
Decentralized learning in control and optimization 
for networks and dynamic games 

 
Part III: Bandits and adversarial 

optimization 

Alexandre Proutiere 

KTH 



Outline of Part III 
 

• Multi-armed bandit problems 
– Notion of regret 

– Stochastic bandits 

– Adversarial bandits 

• Stochastic bandit problem 
– IID setting 

– Lower bound on regret 

– UCB policies, finite time analysis 

– Asymptotically optimal policies: KL-UCB 

• Adversarial bandit problems 
– Models 

– Multiplicative update algorithms 

 

 

 

 

 

 

 



Outline of Part III 
 

• Online convex optimization 
– Full information model 

– Bandit setting 

 

 

 

 

 

 



Multi-Armed Bandit (MAB) 



MAB problem 

• Known parameters: number K of arms (or decisions), time 
horizon (or number of rounds) T 

  
• Unknown parameters: how rewards are generated 

      reward of pulling arm j at time t 

 

  
• Objective: maximize the total expected reward at time T 

  



Stochastic vs. Adversarial 

• Stochastic: rewards sampled from an unknown distribution 
– Example: IID case, 

  

• Adversarial setting: rewards chosen by an adversary 
- Oblivious adversary: 

 

 

- Adaptive adversary: rewards depend on the history (selected arms so 
far) 

 

 

  

IID random variables with mean 

chosen initially (at time 0)  



Applications 

• Clinical trials (Thompson 1933) 

• Ads placement on webpages 

• Routing problems 

• … 



Stochastic bandits 



Stochastic MAB 

• Robbins 1952 

• IID rewards 

 

 

• At a given time, an arm is selected and the corresponding 
random reward is observed 

• Best arm: 

• Under a given policy, the arm selected at time t is 

 Expected regret:  

IID random variables with mean 



Parametric model 

• Measure on  

• Reward distributions parametrized by 

• Configuration:  

• Arm j reward distribution: 

 

 

 

 

• Kullback-Leibler divergence: 

 

 



Assumptions 

•            strictly increasing 

•               continuous in 

 

 

• Finally: 

 

 

• Notation: permutation     

 

 



Example: Bernoulli rewards 

• Rewards take values in {0,1} 

• Measure     :        

• We have:  

 

 

 

 



Regret and uniformly good rules 

• Number of time arm j selected up to time t: 
 

• Expected regret: 

 

 

 

• Uniformly good rule: for all configuration  



Lower bound on regret 
Lai and Robbins 1985 

Theorem    Consider any uniformly good rule.  

Configuration:  

 

 

 

Hence: 

 

 

 
 



Universality of the bound 

• Similar bound can be derived for controlled Markov chains, 
i.e., for parametrized average reward MDP 

• Graves-Lai 1996. Asymptotically efficient adaptive choice of 
control laws in controlled Markov chains.  

  



Model 

• Markov chain: 

• Action space A 

• Transition probabilities: 

• Unknown parameter: 

• Stationary control laws: 

• Under control law    , irreducible MC, with stationary 
distribution 

• Reward:    



Lower bound on regret 

• The regret can be shown to “look” like: 

 

 

 

• We have: 

set of optimal control laws for parameter  

set of parameters such the optimal control laws under  
are not optimal, and cannot be “distinguished”  



Upper Confidence Bound policies 

• Algorithm: UCB1 (an index policy) 



Finite analysis of UCB1 

Theorem*    At any time t: 

 

 

 

 
 

Proof. Chernoff-Hoeffding bound 

*  Finite time analysi of the MAB problem, Auer-Cesa-Bianchi-Fischer, 
Machine Learning, 2002. 



Greedy policy 

• Algorithm: Greedy 

 

 

 

 

 

• For an appropriate choice of exploration rate, the algorithm is 
order-optimal 



Regret under Greedy algorithm 

Theorem*     

 

 

 

 
 

*  Finite time analysi of the MAB problem, Auer-Cesa-Bianchi-Fischer, 
Machine Learning, 2002. 



Asymptotically optimal policies 

• The lower regret bound solves the following optimization 
problem: 

 

 

 

 

• Principle: provide an online solution of the above problem 



KL-UCB 
• Algorithm:  

 

 

 

 

 

 

 
Theorem*     

 

 

 

 
 

*  The KL-UCB for bounded stochastic bandits and beyond, Garivier-Cappe, 
COLT, 2011. 



Non-stochastic bandits 



Model 
• Adversarial setting: rewards chosen by an adversary 

- Oblivious adversary: 

 

 

• Goal: Maximize the cumulative gains obtained. 

      

 Regret: 

 

• Full information: at time t, the forecaster knows  

 

• Bandit setting: at time t, the forecaster knows 

 

  

chosen initially (at time 0)  



Full information 

• Cumulative reward of arm j: 
 

• Follow-the-leader policy does not work! 

      

• Multiplicative update algorithm (Littlestone-Warmuth, 1994) 

 

 

 

  



Full information 

Theorem 

 

 

For      

 

 

 

 
 

 

• Multiplicative update algorithms have zero-regret! 

• The algorithm can be extended when the time horizon is not 
known, with similar performance 



Bandit setting 

• Cumulative reward of arm j cannot be observed 

• Idea: estimate the cumulative rewards 

      Unbiased estimator: 

 

 

 

 note that:  

 

  



Bandit setting 

• Multiplicative update algorithm: 

 

  

Theorem* 

 

 

For      

 

 

 

 
 



Online convex optimization 

Based on: 
• Online convex programming and generalized infinitesimal gradient 

ascent. Zinkevich. ICML, 2003.  
• Online convex optimization in the bandit seting: gradient descent 

without a gradient. Flaxman, Kalai, McMahan. SODA, 2005.   



A motivating example 

x 

reward 
t=1 

t=2 t=3 

At the beginning of each year, Volvo has to select a vector x (in a 
convex set) representing the relative efforts in producing various 
models (S60, V70, …). The reward is an arbitrarily varying and 
unknown concave function of x. How to maximize reward over 
say 50 years? 



Model 
 

• Online convex optimization 
– A feasible convex set of actions X  

– A sequence of convex cost functions on X: 

• Decision maker 
– Time horizon N 

– At step t, selected action  

– Cost: 

– Feedback. Full information: 

    Bandit: 



Regret 
 

• Cumulative cost: 

 

• Cumulative cost of the best action: 

 

 

 

• Regret: 

 

• Goal: minimize regret 



Full information 
 

• Online gradient descent 



Full information 

Theorem       

Assume that  

 

  

Then under the online gradient descent algorithm:  

  

 
 



Bandit setting 
 

• Online convex optimization 
– A feasible convex set of actions X  

– A sequence of convex cost functions on X: 

• Decision maker 
– Time horizon N 

– At step t, selected action  

– Cost: 



Bandit setting 
 

• Idea: one sample estimate of the gradient 

 

 

 
• Simulated gradient descent algorithm 

uniformly chosen in B 



Bandit setting 

Theorem       

Assume that  

 

  

 

 

If  

 

Then under the online gradient descent algorithm:  

  

 
 



Summary 
 

 

 

• Zero-regret algorithms exist in general (MAB, online 
optimization) 

 

• We are able to identify the best action in the long run, and 
a bit more … 

• Regrets:  

Problem 
 
Stochastic bandit 
 
Non-stochastic bandit 
 
Online cx opt. 
 

Algorithm 
 
Optimal 
KL-UCB 
Optimal 
MUA 
Full inf. 
Bandit 

Regret scaling 
 
C.log t 

C.log t 
√t 
√t 
√t 
t5/6 


