# Decentralized learning in control and optimization for networks and dynamic games

### Part I: centralized optimization

Alexandre Proutiere KTH

# Outline of part I

- Gradient-free (or 0<sup>th</sup> order) methods
- Gradient-descent (or 1<sup>st</sup> order) methods
- Fixed point iterations

### Gradient-free methods

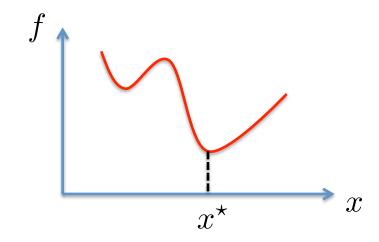
### Gradient-free methods

#### Two surveys:

- 1. Optimization by direct search: new perspectives on some classical and modern methods, **Kolda-Lewis-Torczon**, SIAM rev. 2003
- Derivative-free optimization: a review of algorithm,
   Rios-Sahinidis, submitted

# Objective

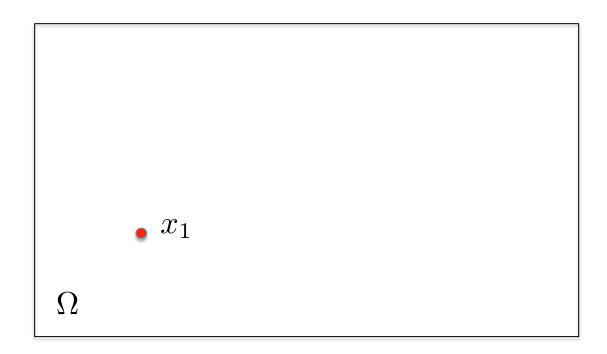
minimize 
$$f(x)$$
  
over  $x \in \Omega$   
 $\Omega \subset \mathbb{R}^n$ 



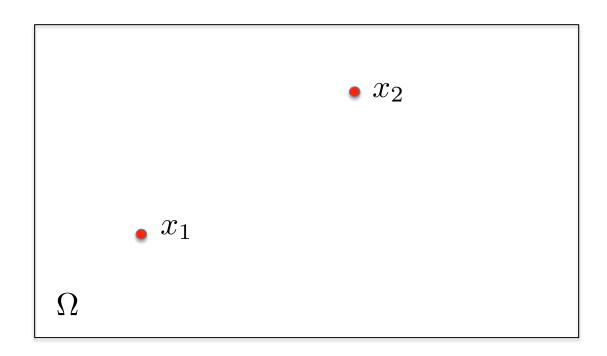
- The gradient  $\nabla f(x)$  is not available
- Smooth function, and convex compact search space

### A few algorithms

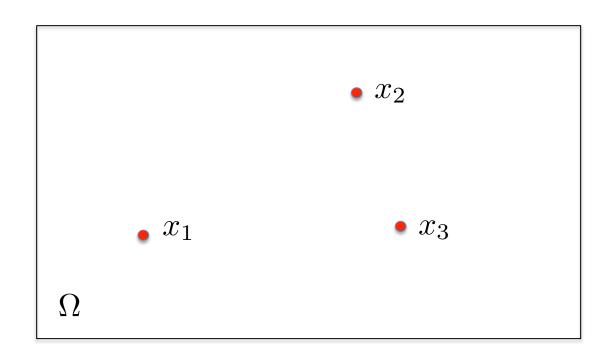
- Random global search: Hit and Run algorithm
- Random local search: Generating Set Search algorithm
- Simulated annealing
- Gradient-estimator methods



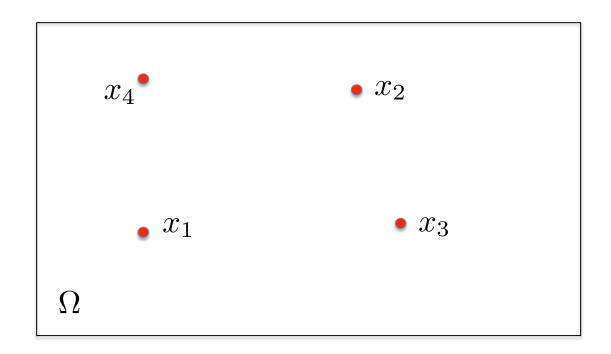
- Sequentially generate random points  $(x_k, k = 1, 2, ...)$
- The candidate at a given time is the point with smallest value function observed so far



