QUESTION 1

Consider the Lyapunov Function:

1 2
D) >4
]
The Lyapunov drift is:
AV = E[V(q(k + 1)) = V(q(k))lg[k] = q]

1

AV, = §E[Z((qu(/€) +aij(k) — I (k)")? — qij(k)?[q[k] = ¢

For simplicity, let’s drop index k. Therefore, we can bound the Lyapunov drift:

1
AVi < SEIY (@i +aig — Iy)? — o) lalk] =
ij

>

=
I
[

B (e — ) + 2055(ai; — Ig)lalk] = o

AV < ZE ((asj — +qu laij — Lijlalk] = q]

Since the arrivals into the queue (i, j) are mdependent Bernoulli with mean \;;, Ela;j(k)] =
Aij and E[agj(k)] = \ij Moreover, given any ¢(k),

ZIzm(k) <1
D Ik) <1
j

Note that Il-zm = I;p,. Thus, we have the following bound for the first term:

fZE aij — z:)\UJrEI2 kl=¢q/ <N

Since A;; lies in the interior of capacity region and the max-weight scheduling algorithm
is used, there exists an € such that the second term is upper bounded:
1



ZQU azy Ilj|q _Ezq”
Therefore,
AV = E[V(q(k +1)) = V(a®)lak] =q) < N — ¢ > a3

Taking expectation on both sides:

E[V(g(k+1)) = V(g(k)lg[k] = q] < N — B[ _ qi]
]
At the steady-state, the left hand-side is equal to zero, and hence,

N
E[E qij] < -
iJ

QUESTION 2

Let M be the set of all possible schedules in the switch; and let C denote the capacity
region, which is the convex hull of M. The scheduling algorithm chooses the schedule ]fj
at time slot k such that:

I;; = argmax > L (k)
]
Note that ]fj is also the optimal solution of the following linear program:
(1) I;k] = argr}leaé(ZIijqﬁj(k)
ij

In order to prove the 100% throughput of this algorithm, we need to show that for any
vector of arrival rates \;; strictly within capacity region C, the system is stable. Let us
consider the Lyapunov Function:

v
ij

The Lyapunov drift is:

AV = E[V(q(k + 1)) — V(q(k))|q[k] = q]



1
AV, = gE[§ (ij (k) + agj(k) = Lij(k) + uij(k))® = g3 (K)|g[k] = ¢
]
For simplicity, let’s drop index k. Let y;; = q;; + a;; — I;;, then y;; > —1 and

0 if y;5 >0
’LLij = .
—yij i yi; <0
Hence (yi; + uij)?’ = yf’J + u?j < yfj + 1 Therefore, we can bound the Lyapunov drift:

AVic < SEY (g + iy — Ty)® — afy + Dlalk] = d

v

1
AV, = gE[Z(l + (aij — 15j)” + 3¢5 (aij — Lij) + 3qi(aiy — 1)) a[k] = q]

ij

AV, < g C1 + Caqij + ¢ Elas; — Lijlqlk] = q]
1J
AVy < E C1 + Cagij + (M — 1)
ij

Since the vector of arrival rates \;; is strictly within the capacity region C, there exists
an € such that the vector \;; + e € C. Thus,

AV, < Z C1 + Caqij — eq?j + qgj()‘ij +e— I;})
ij
(2) AVR S NCi+C Y aij— €Y q
ij ij
where the last inequality is due to (1) and the fact that \;; + € € C. We want to verify
that the drift is negative for all ¢ outside a finite set. Now (2) can be rewritten as:

(3) AV < (Cy + Cogij — €q)y)
]
Therefore, the drift is negative for all values of ¢ outside a finite set B, where:

C2+ 4
(4) BZ{q:qij<—CQ+02+€Cl,Vi,j}

2¢

Positive recurrence follows from the Foster-Lyapunov stability theorem.



