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Abstract

We introduce a nonlinear definition of D-stability, extending the usual concept for positive linear

time-invariant (LTI) systems. We show that globally asymptotically stable, cooperative systems, ho-

mogeneous of any order with respect to arbitrary dilation maps are D-stable. We also prove a strong

stability result for delayed cooperative homogeneous systems. Finally, we show that both of these results

also hold for planar cooperative systems without the restriction of homogeneity.

I. INTRODUCTION

Due to their practical importance, Positive Systems have been the focus of a significant research

effort in the Engineering, Applied Mathematics and Computational Sciences communities. The

theory of positive linear time-invariant (LTI) systems is now well understood; however, for many

applications of positive systems, factors such as nonlinearities, uncertainties and delays need to

be taken into account. The work of this note is concerned with extending aspects of the stability

theory of positive LTI systems to classes of nonlinear and delayed systems. Specifically, we shall
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show that two key stability properties of positive LTI systems extend directly to cooperative

systems defined by vector fields that are homogeneous with respect to an arbitrary dilation map.

The LTI system ẋ(t) = Ax(t) is positive if and only if the matrix A is Metzler, meaning that all

of its off-diagonal elements are non-negative. It is well known [8] that a positive LTI system is

globally asymptotically stable (GAS) if and only if ẋ(t) = DAx(t) is asymptotically stable for

any diagonal matrix D with positive diagonal entries. This latter property is usually referred to

as D-stability.

For positive time-delayed systems, it was shown in [5] that the delayed positive linear system

ẋ(t) = Ax(t) +Bx(t− τ), where A is Metzler and B is nonnegative, is GAS for all values of

the delay τ ≥ 0 provided the system with zero delay ẋ(t) = (A+B)x(t) is GAS. In this regard,

interesting results providing similar stability conditions for classes of positive systems defined

by functional and integrodifferential equations have recently appeared in [10], [9].

Recently, it was shown in [3] that the results for positive LTI systems mentioned in the previous

paragraph also hold for cooperative systems that are homogeneous of degree zero with respect

to the standard dilation map on Rn. The principal contribution of the current note is to further

extend these results to cooperative systems that are homogeneous of any degree with respect to

an arbitrary dilation map. It should be noted that the definition of D-stability considered here is

considerably more general than that investigated in [3]. In particular, this allows the results of the

current paper to be applied to cooperative systems that are not necessarily homogeneous. In the

same vein, we show that the assumption of homogeneity is not necessary for planar cooperative

systems. Removing this assumption for higher dimensional systems is the subject of ongoing

work by the authors.

The layout of the note is as follows. In Section II we introduce notation, standard definitions and

the key results needed for our later analysis. In Section III we introduce a nonlinear extension

of the concept of D-stability and demonstrate that GAS homogeneous cooperative systems have

this property. A strong stability result for delayed systems is then given in Section IV. In Section

V we show that the homogeneity assumption is not required for planar systems and finally, in

Section VI we present our conclusions.
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II. MATHEMATICAL BACKGROUND

Throughout the paper, R and Rn denote the field of real numbers and the vector space of all

n-tuples of real numbers, respectively. Rn×n denotes the space of n×n matrices with real entries.

For x ∈ Rn and i = 1, . . . , n , xi denotes the ith coordinate of x. Similarly, for A ∈ Rn×n, aij

denotes the (i, j)th entry of A. Also, for x ∈ Rn, diag(x) is the n×n diagonal matrix in which

dii = xi.

Throughout the paper, we shall be concerned with positive systems and with the stability prop-

erties of the equilibrium at the origin. For this reason, when we say that a system is Globally

Asymptotically Stable, GAS for short, we mean that the origin is a GAS equilibrium of the

system with respect to initial conditions in the non-negative orthant Rn
+ := {x ∈ Rn : xi ≥

0, 1 ≤ i ≤ n}.

The interior of Rn
+ is denoted by int(Rn

+) and its boundary by bd(Rn
+) := Rn

+\int(Rn
+). For

vectors x, y ∈ Rn, we write: x ≥ y if xi ≥ yi for 1 ≤ i ≤ n; x > y if x ≥ y and x 6= y; x� y

if xi > yi, 1 ≤ i ≤ n.

Cooperative Homogeneous Systems

Given an n-tuple r = (r1, . . . , rn) of positive real numbers and λ > 0, the dilation map δrλ(x) :

Rn → Rn is given by δrλ(x) = (λr1x1, ..., λ
rnxn). For an α ≥ 0, the vector field f : Rn → Rn is

said to be homogeneous of degree α with respect to δrλ(x) if

∀x ∈ Rn, λ ≥ 0, f(δrλ(x)) = λαδrλ(f(x)).

