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This part 

• Aims at understanding how players may adapt their actions in 
repeated games 

 

• Aims at modeling natural and robust ways of adapting actions 
over time, and at understanding the resulting dynamics    

 

 



Some relevant books 
• Strategic learning and its limits  

     H.P. Young, Oxford Univ. Press, 2004 

• The theory of learning in games  

     D. Fudenberg and D. Levine, MIT Press 2004  

• Evolutionary games and Equilibrium selection  

     L. Sammuelson, MIT Press, 1997 

• Evolutionary game theory  

     J. Weibull, MIT Press, 1995 

• Prediction, Learning, and Games 

     N. Cesa-Bianchi and G. Lugosi, Cambridge Univ. Press, 2006 

• Learning, regret minimization, and equilibria 

      A. Blum and Y. Mansour, Chapter 4 in “Algorithmic  Game Theory”,  

      Cambridge Univ. Press, 2007 

 

 



Outline of Part IV 

 

• Games and equilibria 

• Nash dynamics 

• Fictitious play 

• No-regret dynamics 

• Trial and error learning 
 

 

 

 

 

 

 



Games 
 

• A set of m agents or players 

• Finite strategy set for player i: 

• Cost function for player i: 

 

• Notation:  
 

 

 

 

 

 



Ex 1: coordination game 

• Coordination game 
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Ex 2: Shapley game 

• Shapley game: pay-off matrix 
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Network congestion game 

 

• Network: set of links with limited capacity 

• Strategies: set of routes to destination 

• Latency function of link e: 

• Under strategies                   = number of users going through e 

• Cost for user using route  

  
 

 

 

 

 

 



Pure Nash Equilibrium 
 

• A pure Nash equilibrium is a set of strategies 

     such that no player has incentive to modify her strategy 

 

 

• Nash equilibria are stable 

  
 

 

 

 

 



Ex 1: coordination game 

• Coordination game: pay-off matrix 
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Ex 2: Shapley game 

• Shapley game 

• No pure NE 
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Mixed strategies 
 

• A mixed strategy for player i is a distribution over   

• Set of mixed strategies: 

 

 

 

• Costs under  

 

  
 

 

 

 

 



Mixed Nash equilibrium 
 

•                                                                                  is a mixed NE if: 

 

 

 

• Every game has at least one mixed NE (Brouwer’s theorem) 

• A pure NE is also a mixed NE 

 

 

 

  
 

 

 

 

 



Nash dynamics 



Best responses 
 

• Consider pure actions here  

• Best response: a best response       against strategies          is 
such that: 

 

 

• Nash dynamics: a sequence of best responses (one player 
updates her strategy at a time) 

• Liveness property: each player gets a chance of updating after 
at most a fixed number of updates 

• Random Nash dynamics: players are chosen uniformly at 
random for updates 

 

 

 

 

 

 

 

  
 

 

 

 

 



Graph representation 
 

• Vertices: set of strategies 

• Directed edges: best responses 

 

 

 

 

  
 

 

 

 

 



Graph representation 
 

• Pure NEs = sinks of the graph 

 

 

 

 

  
 

 

 

 

 



Network congestion game 

 

• Network: set of links with limited capacity 

• Strategies: set of routes to destination 

• Latency function of link e: 

• Under strategies                   = number of users going through e 

• Cost for user using route  

  
 

 

 

 

 

 



Potential games 
 

• Rosenthal, 1973 

• Every network congestion game admits a potential function 

 

 

 

 

 

• Proof: 

 

• NEs are local minima of the potential function 

 

 

  
 

 

 

 

 



Social efficiency of NEs 
 

• There is a difference between NEs and socially optimal routing 
strategies: 

 

 NEs: 

 

 

 Socially optimal routing: 

  
 

 

 

 

 



Convergence of Nash dynamics 
 

• Best response dynamics with liveness property converge to 
NEs  

• Convergence time? 

 

Theorem*  There is a network congestion game and an intial 
condition such that all better response sequences have 
exponential (w.r.t. the number of players) length. 