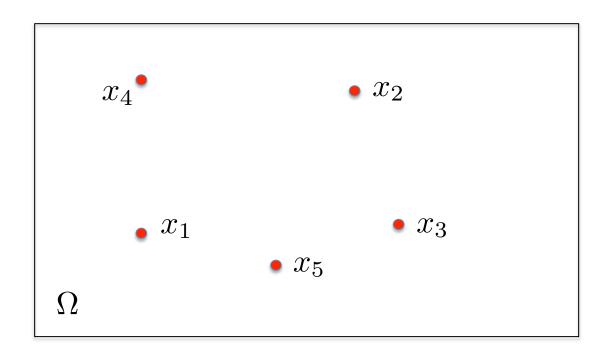
- Sequentially generate random points  $(x_k, k = 1, 2, ...)$
- The candidate at a given time is the point with smallest value function observed so far



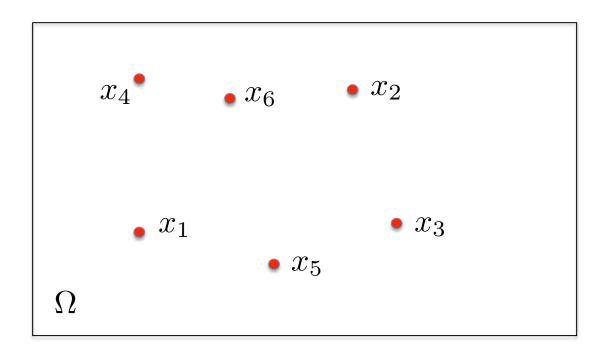
- Sequentially generate random points  $(x_k, k = 1, 2, ...)$
- The candidate at a given time is the point with smallest value function observed so far



- Sequentially generate random points  $(x_k, k = 1, 2, ...)$
- The candidate at a given time is the point with smallest value function observed so far

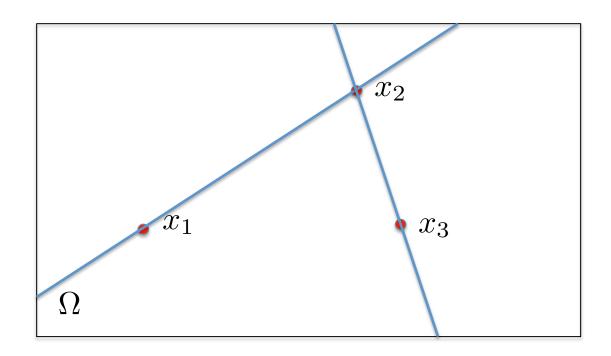


- Sequentially generate random points  $(x_k, k = 1, 2, ...)$
- The candidate at a given time is the point with smallest value function observed so far



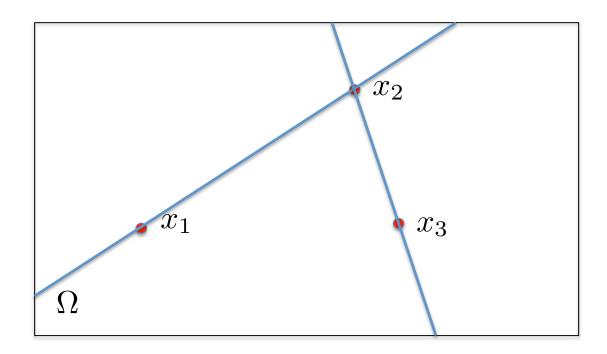
- Sequentially generate random points  $(x_k, k = 1, 2, ...)$
- The candidate at a given time is the point with smallest value function observed so far

### Hit and run algorithm



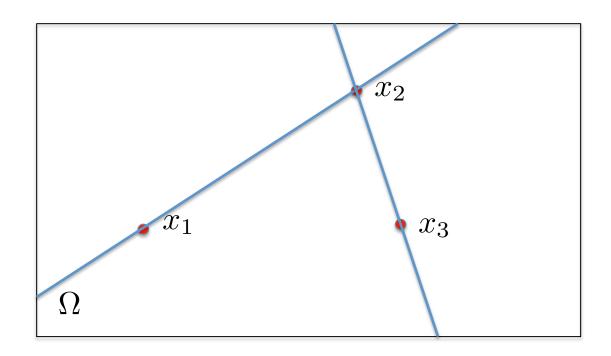
• Principle: generate a sequence of samples whose limited distribution is uniform over the search space