Throughout the paper, all vector fields f :W → Rn are defined on a neighbourhood W of Rn
+.

f is said to be cooperative on U ⊆ W if it is differentiable on U and the Jacobian matrix ∂f
∂x

(a)

is Metzler for all a ∈ U .

We shall call f irreducible if for a ∈ int(Rn
+), ∂f

∂x
(a) is irreducible; (ii) for a ∈ bd(Rn

+) \ {0},

either ∂f
∂x

(a) is irreducible or fi(a) > 0 ∀i : ai = 0 [4].

We shall call f :W → Rn non-decreasing if f(x) ≥ f(y) whenever x ≥ y for x, y ∈ Rn
+.

It is well known that cooperative systems are monotone [1], [4]. Formally, if f : W → Rn is

cooperative onW and we denote by x(t, x0) the solution of ẋ(t) = f(x(t)) satisfying x(0) = x0,

then x0 ≤ y0 implies x(t, x0) ≤ x(t, y0) for all t ≥ 0. Moreover, as the origin is automatically

an equilibrium of a homogeneous cooperative system, it follows that such systems are positive

which means Rn
+ is an invariant set for these systems.
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III. STABILITY AND D-STABILITY OF HOMOGENEOUS COOPERATIVE SYSTEMS

Throughout this section, we are concerned with extending results on D-stability for linear positive

systems to the nonlinear system

ẋ(t) = f(x(t)). (1)

Throughout the section, f :W → Rn satisfies the following assumption unless explicitly stated

otherwise.

Assumption 3.1: (i) f is continuous on W and C1 on W \ {0};

(ii) f is homogeneous of degree α with respect to the dilation map δrλ;

(iii) f is cooperative in Rn
+ \ {0}.

These conditions ensures the existence and uniqueness of solutions [4].

Definition 3.1: We say that the system (1) is D-stable if

ẋ(t) = diag(d(x))f(x(t)) (2)

is GAS for all C1 mappings d = (d1, . . . , dn) : Rn → Rn satisfying:

(i) for 1 ≤ i ≤ n, di(x)� 0 for all x ∈ Rn
+ with xi > 0;

(ii) ∂di
∂xj

(a) = 0 for all a ∈ Rn
+ and i 6= j; in other words, di(x) = di(xi).

Remark: The standard definition of D-stability for linear systems and the one used in [3] assumes

that the function d above is constant. Furthermore, in the definition considered here, homogeneity

of a vector field f is not necessarily preserved after pre-multiplication by diag(d(x)). This is in

contrast to the situation in [3].

The main result of this section shows that a GAS cooperative homogeneous system is D-stable

in the above sense. We first recall the following theorem for irreducible systems, which is a

restatement of Theorem 5.2 in [4].

Theorem 3.1: Let f : W → Rn satisfy Assumption 3.1; further assume that f is irreducible.

Then there exists x∗ ∈ int(Rn
+) and γx∗ ∈ R such that f(x∗) = γx∗diag(r)x∗. In addition

γx∗ < 0 if and only if the system (1) is GAS.

We now use the above result to prove the following proposition, which plays a key role in the

proof of the main result of this section.

Proposition 3.1: Let the system (1) be GAS. Then for any x0 ∈ Rn
+, there exists a v � x0 with

f(v)� 0.
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Proof: If f were irreducible, this result would be an immediate consequence of Theorem 3.1.

The main step in the proof is to show that we can find an irreducible, homogeneous cooperative

vector field f1 such that f1(x) ≥ f(x) for all x ∈ Rn
+ and such that ẋ = f1(x) is GAS. Consider

the vector field g : Rn → Rn given by:

gi(x) =
(

(x21)
M
r1 + (x22)

M
r2 + ...+ (x2n)

M
rn

)(ri+α)/M
for all 1 ≤ i ≤ n (3)

where M is a real number such that M/ri > 1 for i = 1, ..., n. It can be easily checked that:

∂gi
∂xj

= 2((ri + α)/rj)x
(2M/rj)−1
j

(
x
2M/r1
1 + ...+ x2M/rn

n

)(ri+α/M)−1
(4)

It follows from (3) and (4) that:

• g(a) ≥ 0 and ∂gi
∂xj

(a) ≥ 0 for all a ≥ 0 and i 6= j;

• g is continuous on Rn and C1 on Rn \ {0};

• g is irreducible;

• g is homogeneous of degree α with respect to δrλ.

