
Outline 
• Internet congestion control 

– Distributed optimization with separable objective function 

• Two miracles in resource allocation in wireless networks 
– Distributed optimization with un-separable objective function, and 

without message passing 

– Power control 

– Carrier Sensing Multiple Access 

• Parallel computations 
– Joint consensus and gradient descent methods 

– Just gradient descent 

• Colorings 
– Combinatorial optimization: a sampling approach 

• Distributed gradient free optimization 
 

 

 

 

 

 

 



Coloring 
Distributed combinatorial optimization: 

A sampling approach 



Simulation 

Consists in producing samples from a distribution 𝜋 over Ω 
 
Example: Markov Chain Monte Carlo (MCMC) method, design a  
Markov chain whose stationary distribution is 𝜋 
Reversible Markov chains: Metropolis, Glauber Dynamics  
 
 



Optimization via simulation 

Objective: maximize 𝑈(𝑠) over 𝑠 ∈ Ω 
 

Solution: sample from 𝜋𝜆 𝑠 =
1

𝑍(𝜆)
𝜆𝑈 𝑠 ,   𝑠 ∈ Ω 

 
(fugacity 𝜆 has to be large enough) 
 
Glauber Dynamics algorithm: construct a Markov chain where  

transitions from s to s’ occur at rate 𝑃 𝑠, 𝑠′ = 𝜋𝜆(𝑠′) 

(the chain is reversible and has stationary distribution 𝜋𝜆)  
 
 



Distributed optimization 
Objective: solve the following optimization problem 
 
 
 
 
 
Distributed pay-off based solution:  
 - time is divided into periods;  
 − 𝑠(𝑡) is the variable in period 𝑡;  

 - at the end of period 𝑡, agent 𝑖 observes her pay-off  𝑈𝑖 𝑠 𝑡 ,  

 and decides to update her action 𝑠𝑖 𝑡 → 𝑠𝑖 𝑡 + 1 . 
 

For which choice of objective function can we design a  
decentralized pay-off based solution? 

max   𝑈 𝑠 = 𝑈𝑖(𝑠)
𝑖

 

over 𝑠 = 𝑠1, … , 𝑠𝑁 ∈ Ω = Ω1 ×⋯× Ω𝑁 finite 



Separable objective functions 

Problems admitting decentralized pay-off based solutions:  
1. Fully separable objective 

 
 
 

2. Separable objective with (un-separable) constraints 

max 𝑈𝑖(𝑠𝑖)
𝑖

 

max 𝑈𝑖 𝑠𝑖 1 𝑠∈Ω𝑓
𝑖

 

Ω𝑓 ⊂ Ω 



 Glauber Dynamics 
Single-site Glauber Dynamics algorithm: 
 

 At the beginning of period 𝑡: 
 1. select an agent uniformly at random, say 𝑖 
 2. the agent updates her action to 𝑠𝑖 𝑡 + 1  according to          
      distribution: 

 
 𝛼 𝑠𝑖

′ =

1
𝑠𝑖
′,𝑠−𝑖 𝑡 ∈Ω𝑓

𝜆𝑈𝑖(𝑠𝑖
′) 

 1
𝑎,𝑠−𝑖 𝑡 ∈Ω𝑓

𝜆𝑈𝑖(𝑎) 𝑎
 

Under the above algorithm, 𝑠(𝑡) is a reversible Markov chain 
with steady state distribution 
 

  𝜋𝜆 𝑠  ~ 1𝑠∈Ω𝑓𝜆
 𝑈𝑖(𝑠𝑖)𝑖  



Ex: Preferential graph colouring 
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Problem: find a proper colouring maximizing the sum of utilities 
 



Ex: Preferential graph colouring 
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Problem: find a proper colouring maximizing the sum of utilities 
 

𝑈(𝑠) = 𝑈𝑖 𝑠𝑖 = 16

𝑖

 



Ex: Preferential graph colouring 
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Problem: find a proper colouring maximizing the sum of utilities 
Application: optimal channel assignment in wireless networks 
 



Mixing time 
Definition: Let 𝑠(𝑡) be an irreducible positive recurrent Markov 
chain with stead-state distribution 𝜋. Let 𝜋𝑠0 𝑡  be the distribution 

of 𝑠(𝑡) when starting at 𝑠0. For 𝜖 > 0,  

𝑡mix 𝜖 = inf 𝑡 ≥ 0: ∀𝑠0, | 𝜋𝑠0 𝑡 − 𝜋||𝑡𝑣 < 𝜖} 

Phase transition: The chain is fast mixing if 𝑡mix(𝜖) is polynomial 
in the dimension of 𝑠. Usually, Glauber Dynamics algorithms are 
fast mixing if 𝜆 is small enough. 

