Decentralized learning in control and optimization
for networks and dynamic games

Part II: distributed optimization



Outline

Internet congestion control
— Distributed optimization with separable objective function

Two miracles in resource allocation in wireless networks

— Distributed optimization with un-separable objective function, and
without message passing

— Power control
— Carrier Sensing Multiple Access

Parallel computations
— Joint consensus and gradient descent methods
— Just gradient descent

Colorings

— Combinatorial optimization: a sampling approach

Distributed gradient free optimization



Problem classes

* Separable utilities, coupling constraints

minimize Z?:l fi(z;)
subject to x € )

Examples: Internet congestion control, channel allocation in
wireless networks

 Non-separable utilities

minimize Y ., fi(x)
subject to x € ()

Examples: power control and scheduling in wireless networks




Internet congestion control



Internet congestion control
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Objective of TCP: adapt the rates of sources to fairly and
efficiently share network resources



A simple model

* Resources: a set of L links shared by a fixed population of n
connections or data flows

* Fixed routing

FLOW 2

FLOW 3




Network Utility Maximization

 The goal is to design distributed protocols converging to the
solution of:

maximize Z?:l Ui(z;)
subject to Rx < C

Previous example:
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Network Utility Maximization

e Utility functions:

- Proportional fairness: U;(-) = log()
- a-fairness: U (1) = ()19 /(1 — a)
- Max-min fairness: a = o0



Why NUM?

Seems reasonable with a fixed number of flows (good trade-of
between efficiency and fairness)

Distributed implementation

Optimal accounting for dynamics in the population of flows

— On route i, Poisson flow arrivals with intensity A;

— Flow sizes: exponential distribution with mean o;

— Loadonroutei: p; = A\; X 0;

— Separation of time-scales assumption: the congestion control protocol

is much faster than the flow population dynamics. When the flow
populationis n = (n;,7 € R), the rates of flows on the various routes
solve

maximize ziER anz (CBZ)

subject to Rx < C



Optimality of NUM-based protocols

 The Markov process capturing the numbers of active flows on
the various routes is always stable (whenever possible)

Theorem™* Let N(t) be the numbers of active flows at time t
on the various routes. Then, under a-fair allocation, N(t) is
ergodic if and only if:

Rp < C

* Impact of fairness on Internet performance, Bonald-Massoulie, ACM
Sigmetrics, 2001.



Decomposition

* Lagrangean:

n

L{z,p) =Y (Ui(z) =z Y )+ > wCi

1=1 lRlzzl [

e Dual function:

q(p) = Z%&X(Ufi(l’z‘) —x Y )+ >y wC
izl\ ’ I:R;; =1 ’ l

|
Source sub-problems



Dual decomposition

* Link price update: for each link /

.
1) = [ 450 S i) — )]

’L.:Rlz':].

e Source rate update:

x;(k + )—argmax — X Z 1)
v I:Ry;;=1



Convergence of dual GD algorithm

* The gradient of the dual function is lipschitz
— Assume that —U/ (z;) > 1/g >0

— Let L and S be the length of the longest route and maximum number
of sources using a given link, respectively

Lemma* We have:
IVa(p) = Va(u')|l2 < gLS||p — 1|2

* ... which ensures convergence of the algorithm

* Optimization flow control-I: Basic algorithm and convergence, Low-
Lapsley, ACM/IEEE trans. on Networking, 1999.



Primal decomposition

* Source rate update:

vk + 1) = ai(k) + 5(U'<xz< N- 3 m)

l:Rlizl

* Price update:

uk+1) =p( > wi(k+1))

’i:Rli:].

p; : barrier function (to be defined later)



Convergence of the primal algorithm

Theorem* For appropriate choice of B, the primal algorithm
converges to a solution of:

Zi:Rlizl Li
maxz U;(x;) — Z/o pi(y)dy
) [

* The barrier functions are increasing, and can be chosen so
that we obtain a good approximation of the initial NUM
problem plT

Y

>

C
* Rate control for communication networks: shadow prices, proportional
fairness and stability, Kelly-Maulloo-Tan, J. Oper. Res. Soc., 1998.



Does TCP scale?

e |t seems that it does not!

— Dual algorithm: The lipschitz constant of the dual function depends on
the number of flows. Decreasing convergence rate with the network
size

— Primal algorithm: for proportional fairness, the gradient seems
unbounded when the number of flows increases

— Other issues: see Low-Paganini-Doyle, IEEE Control Syst. Magazine,
2002

* The picture is more complicated

* Flow-level dynamics without separation of time-scales

— Under the dual algorithm, the system is stable at flow-level whenever
possible, see Lin-Shroff-Srikant, IEEE trans. IT, 2008
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Power control



Objective

>
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Interfering links

Target SINR for link i: ;

Are these targets feasible?