### Hit and run algorithm



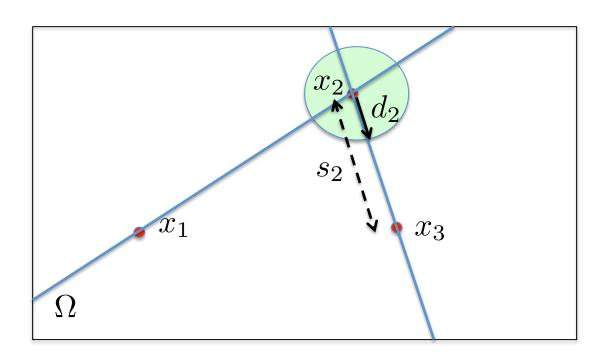
 Algorithm: select a direction uniformly at random, select a new point uniformly at random along this direction

# Hit and run algorithm



• The fastest known procedure to generate samples with uniform distribution over  $\boldsymbol{\Omega}$ 

### Hit and run optimization



$$x_{k+1} = \begin{cases} x_k + s_k d_k, & \text{if } f(x_k + s_k d_k) < f(x_k) \\ x_k, & \text{otherwise} \end{cases}$$

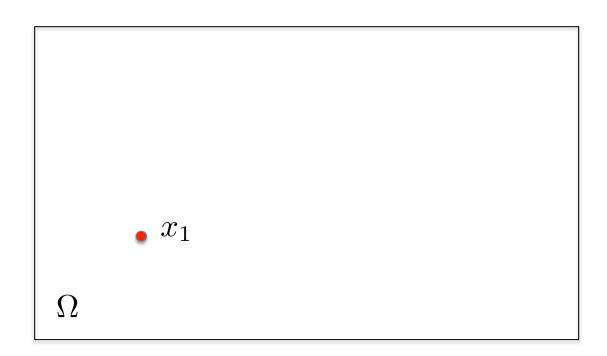
### Performance of HR

**Theorem\*** Let N(r) be the number of samples required to be at a distance at least r of the minimum of a positive quadratic function. Then:

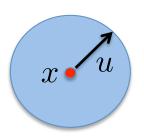
$$\mathbb{E}[N(r)] \le \frac{\psi(n)}{r} n \mathbb{E}[K(r)^{PAS}] = O(n^{5.2})$$

 $K(r)^{PAS}$  is the number of required improvements in the Pure Adaptive Search algorithm.

\* Improving Hit-and-Run for Global Optimization, **Zabinsky et al.**, Journal of Global Optimization, 1993.



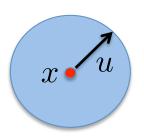
- Isotropic random generation of improving points, ensuring fixed average improvement
- Oblivious randomized direct search for real parameter optimization,
   Jagerskupper, ESA, 2008.



Candidate point:  $y = x_k + L_k u_k$ 

Accepted if:  $f(y) \leq f(X_k)$ 

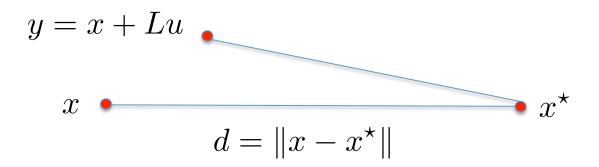
- $u_1, u_2, \ldots$  i.i.d. sequence of unit vectors with uniformly random direction
- $L_1, L_2, \ldots$  i.i.d. sequence of step sizes, density  $\mu$
- How to choose  $\mu$  such that the average improvement remains constant?



Candidate point:  $y = x_k + L_k u_k$ 

Accepted if:  $f(y) \leq f(X_k)$ 

- $u_1, u_2, \ldots$  i.i.d. sequence of unit vectors with uniformly random direction
- $L_1, L_2, \ldots$  i.i.d. sequence of step sizes, density  $\mu$
- How to choose  $\mu$  such that the average improvement remains constant?



$$p_{d,l,\alpha} = P[\|x + lu - x^*\| \le \alpha d]$$

Probability to reduce the distance d to the optimal point by a factor  $\alpha$  when the step-size is l.

