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Outline 
• Internet congestion control 

– Distributed optimization with separable objective function 

• Two miracles in resource allocation in wireless networks 
– Distributed optimization with un-separable objective function, and 

without message passing 

– Power control 

– Carrier Sensing Multiple Access 

• Parallel computations 
– Joint consensus and gradient descent methods 

– Just gradient descent 

• Colorings 
– Combinatorial optimization: a sampling approach 

• Distributed gradient free optimization 
 

 

 

 

 

 

 



Problem classes 
 

• Separable utilities, coupling constraints 

 

 

 

Examples: Internet congestion control, channel allocation in 
wireless networks 

 

• Non-separable utilities 

 

 

 

       Examples: power control and scheduling in wireless networks 
 

 

 

 

 

 



Internet congestion control 



Internet congestion control 

Objective of TCP: adapt the rates of sources to fairly and 
efficiently share network resources   



A simple model 
 

• Resources: a set of L links shared by a fixed population of n 
connections or data flows 

• Fixed routing  
 

 

 

 

 

 

FLOW 1 

FLOW 2 

FLOW 3 



Network Utility Maximization 
 

• The goal is to design distributed protocols converging to the 
solution of: 

 

 

 

 Previous example: 
 

 

 

 

 

FLOWS 

LINKS 



Network Utility Maximization 
 

• Utility functions: 

 - Proportional fairness:  

 - α-fairness: 

 - Max-min fairness: 

 
 

 

 

 

 



Why NUM? 
 

• Seems reasonable with a fixed number of flows (good trade-of 
between efficiency and fairness) 

• Distributed implementation 

• Optimal accounting for dynamics in the population of flows 
– On route i, Poisson flow arrivals with intensity  

– Flow sizes: exponential distribution with mean 

– Load on route i: 

– Separation of time-scales assumption: the congestion control protocol 
is much faster than the flow population dynamics. When the flow 
population is                               , the rates of flows on the various routes 
solve     

 

 

 

 

 



Optimality of NUM-based protocols 
 

• The Markov process capturing the numbers of active flows on 
the various routes is always stable (whenever possible) 

 

 

 

 

Theorem*   Let N(t) be the numbers of active flows at time t 
on the various routes. Then, under α-fair allocation, N(t) is 
ergodic if and only if:  
 

*  Impact of fairness on Internet performance, Bonald-Massoulie, ACM 
Sigmetrics, 2001. 



Decomposition 
 

• Lagrangean: 

 

 

 

• Dual function: 

 

 

 

 Source sub-problems 



Dual decomposition 
 

• Link price update: for each link l 

 

 

 

 

• Source rate update: 

 

 

 

 



Convergence of dual GD algorithm 
 

• The gradient of the dual function is lipschitz 
– Assume that 

– Let L and S be the length of the longest route and maximum number 
of sources using a given link, respectively  

 

 

 

 

 

• … which ensures convergence of the algorithm 

 

 

Lemma*   We have:  
 

*  Optimization flow control-I: Basic algorithm and convergence, Low-
Lapsley, ACM/IEEE trans. on Networking, 1999. 



Primal decomposition 
 

• Source rate update:  

 

 

 

 

• Price update: 

 

 

 

 
barrier function (to be defined later)  



Convergence of the primal algorithm 
 

 

 

 

 

 

• The barrier functions are increasing, and can be chosen so 
that we obtain a good approximation of the initial NUM 
problem 

Theorem*   For appropriate choice of β, the primal algorithm 
converges to a solution of:   
 

*  Rate control for communication networks: shadow prices, proportional 
fairness and stability, Kelly-Maulloo-Tan, J. Oper. Res. Soc., 1998. 



Does TCP scale? 
 