QUESTION 3

Let I;; be a maximal matching for positive queues If ¢;; > 1 then

> Ljyk) <1
j/
> Ij(k) <1
Let € > 0 s.t.
1
> AL(R) < 5
J
1
Z)‘zzj(k) < 5 — €
Let:

Vig) = Z Qi,j(z qirj + Z i)
ij il 3!

The Lyapunov drift is:

AV = E[V(q(k +1)) = V(q(k))|q[k] = 4]

AVi = BQY (qijtaij—Ti)) O j+aw j=To )+ (@ ptaig—Tig)=> a0 g+ i)
5! 1/] i/ jl

ij i j

,L'/

AV, < Z[(Aij - Iij)(z qirj + Z%‘,j’) +ai(>_(Nij — L) + Z(Az’j —Iiy)]+C

AV <2x Y aigly dij+ ) Nig = Loy = Lyl + C
ij i’ J’

1 1
AVk§2XZQi,j[§_E+§_€_1]+C
(]

AVk§—4X€XZqZ‘7]‘+C
ij



Positive recurrent follows from large enough Z ij
4]
QUESTION 4

Let X4 and Xp be random variables representing the channel state of user A and B
respectively. The rate allocated to user A is given below:

Aa < P(XA =1,Xp=0)+3P(X4=3,Xp=0)+pP(Xa=1,Xp=1)
(5) +peP(Xa=1,Xp=3)+3psP(Xa=3,Xp=1)+3psP(Xa =3, Xp =3)
_ 4+ p1+p2+3ps3+3pa
9
Similarly, the rate allocated to user B is:

4+ ph + 3ph + pi + 3p)
6 A\p <
(6) B 5

Moreover, we also have for each i € {1,2,3,4}:

(7) pit+p; <1

The rate pairs defined by (A4, Ap) using (5), (6), and (7) for various values of p; and p
gives the capacity region. The corner points of the capacity region are as follows:

(1) (0,%2) at p; =0 and p} =1

(2) (%,%) ath—Oandpl—l
(3) (5, ) atpr=pr=ps=0,p3=1,and p, =1—p;
(4) (%’g) at p1 = ps=1,p3=0,and p; =1—p;
(5) (1@2,%) atpz—landpl—l
(6) (%,0) at p; =1 and p; =1

A graph of this capacity region is shown below.
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6
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We now prove analytically that no points outside of the region in the graph can be
obtained through (5) and (6) using values of p; and p) chosen according to (7). In order to
verify this claim, we show that there are no admissible values of p; and p} that can give a
point beyond the five lines that define the region in the graph. First consider the line that
runs through the points 5 and 6. Clearly, no point with Ag > 1@2 is achievable under (5),
since the maximum value of (5) is 1@2 (when p; = 0 and p; = 1). By a similar argument, no
point with Ap > % is admissible under (6) either. Now consider the line that runs through
the points 3 and 4. The equation of this line is given by:

(8) A+ Ap =2

From (5) and (6) we know that:

8 + p1 + py + p2 + 3ph + 3ps3 + p3 + 3ps + 3p)

Aa+Ag < 9
<8+1+1+2p/2+1+2p3+3
9) = 9
144242
9
=2

where the second inequality follows by substituting p; = 1 — p;, and the third inequality
follows by choosing p, = 1 and p3 = 1. By comparing (8) and (9), it follows that no point
beyond the line given by (8) is admissible under (5) and (6). Now consider the line running
through points 2 and 3. The equation of this line is given by:

(10) I\4 + 27Ag = 40

From (5) and (6) we know that:

9XA +27Ag < 4+ p1 + p2 + 3ps + 3ps + 12 + 3p) + 9py + 3p5s + 9p),
<16+ 1+2p) +1+8ph+ 3+ 3+ 6p)
<24+2+8+6
= 40

(11)

where the second inequality follows by substituting p; = 1 — p;, and the third inequality
follows by choosing pj = p,, = p), = 1. By comparing (10) and (11), it follows that no point
beyond the line given by (11) is admissible under (5) and (6). By a similar argument, no
point beyond the line running through points 4 and 5 is admissible since the equation of
this line is 27X 4 + 9Ap = 40. Therefore, no point beyond the curve of the polygon in the
graph is admissible under the inequalities (5), (6), and (7).