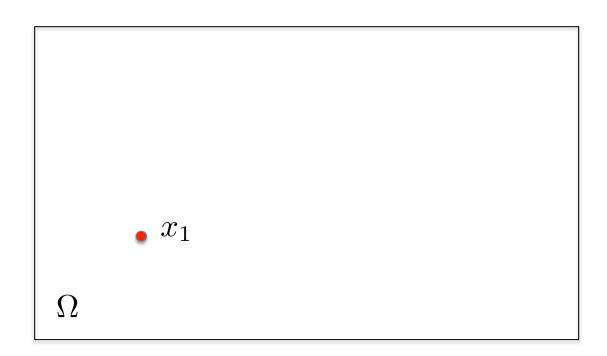
$$p_{d,\mu,\alpha} = P[\|y - x^*\| \le \alpha d] = \int_{(1-\alpha)d}^{(1+\alpha)d} p_{d,l,\alpha}\mu(l)dl$$
$$(p_{d,l,\alpha} = p_{1,l/d,\alpha})$$

$$p_{d,\mu,\alpha} = \int_{(1-\alpha)}^{(1+\alpha)} d \times p_{1,\nu,\alpha}\mu(d\nu)d\nu$$

- Improvement independent of d if:  $\mu(v) \sim \beta/v$
- Under support restriction:

$$\mu(v) = \frac{1_{v \in [a,b]}}{v \log(b/a)}$$

**Theorem** For  $a=0.1\epsilon/\sqrt{n+1}, \quad b=2\sqrt{n+1}, \quad \Omega=[0,1]^n$  ORDS algorithm solves the sphere problem  $(f(x)=\|x-x^\star\|_2^2)$  with precision  $\epsilon+a$  in an expected number of steps scaling as  $O(n.\log^2(n/\epsilon))$ 



- Isotropic random generation of improving points, ensuring fixed average improvement
- Oblivious randomized direct search for real parameter optimization,
   Jagerskupper, ESA, 2008.



 Principle: Search locally for improving points, i.e., with smaller objective function

### **Generating Set Search**

- Generic algorithm
  - 1. From the current point, generate neighboring trial points
  - 2. Evaluate the function at trial points
  - 3. If there is an improving point, move there
    Otherwise, modify the procedure to generate trial points

### Compass search

#### Algorithm.

Initialization. Choose  $x_0$ , and  $\Delta_0$ .

For each iteration  $k \geq 1$ :

Step 1. Generate trial 2n points:  $x_{k-1} \pm \Delta_{k-1} e_i$ ,

$$\forall i = 1, \dots, n$$

Step 2. If there exists a trial point x' such that

$$f(x') < f(x_{k-1}),$$

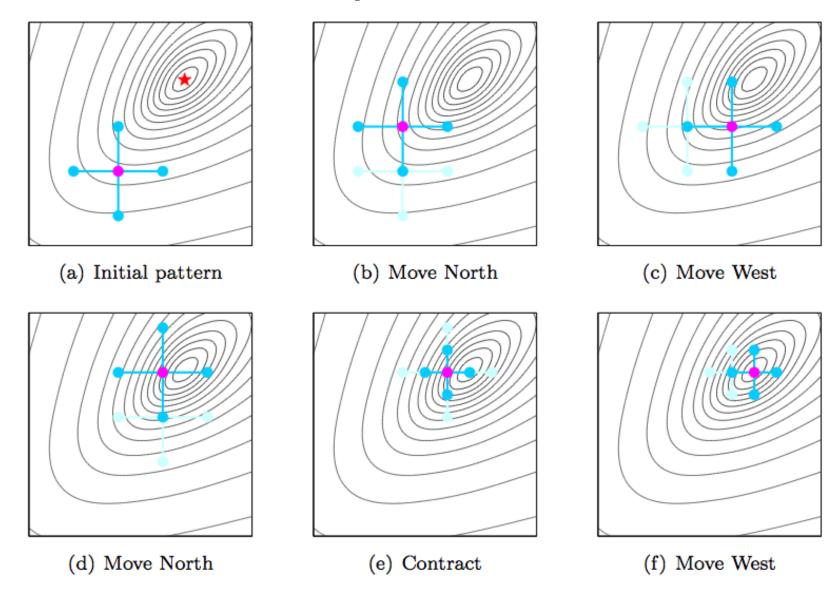
$$x_k = x'$$

$$\Delta_k = \Delta_{k-1}$$

Step 3. Otherwise  $x_k = x_{k-1}$ 

$$\Delta_k = \alpha \Delta_{k-1} \quad (\alpha < 1)$$

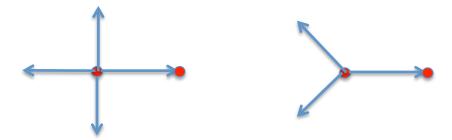
# Compass search



### Convergence of GSS

**Theorem** The compass search algorithm converges to a local minimizer of the objective function, if the latter is continuously differentiable and has Lipschitz gradient.

