Decentralized learning in control and optimization for networks and dynamic games

Part III: Bandits and adversarial optimization

Alexandre Proutiere
KTH
Outline of Part III

• Multi-armed bandit problems
 – Notion of regret
 – Stochastic bandits
 – Adversarial bandits

• Stochastic bandit problem
 – IID setting
 – Lower bound on regret
 – UCB policies, finite time analysis
 – Asymptotically optimal policies: KL-UCB

• Adversarial bandit problems
 – Models
 – Multiplicative update algorithms
Outline of Part III

• Online convex optimization
 – Full information model
 – Bandit setting
Multi-Armed Bandit (MAB)
MAB problem

• Known parameters: number K of arms (or decisions), time horizon (or number of rounds) T

• Unknown parameters: how rewards are generated

 $X_{j,t}$: reward of pulling arm j at time t

• Objective: maximize the total expected reward at time T
Stochastic vs. Adversarial

• Stochastic: rewards sampled from an unknown distribution
 – Example: IID case,

 \[(X_{j,t}, t = 1, 2, \ldots)\] IID random variables with mean \(\mu_j\)

• Adversarial setting: rewards chosen by an adversary
 - Oblivious adversary:

 \[(X_{j,t}, t = 1, 2, \ldots)\] chosen initially (at time 0)

 - Adaptive adversary: rewards depend on the history (selected arms so far)
Applications

- Clinical trials (Thompson 1933)
- Ads placement on webpages
- Routing problems
- ...
Stochastic bandits
Stochastic MAB

• Robbins 1952
• IID rewards

\[(X_{j,t}, t = 1, 2, \ldots)\] IID random variables with mean \(\mu_j\)

• At a given time, an arm is selected and the corresponding random reward is observed
• Best arm: \(j^* = \arg\max_j \mu_j\)
• Under a given policy, the arm selected at time \(t\) is \(j(t)\)

Expected regret:

\[R(t) = t \times \mu_{j^*} - \sum_{n=1}^{t} \mu_{j(n)}\]
Parametric model

- Measure on $\mathbb{R} : \nu$
- Reward distributions parametrized by $\theta \in \mathbb{R}$
- Configuration: $\mathcal{C} = (\theta_1, \ldots, \theta_K)$
- Arm j reward distribution: $X_{j,t} \sim f(x, \theta_j) d\nu(x)$
 \[\int |x| f(x, \theta_j) d\nu(x) < \infty \]
 \[\int x f(x, \theta_j) d\nu(x) = \mu(\theta_j) \]
- Kullback-Leibler divergence:
 \[I(\theta, \lambda) = \int \log \left(\frac{f(x, \theta)}{f(x, \lambda)} \right) f(x, \theta) d\nu(x) \]
Assumptions

• $\mu(\theta)$ strictly increasing
• $I(\theta, \lambda)$ continuous in λ
 \[\theta \neq \lambda \implies I(\theta, \lambda) > 0 \]

• Finally: $\forall \lambda, \forall \delta, \exists \lambda'$:
 \[\mu(\lambda) < \mu(\lambda') < \mu(\lambda) + \delta \]

• Notation: permutation σ
 \[\mu(\theta_{\sigma(1)}) \geq \cdots \geq \mu(\theta_{\sigma(K)}) \]
 \[\mu(\theta_{\sigma(1)}) = \mu(\theta_{\sigma(i)}) > \mu(\theta_{\sigma(i+1)}) \]
Example: Bernoulli rewards

- Rewards take values in \{0,1\}
- Measure \(\nu : \nu = \delta_0 + \delta_1 \)
- We have: \(\theta \in [0, 1] \)

\[
\mu(\theta) = \theta
\]

\[
I(\theta, \lambda) = \theta \log \left(\frac{\theta}{\lambda} \right) + (1 - \theta) \log \left(\frac{1 - \theta}{1 - \lambda} \right)
\]
Regret and uniformly good rules

• Number of time arm j selected up to time t: $T_t(j)$

• Expected regret:

$$R(t, C) = \sum_{j \notin \{\sigma(1), \ldots, \sigma(l)\}} (\mu(\theta_{\sigma(1)}) - \mu(\theta_j)) \mathbb{E}[T_t(j)]$$

• Uniformly good rule: for all configuration C

$$\mathbb{E}[T_t(j)] = o(t^\alpha), \quad \forall \alpha > 0, \forall j \notin \{\sigma(1), \ldots, \sigma(l)\}$$
Lower bound on regret
Lai and Robbins 1985

Theorem Consider any uniformly good rule.

