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1.

(a)

In the following derivation for P (S(n) = i|Y (n) = i, Y (n − 1), Y (n − 2), . . . , Y (1)), assume 0 ≤ i ≤ n, and
that i mod 2 ≡ n mod 2, otherwise the probability is clearly 0. Additionally, if i = 0, the probability is
clearly 1. Then for i > 0,

P (S(n) = i|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1))

=

(
n

(n+i)/2

)
p(n+i)/2(1− p)(n−i)/2(

n
(n+i)/2

)
p(n+i)/2(1− p)(n−i)/2 +

(
n

(n−i)/2

)
p(n−i)/2(1− p)(n+i)/2

=
pi/2(1− p)−i/2

pi/2(1− p)−i/2 + p−i/2(1− p)i/2

=
pi

pi + (1− p)i

where we have used the fact
(

n
(n+i)/2

)
=
(

n
n−(n+i)/2

)
=
(

n
(n−i)/2

)
.

To elaborate, the numerator represents the probability of the random walk ending up in state i, whereas
the denominator represents the probability of the random walk ending up in either state i or −i (distinct,
since i 6= 0).

(b)

Now we can proceed to calculate P (Y (n+ 1) = i+ 1|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1)).
Again we assume 0 ≤ i ≤ n, and that i mod 2 ≡ n mod 2, otherwise the probability is clearly 0.

Additionally, if i = 0, the probability is clearly 1. Then for i > 0,

P (Y (n+ 1) = i+ 1|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1))
= P (Y (n+ 1) = i+ 1|S(n) = i, Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1))

+P (Y (n+ 1) = i+ 1|S(n) = −i, Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1))
= {P (Y (n+ 1) = i+ 1|S(n) = i) · P (S(n) = i|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1))}

+ {P (Y (n+ 1) = i+ 1|S(n) = −i) · P (S(n) = −i|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1))}

=
{
p · pi

pi + (1− p)i

}
+
{

(1− p) · (1− p)i

pi + (1− p)i

}
=
pi+1 + (1− p)i+1

pi + (1− p)i

where we have made use of the fact that P (Y (n) = i) = {P (S(n) = i)}+ {P (S(n) = −i)} when i > 0.

Now consider P (Y (n+ 1) = i− 1|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1)).
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Note that this probability must be 0 when i = 0, since Y is a non-negative random process.
With an exactly analogous derivation as before, under the same assumptions, we have

P (Y (n+ 1) = i− 1|Y (n) = i, Y (n− 1), Y (n− 2), . . . , Y (1)) =
(1− p)pi + p(1− p)i

pi + (1− p)i

Summarizing, we have

P (Y (n+1) = i+1|Y (n) = i, Y (n−1), Y (n−2), . . . , Y (1)) =


1 , i = 0, n mod 2 ≡ 0
pi+1 + (1− p)i+1

pi + (1− p)i
, i > 0, i mod 2 ≡ n mod 2

0 , otherwise

P (Y (n+1) = i−1|Y (n) = i, Y (n−1), Y (n−2), . . . , Y (1)) =


(1− p)pi + p(1− p)i

pi + (1− p)i
, i > 0, i mod 2 ≡ n mod 2

0 , otherwise

It is also clear that no other transitions are possible for Y ; it can only increment or decrement at each
time.

Since the RHS to these expressions are only functions of Y only through Y (n) = i, Y is a Markov chain,
with initial state Y (0) = 0 and transition matrix P , with entries given by

P0,1 = 1

Pi,i+1 =
pνi + (1− p)

νi + 1
∀i ≥ 1

Pi,i−1 =
(1− p)pi + p(1− p)i

pi + (1− p)i
∀i ≥ 1

and all other entries 0.

2: Worst case Cherno� Bound

This problem deals with a scenario where the actual distribution of the source is not known, but a bound on
the expectation of the source is known. Under this constraint we need to �nd which distribution represents
the worst case for the Cherno� bound:

P (
n∑
i=1

Xi ≥ nx) ≤ e−nI(x).