Is there a distributed algorithm answering the question?



Power control algorithm

< p2 <
P1
i\ N\ P
gy ¥ &

* SINR at link-i receiver: Pl
N + Zj;,gq; ijji
* Power updates*: p;|k + 1] = p;|k] X SINZ;'(/C)

Distributed: each link measure its SINR only.

* Performance of optimum transmitter power control in cellular radio
systems, Zander, IEEE trans. Vehicular Tech., 1992.



Fixed point iteration

* Power vector p = (p1, I 7pn)

* Iteration: plk + 1] = I(p|k])

2 PiGii
Gii + N

* Interference function: I;(p) = ~; X

* A new analysis via contractive functions*

* Contractive interference functions and rates of convergence of DPC,
Feyzmahdavian-Johansson-Charalambous, arxiv and ICC, 2012.



Contractive interference function

e Contractive interference function:
1. I:]R{f’“F —>R1, I(p) > 0;
2. Monotonicity: p > p' = I(p) > I(p');
3. Contractivity: dc € (0,1), Jv > 0, Ve > 0,

I(p+ev) < I(p)+ cev.

* Weighted maximum norm:

|24

|#]l 00,0 = max
() U;



Convergence of DPC

Theorem A contractive interference function / has a unique
fixed point p* The sequence plk + 1] = I(p|k]|) converges to
the fixed point, and:

Ip[k] = p*[loc,o < ¢ [IP[0] — P loc,0
i PiGli

Gii + N
or equivalently I(p) = Mp+ N.1

* Application: I;(p) = ; X

Vi G
M;: =1;4, 2"
J J7 G..



Convergence of DPC

<1

M
Theorem |If || M| oo » = Sup I Moo
r#0 HxHoo,v

then [ is c-contractive with ¢ = || M || o0+

Theorem If M € R}*"
there exists a vector v > 0 such that || M|, < 1
iff the spectral radius of M is strictly less than 1.

* As aconsequence, if the spectral radius of M is < 1,
then the DPC algorithm converges



Utility optimal CSMA



Distributed MAC protocols

* How to share an interfered channel in a distributed way?



Distributed MAC protocols
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Collision: both transmissions fail

e How to share an interfered channel in a distributed manner?



Distributed MAC protocols

Collision: both transmissions fail

* How to share an interfered channel in a distributed manner?
— Randomize! Wait a random time before transmitting
— Be polite: listen before you talk, CSMA (Carrier Sense Multiple Access)



Distributed MAC protocols

BUSY

TRANSMISSION

> time

Attempt probability: p(t)



Distributed MAC protocols
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Distributed MAC protocols

BUSY i COLLISION

COLLISION

> time

Attempt probability: p(t)



Distributed MAC protocols

BUSY

3 | TRANSMISSION . time

Attempt probability: p(t)

Non-adaptive MAC (Aloha) Adaptive MAC
- Constant transmission - Adaptive transmission probability
probability - e.g. exponential back-off
Vt, p(t) = po success:  p(t) — po

collision: p(t) — p(t)/2



CSMA: a simple model

BUSY

3 5 TRANSMISSION | . time

-
7

& -
- 7N

~ exp(A) -~ exp(o)

Each transmitter runs a Poisson clock
When the clock ticks, if the channel is idle, start

transmitting
* No collision



Full interference

e A fully connected interference graph
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Partial interference

A general interference graph

.- link

| L

/ > ; Z .. interference
\\ -

\4 Interference graph
\

\

ey
s.ﬁ—""s



CSMA unfairness

 Partial interference

> time

> time

> time




Objective

e Design fair and efficient CSMA protocols
* More precisely:

max Z U(’}/Z)

v : long term throughput on link i
U : strictly increasing concave utility function



Model

Interference modeled as a graph:
A;; =1 <= links 4, j interfere
Schedule: m € {0,1}
Feasible schedule: m € M <= (m;ym; =1 = A;; =0)
Rate region:
['={~: E|7T601 Zwm—lwyngWmmz
meM meM

Goal: solve the following convex program



Rules

* No information are explicitly exchanged among
transmitters

* Each transmitter just observes the realized throughput
and can sense the channel

* Isitatall possible?
- Yes, Jiang-Walrand, Allerton 2008
- An other (better) solution, Hegde-Proutiere, CISS 2012