We now claim that f+ε1g is GAS for some ε > 0. We prove this by contradiction. For all ε > 0,

we know that (f + εg) is irreducible and satisfies Assumption 3.1. Further, (f + εg)(v) ≥ f(v)

for all v ≥ 0 because g(v) ≥ 0 for all v ≥ 0. If there is no ε1 > 0 such that the system

ẋ = (f + ε1g)(x) is GAS, Theorem 3.1 implies that for every ε > 0, there exists a non-zero

wε ≥ 0 such that (f+εg)(wε) ≥ 0. We could then pick a sequence εn → 0, such that there exists

a corresponding sequence wn ≥ 0, wn 6= 0 with (f + εng)(wn) ≥ 0 for all n. By homogeneity,

we can normalize all wn such that ‖wn‖ = 1. Choosing a subsequence, if necessary, we can

assume that wn → w′ with w′ ≥ 0 and ‖w′‖ = 1. Since εn → 0, we know that

lim
n→∞

(f + εng)(wn) = f(w′) ≥ 0

Since ‖wn‖ = 1 and wn ≥ 0, it follows immediately from Proposition 3.2.1 in [1], that x(t, w) ≥

w > 0 for all t ≥ 0 which contradicts the fact that (1) is GAS. Therefore there must exist an

ε1 > 0, such that f + ε1g is GAS.

Theorem 3.1 implies that there is a vector v1 � 0 such that (f+ε1g)(v1) = f(v1)+ε1g(v1)� 0

and since g(v1) ≥ 0, f(v1) � 0. To conclude the proof, simply choose λ > 0 such that

v := δrλ(v1)� x0; the homogeneity of f implies that f(v)� 0. This completes the proof.
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Remark: In [3], the construction of the dominating vector field f1 is more straightforward, as

a linear positive mapping will satisfy the requirements of the function g. The main contribution

of the above proposition is to show that this is also possible for an arbitrary dilation map. In

the present context, we should note that a version of the above result for vector fields that

can be expressed in a nonlinear matrix-vector form (not necessarily homogeneous) has recently

appeared in [7].

Before stating the main result of this section, we recall the following fact, which is Proposition

3.2.1 in [1].

Lemma 3.1: Let f : W → Rn satisfy (i) and (iii) of Assumption 3.1. Suppose that v ≥ 0 is

such that f(v) ≤ 0 (f(v) ≥ 0). Then the trajectory x(t, v) of the system (1) is non-increasing

(non-decreasing) for t ≥ 0.

We are now in a position to prove the main result of this section.

Theorem 3.2: If the system (1) is GAS then it is D-stable.

Proof: Let d : Rn → Rn satisfy the condition of Definition 3.1 and let x0 ∈ Rn
+ be given. It

follows from Proposition 3.1 that there exists v � x0 with diag(d(v))f(v) � 0. Lemma 3.1

immediately implies that the trajectory x(t, v) is non-increasing and bounded. Theorem 1.2.1 of

[1] implies that it must converge to an equilibrium. Thus, the theorem will be proven provided

we can show that the origin is the only equilibrium of the system

ẋ = diag(d(x))f(x) (5)

To this end, note that since f is homogeneous, we know that 0 is an equilibrium of (5). We shall

show that it is the only equilibrium of the system by way of contradiction. Suppose that there

is some e := [e1, e2, ..., en]T > 0 satisfying diag(d(e))f(e) = 0. Let x(t, x0) denote the solution

of (5) with initial condition x0.

Choose some v � 0 with f(v) � 0. It is immediate that diag(d(v))f(v) � 0. Define κ =

max{( ei
vi

)(1/ri) : 1 ≤ i ≤ n} and let j ∈ {1, ..., n} be such that (
ej
vj

)1/rj = κ. Note that as

e 6= 0, κ > 0. It follows from the definition of κ that e ≤ δrκ(v) and that ej = δrκ(v)j . As f

is homogeneous, we have that f(δrκ(v))� 0 and hence diag(d(δrκ(v)))f(δrκ(v))� 0. Thus, we

can pick t1, such that for all 0 < t < t1,

x(t, δrκ(v))� δrκ(v)
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In particular, x(t, δrκ(v))j < κrjvj = ej. But as e ≤ δrκ(v) and the system (5) is monotone, we

must have x(t, δrκ(v))j ≥ ej for all t ≥ 0. This contradiction shows that the origin is the only

equilibrium of (5) as claimed. This completes the proof.

