 − qij(k)2|q[k] = q]

For simplicity, let’s drop index k. Therefore, we can bound the Lyapunov drift:

∆Vk ≤
1
2
E[
∑
ij

((qij + aij − Iij)2 − q2ij)|q[k] = q]

∆Vk =
1
2
E[
∑
ij

((aij − Iij)2 + 2qij(aij − Iij))|q[k] = q]

∆Vk ≤
1
2

∑
ij

E[((aij − Iij)2|q[k] = q] +
∑
ij

qijE[aij − Iij |q[k] = q]

Since the arrivals into the queue (i, j) are independent Bernoulli with mean λij , E[aij(k)] =
λij and E[a2

ij(k)] = λij Moreover, given any q(k),

∑
i

Iim(k) ≤ 1

∑
j

Inj(k) ≤ 1

Note that I2
im = Iim.Thus, we have the following bound for the first term:

1
2

∑
ij

E[((aij − Iij)2|q[k] = q] ≤ 1
2

∑
ij

λij + E[I2
ij |q[k] = q] ≤ N

Since λij lies in the interior of capacity region and the max-weight scheduling algorithm
is used, there exists an ε such that the second term is upper bounded:
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∑
ij

qijE[aij − Iij |q[k] = q] ≤ −ε
∑
ij

qij

Therefore,

∆Vk = E[V (q(k + 1))− V (q(k))|q[k] = q] ≤ N − ε
∑
ij

qij

Taking expectation on both sides:

E[V (q(k + 1))− V (q(k))|q[k] = q] ≤ N − εE[
∑
ij

qij ]

At the steady-state, the left hand-side is equal to zero, and hence,

E[
∑
ij

qij ] ≤
N

ε

Question 2

Let M be the set of all possible schedules in the switch; and let C denote the capacity
region, which is the convex hull of M. The scheduling algorithm chooses the schedule I∗ij
at time slot k such that:

I∗i,j = arg max
I∈M

∑
ij

Ii,jq2
i,j(k)

Note that I∗i,j is also the optimal solution of the following linear program:

(1) I∗i,j = arg max
I∈C

∑
ij

Ii,jq2
i,j(k)

In order to prove the 100% throughput of this algorithm, we need to show that for any
vector of arrival rates λij strictly within capacity region C, the system is stable. Let us
consider the Lyapunov Function:

V (q) =
1
3

∑
ij

q3
i,j

The Lyapunov drift is:

∆Vk = E[V (q(k + 1))− V (q(k))|q[k] = q]
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∆Vk =
1
3
E[
∑
ij

(qij(k) + aij(k)− Iij(k) + uij(k))3 − q3ij(k)|q[k] = q]

For simplicity, let’s drop index k. Let yij = qij + aij − Iij , then yij ≥ −1 and

uij =
{

0 if yij ≥ 0
−yij if yij < 0

Hence (yij + uij)3 = y3
ij + u3

ij ≤ y3
ij + 1 Therefore, we can bound the Lyapunov drift:

∆Vk ≤
1
3
E[
∑
ij

((qij + aij − Iij)3 − q3ij + 1)|q[k] = q]

∆Vk =
1
3
E[
∑
ij

(1 + (aij − Iij)3 + 3q2ij(aij − Iij) + 3qij(aij − Iij)2)|q[k] = q]

∆Vk ≤
∑
ij

C1 + C2qij + q2ijE[aij − Iij |q[k] = q]

∆Vk ≤
∑
ij

C1 + C2qij + q2ij(λij − I∗ij)

Since the vector of arrival rates λij is strictly within the capacity region C, there exists
an ε such that the vector λij + ε ∈ C. Thus,

∆Vk ≤
∑
ij

C1 + C2qij − εq2ij + q2ij(λij + ε− I∗ij)

(2) ∆Vk ≤ NC1 + C2

∑
ij

qij − ε
∑
ij

q2ij

where the last inequality is due to (1) and the fact that λij + ε ∈ C. We want to verify
that the drift is negative for all q outside a finite set. Now (2) can be rewritten as:

4Vk ≤
∑
ij

(C1 + C2qij − εq2ij)(3)

Therefore, the drift is negative for all values of q outside a finite set B, where:

B =

{
q : qij < −C2 +

√
C2

2 + 4εC1

2ε
,∀i, j

}
(4)

Positive recurrence follows from the Foster-Lyapunov stability theorem.
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Question 3

Let Iij be a maximal matching for positive queues If qij > 1 then

∑
j′

Iij′(k) ≤ 1

∑
i

Ii′j(k) ≤ 1

Let ε > 0 s.t.