Performance of static CSMA

* Transmitter of link i
- Poisson clock of intensity: \;
- Mean channel holding time: o;
- Intensity: p;
 m(t)is areversible Markov process whose
stationary distribution is:
P 1 pi"

" YemIlinl

* Long term throughput on linki: ~/ = Z T M
meM



New optimization problem

maXVZ U(v;) — Z T (log w0, — 1)

meM

S.T. \V/i,’}/i § Z T 1,
meM

Zwmzl

meM

* Dual GD for this new problem



Lagrangean

L(~,11, q, i) VZ — q;i (i — Z TmM;))
meM
—Zwmlogwm—l Zwm—l
meM meM

 Primal solutions:
VU/(’)/Z') — {;, VZ

log 7, = Z g — M, YmeM

1 m; =1



Lagrangean

L(~,11, q, i) VZ — q;i (i — Z TmM;))
meM
—Zwmlogwm—l Zwm—l
meM meM

 Primal solutions:
VU/(’)/Z') — {;, VZ

Tm =exp( Y  qi—p), VmeM

1:m; =1



Lagrangean

L(~,11, q, i) VZ — q;i (i — Z TmM;))
meM
—Zwmlogwm—l Zwm—l
meM meM

* Primal solutions:

— U/_l(Qi/V)v Vi




Dual GD algorithm

gk +1] = k] + (U Nq/V) = Y mmmy)

* Implementation: via CSMA!

* The transmitter of link i chooses its CSMA parameters
such that:

pilk] = exp(gi|k])



Dual GD algorithm
gilk + 1] = ¢;[k] + (U™ 1 (q:/V) — Z Tm M)

Implementation: via CSMA!

The transmitter of link i chooses its CSMA parameters
such that:

pilk] = exp(gi|k])
Issue: the long-term throughput on link i cannot be
observed



Practical implementation

Time divided into frames

During frame k, the transmitter of link i runs CSMA with
parameter p; k|, and observes the throughput S; k]
obtained in this frame

At the end of frame k:
gilk + 1] = qi[k] + (U (q:[k]/V) — Si[k])
pilk + 1] = exp(q;[k + 1])

Note that if the frame is very long:

S@[k] %Zﬂ'mmi, Tm —




Convergence

* Run the previous algorithm with the following step-sizes:

Za[k] = 00 Zoz[k]2 < 00

Theorem We have: lim qlk| = q., lim 7[k] =, as.

k— 00 k— o0

k
1
where v[k] = z ZS[S], and
s=1

where ~v,and ¢, solve the modified optimization problem.



Convergence

* Modified vs. initial optimization problems
* Let ~* be the solution of



An alternative approach

Objective:
max W (m ZU Z T M)
) meM
s.t. Z Ty, = 1



Steepest Coordinate Ascent

Steepest coordinate ascent algorithm: select schedule
such that

m* € arg max Z U'(v;(m))

rm;=1



Simulated Steepest Ascent

Steepest ascent algorithm can be approximately
implemented by sampling allocations according to the
distribution:

1 /(.
.7 > o U (v (7))
3 — )\ itm,;=1
f (m) — ()\’ )

Decentralized implementation: agents observe their
realized throughputs and then adapt their channel access
rate accordingly.



Slotted-CSMA implementation

Time is slotted.

At the beginning of slot k:

1. Select alink uniformly at random, say link i

2. The transmitter of link i observes the throughput obtained so
far: yilk — 1] v/ (rfk-1))

3. With probabilit , it accesses the channel if
e Y T (alh—1D) & 1

Otherwise it releases the channel



Convergence

Note that if ~;|k — 1| was fixed, equal to ~;(7), we would
sample the schedule with distribution §>"7T. This is not the
case. Nevertheless we have:

Theorem We have: Ve > 0,3\ :  lim k] =+, as.

k— o0
where |Z U(yr))| <



Extensions

Set of schedules ()

Objective: maximize W(p) = X; U(Xseq DsHis;)
overp: Yo ps =1

Example: Multi-channel wireless networks
Q): set of proper channel allocations
Channel O: the link remains inactive
Ui s,: rate at which link  transmits on channel s;



Steepest Ascent

aps (p) = z uis,U'(vi(p))

Yi(p) = Z DsHis;
S

Steepest ascent algorithm selects the distribution concentrating
at s, with:

S, € arg msaxz,m,siU'(Vi(p))
l



Simulated Steepest Ascent

Steepest ascent algorithm can be approximately
implemented by sampling allocations according to the
distribution:

1 '
EAP (5) = x 1 2itis; U (vi(p)
Z(A,p)

Decentralized implementation: agents observe their realize
throughputs and then randomly select a channel.