 

  

 

* The complexity of pure NEs, Fabrikant-Papadimitriou-Talwar, STOC, 2004 



Non-potential games 
 

• Notion of sink equilibrium* 

 

 

  
 

 

 

 

 

* Goemans-Vetta, FOCS, 2005 

State graph 



Non-potential games 
 

• Notion of sink equilibrium*: strongly connected components 
without outgoing link 

 

 

  
 

 

 

 

 

* Goemans-Vetta, FOCS, 2005 

State graph 



Non-potential games 
 

• Every random Nash dynamics converge to a sink equilibrium 

• Nothing else can be said 

 

 

  
 

 

 

 

 

* Goemans-Vetta, FOCS, 2005 

State graph 



Stable marriage problem  

• Two sets: set of women, set of men 

• Each person has a preference list 
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Applications 
 

• Patients/hospitals 

• Students/college 

• Labor market 

• … 

 

• Connection to games: there is an active side (women) who 
proposes 
– Women are playing against each other 

– Strategy of a woman: proposes a single man, and gets the pay-off if 
she wins him 

– NEs = stable matchings 

 

 

  
 

 

 

 

 



Matching  

• Stable matching? 
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Matching  

• Stable matching = no blocking pair 
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Unstable matching 
 
• (A,a) is a blocking pair 
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Unstable matching 
 
• (A,a) is a blocking pair 
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Existence of stable matching 
 

• Gale-Shapley, 1962 

 

 

 

 

• Proof: construction of a stable matching 

 

 

  
 

 

 

 

 

Theorem*  A stable matching always exists. 

 

  

 



Centralized construction   

• Step 1: each man proposes his favorite woman. Women 
accepts the best proposal (if several) 
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Centralized construction   

• Step 1: each man proposes his favorite woman. Women 
accepts the best proposal (if several) 
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Centralized construction   

• Step 2: rejected men propose their second choices.  
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Centralized construction   

• Step 2: rejected men propose their second choices.  
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Centralized construction   

• Step 3: rejected men propose their third choices.  
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Centralized construction   

• Result: 
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Complexity 
 

• Gale-Shapley’s algorithm finishes in at most                           
steps  

• A man proposes a given woman only once 

• What about distributed algorithms? 

  
 

 

 

 

 



Best response dynamics  

• Starting from any given unstable matching, a woman plays her 
best response (possibly breaking a marriage) 
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Best response dynamics  

• Example: A proposes a, and wins him … 
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BR dynamics 
 

• The best response dynamics can cycle (need 3 women and 3 
men)* 

 

• From every matching, there exists a sequence of BR of length                  

             leading to a stable matching 

 

• Random BR reaches a stable matching, but it can take an 
exponential time 

 

 

  
 

 

 

 

 

* Uncoordinated two sided market, Ackermann et al., EC, 2008 
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• Games and equilibria 

• Nash dynamics 

• Fictitious play 

• No-regret dynamics 

• Trial and error learning 
 

 

 

 

 

 

 



Fictitious play 



Fictitious play 

• Introduced by G. W. Brown 1951 

• Principle: 

“Every player plays the best response action to the 
distribution of past actions of the other players.” 



Fictitious play 

• Introduced by G. W. Brown 1951 

• Principle: Bayesian interpretation 

“Every player assumes that each of the other players is 
using a stationary (i.e., time independent) mixed 
strategy. The players observe the actions taken in 
previous stages, update their beliefs about their 
opponents’ strategies, and choose the pure best 
responses against their beliefs.” 



Discrete time fictitious play 

• Empirical distribution of player-i’s play up to time t: 

 

 

 

•     : distribution on      given by the independent product of 
individual distributions 

 

 

• For stage t, player i  selects action   



Continuous time fictitious play 

• Empirical distribution of player-i’s play up to time t: 

 

 

 

•     : distribution on      given by the independent product of 
individual distributions 

 

 

• For stage t, player i  selects action so that:  



Discrete time: NE 

Lemma  If a pure strategy s is always played from a given time, 
then it is a pure NE.  

  

 Lemma  If a pure NE is played at time t, then it is played 
thereafter.  

  

 Lemma  If                        , then the limiting distribution is a mixed 
NE. 

 



Example of convergence 

• Coordination game 

(1,1) 

(1,1) 

(0,0) 

(0,0) 

Player 2 
a b 

Player 1 
A 

B 

• There is convergence towards NEs 



Example of non-convergence 

• Shapley game 
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Survey of existing convergence results 

• Zero-sum 2x2 games: Robinson, 1951 

• Super-modular games with unique equilibirum, Milgrom-
Roberts, 1991 

• 2xn games, Berger, 2003 

• Super-modular games with diminishing returns, Krishna, 1992 

• Weighted and ordinal potential games, Monderer-Shapley, 
1996 

• …etc. 
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No-regret 



No-regret vs. Fictitious play 

• Fictitious play: each player can observe the actions of 
other players, and compute best responses. Require the 
knowledge of the pay-off matrix of the game.  

 

• No-regret: each player can observe her received pay-offs 
only. No need to know the number of players, the pay-off 
matrix. 



An adversarial setting  

• Idea: each player assumes that the other players’ actions 
can be arbitrary, and try to do the best she can. 

 

• The other players are replaced by an adversarial nature  

 

• No-regret algorithms: an algorithm has zero regret, if 
asymptotically, after a sufficiently large number of stages, 
it performs almost optimally.  