Configuration: \(C = (\theta_1, \ldots, \theta_K) \)

\[\forall \epsilon > 0, \; \forall j \notin \{\sigma(1), \ldots, \sigma(l)\}, \]

\[\lim_{t \to \infty} P_C \left[T_t(j) \geq \frac{(1 - \epsilon) \log t}{I(\theta_j, \theta_{\sigma(1)})} \right] = 1. \]

Hence:

\[\lim_{t \to \infty} \inf \frac{R(t, C)}{\log(t)} \geq \sum_{j \notin \{\sigma(1), \ldots, \sigma(l)\}} \frac{\mu(\theta_{\sigma(1)}) - \mu(\theta_j)}{I(\theta_j, \theta_{\sigma(1)})}. \]
Universality of the bound

• Similar bound can be derived for controlled Markov chains, i.e., for parametrized average reward MDP
Model

- Markov chain: $X_n, n \geq 0$
- Action space A
- Transition probabilities: $p(y|x, a, \theta)$
- Unknown parameter: θ
- Stationary control laws: $G = (g_1, \ldots, g_K)$
- Under control law g, irreducible MC, with stationary distribution π^g_θ
- Reward: $\mu_\theta(g) = \int r(x, g(x)) d\pi^g_\theta(x)$

$$\mu^* = \max_g \mu_\theta(g)$$
Lower bound on regret

• The regret can be shown to “look” like:

\[R(t, \theta) = \sum_{g: \mu_\theta(g) < \mu^*} (\mu^* - \mu_\theta(g)) \mathbb{E}[T_t(g)] \]

• We have: \(\lim_{t \to \infty} \inf_{t} R(t, \theta) \geq c(\theta) \)

\[c(\theta) = \inf \left\{ \frac{\sum_{j \notin J(\theta)} \alpha_j (\mu^* - \mu_\theta(g_j))}{\inf_{\lambda \in B(\theta)} \sum_{j \notin J(\theta)} \alpha_j I^{g_j}(\theta, \lambda)} : \sum_{j \notin J(\theta)} \alpha_j = 1 \right\} \]

\(J(\theta) \): set of optimal control laws for parameter \(\theta \)

\(B(\theta) \): set of parameters such the optimal control laws under \(\theta \) are not optimal, and cannot be “distinguished”
Upper Confidence Bound policies

- Algorithm: UCB1 (an index policy)

Initialization: Play each arm once.

At each step $t > K$:
$$
\bar{X}_{i,T_{t-1}(i)} = \frac{1}{T_{t-1}(i)} \sum_{s=1}^{T_{t-1}(i)} X_{i,s},
$$

Index of arm i:
$$
\bar{X}_{i,T_{t-1}(i)} + \sqrt{\frac{2 \log t}{T_{t-1}(i)}},
$$

Play the arm with the highest index.
Finite analysis of UCB1

Theorem At any time t: $\Delta_j = \theta^* - \theta_j$

$$R(t) \leq 8 \sum_{j: \Delta_j > 0} \frac{\log t}{\Delta_j} + \left(1 + \frac{\pi^2}{3}\right) \sum_j \Delta_j$$

Proof. Chernoff-Hoeffding bound

$$X_1, \ldots, X_n \in [0, 1] \text{ i.i.d. with mean } \mu,$$
$$S_n = X_1 + \ldots, X_n,$$
$$P[S_n \geq n\mu + a] \leq e^{-\frac{2a^2}{n}},$$
$$P[S_n \leq n\mu - a] \leq e^{-\frac{2a^2}{n}}$$

Greedy policy

- Algorithm: Greedy

 Initialization: Play each arm once.

