Outline

- Internet congestion control
 - Distributed optimization with separable objective function
- Two miracles in resource allocation in wireless networks
 - Distributed optimization with un-separable objective function, and without message passing
 - Power control
 - Carrier Sensing Multiple Access
- Parallel computations
 - Joint consensus and gradient descent methods
 - Just gradient descent
- Colorings
 - Combinatorial optimization: a sampling approach
- Distributed gradient free optimization

Coloring Distributed combinatorial optimization: A sampling approach

Simulation

Consists in producing samples from a distribution π over Ω

Example: Markov Chain Monte Carlo (MCMC) method, design a Markov chain whose stationary distribution is π Reversible Markov chains: Metropolis, Glauber Dynamics

Optimization via simulation

Objective: maximize U(s) over $s \in \Omega$

Solution: sample from
$$\pi^{\lambda}(s) = \frac{1}{Z(\lambda)} \lambda^{U(s)}, s \in \Omega$$

(fugacity λ has to be large enough)

Glauber Dynamics algorithm: construct a Markov chain where transitions from *s* to *s'* occur at rate $P(s, s') = \pi^{\lambda}(s')$ (the chain is reversible and has stationary distribution π^{λ})

Distributed optimization

Objective: solve the following optimization problem

$$\max \ U(s) = \sum_{i} U_{i}(s)$$

over $s = (s_{1}, ..., s_{N}) \in \Omega = \Omega_{1} \times \cdots \times \Omega_{N}$ finite

Distributed pay-off based solution:

- time is divided into periods;
- -s(t) is the variable in period t;

- at the end of period t, agent i observes her pay-off $U_i(s(t))$, and decides to update her action $s_i(t) \rightarrow s_i(t+1)$.

For which choice of objective function can we design a decentralized pay-off based solution?

Separable objective functions

Problems admitting decentralized pay-off based solutions:

1. Fully separable objective

$$\max \sum_{i} U_i(s_i)$$

2. Separable objective with (un-separable) constraints

$$\max\sum_{i} U_i(s_i) \mathbb{1}_{\{s \in \Omega_f\}}$$

 $\Omega_f \subset \Omega$

Glauber Dynamics

Single-site Glauber Dynamics algorithm:

At the beginning of period *t*:

1. select an agent uniformly at random, say i

2. the agent updates her action to $s_i(t + 1)$ according to distribution:

$$\alpha(s_i') = \frac{1_{\left(s_i', s_{-i}(t)\right) \in \Omega_f} \lambda^{U_i(s_i)}}{\sum_a 1_{\left(a, s_{-i}(t)\right) \in \Omega_f} \lambda^{U_i(a)}}$$

Under the above algorithm, s(t) is a reversible Markov chain with steady state distribution

$$\pi^{\lambda}(s) \sim \mathbf{1}_{s \in \Omega_f} \lambda^{\sum_i U_i(s_i)}$$

Ex: Preferential graph colouring

Problem: find a proper colouring maximizing the sum of utilities

Ex: Preferential graph colouring

Problem: find a proper colouring maximizing the sum of utilities

Ex: Preferential graph colouring

Problem: find a proper colouring maximizing the sum of utilities **Application:** optimal channel assignment in wireless networks

Mixing time

Definition: Let s(t) be an irreducible positive recurrent Markov chain with stead-state distribution π . Let $\pi_{s_0}(t)$ be the distribution of s(t) when starting at s_0 . For $\epsilon > 0$,

$$t_{\min}(\epsilon) = \inf\{t \ge 0 : \forall s_0, ||\pi_{s_0}(t) - \pi||_{tv} < \epsilon\}$$

Phase transition: The chain is fast mixing if $t_{mix}(\epsilon)$ is polynomial in the dimension of s. Usually, Glauber Dynamics algorithms are fast mixing if λ is small enough.

Literature: Mixing time of GD algorithms is generally an open problem; many interesting papers in maths and statistical physics (see *Markov chain and Mixing time*, **Levine-Peres-Wilmer**, 2008).