We need to �nd the distribution that minimizes the rate function subject to the constraint EX ≤ ρ and
0 ≤ X ≤M . So the worst case rate function is

I(x) = min
p(x)

sup
θ
θx− Λ(θ).

The order of the max and min can be interchanged since the function θx−Λ(θ) is convex is p(x) and concave
in θ. Therefore,

I(x) = sup
θ

min
p(x)

θx− Λ(θ).

We can now focus on maximizing EeθX over p(x) satisfying the constraints. We claim that the following
distribution minimizes this MGF:

p(X = x) =
ρ

M
, if x = M

= 1− ρ

M
, if x = 0

= 0, otherwise.
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For this distribution, EeθX = ρ
M eθM +(1− ρ

M ). If we show that, for every p(x) satisfying the constraints,
EeθX is lesser than this value, then we are done. We observe that, by the convexity of eθx and 0 ≤ X ≤M ,

eθX ≤ X

M
eθM + (1− X

M
),

⇒ EeθX ≤ ρ

M
eθM + (1− ρ

M
)

and we are done!
In this problem, since we already had a guess for the optimizing distribution, verifying that this is optimal

was easy. If we did not have a guess, then we can start by observing that EeθX is linear p(x) and that the
set of p(x) satisfying the constraint is a convex, compact set. Therefore the maximum would occur on one
of the corner points of this set. The corner points of this set of distributions can be shown to be the set of
all two-point distributions satisfying the constraints, and from these, we can easily identify the optimizing
distribution.

3

(a)

fX(x) = 1√
2πσ2 · exp

[
−(x− µ)2/(2σ2)

]
M(s) = E[esX ] =

´∞
−∞ esx 1√

2πσ2 · exp
[
−(x− µ)2/(2σ2)

]
dx

esx · exp
[
−(x− µ)2/(2σ2)

]
= exp

{
− 1

2σ2
·
[
x2 − 2µx+ µ2 − 2sσ2x

]}
= exp

{
− 1

2σ2
·
[
x2 − 2(µ+ sσ2)x+ µ2

]}
= exp

{
− 1

2σ2
·
[
x2 − 2(µ+ sσ2)x+ (µ+ sσ2)2 − 2µsσ2 +

(
sσ2
)2]}

= exp
{
− 1

2σ2
·
[
x2 − 2(µ+ sσ2)x+ (µ+ sσ2)2

]}
· exp

(
sµ+

1
2
s2σ2

)
= exp

(
sµ+

1
2
s2σ2

)
· exp

[
−(x− µ− sσ2)2/(2σ2)

]

M(s) =
ˆ ∞
−∞

esx
1√

2πσ2
· exp

[
−(x− µ)2/(2σ2)

]
dx

= exp
(
sµ+

1
2
s2σ2

)
·
ˆ ∞
−∞

1√
2πσ2

· exp
[
−(x− µ− sσ2)2/(2σ2)

]
dx

= exp
(
sµ+

1
2
s2σ2

)

I(x) = sups

[
sx− sµ− 1

2
s2σ2

]
sx−sµ is linear and −1

2
s2σ2 is concave and continuous, so

[
sx− sµ− 1

2
s2σ2

]
is concave and continuous.

Then we can solve for the optimal s = s∗ by setting the derivative to zero:
x− µ− s∗σ2 = 0

s∗ =
x− µ
σ2

I(x) = s∗(x− µ)− 1
2

(s∗)2σ2 =
(x− µ)2 − 1

2
(x− µ)2

σ2
=

(x− µ)2

2σ2
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(b)

fX(x) = λe−λx

M(s) = E[esX ] =
´∞
0
esxλe−λxdx = λ

´∞
0
e−(λ−s)xdx =

λ

λ− s
·
´∞
0

(λ− s)e−(λ−s)xdx =

{
λ
λ−s , s < λ

∞ , s ≥ λ
I(x) = sups [sx− logM(s)] = sups<λ [sx− log λ+ log(λ− s)]
sx is linear and log(λ−s) is concave and continuous for s < λ, so [sx− log λ+ log(λ− s)] is concave and

continuous.

d

ds
[sx− logM(s)] = x − 1

λ− s
. This is negative for all s < λ when x ≤ 0, so the supremum occurs as

s→ −∞,
I(x) = lims→−∞ [sx− log λ+ log(λ− s)] =∞ ∀x ≤ 0.