- The convergence result remains valid for generic GSS algorithms provided
  - the trial point generation algorithm is appropriate
  - the step-size sequence is appropriate



### Simulated Annealing

- Proposed by Kirkpatrick-Gelatt-Vecchi, Science, 1983 (>24000 citations)
- Paradigm from statistical physics: at high temperature, molecules move freely forming a liquid; if the tmeperature is slowly decreased, thermal mobility disappears, and a crystal with minimum energy is created
- Principle: construct a Markov chain whose stationary distribution with fixed temperature is proportional to:

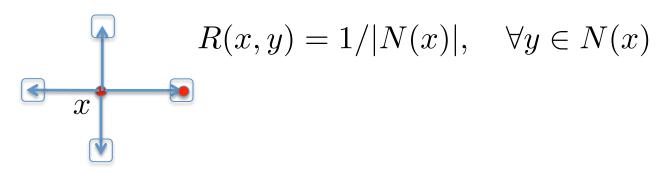
$$\pi_t(x) \propto \exp(-f(x)/T)$$

### Discrete search space

- Components of the algorithm
  - A "cooling" schedule  $T_1 \geq T_2 \geq \dots$

$$\lim_{k \to \infty} T_k = 0$$

- A distribution over possible moves R(x,y)



- Acceptance probability function:

$$p_k(y) = \exp\left[\frac{-(f(y) - f(x))^+}{T_k}\right]$$

### SA algorithm

#### Algorithm.

Initialization. Choose  $x_0 \in \Omega$ .

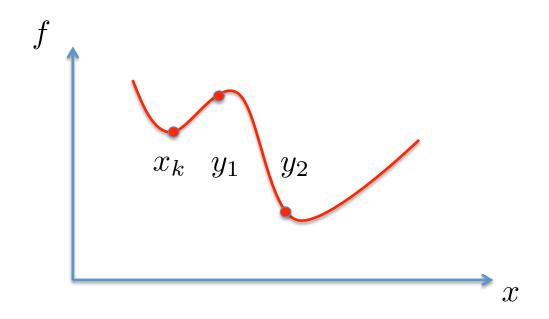
For each iteration  $k \geq 1$ :

Step 1. Generate y randomly according to  $R(x_{k-1}, y)$ ,

Step 2. Accept the move, i.e.,  $x_k = y$ , with probability

$$p_k = \exp\left[\frac{-[f(y) - f(x_{k-1})]^+}{T_k}\right]$$

### SA algorithm: avoiding local minima



Move to  $y_2$  accepted w.p. 1 Move to  $y_1$  accepted with > 0 probability

### Convergence

**Theorem\*** Under SA algorithm, if the constructed Markov chain is irreducible and weakly reversible, then

$$\lim_{k \to \infty} P[x_k \in \arg\min_x f(x)] = 1 \iff \sum_{k=1} \exp(-d/T_k) = +\infty$$

Example: 
$$T_k = c/\log(k+1)$$

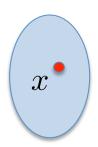
\* Cooling schedules for optimal annealing, **Hajek**, Mathematics of Operations Research, 1988.

# Continuous search space

- Similar components
  - A "cooling" schedule  $T_1 \geq T_2 \geq \dots$

$$\lim_{k \to \infty} T_k = 0$$

- A distribution over possible moves R(x,y)



- Acceptance probability function:

$$p_k(y) = \exp\left[\frac{-(f(y) - f(x))^+}{T_k}\right]$$

### Continuous search space

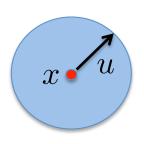
- Common justification of SA: avoids local minima
- Yet another justification of the acceptance probability of the form:  $\exp(-f(y)/T)$

... it maximizes the convergence rate for convex optimization problems among all possible logconcave probabilties

<sup>\*</sup> Simulated Annealing for Convex Optimization, **Kalai-Vempala**, Mathematics of Operations Research, 2006.

#### **Gradient estimation**

- Idea proposed by Granichin, 1989
- One-sample estimator of the gradient



$$S = \{y : ||y|| = 1\}$$

$$B = \{y : ||y|| \le 1\}$$

$$\hat{f}(x) = \mathbb{E}_{v \in B}[f(x + \delta v)]$$

Gradient estimator:  $f(x + \delta u)u$ 

**Lemma** 
$$\forall \delta > 0$$
,  $\mathbb{E}_{u \in S}[f(x + \delta u)u] = \frac{\delta}{n} \nabla \hat{f}(x)$ 

#### **Expected Gradient Descent**

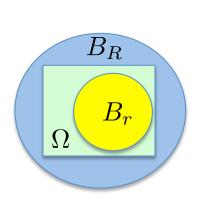
#### Algorithm.