Mixing time

Consider GD algorithm for preferential colouring. Define the following metric on Ω : $\rho(r, s) = \sum_{i} 1_{\{r_i \neq s_i\}}$. For all $r, s \in \Omega$, $H(r, s) = \sum_{i \sim j} \frac{h_{r,s}(i)}{g_{r,s}(i)}$ $h_{r,s}(i) = \sum_{a \in A_r(i) \setminus A_s(i)} \lambda^{U_i(a)} \vee \sum_{a \in A_s(i) \setminus A_r(i)} \lambda^{U_i(a)}$ $g_{r,s}(i) = \sum_{a \in A_r(i)} \lambda^{U_i(a)} \vee \sum_{a \in A_s(i)} \lambda^{U_i(a)}$

Theorem If $\theta = 1 - \max_{\substack{r,s:\rho(r,s)=1}} H(r,s) > 0$, then $t_{\min}(\epsilon) \le 1 + \frac{N}{\theta} \log N + \log \epsilon^{-1}$

Numerical experiments

• Networks

- Homogeneous vs heterogeneous (unif. on [1,10]) channels
- Logarithmic utility
- Performance metrics
 - Cumulative average throughput per link
 - Convergence time: the time it takes so that all cumulative throughputs to be within 5% of their limits
 Notice: different than mixing time.

Grid 16 links – 6 channels

Star – 3 channels

• Convergence time: averaged over 9000 simulations

Number of links	3	6	10
Homogeneous channels	29.2	73.1	143.9
Heterogeneous channels	36.5	834.7	1756.1

Star – 3 channels

• Homogeneous channels

Star – 3 channels

Heterogeneous channels

Objective: solve the following optimization problem

$$\max U(s) = \sum_{i} U_{i}(s)$$

over $s = (s_{1}, ..., s_{N}) \in \Omega = \Omega_{1} \times \cdots \times \Omega_{N}$

Glauber Dynamics does not work, because updating one variable s_i does impact the utilities perceived by all agents.

Objective: solve the following optimization problem

$$\max U(s) = \sum_{i} U_{i}(s)$$

over $s = (s_{1}, ..., s_{N}) \in \Omega = \Omega_{1} \times \cdots \times \Omega_{N}$

Can we design a decentralized pay-off based solution?

Objective: solve the following optimization problem

$$\max U(s) = \sum_{i} U_{i}(s)$$

over $s = (s_{1}, ..., s_{N}) \in \Omega = \Omega_{1} \times \cdots \times \Omega_{N}$

Can we design a decentralized pay-off based solution?

Yes:

Achieving Pareto optimality through distributed learning, Marden-Young-Pao, Discussion Paper Series 557, University of Oxford, July 2011

Perturbed Markov chains

Idea from **Young**, *The evolution of conventions*, Econometrica 1993

Step 1. Construct a Markov chain absorbed in states maximizing social welfare

Step 2. Perturb the Markov chain to achieve irreducibility

Step 3. Show that in steady-state, the perturbed Markov chain concentrates on socially optimal states

Transient Markov chain

Let Ω^* be the set of socially optimal states.

Resistance, rooted trees, potential

Step 2. Irreducible perturbed Markov chain

Resistance, rooted trees, potential

Step 2. Irreducible perturbed Markov chain

Steady-state distribution: $\pi^{\epsilon}(s) \sim \sum_{T \in \text{Tree}_{s}} \epsilon^{\sum_{(s_1, s_2) \in T} r(s_1, s_2)}$

Potential of s: $\gamma(s) = \min_{T \in \text{Tree}_s} \sum_{(s_1, s_2) \in T} r(s_1, s_2)$

Resistance, rooted trees, potential

Lemma When $\epsilon \rightarrow 0$, π^{ϵ} concentrates on states with minimal potential.

Steady-state distribution: $\pi^{\epsilon}(s) \sim \sum_{T \in \text{Tree}_{s}} \epsilon^{\sum_{(s_1, s_2) \in T} r(s_1, s_2)}$

Potential of s: $\gamma(s) = \min_{T \in \text{Tree}_s} \sum_{(s_1, s_2) \in T} r(s_1, s_2)$

Algorithm

Challenge: each agent must be aware of the way social welfare evolves when updating her action

Idea: enrich the *state* of agent

$$x_{i}(t) = (\bar{s}_{i}(t), \bar{u}_{i}(t), m_{i}(t))$$
Baseline action
Baseline utility
$$\bigcup_{i=1}^{l} \sum_{j=1}^{l} \sum_{j=$$

Algorithm: phase 1

At the beginning of each time period t: k > N,

- If $m_i(t) = C$, select a new action a according to $\beta_i(a) = \frac{\epsilon^k}{A-1} \text{ if } a \neq \bar{s}_i(t)$
- If $m_i(t) = D$, select a new action a uniformly at random