Literature: Mixing time of GD algorithms is generally an open 
problem; many interesting papers in maths and statistical physics 
(see Markov chain and Mixing time, Levine-Peres-Wilmer, 2008).  



Mixing time 
Consider GD algorithm for preferential colouring. Define the 
following metric on Ω: 𝜌 𝑟, 𝑠 =  1 𝑟𝑖≠𝑠𝑖𝑖 . 

For all 𝑟, 𝑠 ∈ Ω, 𝐻 𝑟, 𝑠 =  
ℎ𝑟,𝑠 𝑖

𝑔𝑟,𝑠(𝑖)
𝑖~𝑗  

 
ℎ𝑟,𝑠 𝑖 =  𝜆𝑈𝑖(𝑎)

𝑎∈𝐴𝑟 𝑖 \A𝑠(𝑖)

∨  𝜆𝑈𝑖(𝑎)

𝑎∈𝐴𝑠 𝑖 \A𝑟(𝑖)

 

𝑔𝑟,𝑠 𝑖 =  𝜆𝑈𝑖(𝑎)

𝑎∈𝐴𝑟 𝑖

∨  𝜆𝑈𝑖(𝑎)

𝑎∈𝐴𝑠 𝑖

 

Theorem  If   𝜃 = 1 − max
𝑟,𝑠:𝜌 𝑟,𝑠 =1

𝐻 𝑟, 𝑠 > 0,  then 

𝑡mix 𝜖 ≤ 1 +
𝑁

𝜃
log𝑁 + log 𝜖−1 



Numerical experiments 
• Networks 

 
 
 
 
 

• Homogeneous vs heterogeneous (unif. on [1,10]) channels 
 

• Logarithmic utility 
 

• Performance metrics 
- Cumulative average throughput per link 
- Convergence time: the time it takes so that all cumulative 

throughputs to be within 5% of their limits  
      Notice: different than mixing time. 

 



Grid 16 links – 6 channels 



Star – 3 channels 

Number of links    3   6   10 
Homogeneous channels  29.2  73.1  143.9 
Heterogeneous channels  36.5  834.7  1756.1 

• Convergence time: averaged over 9000 simulations  
 



Star – 3 channels 
• Homogeneous channels 
 



Star – 3 channels 
• Heterogeneous channels 
 



General objective function 
Objective: solve the following optimization problem 
 
 
 
 
 
Glauber Dynamics does not work, because updating one variable 𝑠𝑖 
does impact the utilities perceived by all agents.  

max   𝑈 𝑠 = 𝑈𝑖(𝑠)
𝑖

 

over 𝑠 = 𝑠1, … , 𝑠𝑁 ∈ Ω = Ω1 ×⋯× Ω𝑁 



General objective function 
Objective: solve the following optimization problem 
 
 
 
 
 
Can we design a decentralized pay-off based solution? 

max   𝑈 𝑠 = 𝑈𝑖(𝑠)
𝑖

 

over 𝑠 = 𝑠1, … , 𝑠𝑁 ∈ Ω = Ω1 ×⋯× Ω𝑁 



General objective function 
Objective: solve the following optimization problem 
 
 
 
 
 
Can we design a decentralized pay-off based solution? 
 
Yes:  

Achieving Pareto optimality through distributed learning, 
Marden-Young-Pao, Discussion Paper Series 557, University 
of Oxford, July 2011 

max   𝑈 𝑠 = 𝑈𝑖(𝑠)
𝑖

 

over 𝑠 = 𝑠1, … , 𝑠𝑁 ∈ Ω = Ω1 ×⋯× Ω𝑁 



Perturbed Markov chains 

Idea from Young, The evolution of conventions, Econometrica 
1993 

 
Step 1. Construct a Markov chain absorbed in states 
maximizing social welfare 
 
Step 2. Perturb the Markov chain to achieve irreducibility 
 
Step 3. Show that in steady-state, the perturbed Markov 
chain concentrates on socially optimal states   
 
 



Transient Markov chain 

Let Ω⋆ be the set of socially optimal states. 
 