Initialization. Choose  $x_0 \in \Omega$ .

For each iteration  $k \geq 1$ :

$$x_k = x_{k-1} - \nu f(x_{k-1} + \delta u_k) u_k$$

#### **Expected Gradient Descent**



$$\sup_{x \in \Omega} ||f(x)|| \le F$$

$$\nu = \frac{R}{F\sqrt{K}}$$

$$\delta = \frac{1}{K^{1/4}} \sqrt{\frac{RrnF}{3(Lr+C)}}$$

**Theorem\*** If f is convex and L-lipschitz:

$$\frac{1}{K} \mathbb{E}[\sum_{k=1}^{K} f(x_k)] \le f(x^*) + O(K^{-1/4})$$

<sup>\*</sup> Online convex optimization in the bandit setting: gradient descent without the gradient, Flaxman-Kalai-McMahan, SODA, 2005.

#### Gradient-descent methods

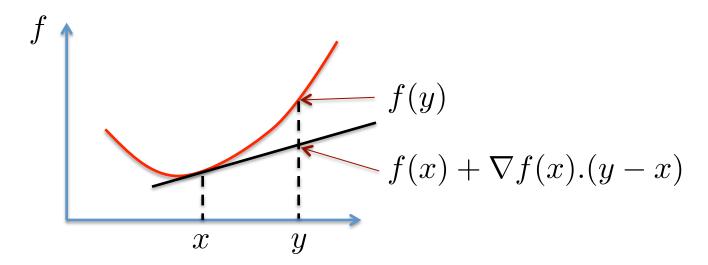
#### Gradient-descent methods

- A few words on convex analysis
  - Convexity, strong convexity
- Unconstrained smooth optimization
  - Gradient descent algorithms
  - Lower bounds on convergence rates
  - Heavy ball method
- Constrained smooth optimization
- Lagrange Duality
- Fixed point iteration

## Convex analysis

A continuously differentiable function f is convex if

$$\forall x, y \in \mathbb{R}^n, \quad f(y) \ge f(x) + \nabla f(x).(y - x)$$



Convexity is equivalent to:

$$(\nabla f(x) - \nabla f(y)).(x - y) \ge 0$$

#### Convex analysis

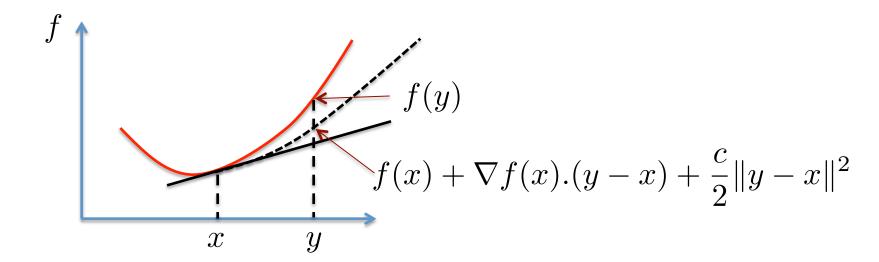
 Continuously differentiable function with L-lipschitz gradient:

$$0 \le f(y) - f(x) - \nabla f(x) \cdot (y - x) \le \frac{L}{2} ||x - y||^2$$
$$f(x) + \nabla f(x) \cdot (y - x) + \frac{1}{2L} ||\nabla f(x) - \nabla f(y)||^2 \le f(y)$$
$$(\nabla f(x) - \nabla f(y)) \cdot (x - y) \le L ||x - y||^2$$

#### Convex analysis

Strong convex function:

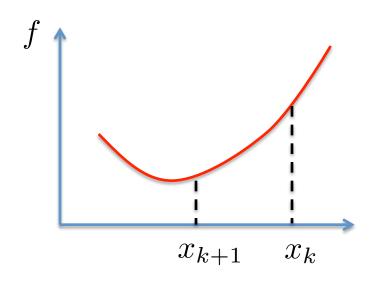
$$\forall x, y \in \mathbb{R}^n, \quad f(y) \ge f(x) + \nabla f(x).(y - x) + \frac{c}{2} ||y - x||^2$$



