Decentralized learning in control and optimization
for networks and dynamic games

Part |: centralized optimization



Outline of part |

e Gradient-free (or Ot order) methods
e Gradient-descent (or 1t order) methods
* Fixed point iterations



Gradient-free methods



Gradient-free methods

Two surveys:

1. Optimization by direct search: new perspectives on some

classical and modern methods, Kolda-Lewis-Torczon,
SIAM rev. 2003

2. Derivative-free optimization: a review of algorithm,
Rios-Sahinidis, submitted



Objective
f
minimize f(x)
over z € ()
CR"

1
I
L]
33*

* The gradient V f(x) is not available
 Smooth function, and convex compact search space



A few algorithms

Random global search: Hit and Run algorithm

Random local search: Generating Set Search algorithm
Simulated annealing

Gradient-estimator methods



Random global search

Q2

 Sequentially generate random points (zx, k= 1,2, ...)

* The candidate at a given time is the point with smallest
value function observed so far
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Random global search

Q2

 Sequentially generate random points (zx, k= 1,2, ...)

* The candidate at a given time is the point with smallest
value function observed so far



Hit and run algorithm

W Lo

* Principle: generate a sequence of samples whose limited
distribution is uniform over the search space



Hit and run algorithm

W Lo

e Algorithm: select a direction uniformly at random, select a
new point uniformly at random along this direction



Hit and run algorithm

W Lo

* The fastest known procedure to generate samples with
uniform distribution over



Hit and run optimization

. o T + Sspdp, it f(ZCk + Skdk) < f(:ljk)
LT 2, otherwise



Performance of HR

Theorem™* Let N(r) be the number of samples required to be
at a distance at least r of the minimum of a positive
qguadratic function. Then:

h(n)

r

E[N(r)] < nE[K (r)"%] = O(n*?)
K(T)PAS is the number of required improvements in the

Pure Adaptive Search algorithm.

* Improving Hit-and-Run for Global Optimization, Zabinsky et al., Journal of
Global Optimization, 1993.



Oblivious Randomized Direct search*

Q2

* |sotropic random generation of improving points, ensuring
fixed average improvement

e Oblivious randomized direct search for real parameter optimization,
Jagerskupper, ESA, 2008.



Oblivious Randomized Direct Search

Candidate point: y = zr + Liug
Accepted if: f(y) < f(Xk)
* Ui, U2, ... Iii.d. sequence of unit vectors with uniformly

random direction
* Ly, Lo, ...ii.d.sequence of step sizes, density p

* How to choose (i such that the average improvement
remains constant?
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Oblivious Randomized Direct Search

y=x+ Lu

Zr ® ° x*
d= |z -z

Pdla = Pl +lu—2¥|| < ad]

Probability to reduce the distance d to the optimal point by a
factor a when the step-size is |.

(14+a)d

Pipe = Plly —a*|| < ad) = /(  pasan(a
1—a)d

<pd,l,a — pl,l/d.a)



Oblivious Randomized Direct Search

(1+«)
Pd,p,a0 — / d X pljvja,u(dv)dv
(1—a)

 Improvement independent of d if: u(v) ~ 8/v
e Under support restriction:

o 1v€[a,b]
1) = og(b/a)

Theorem For a =0.1¢/vn+1, b=2vn+1, Q=][0,1]"
ORDS algorithm solves the sphere problem (f(z) = ||z — z*||3)
with precision € 4+ a in an expected number of steps scaling as

O(n.log”(n/e))



Oblivious Randomized Direct search*

Q2

* |sotropic random generation of improving points, ensuring
fixed average improvement

e Oblivious randomized direct search for real parameter optimization,
Jagerskupper, ESA, 2008.



Random local search

* Principle: Search locally for improving points, i.e., with
smaller objective function



Generating Set Search

* Generic algorithm

1.
2.
3.

From the current point, generate neighboring trial points
Evaluate the function at trial points

If there is an improving point, move there

Otherwise, modify the procedure to generate trial

points



Compass search

Algorithm.

Initialization. Choose xg, and Ay.

For each iteration k£ > 1:

Step 1. Generate trial 2n points: xp_1 £ Ar_16€;,
Vi=1,....n

Step 2. If there exists a trial point 2’ such that
f(x/) < f(xk—1)7

T = 2’

Ap = A1

Step 3. Otherwise x, = x1_1

A = alNp_1 (Oz < 1)



Compass search
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(f) Move West



Convergence of GSS

Theorem The compass search algorithm converges to a local
minimizer of the objective function, if the latter is

continuously differentiable and has Lipschitz gradient.