If x > 0, we can solve for the optimal s = s∗ by setting the derivative to zero:

x− 1
λ− s∗

= 0

s∗ = λ− 1
x

I(x) = s∗x− log λ+ log(λ− s∗) = λx− 1− log (λx)

To summarize,

I(x) =

{
+∞ , x ≤ 0
λx− 1− log (λx) , x > 0

(c)

pX(k) =
λke−λ

k!

M(s) = E[esX ] =
∑∞
k=0

[
esk · λ

ke−λ

k!

]
=
∑∞
k=0

(esλ)k e−λ

k!
=
ee

sλ

eλ
·
∑∞
k=0

(esλ)k e−e
sλ

k!
= exp(λ(es − 1))

I(x) = sups [sx− logM(s)] = sups [sx− λ(es − 1)]
sx is linear and −λ(es − 1) is concave and continuous, so [sx− λ(es − 1)] is concave and continuous.

d

ds
[sx− logM(s)] = x−λes. This is negative for all s when x ≤ 0, so the supremum occurs as s→ −∞,

I(x) = lims→−∞ [sx− λ(es − 1)] =∞, x < 0.

Note that for the edge case x = 0, the supremum again occurs at −∞, but the derivative there is zero.
This allows the following optimization to work at the point x = 0.

If x ≥ 0, we can solve for the optimal s = s∗ by setting the derivative to zero:
x− λes∗ = 0
s∗ = log

(x
λ

)
I(x) = x log

(x
λ

)
− λ(

x

λ
− 1) = x

[
log
(x
λ

)
− 1
]

+ λ

To summarize,

I(x) =

{
+∞ , x < 0

x
[
log
(x
λ

)
− 1
]

+ λ , x ≥ 0
where we have used the convention 0 log 0 = 0.

(d)

Assume 0 < p < 1.

pX(k) =

{
p, k = 1
1− p, k = 0

M(s) = E[esX ] = es1 · p+ es0 · (1− p) = 1− p+ pes
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I(x) = sups {sx− log [1− p+ pes]} = sups

{
log
[

esx

1− p+ pes

]}
Note that 1 − p + pes > 0 ∀s, so it is easy to see that − logM(s) = − log [1− p+ pes] is an analytic

function of s.
Now we can verify − logM(s) is concave in s by checking the second derivative.

d

ds
[− logM(s)] = − pes

1− p+ pes

d2

ds2
[− logM(s)] = − [1− p+ pes] · pes − pes · pes

1− p+ pes

=
−(1− p) · pes

1− p+ pes

Thus
d2

ds2
[− logM(s)] < 0 ∀s. Combined with the fact that − logM(s) is analytic, we have that

− logM(s) is concave and continuous.
sx is linear and − logM(s) is concave and continuous, so [sx− logM(s)] is concave and continuous.

d

ds
[sx− logM(s)] = x− pes

1− p+ pes
. This is negative for all s when x < 0, so the supremum occurs as

s→ −∞,

I(x) = lims→−∞ log
[

esx

1− p+ pes

]
=∞ ∀x < 0.

Similarly, this is positive for all s when x > 1, so the supremum occurs as s→ +∞,

I(x) = lims→+∞ log
[

esx

1− p+ pes

]
=∞ ∀x > 0.

Note that for the edge cases x = 0 and x = 1, the supremum again occurs at −∞ and +∞ respectively,
but the derivative there is zero. This allows the following optimization to work at these two points.

