Outline

Internet congestion control

— Distributed optimization with separable objective function

Two miracles in resource allocation in wireless networks

— Distributed optimization with un-separable objective function, and
without message passing

— Power control
— Carrier Sensing Multiple Access

Parallel computations
— Joint consensus and gradient descent methods
— Just gradient descent

Colorings

— Combinatorial optimization: a sampling approach

Distributed gradient free optimization



Coloring
Distributed combinatorial optimization:
A sampling approach



Simulation

Consists in producing samples from a distribution m over ()

Example: Markov Chain Monte Carlo (MCMC) method, design a
Markov chain whose stationary distribution is
Reversible Markov chains: Metropolis, Glauber Dynamics



Optimization via simulation

Objective: maximize U(s) over s € ()

Solution: sample from 2(s) = ﬁ/lu(s), s €N

(fugacity A has to be large enough)

Glauber Dynamics algorithm: construct a Markov chain where
transitions from s to s’ occur at rate P(s,s") = n*(s")
(the chain is reversible and has stationary distribution 7*4)



Distributed optimization

Objective: solve the following optimization problem

max U(s) = Z'Ui(s)

over s = (84,...,Sy) € Q = Qq X -+ X Qy finite

Distributed pay-off based solution:
- time is divided into periods;
— s(t) is the variable in period t;
- at the end of period t, agent i observes her pay-off Ui(s(t)),
and decides to update her action s;(t) — s;(t + 1).

For which choice of objective function can we design a
decentralized pay-off based solution?



Separable objective functions

Problems admitting decentralized pay-off based solutions:
1. Fully separable objective

maxz_Ui(si)

2. Separable objective with (un-separable) constraints

maxz_ U; (Si)l{seﬂf}



Glauber Dynamics

Single-site Glauber Dynamics algorithm:

At the beginning of period t:

1. select an agent uniformly at random, say i

2. the agent updates her action to s;(t + 1) according to
distribution:

a(s}) =

1(5{,S_i(t))€.QfAUi(Si)

Za 1(a,s_i(t))eﬂf/1

Ui(a)

Under the above algorithm, s(t) is a reversible Markov chain
with steady state distribution

T[/l(S) ~ 1SE.QfAZi Ui(Si)



Ex: Preferential graph colouring
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Problem: find a proper colouring maximizing the sum of utilities
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Ex: Preferential graph colouring
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Problem: find a proper colouring maximizing the sum of utilities
Application: optimal channel assignment in wireless networks



Mixing time

Definition: Let s(t) be an irreducible positive recurrent Markov
chain with stead-state distribution 7. Let 7t (t) be the distribution

of s(t) when starting at sy. Fore > 0,

tmix(€) = inf{t = 0:Vs,, ||7T50(t) — 7||¢y < €}

Phase transition: The chain is fast mixing if t;,ix(€) is polynomial
in the dimension of s. Usually, Glauber Dynamics algorithms are

fast mixing if A is small enough.

Literature: Mixing time of GD algorithms is generally an open
problem; many interesting papers in maths and statistical physics
(see Markov chain and Mixing time, Levine-Peres-Wilmer, 2008).



Mixing time

Consider GD algorithm for preferential colouring. Define the
following metric on Q: p(7,s) = X; 1 25

hy (1)
Forallr,s € Q, H(r,s) =), _.—>—
(r, s) Zl J grs(0)
hy (D) = z i@ z Vi@
a€Ar(i)\As (i) a€As(D)\Ar (1)
gr () = z i@ z 2Ui(@)
a€A, (i) a€Ag(i)
Theorem If 6 =1— max H(r,s) > 0, then
r,s:p(r,s)=1

N
6

1

tmix(€) <1+ —logN + loge™



Numerical experiments

Networks

Homogeneous vs heterogeneous (unif. on [1,10]) channels
Logarithmic utility

Performance metrics
- Cumulative average throughput per link
- Convergence time: the time it takes so that all cumulative
throughputs to be within 5% of their limits
Notice: different than mixing time.



link throughputs

Grid 16 links — 6 channels
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Star — 3 channels

 Convergence time: averaged over 9000 simulations

Number of links 3 6 10
Homogeneous channels 29.2 73.1 143.9
Heterogeneous channels 36.5 834.7 1756.1




Star — 3 channels

* Homogeneous channels
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Star — 3 channels

 Heterogeneous channels
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General objective function

Objective: solve the following optimization problem

max U(s) = Z'Ui(s)

over s = (54, ...,Sy) EQ =01 X+ X Qp

Glauber Dynamics does not work, because updating one variable s;
does impact the utilities perceived by all agents.



General objective function

Objective: solve the following optimization problem

max U(s) = Z'Ui(s)

over s = (54, ...,Sy) EQ =01 X+ X Qp

Can we design a decentralized pay-off based solution?



General objective function

Objective: solve the following optimization problem

max U(s) = Z'Ui(s)

over s = (54, ...,Sy) EQ =01 X+ X Qp

Can we design a decentralized pay-off based solution?