• It seems that it does not! 
– Dual algorithm: The lipschitz constant of the dual function depends on 

the number of flows. Decreasing convergence rate with the network 
size 

– Primal algorithm: for proportional fairness, the gradient seems 
unbounded when the number of flows increases 

– Other issues: see Low-Paganini-Doyle, IEEE Control Syst. Magazine, 
2002  

• The picture is more complicated 

• Flow-level dynamics without separation of time-scales 
– Under the dual algorithm, the system is stable at flow-level whenever 

possible, see Lin-Shroff-Srikant, IEEE trans. IT, 2008 

 

 

 



Outline 
• Internet congestion control 

– Distributed optimization with separable objective function 

• Two miracles in resource allocation in wireless networks 
– Distributed optimization with un-separable objective function, and 

without message passing 

– Power control 

– Carrier Sensing Multiple Access 

• Parallel computations 
– Joint consensus and gradient descent methods 

– Just gradient descent 

• Colorings 
– Combinatorial optimization: a sampling approach 

• Distributed gradient free optimization 
 

 

 

 

 

 

 



Power control 



Objective 

• Interfering links 
• Target SINR for link i: 
• Are these targets feasible? 
• Is there a distributed algorithm answering the question? 



Power control algorithm 

• SINR at link-i receiver: 
 

• Power updates*: 
 

 
 Distributed: each link measure its SINR only. 

*  Performance of optimum transmitter power control in cellular radio 
systems, Zander, IEEE trans. Vehicular Tech., 1992. 



Fixed point iteration 

• Power vector 
 

• Iteration: 
 

• Interference function: 
 

• A new analysis via contractive functions*  
 
 
 

*  Contractive interference functions and rates of convergence of DPC, 
Feyzmahdavian-Johansson-Charalambous, arxiv and ICC, 2012. 



Contractive interference function 

• Contractive interference function: 
 
 
 
 
 
 
 
 

• Weighted maximum norm:  



Convergence of DPC 

 
 
 
 
 

 
• Application: 

 
or equivalently     

Theorem   A contractive interference function I has a unique 
fixed point     . The sequence                                    converges to 
the fixed point, and:    
 



Convergence of DPC 

Theorem   If 
 
then I is c-contractive with   

Theorem   If 
there exists a vector              such that 
iff the spectral radius of M is strictly less than 1.     

 
• As a consequence, if the spectral radius of M is < 1, 

then the DPC algorithm converges 



Utility optimal CSMA 



Distributed MAC protocols 

• How to share an interfered channel in a distributed way? 



Distributed MAC protocols 

• How to share an interfered channel in a distributed manner? 

Collision: both transmissions fail 



Distributed MAC protocols 

• How to share an interfered channel in a distributed manner? 
– Randomize! Wait a random time before transmitting 

– Be polite: listen before you talk, CSMA (Carrier Sense Multiple Access) 

Collision: both transmissions fail 



Distributed MAC protocols 

time 

BUSY 

TRANSMISSION 

Attempt probability: 



Distributed MAC protocols 

time 

BUSY 

TRANSMISSION 

Attempt probability: 



Distributed MAC protocols 

time 

BUSY 

COLLISION 

Attempt probability: 

COLLISION 



Distributed MAC protocols 

time 

BUSY 

TRANSMISSION 

Attempt probability: 

Non-adaptive MAC (Aloha) 
- Constant transmission  

probability 

 

 

 

Adaptive MAC 
- Adaptive transmission probability 

- e.g. exponential back-off 

 



CSMA: a simple model 

• Each transmitter runs a Poisson clock  
• When the clock ticks, if the channel is idle, start 

transmitting 
• No collision 
 

time 

BUSY 

TRANSMISSION 



Full interference 

• A fully connected interference graph 
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Partial interference 

• A general interference graph 
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CSMA unfairness 

• Partial interference 
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Objective 

• Design fair and efficient CSMA protocols 

• More precisely:  

 

 

 

 : long term throughput on link i 

       : strictly increasing concave utility function  

 
 

     
 



Model 

• Interference modeled as a graph: 

 

•  Schedule: 

• Feasible schedule: 

• Rate region:   

 

 

• Goal: solve the following convex program 
 

     
 



Rules 

• No information are explicitly exchanged among 
transmitters 

• Each transmitter just observes the realized throughput 
and can sense the channel  

 

•  Is it at all possible? 
- Yes, Jiang-Walrand, Allerton 2008 

- An other (better) solution, Hegde-Proutiere, CISS 2012 

     
 



Performance of static CSMA 

• Transmitter of link i  
- Poisson clock of intensity: 

- Mean channel holding time: 

- Intensity: 

•          is a reversible Markov process whose 
stationary distribution is: 

 

 

 

• Long term throughput on link i: 

 

 
 

     
 



New optimization problem 

• Dual GD for this new problem 



Lagrangean 

• Primal solutions: 



Lagrangean 

• Primal solutions: 



Lagrangean 

• Primal solutions: 



Dual GD algorithm 

• Implementation: via CSMA! 