If 0 ≤ x ≤ 1, we can solve for the optimal s = s∗ by setting the derivative to zero:

x− pes
∗

1− p+ pes∗
= 0

x− px+ pes
∗
x = pes

∗

es
∗

=
x(1− p)
p(1− x)

s∗ = log
[
x(1− p)
p(1− x)

]

I(x) = s∗x− log
[
1− p+ pes

∗
]

= x log
[
x(1− p)
p(1− x)

]
− log

[
1− p+

x(1− p)
1− x

]
= x log

[
x(1− p)
p(1− x)

]
− log

[
1− p
1− x

]
= x log

[
x

p

]
+ (1− x) log

[
1− x
1− p

]
= D(x||p)

where D(x||p) is the Kullback-Leibler divergence between Bernoulli distributions with parameters x and
p.

To summarize,
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I(x) =


+∞ , x < 0

(1− x) log
[

1− x
1− p

]
+ x log

[
x

p

]
, 0 ≤ x ≤ 1

+∞ , x > 1
where we have used the convention 0 log 0 = 0.

4: Network Tra�c Policing

This problem considers the insertion of a tra�c device which regulates the number of packets inserted by a
source x to h(x), such that Eh(X) = µ. Clearly h(x) satis�es h(x) ≤ x. The objective of the problem is to
design h(x) such that the e�ective bandwidth of h(X) is minimized. Minimizing the e�ective bandwidth is
the same as minimizing the MGF ( moment generating function), by de�nition of e�ective bandwidth.

Let h(a) be any policy and h∗(a) = min(a,M) be the given policy. We will show that

E(eθh(a)) ≥ E(eθh
∗(a)).

To begin with, observe

eθh(a) − eθh
∗(a) = eθh

∗(a)(eθ(h(a)−h
∗(a)) − 1)

≥ eθh
∗(a)θ(h(a)− h∗(a)),

since ex − 1 ≥ x.
Also observe h(a) ≤ a = h∗(a), for a ≤M .

E(eθh(a) − eθh
∗(a)) ≥ E(θeθh

∗(a)(h(a)− h∗(a)))
= E(θeθh

∗(a)(h(a)− h∗(a))Ia≤M ) + E(θeθh
∗(a)(h(a)− h∗(a))Ia>M )

= E(θeθh
∗(a)(h(a)− h∗(a))Ia≤M ) + E(θeθM (h(a)− h∗(a))Ia>M )

= E(θeθMh(a)− h∗(a))Ia≤M ) + E(θeθM (h(a)− h∗(a))Ia>M )
= E(θeθM (h(a)− h∗(a)){Ia≤M + Ia>M})
= θeθME(h(a)− h∗(a))
= 0

Thus we have proved that the given h∗ is optimal.
In case we were not given h∗ to start with, we can use the following alternate (but less rigorous) approach

to �gure out the optimal h∗. To begin with, we can prove the following property: Let f(x) be a function
having a certain MGF and a given mean. Consider x1 ≤ x2, such that f(x1) < f(x2). If we de�ne g(x) to
be equal to f(x) elsewhere, but increase the value of g(x) at x1 and decrease the value of g(x) at x2, then
g(x) has MGF no greater than f(x).

Proof: Let p(xi) be the probability that source takes values xi. De�ne

g(x1) = f(x1) + ε
p(x2)
p(x1)

g(x2) = f(x2)− ε
g(x) = f(x) elsewhere.

Then Eg(X) = Ef(X) clearly. Now

Eeg(X) − Eef(X) = p(x1)(eθf(x1)e
ε

p(x2)
p(x1) − eθf(x1)) + p(x2)(eθf(x2)e−ε − eθf(x2))

Now, ex = 1 + x+ o(x)� and we have
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Eeg(X) − Eef(X) = p(x1)(eθf(x1){1 + ε
p(x2)
p(x1)

} − eθf(x1)) + p(x2)(eθf(x2){1− ε} − eθf(x2)) + o(ε)

= p(x1)eθf(x1){εp(x2)
p(x1)

}+ p(x2)eθf(x2)(−ε) + o(ε)

= εp(x2){eθf(x1) − eθf(x2)}+ o(ε)
< 0, since f(x1) < f(x2), and if ε is small.