 At each step $t > K$: $\bar{X}_{i,T_{t-1}(i)} = \frac{1}{T_{t-1}(i)} \sum_{s=1}^{T_{t-1}(i)} X_{i,s}$

 Play the best arm so far with probability $1 - \epsilon_t$,
 play a random arm with probability ϵ_t

- For an appropriate choice of exploration rate, the algorithm is order-optimal
Regret under Greedy algorithm

Theorem

\[\Delta = \min_{j: \Delta_j > 0} \Delta_j, \quad \epsilon_t = \min(1, \frac{6K}{\Delta^2 t}), \]

\[R(t) \leq \sum_{j: \Delta_j > 0} \frac{C\Delta_j}{\Delta^2} \log t \]

Asymptotically optimal policies

• The lower regret bound solves the following optimization problem:

\[\inf \sum_j c_j \Delta_j, \]

s.t. \(\forall j \neq j^*, c_j I(\theta_j, \theta^*) \geq \log t \)

• Principle: provide an online solution of the above problem
KL-UCB

- **Algorithm:**

 Initialization: Play each arm once.

 At each step $t > K$: $\bar{X}_{i,T_{t-1}(i)} = \frac{1}{T_{t-1}(i)} \sum_{s=1}^{T_{t-1}(i)} X_{i,s}$,

 Play the arm with the highest index.

 Index of arm j:

 $\max\{q \in [0, 1] : T_{t-1}(j)I(\bar{X}_{j,T_{t-1}(j)}, q) \leq \log t + c \log \log t\}$.

Theorem

$\forall \epsilon > 0$, $\limsup_{t \to \infty} \frac{R(t)}{\log t} \leq \sum_j \frac{\Delta_j}{I(\theta_j, \theta^*)}$

* The KL-UCB for bounded stochastic bandits and beyond, Garivier-Cappe, COLT, 2011.
Non-stochastic bandits
Model

- Adversarial setting: rewards chosen by an adversary
 - Oblivious adversary:

\[
(X_{j,t}, t = 1, 2, \ldots) \text{ chosen initially (at time 0)}
\]

- Goal: Maximize the cumulative gains obtained.

\[
\text{Regret: } R(t) = \max_j \sum_{s=1}^{t} X_{j,t} - \mathbb{E}\left[\sum_{s=1}^{t} X_{j_t,t}\right]
\]

- Full information: at time \(t \), the forecaster knows

\[
(X_{j,s}, j = 1, \ldots, K, s = 1, \ldots, t - 1)
\]

- Bandit setting: at time \(t \), the forecaster knows

\[
(X_{j_s,s}, s = 1, \ldots, t - 1)
\]
Full information

- Cumulative reward of arm j: $S_{j,t-1} = \sum_{s=1}^{t-1} X_{j,s}$

- Follow-the-leader policy does not work!

- Multiplicative update algorithm (Littlestone-Warmuth, 1994)

Play arm j with probability $p_{j,t}$ where:

$$p_{j,t} = \frac{e^{\eta S_{j,t-1}}}{\sum_i e^{\eta S_{i,t-1}}}$$
Multiplicative update algorithms have zero-regret!

The algorithm can be extended when the time horizon is not known, with similar performance.

Theorem

\[
\forall t, \quad R(t) \leq \frac{t\eta}{8} + \frac{\log K}{\eta}
\]

For \(\eta = \sqrt{\frac{8 \log K}{t}} \),

\[
R(t) \leq \sqrt{t \frac{\log K}{2}}
\]
Bandit setting

- Cumulative reward of arm \(j \) cannot be observed
- Idea: estimate the cumulative rewards

 Unbiased estimator:
 \[
 \hat{S}_{i,t} = \sum_{s=1} \hat{X}_{i,s}
 \]

 \[
 \hat{X}_{i,t} = 1 - \frac{(1 - X_{j_s,s})}{p_{j_s,s}} \times 1_{j_s=i}
 \]

 note that:
 \[
 \mathbb{E}[\hat{X}_{i,t}] = 1 - \sum_k \frac{(1 - X_{k,s})}{p_{k,s}} \times 1_{k=i} = X_{i,s}
 \]
Bandit setting

- Multiplicative update algorithm:

 Play arm j with probability $p_{j,t}$ where:

 $$p_{j,t} = \frac{e^{\eta \hat{S}_{j,t-1}}}{\sum_i e^{\eta \hat{S}_{i,t-1}}}$$

Theorem

$$\forall t, \quad R(t) \leq \frac{tK\eta}{2} + \frac{\log K}{\eta}$$

For $\eta = \sqrt{\frac{2 \log K}{Kt}}$, $R(t) \leq \sqrt{2tK \log K}$
Online convex optimization