• The transmitter of link i chooses its CSMA parameters 
such that: 



Dual GD algorithm 

• Implementation: via CSMA! 

• The transmitter of link i chooses its CSMA parameters 
such that: 

 

• Issue: the long-term throughput on link i cannot be 
observed  



Practical implementation 

• Time divided into frames 

• During frame k, the transmitter of link i runs CSMA with 
parameter          , and observes the throughput             
obtained in this frame 

• At the end of frame k: 

 

 

 

• Note that if the frame is very long:  



Convergence 

• Run the previous algorithm with the following step-sizes: 

 

 

Theorem   We have: 
 
where                                     and  
 
where      and       solve the modified optimization problem.   
 



Convergence 

• Modified vs. initial optimization problems 

• Let        be the solution of 

 

 

 

• Then: 



An alternative approach 

 

Objective: 
 



Steepest Coordinate Ascent 

Steepest coordinate ascent algorithm: select schedule 
such that 



Simulated Steepest Ascent 

Steepest ascent algorithm can be approximately 
implemented by sampling allocations according to the 
distribution: 
 
 
 
 
 

Decentralized implementation: agents observe their 
realized throughputs and then adapt their channel access 
rate accordingly. 
  



Slotted-CSMA implementation 

Time is slotted. 
At the beginning of slot k: 
1. Select a link uniformly at random, say link i 
2. The transmitter of link i observes the throughput obtained so 

far: 
3. With probability                                   , it accesses the channel if 

idle 
 Otherwise it releases the channel  
 
  



Convergence 

Note that if                     was fixed, equal to             , we would 
sample the schedule with distribution         . This is not the 
case. Nevertheless we have: 
  

Theorem   We have: 
 
where 
 



Extensions 

Set of schedules Ω 
 

Objective: maximize  𝑊 𝑝 =  𝑈( 𝑝𝑠𝜇𝑖,𝑠𝑖𝑠∈Ω𝑖 )   

       over 𝑝:  𝑝𝑠 = 1𝑠  
 
 
Example: Multi-channel wireless networks 
      Ω: set of proper channel allocations 
            Channel 0: the link remains inactive 
      𝜇𝑖,𝑠𝑖: rate at which link 𝑖 transmits on channel 𝑠𝑖  
 



Steepest Ascent 

Steepest ascent algorithm selects the distribution concentrating  
at 𝑠⋆ with:   

𝜕𝑊

𝜕𝑝𝑠
𝑝 = 𝜇𝑖𝑠𝑖𝑈′(𝛾𝑖 𝑝 )

𝑖
 

𝛾𝑖 𝑝 = 𝑝𝑠𝜇𝑖𝑠𝑖
𝑠

 

𝑠⋆ ∈ argmax
𝑠
 𝜇𝑖,𝑠𝑖𝑈′(𝛾𝑖 𝑝 )
𝑖

 



Simulated Steepest Ascent 

Steepest ascent algorithm can be approximately 
implemented by sampling allocations according to the 
distribution: 
 
 
 
 
 
Decentralized implementation: agents observe their realize 
throughputs and then randomly select a channel. 
  

𝜉𝜆,𝑝 𝑠 =
1

𝑍(𝜆, 𝑝)
× 𝜆
 𝜇𝑖,𝑠𝑖𝑈

′(𝛾𝑖(𝑝))𝑖  



Slotted-CSMA implementation 

At the beginning of time period 𝑘,  
 

1. A link is chosen uniformly at random for possible update, 
say link 𝑖; 

2. Link 𝑖 measures the average rate 𝛾𝑖(𝑘 − 1) received so 
far; 

3. It selects a channel from the set of possible channels 
𝐴𝑖(𝑘 − 1) (no interference with neighbors) according to 
the distribution:  

 
 
 

𝛼 𝑐  ~ 𝜆𝜇𝑖,𝑐 𝑈
′(𝛾𝑖 𝑘−1 ),   for 𝑐 ∈ 𝐴𝑖(𝑘 − 1) 



Convergence 

Note that if 𝛾𝑖(𝑘 − 1) was fixed, equal to 𝛾𝑖(𝑝), we would 

sample according to 𝜉𝜆,𝑝. This is not true, and we sample 
from a time-varying distribution. 
 