 

𝑠1
⋆ 𝑠2

⋆ 

1 1 

> 0 

> 0 

> 0 

> 0 

transition probability 



Resistance, rooted trees, potential 

Step 2. Irreducible perturbed Markov chain 
 
 

𝑠1
⋆ 𝑠2

⋆ 

𝑠′ 

𝑠 

𝑃𝜖 𝑠, 𝑠′ = 𝜖𝑟 𝑠,𝑠
′

 

resistance 



Resistance, rooted trees, potential 

Step 2. Irreducible perturbed Markov chain 
 
 

𝑠1
⋆ 𝑠2

⋆ 

𝑠′ 

𝑠 

𝜖𝑟 𝑠
′,𝑠  

Tree rooted in 𝒔  

    Steady-state distribution: 
 
 
                        Potential of 𝑠: 
 
 

𝜋𝜖 𝑠   ~  𝜖
 𝑟(𝑠1,𝑠2)𝑠1,𝑠2 ∈𝑇

𝑇∈Trees

 

𝛾 𝑠 =  min𝑇∈Trees   𝑟(𝑠1, 𝑠2)
𝑠1,𝑠2 ∈𝑇

 



Resistance, rooted trees, potential 

Lemma   When 𝜖 → 0, 𝜋𝜖  concentrates on states with minimal 
potential.   
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𝜖𝑟 𝑠
′,𝑠  

Tree rooted in 𝒔  

    Steady-state distribution: 
 
 
                        Potential of 𝑠: 
 
 

𝜋𝜖 𝑠   ~  𝜖
 𝑟(𝑠1,𝑠2)𝑠1,𝑠2 ∈𝑇

𝑇∈Trees

 

𝛾 𝑠 =  min𝑇∈Trees   𝑟(𝑠1, 𝑠2)
𝑠1,𝑠2 ∈𝑇

 



Algorithm 

Challenge: each agent must be aware of the way social 
welfare evolves when updating her action 
 
Idea: enrich the state of agent 
 
                      𝑥𝑖 𝑡 = (𝑠 𝑖 𝑡 , 𝑢 𝑖 𝑡 ,𝑚𝑖(𝑡)) 
 

Baseline action 

Baseline utility 

Mood ∈ {𝐶, 𝐷} 



Algorithm: phase 1 

At the beginning of each time period 𝑡: 𝑘 > 𝑁, 
 

• If 𝑚𝑖 𝑡 = 𝐶, select a new action 𝑎 according to 
 
 

 
• If 𝑚𝑖 𝑡 = 𝐷, select a new action 𝑎 uniformly at 

random 
 

𝛽𝑖 𝑎 =
𝜖𝑘

𝐴−1
  if  𝑎 ≠ 𝑠 𝑖(𝑡) 



Algorithm: phase 2 

At the end of each time period 𝑡: agent 𝑖 observes her received 

utility 𝑢𝑖 𝑡 = 𝑈𝑖 𝑠 𝑡 ∈ [0,1], and updates her state as: 

 
• If 𝑚𝑖 𝑡 = 𝐶,  

- if 𝑠𝑖 𝑡 , 𝑢𝑖 𝑡 = 𝑠 𝑖 𝑡 , 𝑢 𝑖 𝑡 , 𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 ; 
- else  𝑠 𝑖 𝑡 + 1 , 𝑢 𝑖 𝑡 + 1 = (𝑠𝑖 𝑡 , 𝑢𝑖 𝑡 )  

 
 

• If 𝑚𝑖 𝑡 = 𝐷,   𝑠 𝑖 𝑡 + 1 , 𝑢 𝑖 𝑡 + 1 = (𝑠𝑖 𝑡 , 𝑢𝑖 𝑡 )  
 
 

𝑚𝑖 𝑡 + 1 = 𝐶  w.p.  𝜖1−𝑢𝑖(𝑡) 

𝑚𝑖 𝑡 + 1 = 𝐶  w.p.  𝜖1−𝑢𝑖(𝑡) 



Convergence 

Theorem   For any 𝛿 > 0, there exists 𝜖 such that: 
 
 
 

lim
𝑡→∞
inf 
1

𝑡
 1 𝑠 𝑖 ∈Ω⋆
𝑡−1

𝑖=0
≥ 1 − 𝛿 

Proof. Show that a state has baseline actions in Ω⋆ if and only 
if it has minimum potential. 