Lower bound on the regret 

Theorem 2  For all K>1, for any time horizon T, there exists a 
distribution over pay-off assignments such that the regret of 
any online pay-off based algorithm is at least  



Exp3: a zero-regret algorithm 
• Introduced by Auer-Cesa Bianchi-Freud-Schapire, 2002 

• Algorithm: 

 

 
Parameter:  𝛾 ∈ 0,1  
Initialization:  𝑤𝑎 1 = 1, ∀𝑎 ∈ 𝐴 
For each 𝑡 = 1, 2, … 
        1. Set 
 
 
        2. Draw 𝑎𝑡 according to 𝑝𝑡 
        3. Receive pay-off  𝑢𝑡 𝑎𝑡 ∈ [0,1] 
        4. For all 𝑎 ∈ 𝐴, set   
  

∀𝑎 ∈ 𝐴,    𝑝𝑎 𝑡 = 1 − 𝛾
𝑤𝑎 𝑡

 𝑤𝑎′ 𝑡𝑎′

+
𝛾

𝐾
 

𝑢 𝑎 𝑡 = 1 𝑎=𝑎𝑡 𝑢𝑡(𝑎)/𝑝𝑎(𝑡) 

𝑤𝑎 𝑡 + 1 = 𝑤𝑎 𝑡 exp(
𝛾𝑢 𝑎 𝑡

𝐾
)  

 



Back to the game 

• What if each player applies no-regret algorithms? 
Convergence to NEs? 

• Know convergence results: 

– Convergence to NEs in constant-sum games, general 
sum 2x2 games, Jafari-Greenwald-Gondek-Ercal, 2001 

– Exp3 dynamics converge to weakly stable equilibria 
(efficient NEs) in congestion games, Kleinberg-
Piliouras-Tardos, 2009 

– Extension of the previous results to the case of some 
ordinal potential games, Kasbekar-Proutiere, 2010  

– …etc. 



Example: channel allocation 

N links 
m channels available for communication 

Interaction through interference 

Payoffs: link throughput (in bit/s) 
(depends on interference and fading) 

Fading (unreliable transmissions) 



Interference 

If two links simultaneously transmit 
on the same channel 
 

• Collision. None of the 
transmissions is successful 
 
• Fair time sharing. They share 
time fairly   



Payoffs - Collisions 

If link 1 transmits on channel j at time t, 
it receives a payoff        equal to: 

interference 

random fading 



Payoffs – Fair time sharing 

If link 1 transmits on channel j at time t, 
it receives a payoff        equal to: 

interference 

random fading 



Constraints and Objective 
Lack of information  

•  Transmitter of link i has no a priori 
knowledge about channel conditions 
on her link 
•   Transmitter of link i has no a priori 
information about other links 

Objectives: Transmitters should select 
channels so as to guarantee 

•  High network throughput 
•   Fairness  



Multiple links 

C1 

C2 

C3 

C4 

C5 

•  i.i.d. sequences of payoffs: for 
all i 
 
 

•  Each transmitter applies Exp3 
to select a channel at each step, 
e.g. link 1 observes a payoff 
(collisions) 



Result 

Theorem   Under Exp3, the system converges a.s. towards 

 a pure Nash Equilibrium (one link per channel). 

Choose Exp3 parameter       such that: 
 
e.g.  



Proof 

1. Stochastic approximation. The stochastic processes 
generated by Exp3 are asymptotic pseudo-trajectories of a 
system of ODEs 

 
1. Analysis of the system of ODEs 

a. Fixed points (include all NEs) 
b. Convergence towards fixed points (Lyapounov analysis) 
c. Instability of fixed points that are not pure NEs 

 
2. Exp3 stochastic processes cannot converge towards 

unstable fixed points 



Step 1. 

Theorem   Almost surely, 

 

 

 

 where  

Exp3 ODE with  

Exp3 mimics the replicator dynamics*! 

* Sandholm; Maynard-Smith, … 



Step 2. Analysis of the ODE 

Theorem   All NEs are equilibrium points of the ODE. But 
There are many more fixed points.  

2 users – 2 channels  

Fixed points 

Pure NEs 

Mixed NE 

Other 



Step 2. Analysis of the ODE 

Theorem   Pure NEs are stable fixed points. The remaining 
fixed points are unstable 

2 users – 2 channels  

Fixed points 

Pure NEs 

Mixed NE 

Other 



Step 2. Analysis of the ODE  

Theorem   From any initial condition, the ODE converges to 
a fixed point. 



Step 3.  

Theorem*   Unlike the ODE, the stochastic process 
generated by Exp3 cannot converge to unstable fixed 
points. 

* Pemantle, Annals of Probability 1990  



2 links – 2 channels 