* The convergence result remains valid for generic GSS
algorithms provided
- the trial point generation algorithm is appropriate
- the step-size sequence is appropriate



Simulated Annealing

* Proposed by Kirkpatrick-Gelatt-Vecchi, Science, 1983
(>24000 citations)

* Paradigm from statistical physics: at high temperature,
molecules move freely forming a liquid; if the tmeperature
is slowly decreased, thermal mobility disappears, and a
crystal with minimum energy is created

* Principle: construct a Markov chain whose stationary
distribution with fixed temperature is proportional to:

me(x) oc exp(—f(z)/T)



Discrete search space

 Components of the algorithm
- A “cooling” schedule T} > 15 > ...

lim Tk =0

k— o0

- A distribution over possible moves R(z,y)

R(z,y) = 1/|[N(z)|, Vye N(z)

- e

- Acceptance probability function:

pr(y) = exp|

—(f(y) — f(ﬂ?))+]
1%




SA algorithm

Algorithm.

Initialization. Choose xg € ().

For each iteration k£ > 1:

Step 1. Generate y randomly according to R(xx_1,vy),
Step 2. Accept the move, i.e., x;, = y, with probability

—[f(y) — f(fl?k—1)]+]
1,

Pk = GXP[



SA algorithm: avoiding local minima

LTk Y1 \Y2

Move to ys accepted w.p. 1
Move to 17 accepted with > 0 probability



Convergence

Theorem™* Under SA algorithm, if the constructed Markov
chain is irreducible and weakly reversible, then

lim Plzy € arg min f(x)] =1« Zexp(—d/Tk) = +00

k— o0
k=1

Example: T = c/log(k + 1)

* Cooling schedules for optimal annealing, Hajek, Mathematics of
Operations Research, 1988.



Continuous search space

* Similar components
- A “cooling” schedule T} > 15 > ...

lim Tk =0

k— o0

- A distribution over possible moves R(z,y)

- Acceptance probability function:

pr(y) = exp|

—(f(y) — f(fb“))+]
1%




Continuous search space

 Common justification of SA: avoids local minima

* Yet another justification of the acceptance probability of
the form: exp(—f(y)/T)

. it maximizes the convergence rate for convex optimization
problems among all possible logconcave probabilties

* Simulated Annealing for Convex Optimization, Kalai-Vempala,
Mathematics of Operations Research, 2006.



Gradient estimation

* |dea proposed by Granichin, 1989
* One-sample estimator of the gradient

/u S:{y:Hszl}
e B={y:|yl <1}

f(x) = Evep[f(z + 6v)]
Gradient estimator: f(z + du)u

A

Lemma Y6 >0, E,cs|f(x+du)u] = %Vf(x)



Expected Gradient Descent

Algorithm.
Initialization. Choose zg € ().
For each iteration £ > 1:

Ty = Tp—1 — Vf(Tr_1 + our)ug



Expected Gradient Descent

sup || f(x)|| < F
rES)
Br R
V= ——
B, FVK
L 5 — 1 RrnF
- K4\ 3(Lr + C)

Theorem* |If fis convex and L-lipschitz:

CEY flan)] < fl*) + O(K

* Online convex optimization in the bandit setting: gradient descent without
the gradient, Flaxman-Kalai-McMahan, SODA, 2005.



Gradient-descent methods



Gradient-descent methods

A few words on convex analysis
- Convexity, strong convexity

Unconstrained smooth optimization

- Gradient descent algorithms
- Lower bounds on convergence rates
- Heavy ball method

Constrained smooth optimization
Lagrange Duality
Fixed point iteration



Convex analysis

* A continuously differentiable function fis convex if
Vz,y € R™,  f(y) > f(z) + Vf(z).(y — z)

f

e Convexity is equivalent to:
(Vf(z) =V fy).(z—y) >0



Convex analysis

e Continuously differentiable function with L-lipschitz

gradient:
0< fy) ~ f(x) = Vi(@)-ly —2) < 5 o~y
F@)+ Vi)~ ) + o2 V@) - V@) < £()

(Vf(z) = Vf).(x—y) <Lz -yl



Convex analysis

e Strong convex function:

Va,y €R", f(y) = f(@) + VI(@).(y —2) + 5 lly — 2l




GD for unconstrained opt.

minimize f(x)
over x € R"

* Principle: move in the direction towards the minimizer

Algorithm.
Initialization. Choose xg € R™.
For each iteration k£ > 0O:

Tr+1 = Tk — oV f(xk)

| p—

Lh+1 Lk



Convergence

Theorem Let f be a convex and continuously differentiable
function. Under GD algorithm:

N iix
lzo — 2|1 + > @RIV f ()?

flxr) — f* < ; ZZ:O ”




Convex and L-lipschitz functions

Theorem Let f be a convex and continuously differentiable
function. Assume: ||zg — z*|| < R.