Application 

Wireless networks with infrequent channel switching. 
Between two updates, MAC protocols (e.g. CSMA) share resources 
in time. 
 

𝑈𝑖 𝑠 = 𝑈(𝜇𝑖,𝑠𝑖 × 𝜙𝑖(𝑠)) 

Channel condition Results from MAC (e.g. depends 
on the number of agents using 
the same channel) Interference graph: 



Random network – 3 channels 
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General objective function 
Objective: solve the following convex optimization problem 
 
 
 
 
 
Can we design a decentralized pay-off based solution? 

min   𝑓 𝑥 = 𝑓𝑖(𝑥)
𝑖

 

over 𝑥 = 𝑥1, … , 𝑥𝑁 ∈ X = X1 ×⋯× X𝑁 



General objective function 
Objective: solve the following convex optimization problem 
 
 
 
 
 
Can we design a decentralized pay-off based solution? 
 
Yes. 
Agents communicate through the impact of their actions on the 
pay-offs of other agents. 
Sampling methods are used to aggregate agents’ “feelings”. 
 

min   𝑓 𝑥 = 𝑓𝑖(𝑥)
𝑖

 

over 𝑥 = 𝑥1, … , 𝑥𝑁 ∈ X = X1 ×⋯× X𝑁 



Random local search 

• Let us do it in a distributed manner 



Pick an agent at random, say 1 

• Agent 1 randomly propose an update of her action:  

𝑥′ = 𝑥1 + 𝛿𝑒1 

𝑥′ = 𝑥1 + 𝛿𝑒1 



Play the updated state 

• Agent i observes her cost: 𝑓𝑖 𝑥
′ , and compute the 

corresponding change: Δ𝑓𝑖 = 𝑓𝑖(𝑥
′) − 𝑓𝑖(𝑥1)  

  

𝑥′ = 𝑥1 + 𝛿𝑒1 



Accepted or rejected move  

• Agent i observes her cost: 𝑓𝑖 𝑥
′ , and compute the 

corresponding change: Δ𝑓𝑖 = 𝑓𝑖(𝑥
′) − 𝑓𝑖(𝑥1)  

 

• Agent i accepts the move with probability: 𝜖Δ𝑓𝑖+1 

 

• The move is accepted only if ALL agents accept it!  

    This happens with probability proportional to: 𝜖Δ𝑓 

 

 

  

𝑥′ = 𝑥1 + 𝛿𝑒1 



Acceptance notification 

• Inter-dependence assumption: We assume that in any 
state, any agent has an action whose effect is recognizable 
by all agents: 

   ∀𝑥, 𝑖, 𝑗, 𝑓𝑖(𝑥) ≠ 𝑓𝑖(𝑥−𝑗 , 𝑂𝑗) 

 

• If all agents accept the move then they keep playing the 
same action, 𝑥" = 𝑥′. Otherwise agent 1 is informed about 
the rejection, 𝑥" = (𝑥′−𝑗 , 0𝑗).  

  



Resulting Dynamics 

 

• We can look at the times where the state changes: induced 
Markov chain. Let e.g. Δ1 = 𝑓 𝑥 + 𝛿𝑒1 − 𝑓 𝑥 . 

𝑥1 𝑥′ 𝑥′ 𝑥′ 

FRAME k 

𝑥1 𝑥′ 𝑥" 𝑥1 

FRAME k 

Accepted move Rejected move 

Δ1 

Δ2 

Δ3 

Δ4 

𝑥 

𝑃 𝑋𝑘+1 − 𝑋𝑘 = 𝛿𝑒1 =
𝜖Δ1

𝜖Δ1 + 𝜖Δ2 + 𝜖Δ3 + 𝜖Δ4
 

When ε is small, we move in the steepest 
descent direction. 



Summary 
Distributed optimization 

• Constrained convex separable problem: GD can be 
implemented if “prices” are communicated to agents 

• Sometimes these “prices” can be guessed via observing pay-
offs – GD without message passing  

• Convex non-separable problem: message passing across 
agents helps to implement GD descent 

• But, all kinds of problems can be solved in a distributed 
manner without any signaling  

 

• … what matters is the convergence time 
 

 

 

 

 

 