∑
j

λ2
ij(k) ≤ 1

2
− ε

∑
i

λ2
ij(k) ≤ 1

2
− ε

Let:

V (q) =
∑
ij

qi,j(
∑
i′

qi′,j +
∑
j′

qi,j′)

The Lyapunov drift is:

∆Vk = E[V (q(k + 1))− V (q(k))|q[k] = q]

∆Vk = E(
∑
ij

(qi,j+ai,j−Ii,j)(
∑
i′

(qi′,j+ai′,j−Ii′,j)+
∑
j′

(qi,j′+ai,j′−Ii,j′))−
∑
ij

qi,j(
∑
i′

qi′,j+
∑
j′

qi,j′))

∆Vk ≤
∑
ij

[(λij − Iij)(
∑
i′

qi′,j +
∑
j′

qi,j′) + qij(
∑
i′

(λij − Iij) +
∑
j′

(λij − Iij))] + C

∆Vk ≤ 2×
∑
ij

qi,j [
∑
i′

λi′j +
∑
j′

λij′ − Ii′j − Iij′ ] + C

∆Vk ≤ 2×
∑
ij

qi,j [
1
2
− ε+

1
2
− ε− 1] + C

∆Vk ≤ −4× ε×
∑
ij

qi,j + C
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Positive recurrent follows from large enough
∑
ij

qij

Question 4

Let XA and XB be random variables representing the channel state of user A and B
respectively. The rate allocated to user A is given below:

λA < P (XA = 1, XB = 0) + 3P (XA = 3, XB = 0) + p1P (XA = 1, XB = 1)

+ p2P (XA = 1, XB = 3) + 3p3P (XA = 3, XB = 1) + 3p4P (XA = 3, XB = 3)

=
4 + p1 + p2 + 3p3 + 3p4

9

(5)

Similarly, the rate allocated to user B is:

λB <
4 + p′1 + 3p′2 + p′3 + 3p′4

9
(6)

Moreover, we also have for each i ∈ {1, 2, 3, 4}:

pi + p′i ≤ 1(7)

The rate pairs defined by (λA, λB) using (5), (6), and (7) for various values of pi and p′i
gives the capacity region. The corner points of the capacity region are as follows:

(1) (0, 12
9 ) at pi = 0 and p′i = 1

(2) (4
9 ,

12
9 ) at pi = 0 and p′i = 1

(3) (7
9 ,

11
9 ) at p1 = p2 = p4 = 0, p3 = 1, and p′i = 1− pi

(4) (11
9 ,

7
9) at p1 = p2 = p4 = 1, p3 = 0, and p′i = 1− pi

(5) (12
9 ,

4
9) at pi = 1 and p′i = 1

(6) (12
9 , 0) at pi = 1 and p′i = 1

A graph of this capacity region is shown below.
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We now prove analytically that no points outside of the region in the graph can be
obtained through (5) and (6) using values of pi and p′i chosen according to (7). In order to
verify this claim, we show that there are no admissible values of pi and p′i that can give a
point beyond the five lines that define the region in the graph. First consider the line that
runs through the points 5 and 6. Clearly, no point with λA > 12

9 is achievable under (5),
since the maximum value of (5) is 12

9 (when pi = 0 and p′i = 1). By a similar argument, no
point with λB > 12

9 is admissible under (6) either. Now consider the line that runs through
the points 3 and 4. The equation of this line is given by:

λA + λB = 2(8)

From (5) and (6) we know that:

λA + λB ≤
8 + p1 + p′1 + p2 + 3p′2 + 3p3 + p′3 + 3p4 + 3p′4

9

≤ 8 + 1 + 1 + 2p′2 + 1 + 2p3 + 3
9

≤ 14 + 2 + 2
9

= 2

(9)

where the second inequality follows by substituting p′i = 1− pi, and the third inequality
follows by choosing p′2 = 1 and p3 = 1. By comparing (8) and (9), it follows that no point
beyond the line given by (8) is admissible under (5) and (6). Now consider the line running
through points 2 and 3. The equation of this line is given by:

9λA + 27λB = 40(10)

From (5) and (6) we know that:

9λA + 27λB ≤ 4 + p1 + p2 + 3p3 + 3p4 + 12 + 3p′1 + 9p′2 + 3p′3 + 9p′4
≤ 16 + 1 + 2p′1 + 1 + 8p′2 + 3 + 3 + 6p′4
≤ 24 + 2 + 8 + 6
= 40

(11)

where the second inequality follows by substituting p′i = 1− pi, and the third inequality
follows by choosing p′1 = p′2 = p′4 = 1. By comparing (10) and (11), it follows that no point
beyond the line given by (11) is admissible under (5) and (6). By a similar argument, no
point beyond the line running through points 4 and 5 is admissible since the equation of
this line is 27λA + 9λB = 40. Therefore, no point beyond the curve of the polygon in the
graph is admissible under the inequalities (5), (6), and (7).
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Question 5