Yes:

Achieving Pareto optimality through distributed learning,
Marden-Young-Pao, Discussion Paper Series 557, University
of Oxford, July 2011



Perturbed Markov chains

Idea from Young, The evolution of conventions, Econometrica
1993

Step 1. Construct a Markov chain absorbed in states
maximizing social welfare

Step 2. Perturb the Markov chain to achieve irreducibility

Step 3. Show that in steady-state, the perturbed Markov
chain concentrates on socially optimal states



Transient Markov chain

Let (0* be the set of socially optimal states.

Q. QL

/"1 \/

" transition probability



Resistance, rooted trees, potential

Step 2. Irreducible perturbed Markov chain

Q <\ reS|stance

s

L \/(m



Resistance, rooted trees, potential

Step 2. Irreducible perturbed Markov chain

Tree rooted in s

Steady-state distribution: mw€(s) ~ Z g2 (s1.52)eT T(S1,52)

T€Treeg

Potential of s: y(s) = mingerree, z r(51,52)

(51,52)€T



Resistance, rooted trees, potential

Lemma When € — 0, T€ concentrates on states with minimal
potential.

Tree rooted in s

Steady-state distribution: ©¢(s) ~ z g2 (s1.52)eT T(51,52)

TeTreeg

Potential of s: y(s) = minrerree, z r(51,52)

(51,52)€ET



Algorithm

Challenge: each agent must be aware of the way social
welfare evolves when updating her action

Idea: enrich the state of agent

x;(t) = (5;(¢t), u;(t), my(t))

| 4
Baseline action

L
Baseline utility '
v

Mood € {C, D}



Algorithm: phase 1

At the beginning of each time period t: k > N,
* Ifm;(t) = C, select a new action a according to

,Bi(a) = AE—_kl if a+# .S_'i(t)

* Ifm;(t) = D, select a new action a uniformly at
random




Algorithm: phase 2

At the end of each time period t: agent i observes her received
utility u; (t) = Ul-(s(t)) € [0,1], and updates her state as:

e |If mi(t) =C,
- if (s (0), u (8)) = (5;(8), u; (¢)), x; (¢ + 1) = x;(t);
- else (5;(t+ 1), u;(t+ 1)) = (s;(t), u;(t))
m;(t+1) =C w.p. el7u®

« Ifm(t) =D, (5;(t+1),u(t+ 1) = (s5:(8), u;(1))
m;(t +1) = C w.p. el7#®)




Convergence

Theorem For any 6 > 0, there exists € such that:

t—1
lim inf ? 1{S(i)eﬂ*} = 1—6
=0

t—oo i=

Proof. Show that a state has baseline actions in Q* if and only
if it has minimum potential.



Application

Wireless networks with infrequent channel switching.
Between two updates, MAC protocols (e.g. CSMA) share resources

in time.

Ui(s) = U(.uli,si X ¢i(s))

1 \
~

Results from MAC (e.g. depends
on the number of agents using
the same channel)

v
Channel condition

Interference graph:




Random network — 3 channels
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General objective function

Objective: solve the following convex optimization problem

min f(x) = Zifi(x)

over x = (xq,...,xy) EX=X; X+ X Xy
Can we design a decentralized pay-off based solution?

Yes.

Agents communicate through the impact of their actions on the
pay-offs of other agents.

Sampling methods are used to aggregate agents’ “feelings”.



Random local search

e Letusdoitin adistributed manner



Pick an agent at random, say 1

x1 + 8eq

A
S =
¥><\

 Agent 1 randomly propose an update of her action:

x'=x,+ beyq



Play the updated state

x'=x, + beyq

« Agentiobserves her cost: f;(x'), and compute the
corresponding change: Af; = f;(x") — fi(xq)



Accepted or rejected move

x'=x, + beyq

« Agentiobserves her cost: f;(x'), and compute the
corresponding change: Af; = f;(x") — fi(xq)

 Agent i accepts the move with probability: e2/it1

* The move is accepted only if ALL agents accept it!

This happens with probability proportional to: €2/



Acceptance notification

* Inter-dependence assumption: We assume that in any
state, any agent has an action whose effect is recognizable

by all agents:
vx,i,j, fi(x) # fi(x_;, 0;)

 |f all agents accept the move then they keep playing the
same action, x" = x'. Otherwise agent 1 is informed about

the rejection, x" = (x'_;, 0;).



Resulting Dynamics
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* We can look at the times where the state changes: induced
Markov chain. Lete.g. A; = f(x + dey) — f(x).

Az P[X X, = 8es] = e
1 k1 T Tk T OCL T A e 1 €8s + eha
A3 X Al
R o When € is small, we move in the steepest
descent direction.



Summary
Distributed optimization

Constrained convex separable problem: GD can be
implemented if “prices” are communicated to agents

Sometimes these “prices” can be guessed via observing pay-
offs — GD without message passing

Convex non-separable problem: message passing across
agents helps to implement GD descent

But, all kinds of problems can be solved in a distributed
manner without any signaling

... what matters is the convergence time