 
Theorem  For any ϵ, there exists 𝜆 (large enough) such that 
for any initial condition, the SSA algorithm converges in the 
following sense: 
 
 

lim
k→∞
𝛾 𝑘 = 𝛾𝜆,       almost surely 

 [𝑈 𝛾𝑖
𝜆 − 𝑈( 𝑝𝑠

⋆𝜇𝑖,𝑠𝑖)]  < 𝜖.
𝑠𝑖

 



Asynchronous CSMA implementation 

• Static multi-channel CSMA: link-i transmitter accesses 
channel c at rate ρic 

     Stationary distribution: 
 

• CSMA samples from distribution 𝜉𝜆,𝑝 𝑠  if: 

𝜁𝜌 𝑠 =
1 𝑠∈Ω
𝑍(𝜌)
 𝜌𝑖𝑠𝑖
𝑖

 

 
 
 

𝜌𝑖𝑐 = 𝜆
𝜇𝑖𝑐𝑈
′(𝛾𝑖 𝑝 ) 



Asynchronous CSMA implementation 

At the beginning of time period 𝑘,  
 

Each link sets its CSMA parameters on the various 
channel so that:  

 
 
 

𝜌𝑖𝑐 𝑘 = 𝜆
𝜇𝑖,𝑐 𝑈

′(𝛾𝑖 𝑘−1 ) 



Comparison with JW algorithm 

• Updates in SSA algorithm: 
 
 
 

 
 
 
• Updates in Jiang-Walrand algorithm: 

 
 

 



Numerical experiments 
• Networks 

 
 
 

 
• Homogeneous vs heterogeneous (unif. on [1,10]) 

channels 
• Logarithmic utility 
• Performance metrics 

- Cumulative average throughput per link 
- Convergence time: the time it takes so that all 

cumulative throughputs to be within 5% of their 
limits  

     Notice: different than mixing time. 
 



Random network – 2 channels 



Complete interference graph  

Number of links    3   6   10 
Homogeneous channels  9.2    23.5  48.1 
Heterogeneous channels  25.0  67.5  84.6 

• JW algorithm does not follow steepest ascent direction 
• Convergence time 

Simulated Steepest Ascent 

Number of links    3   6   10 
Homogeneous channels  75.2    120.4  213.3 
Heterogeneous channels  114.7  209.1  439.4 

Jiang-Walrand 



An element of the proof 

In the convergence theorem of adaptive CSMA, everything 
works as if there was a separation of time-scales (updates of 
CSMA parameters – CSMA dynamics). Why? 

 
• Stochastic approximation 
• Stochastic approximation under Markovian noise 

 
See V. Borkar, Stochastic Approximation: A dynamical system 
view point, 2008 
 
 
 
 



Stochastic Approximation 

• Algorithm: 

  
• Assumptions: 

  
L-Lipschitz 



ODE method 

• Time: 

  

• Continuous piece-wise linear interpolation: 

  



ODE method 

• Approximate ODE: 

 

 

• The interpolated algorithm trajectory is well approximated by 
the ODE: 

 

 

 

  

Theorem   For any   

 



ODE method 

Corollary   If h has a unique globally asymptotically stable point 

then    

 



Stochastic Approximation 
with Markovian noise 

• Example: 

- Control parameter: 

 

- Observation: 

 

- System (or “noise”) dynamics:           non-homogenous 
Markov process whose transitions depend on the control 
parameter 

- If the control parameter is fixed to    , the process is 
irreducible, ergodic with stationary distribution 

- Updates: 



Averaging principle 

• Decoupling time-scales: the systems dynamics are as if the 
Markov noise was averaged over its evolving stationary 
distribution. 

Theorem   The dynamics of       converge weakly (u.o.c.) towards 
those of the solution of:    

 