## GD for unconstrained opt.

$$\text{minimize } f(x) \\
 \text{over } x \in \mathbb{R}^n$$

Principle: move in the direction towards the minimizer



#### Algorithm.

Initialization. Choose  $x_0 \in \mathbb{R}^n$ . For each iteration  $k \geq 0$ :

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

#### Convergence

**Theorem** Let f be a convex and continuously differentiable function. Under GD algorithm:

$$f(x_T) - f^* \le \frac{\|x_0 - x^*\|^2 + \sum_{k=0}^T \alpha_k^2 \|\nabla f(x_k)\|^2}{2\sum_{k=0}^T \alpha_k}$$

## Convex and L-lipschitz functions

**Theorem** Let f be a convex and continuously differentiable function. Assume:  $||x_0 - x^*|| \le R$ .

- (i)  $\epsilon$ -optimality can be obtained in  $(RL)^2/\epsilon^2$  steps (by choosing  $\alpha_k=R/(L\sqrt{T})$ )
- (ii) For constant step size  $\alpha$ ,  $\lim_{T \to \infty} f(x_T) \le f^\star + \frac{\alpha L^2}{2}$

(iii) Assuming 
$$\sum_k \alpha_k = \infty, \quad \sum_k \alpha_k^2 < \infty,$$

$$\lim_{T \to \infty} f(x_T) = f^*$$

# Convex functions with L-lipschitz gradient

**Theorem** Let f be a convex and continuously differentiable function with L-lipschitz gradient. Fixed step size:  $\alpha_k = 1/L$ 

$$f(x_T) - f^* \le \frac{2LR^2(f(x_0) - f^*)}{2LR^2 + T(f(x_0) - f^*)}$$

## c-strongly convex functions with Llipschitz gradient

**Theorem** Let f be a c-strongly convex and continuously differentiable function with L-lipschitz gradient. Fixed step size:  $\alpha_k = 2/(c+L)$ 

$$f(x_T) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2T} ||x_0 - x^*||^2$$

Condition number:  $\kappa = L/c$ 

#### Lower bounds

**Theorem\*** Let f be a convex and continuously differentiable function with L-lipschitz gradient. There is no first-order method that guarantees a convergence rate faster than  $1/T^2$  at least for T < n/2.

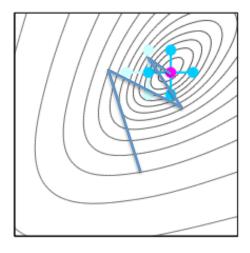
**Theorem\*** Let f be a c-strongly convex and continuously differentiable function with L-lipschitz gradient. For all first order method, we have

$$f(x_T) - f^* \ge \frac{c}{2} (\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1})^{2T} ||x_0 - x^*||^2$$

<sup>\*</sup> Introduction to convex optimization, Nesterov, 2004.

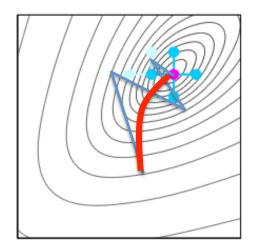
## Heavy ball method

Problem with classical GD: cannot avoid zig-zags



## Heavy ball method

Problem with classical GD: cannot avoid zig-zags



 Heavy ball method adds robustness by accounting for successive moves:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

 By an optimal choice of parameters, the convergence rate matches Nesterov's lower bound

# Smooth convex unconstrained optimization

| Class of functions | Algorithm | Complexity | 1%    |
|--------------------|-----------|------------|-------|
| Lipschitz          | GD        | 1/ε²       | 10000 |
| Lipschitz gradient | GD        | 1/ε        | 100   |
| 1                  | Optimal   | 1/√ε       | 10    |
| Strongly convex    | GD        | log(1/ε)   | 2.7   |
|                    | Optimal   | log(1/ε)   | 2.7   |

#### GD for constrained optimization

```
minimize f(x)
over x \in \Omega \subset \mathbb{R}^n
```

- Assumption: the search space is convex and closed
- Gradient projection:

#### Algorithm.

Initialization. Choose  $x_0 \in \Omega$ .