Based on:
At the beginning of each year, Volvo has to select a vector x (in a convex set) representing the relative efforts in producing various models (S60, V70, ...). The reward is an arbitrarily varying and unknown concave function of x. How to maximize reward over say 50 years?
Model

• Online convex optimization
 – A feasible convex set of actions X
 – A sequence of convex cost functions on X: c_1, c_2, \ldots

• Decision maker
 – Time horizon N
 – At step t, selected action x_t
 – Cost: $c_t(x_t)$
 – Feedback. Full information: $\nabla c_t(x_t)$
 – Bandit: $c_t(x_t)$
Regret

- Cumulative cost: $\sum_{t=1}^{N} c_t(x_t)$
- Cumulative cost of the best action: $\sum_{t=1}^{N} c_t(x^*)$
 $$x^* \in \arg \max_{x \in X} \sum_{t=1}^{N} c_t(x)$$
- Regret: $R(N) = \sum_{t=1}^{N} c_t(x_t) - \sum_{t=1}^{N} c_t(x^*)$
- Goal: minimize regret
Full information

- Online gradient descent

\[w_{t+1} = x_t - \eta \nabla c_t(x_t) \]

\[x_{t+1} = \arg \min_{x \in X} \| x - w_{t+1} \|_2^2 \]
Theorem

Assume that \(\text{diam}(X) \leq R \)

\[\| \nabla c_t(x) \|_2^2 \leq G, \quad \forall x \in X, \forall t = 1, \ldots, N \]

Then under the online gradient descent algorithm:

\[R(N) \leq RG\sqrt{N} \]
Bandit setting

- Online convex optimization
 - A feasible convex set of actions X
 - A sequence of convex cost functions on X: c_1, c_2, \ldots

- Decision maker
 - Time horizon N
 - At step t, selected action x_t
 - Cost: $c_t(x_t)$
Bandit setting

- Idea: one sample estimate of the gradient

\[\hat{f}(x) = \mathbb{E}_{v \in B}[f(x + \delta v)] \]
\[B = \{ x : \|x\|_2 \leq 1 \} \]

\[\mathbb{E}_{u \in S}[f(x + \delta u)u] = \frac{\delta}{d} \nabla \hat{f}(x) \]
\[S = \{ x : \|x\|_2 = 1 \} \]

- Simulated gradient descent algorithm

\[u_t \text{ uniformly chosen in } B \]
\[x_t = y_t + \delta u_t \]
\[y_{t+1} = P_{(1-\alpha)}X(y_t - \nu c_t(x_t)u_t) \]
Theorem

Assume that $r \leq \text{diam}(X) \leq R$

$$\left\| \nabla c_t(x) \right\|_2^2 \leq G, \quad \forall x \in X, \forall t = 1, \ldots, N$$

$$c_t(x) \leq C, \quad \forall x \in X, \forall t$$

If $N \geq \left(\frac{3Rd}{2r} \right)^2$, \(\nu = \frac{R}{C\sqrt{N}} \), \(\delta = \left(\frac{rR^2d^2}{12N} \right)^{1/3} \), \(\alpha = \left(\frac{3Rd}{2r\sqrt{N}} \right)^{1/3} \)

Then under the online gradient descent algorithm:

$$\mathbb{E}[R(N)] \leq 3CN^{5/6}(dR/r)^{1/3}$$
Summary

• Zero-regret algorithms exist in general (MAB, online optimization)
 \[\lim_{t \to \infty} \frac{R(t)}{t} = 0 \]

• We are able to identify the best action in the long run, and a bit more ...

• Regrets:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Regret scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastic bandit</td>
<td>Optimal</td>
<td>C.log t</td>
</tr>
<tr>
<td></td>
<td>KL-UCB</td>
<td>C.log t</td>
</tr>
<tr>
<td>Non-stochastic bandit</td>
<td>Optimal</td>
<td>\sqrt{t}</td>
</tr>
<tr>
<td></td>
<td>MUA</td>
<td>\sqrt{t}</td>
</tr>
<tr>
<td>Online cx opt.</td>
<td>Full inf.</td>
<td>\sqrt{t}</td>
</tr>
<tr>
<td></td>
<td>Bandit</td>
<td>t^{5/6}</td>
</tr>
</tbody>
</table>