From the course notes, we have the following relationship:

E(4Vk | q[k] = q) = E(V (q[k + 1])− V (q[k]) | q[k] = q)

≤ K − ε
2∑
i=0

qiλi
(12)

where

K = E(
2∑
i=1

(ai − di)2 | q[k] = q),(13)

and where {λi(1 + ε)} ∈ C (the capacity region). In steady state E(4Vk) = 0. Taking
expectations of both sides of equation (12) gives:

2∑
i=1

λiE(qi) ≤
E(
∑2

i=1(ai − di)2)
2ε

=
E(
∑2

i=1(a2
i − 2aidi + d2

i )
2ε

≤
∑2

i=1E(a2
i ) +

∑2
i=1E(d2

i )
2ε

(14)

since the arrival process ai and the service process di are independent. Moreover we also
know that:

E(ai)2 = E(ai) = λi(15)

E(d2
i ) ≤

1
3
× 9 +

1
3
× 1 +

1
3
× 0 =

10
3

(16)

Substituting equations (15) and (16) into (14) gives:

2∑
i=1

λiE(qi) ≤
λ1 + λ2 + 2× 10

3

2ε

=
λ1 + λ2 + 20

3

2ε

(17)

Finally, the sum of the queue lengths can be upper-bounded from equation (17) as
follows:
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2∑
i=1

E(qi) ≤
λ1 + λ2 + 20

3

2min{λ1, λ2}ε
(18)

Question 6

Assuming that the second moments of the arrival rate process and scheduling process
are finite, we have the relationship given in the notes:

E(4V (k) | q(k) = q) ≤ K +
L∑
l=1

ql(λl − E(Ml|q))(19)

where E(Ml|q) represents our probabilistic scheduling policy. We are assuming that the
second moments of the arrival rate and the scheduling policy are finite.

Case 1: Suppose q ∈ Bc
δ,ε.

E(4V (k) | q(k) = q) ≤ K +
L∑
l=1

qlλl −
L∑
l=1

qlE(Ml|q)(20)

where our probabilistic scheduling policy E(Ml|q), is with probability 1− δ within 1− ε′
of the max-weight scheduling policy. Therefore (20) can be rewritten as:

E(4V (k) | q(k) = q) ≤ K +
L∑
l=1

qlλl −
L∑
l=1

qlu
∗
l (1− ε′)(1− δ)(21)

where u∗l is the max-weight scheduling policy. We know that for some ε > 0, λ(1+2ε) ∈ C,
where C represents the capacity region of the ad hoc wireless network and 2ε represents
the largest distance between the coordinates of (λ1, λ2, ..., λL) and the boundary of the
capacity region. Moreover, since u∗ is the max-weight solution, we must have:

L∑
l=1

qlu
∗
l ≥ (1 + 2ε)

L∑
l=1

qlλl(22)

Substituting (22) into (21) gives:

E(4V (k) | q(k) = q) ≤ K +
L∑
l=1

qlλl −
L∑
l=1

qlλl(1 + 2ε)(1− ε′)(1− δ)(23)

Choose ε′ > 0 and δ > 0 such that:

(1− ε′)(1− δ) =
1 + ε

1 + 2ε
(24)
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Substituting (24) into (23) gives:

E(4V (k) | q(k) = q) ≤ K − ε
L∑
l=1

qlλl(25)

Now we have from (25):

E(4V (k) | q(k) = q) ≤ −εK, q ∈

{
L∑
l=1

qlλl >
2K
ε

}⋂
Bc
δ,ε(26)

E(4V (k) | q(k) = q) <∞, q ∈

{
L∑
l=1

qlλl ≤
2K
ε

}⋂
Bc
δ,ε(27)

Note that the queue lengths in (27) belong to a finite set. What happens when q ∈ Bδ,ε?

Case 2: Suppose q ∈ Bδ,ε. From (19) and the fact Bδ,ε is a compact set of queue lengths
it follows that:

E(4V (k) | q(k) = q) ≤ K +
L∑
l=1

qlλl

<∞
(28)

Putting (26), (27), and (28) together gives the following:

E(4V (k) | q(k) = q) ≤ −εK, q ∈

{
L∑
l=1

qlλl >
2K
ε

}⋂
Bc
δ,ε

<∞, q ∈

{
L∑
l=1

qlλl ≤
2K
ε

}⋃
Bδ,ε

So by the Lyapunov-Foster Theorem, the randomized algorithm is also throughput op-
timal.