QUESTION 5

From the course notes, we have the following relationship:

E(AVy | qk] = q) = E(V(qlk +1]) — V(q[k]) | q[k] = q)

2
(12) < K—€ZQMz‘
=0
where
2
(13) K =E(> (ai—d)?|qlk] = q),

=1

and where {\;(1 +¢)} € C (the capacity region). In steady state E(AVy) = 0. Taking
expectations of both sides of equation (12) gives:

S A E(g) < P = )
i=1

2¢
(14) _ E(X(0F — 2aid; + )
2¢
< Z?:I E(a}) + Z?:l E(d3)
- 2€

since the arrival process a; and the service process d; are independent. Moreover we also
know that:

(15) E(ai)2 :E(ai) :)\i

1 1 1 10
1 E(d?) < = “x14 = e
(16) (dZ)_3><9+3>< +3><0 3

Substituting equations (15) and (16) into (14) gives:

i)\iE(Qi) < Mt )\2; 2x 5
(17) i=1 €
M+t
N 2€

Finally, the sum of the queue lengths can be upper-bounded from equation (17) as
follows:



2

A+ Ay + 20
18 E(g) < ——=—3_
(18) ; (@) < 2min{)\1,)\2}6

QUESTION 6

Assuming that the second moments of the arrival rate process and scheduling process
are finite, we have the relationship given in the notes:

L
(19) E(AV(K)[q(k) =q) < K+ Y q(h — E(Mq))
I=1
where E(M;|q) represents our probabilistic scheduling policy. We are assuming that the
second moments of the arrival rate and the scheduling policy are finite.

Case 1: Suppose g € B§ .

L L
(20) E(AV(E)|q(k) =q) <K +> gk —>_ aE(Mlg)
=1 =1

where our probabilistic scheduling policy E(M;|q), is with probability 1 —§ within 1 — ¢’
of the max-weight scheduling policy. Therefore (20) can be rewritten as:

L L
(21) EAVE) gk =q) <K+ an - auj(1— )1 - 0)
I=1 =1
where v is the max-weight scheduling policy. We know that for some € > 0, A\(142¢) € C,
where C represents the capacity region of the ad hoc wireless network and 2e¢ represents
the largest distance between the coordinates of (A1, Ag,...,Ar) and the boundary of the
capacity region. Moreover, since u* is the max-weight solution, we must have:

(22) Doawi = (14+26) ) ah
Substituting (22) into (21) gives: )
L L
03)  EAV)|ak) =) S K+ D ad— Y ah(1+20(1—)(1-0)
=1 1=1

Choose € > 0 and § > 0 such that:

1+e¢
1+ 2¢

(24) (1-€)1-96) =



Substituting (24) into (23) gives:

L

(25) E(AV(E)[q(k) =q) < K - GZQMZ
=1

Now we have from (25):

L 2K

(26)  E(AV(R)|q(k) = ) < K, g {qu > } M 5.
=1
L 2K

(@1)  E(AV(R)|a(k) =q) < oo, g {qu < } M B
=1

Note that the queue lengths in (27) belong to a finite set. What happens when ¢ € Bs .?

Case 2: Suppose ¢ € Bs,. From (19) and the fact B;. is a compact set of queue lengths
it follows that:

L
E(AV (k) [qk) = q) <K+ a

(28) -

< 00

Putting (26), (27), and (28) together gives the following:
L 2K
E(AV(R) | g(k) = ) < —€K. g {qu > } N 5.
=1

L 9K
< 00, QG{Z(H}\ZSE}UB&,e
=1

So by the Lyapunov-Foster Theorem, the randomized algorithm is also throughput op-
timal.