The above property implies that the optimal h(x) is monotone non-decreasing. Also, this property implies
that we can keep increasing f(x) at small x and decreasing f(x) at large x as long as the constraints are
not violated. Now, since f(x) ≤ x, we have to stop when f(x) reaches x for all small x. The above process
terminates only when f(x) ≤ x, ∀x ≤ xt for a threshold xt, and f(x) = K,∀x > xt. Clearly K = f(xt).
Thus this function minimizes the e�ective bandwidth under the mean constraint.

5.

Arrival
No-

Arrival

Figure 1: Markov chain describing the arrival process.

(i) The arrival process itself is a Markov chain as shown in Figure 1. Denote the steady state probability
that an arrival happens by πA and no arrival does by πNA. From π = πP and

∑
i πi = 1,

πA = 0.8πA + 0.1πNA
πNA = 0.2πA + 0.9πNA

πA + πNA = 1, (1)

which can be solved as

πA =
1
2
πNA =

1
3

πNA =
2
3
. (2)

Thus the mean arrival rate is λ := πA = 1
3 . For this queueing system to be stable in a mean sense, µ > 1

3 .

(ii) Queue dynamics is q(k + 1) =
(
q(k) + a(k)− s(k)

)+
where a(k), s(k) ∈ {0, 1}, s(k) is iid over k and

a(k) is described by the Markov chain in Figure 1 in (i).
The queueing system can be described by a Markov chain with states represented by a pair

(
q(k), a(k)

)
.

We can immediate see that this Markov chain is aperiodic and irreducible. To prove that this Markov chain
is positive recurrent, we use Foster-Lyapunov theorem with a Lyapunov function V

(
q(k), a(k)

)
= 1

2q
2(k).
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Given that we're in state (q, a), consider the drift

E[V
(
q(k +M), a(k +M)

)
− V

(
q(k), a(k)

)
|q(k) = q, a(k) = q] (3)

If M = 1, (3) ≤ C1 + q
(
E[a(k)|a(k) = a]− µ

)
.

If M = 2, (3) ≤ C2 + q
(
E[a(k + 1) + a(k)|a(k) = a]− µ

)
.

For arbitrary M = m, (3)

≤ Cm + q
(
E[
m−1∑
i=0

a(k + i)|a(k) = a]−m · µ
)

= Cm +m · q
(
E[

1
m

m−1∑
i=0

a(k + i)|a(k) = a]− µ
)

(4)

for some constants Cl, l = 1, 2, · · · .
Since limm→∞

1
mE[

∑m−1
i=0 a(k + i)|a(k) = a] = E[a(k)] = 1

3 , though we started from state (q, a), we can
always �nd large m such that

1
m

E[
m−1∑
i=0

a(k + i)|a(k) = a] <
1
3
, (5)

for any a ∈ {0, 1}. Therefore, for large q and m, the drift in (3) < −ε, which means that the considered
Markov chain is positive recurrent.

6.

In Problem 5 of Problem Set 2, Smax was used to upper-bound E[u2] and the bound goes to zero.
Consider u(k), which is denoted by u for simplicity:

u2 ≤ u · s
≤ u ·AI{s<A} + u · sI{s≥A}
≤ u ·A+ s2 · I{s≥A}, (6)

where I{·} is a standard indicator function.
A is chosen for given ε such that E[s2I{s≥A}] ≤ ε. Thus, a big A makes ε small. Then,

E[u2] ≤ E[uA+ s2I{s≥A}] ≤ E[u] ·A+ ε ≤ (µ− λ)A+ ε. (7)

If λ→ µ, E[u2]→ ε for any given ε. This means

E[u2] = 0 as λ→ µ, (8)

which completes the proof.
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