For each iteration  $k \geq 0$ :

$$y = x_k - \alpha_k \nabla f(x_k)$$
  
$$x_{k+1} = \arg\min_{x \in \Omega} ||y - x||$$

Similar convergence results as for unconstrained scenarios

#### • Primal problem:

```
minimize f(x)
subject to g(x) \le 0
over x \in \Omega
```

$$f: \mathbb{R}^n \to \mathbb{R}$$
  
 $g = (g_1, \dots, g_m): \quad g_j: \mathbb{R}^n \to \mathbb{R}$ 

• Lagrangean: 
$$L(x,\mu) = f(x) + \sum_{j=1}^{m} \mu_j g_j(x)$$

$$\sup_{\mu \ge 0} L(x, \mu) = \begin{cases} f(x), & \text{if } x \text{ feasible} \\ \infty, & \text{otherwise.} \end{cases}$$

$$f^* = \inf_{x \in \Omega} \sup_{\mu > 0} L(x, \mu)$$

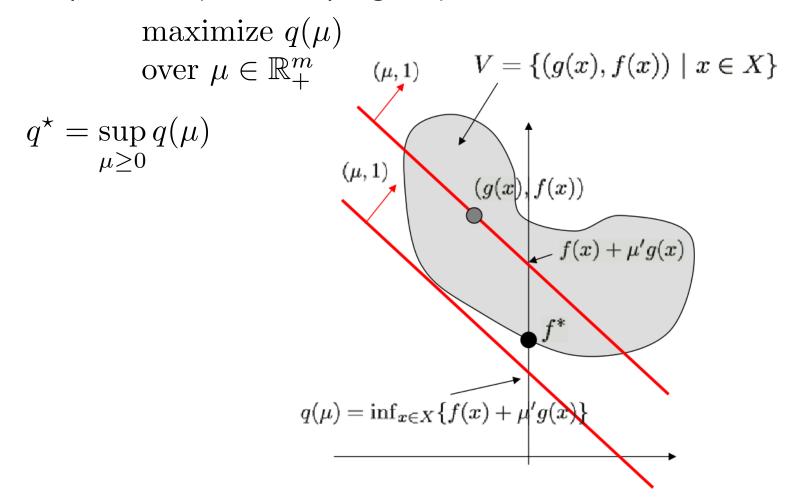
Dual function:

$$q(\mu) = \inf_{x \in \Omega} (f(x) + \sum_{j} \mu_{j} g_{j}(x))$$

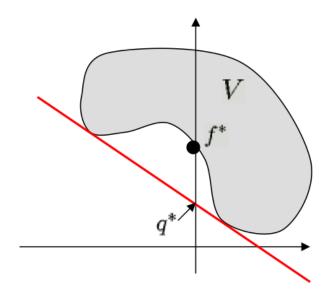
 $q: \mathbb{R}^m_+ \to \mathbb{R}$ 

 $\mu_j g_j(x)$ : cost of of violating the associated constraint

Dual problem: (a convex program)



- Slater condition:  $\exists x \in \Omega : g_i(x) < 0, \forall j$
- Weak duality:  $q^* \leq f^*$
- In case of convex function f and g, if Slater condition is satisfied, strong duality holds:  $q^* = f^*$
- In absence of convexity, no guarantee on strong duality



## Dual gradient algorithm

 In case of strong duality, we may solve the dual problem only, i.e., via GD

#### Algorithm.

Initialization. Choose  $\mu_0 \geq 0$ .

For each iteration  $k \geq 0$ :

$$\mu_{k+1} = [\mu_k + \alpha \nabla q(\mu_k)]^+$$

## Fixed point iterations

- Optimality condition:  $\nabla f(x^*) = 0$
- Iterative methods of the form:  $x_{k+1} = F(x_k)$
- For example, GD algorithm is obtained choosing:

$$F(x) = x - \alpha \nabla f(x)$$

whose fixed points are such that  $\nabla f(x) = 0$ 

Brouwer's fixed point theorem

 $X \subset \mathbb{R}^n$  compact convex set

if  $F: X \to X$  is continuous, then it has a fixed point

#### Contraction mappings

• q-contraction mapping:

$$\forall x, y, \quad ||F(y) - F(x)|| \le q||y - x||$$

where we have the choice of the norm, and  $\,q < 1\,$ 

 For q-contractions, we have existence and unicity of the fixed point and

$$||x_k - x^*|| \le q^k ||x_0 - x^*||$$

#### Revisiting GD

- GD mapping:  $F(x) = x \alpha \nabla f(x)$
- Assume that f is c-strongly convex with L-lipschitz gradient then F is non-expansive if  $0<\alpha\leq 2/L$  F is a contraction if  $0<\alpha<1/c$

(F is non-expansive iff  $\forall x \neq y, \|F(y) - F(x)\| < \|y - x\|$ )