Slotted-CSMA implementation

At the beginning of time period k,

1. Alinkis chosen uniformly at random for possible update,
say link i;

2. Link i measures the average rate y;(k — 1) received so
far;

3. It selects a channel from the set of possible channels
A;(k — 1) (no interference with neighbors) according to
the distribution:

a(c) ~ WiV ilke=1)  forc € A;(k — 1)



Convergence

Note that if y;(k — 1) was fixed, equal to y;(p), we would
sample according to f’l'p. This is not true, and we sample
from a time-varying distribution.

Theorem For any €, there exists A (large enough) such that
for any initial condition, the SSA algorithm converges in the

following sense: _ 1
lllm y(k) = y*,  almost surely

‘ Z,[u () - U(Zsp;*ui,si)] ‘ <e



Asynchronous CSMA implementation

e Static multi-channel CSMA: link-i transmitter accesses
channel c at rate p,,
Stationary distribution: ¢°P(s) =

1iseq)
Z(p) 1]

« CSMA samples from distribution E+P(s) if:

_piSi
1

Pic = AHicU’(Vi(P))



Asynchronous CSMA implementation

At the beginning of time period k,

Each link sets its CSMA parameters on the various
channel so that:

;. (k) = AU (ilk=1)



Comparison with JW algorithm

 Updates in SSA algorithm:

log pic(k—1) k=1 Si(k—1)
( Titie ) koo k )]

pic(k) = exp [Mz‘cTU/ (Ull

T = log()\)

* Updates in Jiang-Walrand algorithm:

R e G RN




Numerical experiments

Networks

Homogeneous vs heterogeneous (unif. on [1,10])
channels
Logarithmic utility
Performance metrics
- Cumulative average throughput per link
- Convergence time: the time it takes so that all
cumulative throughputs to be within 5% of their
limits
Notice: different than mixing time.



Random network — 2 channels

link throughputs
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Complete interference graph

* JW algorithm does not follow steepest ascent direction
* Convergence time

Simulated Steepest Ascent

Number of links 3 6 10
Homogeneous channels 9.2 23.5 48.1
Heterogeneous channels 25.0 67.5 84.6

Jiang-Walrand

Number of links 3 6 10
Homogeneous channels 75.2 120.4 213.3
Heterogeneous channels 114.7 209.1 439.4




An element of the proof

In the convergence theorem of adaptive CSMA, everything
works as if there was a separation of time-scales (updates of
CSMA parameters — CSMA dynamics). Why?

e Stochastic approximation
e Stochastic approximation under Markovian noise

See V. Borkar, Stochastic Approximation: A dynamical system
view point, 2008



Stochastic Approximation

* Algorithm: z,11 =2, +an X (h(xn) +&nv1), n.

« Assumptions: F[{,11|F.] =0, a.s.,Vn

h L-Lipschitz

2
E Gy, = 00, E a, < 00,
n

n

Ell&n+1l*1Fn) < K1+ [lza]®), a.s.,¥n

sup ||z, || < o0, a.s.
n



ODE method

* Time: ¢(0) = Zak,Vn>1

gt = o0

* Continuous piece-wise linear interpolation: Z(t)

K|

(0) =0

K|

(t) =xpn + (Tpi1 — xp) X

vVt € [t(n),t(n+1))

t(n+1) —t(n)’



ODE method

 Approximate ODE: z°(s) =

(s)
#° (1) i

h(z

(1)), Vt>s

* The interpolated algorithm trajectory is well approximated by
the ODE:
Theorem Forany 1T > 0,

lim sup ||z(t) —2°(t)|| =0, a.s.
$70 tels,s+T]



ODE method

Corollary If h has a unique globally asymptotically stable point =~

then lim z, = x*.
n—oo



Stochastic Approximation
with Markovian noise

 Example:

Control parameter: xj

k+1

Observation: Yy = /k f(m(t))dt

System (or “noise”) dynamics: m(t) non-homogenous
Markov process whose transitions depend on the control
parameter

If the control parameter is fixed to «, the process is
irreducible, ergodic with stationary distribution n*

Updates: xx11 = o) + akh(xk, Yk)



Averaging principle

* Decoupling time-scales: the systems dynamics are as if the
Markov noise was averaged over its evolving stationary
distribution.

Tk41 = T + & Z Ux(k) (y)(zk, )
y

Theorem The dynamics of x;. converge weakly (u.o.c.) towards

those of the solution of:
& =Y 1°(y)h(z,y)
Y