Algorithm: phase 2

At the end of each time period t: agent i observes her received utility $u_i(t) = U_i(s(t)) \in [0,1]$, and updates her state as:

• If
$$m_i(t) = C$$
,
- if $(s_i(t), u_i(t)) = (\bar{s}_i(t), \bar{u}_i(t)), x_i(t+1) = x_i(t)$;
- else $(\bar{s}_i(t+1), \bar{u}_i(t+1)) = (s_i(t), u_i(t))$
 $m_i(t+1) = C$ w.p. $\epsilon^{1-u_i(t)}$

• If
$$m_i(t) = D$$
, $(\bar{s}_i(t+1), \bar{u}_i(t+1)) = (s_i(t), u_i(t))$
 $m_i(t+1) = C$ w.p. $\epsilon^{1-u_i(t)}$

Convergence

Theorem For any $\delta > 0$, there exists ϵ such that:

$$\lim_{t \to \infty} \inf \frac{1}{t} \sum_{i=0}^{t-1} \mathbb{1}_{\{s(i) \in \Omega^{\star}\}} \ge 1 - \delta$$

Proof. Show that a state has baseline actions in Ω^* if and only if it has minimum potential.

Application

Wireless networks with infrequent channel switching. Between two updates, MAC protocols (e.g. CSMA) share resources in time.

Interference graph:

Random network – 3 channels

link throughputs

Outline

- Internet congestion control
 - Distributed optimization with separable objective function
- Two miracles in resource allocation in wireless networks
 - Distributed optimization with un-separable objective function, and without message passing
 - Power control
 - Carrier Sensing Multiple Access
- Parallel computations
 - Joint consensus and gradient descent methods
 - Just gradient descent
- Colorings
 - Combinatorial optimization: a sampling approach
- Distributed gradient free optimization

Objective: solve the following convex optimization problem

min
$$f(x) = \sum_{i} f_i(x)$$

over $x = (x_1, ..., x_N) \in X = X_1 \times \cdots \times X_N$

Can we design a decentralized pay-off based solution?

Objective: solve the following convex optimization problem

min
$$f(x) = \sum_{i} f_i(x)$$

over $x = (x_1, ..., x_N) \in X = X_1 \times \cdots \times X_N$

Can we design a decentralized pay-off based solution?

Yes.

Agents communicate through the impact of their actions on the pay-offs of other agents.

Sampling methods are used to aggregate agents' "feelings".

Random local search

• Let us do it in a distributed manner

Pick an agent at random, say 1

• Agent 1 randomly propose an update of her action:

$$x' = x_1 + \delta e_1$$

Play the updated state

$$x' = x_1 + \delta e_1$$

• Agent *i* observes her cost: $f_i(x')$, and compute the corresponding change: $\Delta f_i = f_i(x') - f_i(x_1)$

Accepted or rejected move

$$x' = x_1 + \delta e_1$$

- Agent *i* observes her cost: $f_i(x')$, and compute the corresponding change: $\Delta f_i = f_i(x') f_i(x_1)$
- Agent *i* accepts the move with probability: $\epsilon^{\Delta f_i + 1}$
- The move is accepted only if ALL agents accept it! This happens with probability proportional to: $\epsilon^{\Delta f}$

Acceptance notification

 Inter-dependence assumption: We assume that in any state, any agent has an action whose effect is recognizable by all agents:

$$\forall x, i, j, f_i(x) \neq f_i(x_{-j}, O_j)$$

• If all agents accept the move then they keep playing the same action, x'' = x'. Otherwise agent 1 is informed about the rejection, $x'' = (x'_{-j}, 0_j)$.

• We can look at the times where the state changes: induced Markov chain. Let e.g. $\Delta_1 = f(x + \delta e_1) - f(x)$.

$$P[X_{k+1} - X_k = \delta e_1] = \frac{\epsilon^{\Delta_1}}{\epsilon^{\Delta_1} + \epsilon^{\Delta_2} + \epsilon^{\Delta_3} + \epsilon^{\Delta_4}}$$

When ϵ is small, we move in the steepest descent direction.

Summary Distributed optimization

- Constrained convex separable problem: GD can be implemented if "prices" are communicated to agents
- Sometimes these "prices" can be guessed via observing payoffs – GD without message passing
- Convex non-separable problem: message passing across agents helps to implement GD descent
- But, all kinds of problems can be solved in a distributed manner without any signaling
- ... what matters is the convergence time