(i) e-optimality can be obtained in (RL)?/e* steps
(by choosing ay, = R/(LVT))

2
(ii) For constant step size @, lim f(zr) < f* + %
T — o0

(iii) Assuming ) o =00, » af < oo,
k k

lim f(zr)= [~

T'— o0



Convex functions with L-lipschitz
gradient

Theorem Let f be a convex and continuously differentiable
function with L-lipschitz gradient. Fixed step size:ay = 1/L

2LR(f(w0) — )
2LRE + 1(f(0) — /)

flzr) — 7 <



c-strongly convex functions with L-
lipschitz gradient

Theorem Let f be a c-strongly convex and continuously
differentiable function with L-lipschitz gradient. Fixed step

size:a, =2/(c+ L)

) [lzo — 2|7

L k—1
2

flar) = < 5

Condition number: kK = L/c



Lower bounds

Theorem* Let f be a convex and continuously differentiable
function with L-lipschitz gradient. There is no first-order
method that guarantees a convergence rate faster than 1/T2

at least for T' < n/2.

Theorem™ Let f be a c-strongly convex and continuously
differentiable function with L-lipschitz gradient. For all first

order method, we have

—1
flar) = 1* 2 SO oo = o7

* Introduction to convex optimization, Nesterov, 2004.



Heavy ball method

* Problem with classical GD: cannot avoid zig-zags




Heavy ball method

* Problem with classical GD: cannot avoid zig-zags

* Heavy ball method adds robustness by accounting for
successive moves:
Trpe1 = Tk — aV f(xg) + B(Tr — Tp—1)
* By an optimal choice of parameters, the convergence rate
matches Nesterov’s lower bound



Smooth convex unconstrained
optimization

Class of functions

Lipschitz
Lipschitz gradient

Strongly convex

Algorithm

GD
GD
Optimal
GD
Optimal

Complexity

1/€?
1/¢
1/Ve
log(1/¢)
log(1/¢)

1%

10000
100
10

2.7
2.7



GD for constrained optimization

minimize f(x)
over x € {} C R"

* Assumption: the search space is convex and closed
* Gradient projection:

Algorithm.
Initialization. Choose xg € 2.
For each iteration k£ > O:

y =T — oV f(xg)
Tp+1 = argmingeq ||y — |

 Similar convergence results as for unconstrained scenarios



Lagrange duality

* Primal problem:

minimize f(x)
subject to g(x) <0
over x € {)

f:R"—R
g:(gl7"-7gm): g]Rn%R



Lagrange duality

* Lagrangean: L(x, u) ) + Z“Jg?
| f(x), if z feasible
ISJ;ISL(Q% :u) — { 00, otherwise.

— inf sup L(x,
f* Inf, sup (@, 1)

e Dual function:
a(p) = inf (f(z) + ) 1jg;(x))
J

qg: R =R

1;g;(x) : cost of of violating the associated constraint



Lagrange duality

e Dual problem: (a convex program)

maximize q(u)
over p € RT (V= {(g(2), f(z)) | z € X}

q" = supq(u)
p=>0

q(p) = infzex {f(z) + H'g(




Lagrange duality

Slater condition: 3z € Q : g;(z) < 0,V
Weak duality: ¢* < f~*

In case of convex function f and g, if Slater condition is
satisfied, strong duality holds: ¢* = f~

In absence of convexity, no guarantee on strong duality

A




Dual gradient algorithm

* |n case of strong duality, we may solve the dual problem
only, i.e., via GD

Algorithm.
Initialization. Choose pg > 0.
For each iteration k£ > O:

fr+1 = [pr + aVa(pe))t



Fixed point iterations

Optimality condition: V f(z*) =0
Iterative methods of the form: xp 11 = F(xy)
For example, GD algorithm is obtained choosing:
F(zr) =2 —aVf(x)
whose fixed points are such that Vf(x) = 0

Brouwer’s fixed point theorem
X C R"™ compact convex set
if ' : X — X iscontinuous, then it has a fixed point



Contraction mappings

* Qg-contraction mapping:
Vo,y, |[F(y) — F(@)| < qlly — |

where we have the choice of the norm,and ¢ < 1

* For g-contractions, we have existence and unicity of the
fixed point and

o — 2*|| < ¢"[lwo — 2|



Revisiting GD
* GD mapping: F(x) =z — aV f(x)

* Assume that fis c-strongly convex with L-lipschitz gradient
then Fis non-expansive if 0 < a < 2/L
Fis a contractionif 0 < a < 1/c

(F is non-expansive iff Vo £y, [|[F(y) — F(x)|| < ||y — x||)