Remark: As has been emphasised above, the definition of D-stability we are considering here is

more general than that used in [3]. In the earlier paper, it was only required that ẋ(t) = Df(x(t))

is GAS for diagonal matrices D with positive diagonal entries. In this case, it is immediate that

if (1) is GAS, then the origin is the only equilibrium of ẋ(t) = Df(x(t)) as the equilibria of

the two systems are in one-to-one correspondence. However, in the case considered here, some

components of d(x) could be zero at boundary points of Rn
+, potentially leading to non-trivial

equilibria of (5). The above result establishes that this cannot happen. Furthermore, the arguments

used in [3] rely explicitly on the fact that the system ẋ = Df(x) is still homogeneous and the

proof of asymptotic convergence made use of the fact that for homogeneous systems of degree

1, x(t, λx0) = λx(t, x0). This relation becomes more complicated for higher order systems and

the original arguments of [3] cannot be applied directly to the more general case. The arguments

in the present paper only rely on the boundedness and monotonicity of trajectories x(t, v) with

f(v) � 0 and the uniqueness of the equilibrium at the origin. As such the methods of proof,

though on the surface similar, are quite distinct.

The proof of the previous result shows that a cooperative, positive system ẋ = f(x) with

equilibrium at the origin is GAS if for any x0 ∈ Rn
+, there exists a v � x0 with f(v) � 0. In

[6], under the additional assumption of irreducibility, it was shown that the existence of v � 0

such that f(v) < 0, was sufficient for GAS. In [11] a similar sufficient condition for almost

complete stability of cooperative systems with inputs was presented. Another result of this type

for discrete time systems appeared in [12].

Example 3.1: Consider the system

ẋ(t) = f(x(t))

where

f(x1, x2, x3) =


−2x

5/3
1 + x3

x21 − 2x
3/2
2 + x3x

1/3
1

x1x2 + x
7/4
2 − 5x

7/5
3


It can be easily checked that this system is cooperative and homogeneous of degree 2 with respect
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to the dilation map δrλ, with r = (3, 4, 5). Also, f(0.5, 0.5, 0.3) = (−0.33,−0.22,−0.38) � 0,

which implies that the system is GAS and in fact D-stable. If we consider d given by:

d(x1, x2, x3) =

(
x21

x21 + 1
, x2, 1 + sin2(x3)

)T
,

d satisfies all the conditions of Definition (3.1) and it follows that ẋ(t) = diag(d(x)).f(x) is

GAS. Note that the vector field diag(d(x))f(x) is not homogeneous in this case.

IV. STABILITY INDEPENDENT OF DELAY

We now consider the delayed system

ẋ(t) = f(x(t)) + g(x(t− τ)) τ ≥ 0, (6)

where f :W → Rn and g :W → Rn satisfy the following properties.

• f and g are continuous in W and C1 on W \ {0};

• f and g are homogeneous of degree α with respect to the dilation map δrλ;

• f is cooperative in Rn
+ \ {0} and g is non-decreasing in Rn

+.

In the main result stated below, we show that (6) is GAS for any fixed delay τ ≥ 0 if the system

with τ = 0 is GAS, thus extending the main result of [5] to a broad class of nonlinear systems.

Initial conditions for (6) are elements φ of C([−τ, 0],Rn
+), and the state xt, t ≥ 0 of (6) is the

history segment xt(θ) = x(t−θ) for θ ∈ [0, τ ]. For a vector v ∈ Rn
+, we define v̂ ∈ C([−τ, 0],Rn

+)

by v̂(θ) = v for θ ∈ [−τ, 0].

The order relation on C([−τ, 0],Rn
+) is defined in the usual manner with respect to the cone

{φ : φ(s) ≥ 0 ∀s ∈ [−τ, 0]}. For φ ∈ C([−τ, 0],Rn
+), let x(t, φ), xt,φ denote the trajectory

and state of (6) respectively. Then for any φ, ψ ∈ C([−τ, 0],Rn
+), with φ ≤ ψ, it follows that

x(t, φ) ≤ x(t, ψ) for all t ≥ 0 [1].

As noted in Chapter 5 of [1], the equilibria of the system (6) correspond exactly with the

equilibria of the undelayed system given by:

ẋ(t) = (f + g)(x(t)) (7)

Formally, e ∈ Rn
+ is an equilibrium of (7) if and only if ê is an equilibrium of (6).

The following fact is the analogue for delayed systems of Lemma 3.1 and follows immediately

from Corollary 5.2.2 of [1].
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Lemma 4.1: Consider the system (6). Suppose there exists a vector v ≥ 0 with (f + g)(v) ≤ 0.

Then the trajectory x(t, v̂) is non-increasing.

Theorem 4.1: Consider the system (6). If the system (7) is GAS then the system (6) is GAS for

all τ ≥ 0.

Proof: Note that as the equilibria of (6) and (7) are identical and (7) is GAS by assumption,

the origin is the unique equilibrium of (6).

For any initial condition φ ∈ C([−τ, 0],Rn
+), it is a simple consequence of Proposition 3.1 that

there exists some v � 0 in Rn
+ with φ � v̂ and (f + g)(v) � 0. It now follows from Lemma

4.1 that the solution x(t, v̂) of (6) is non-increasing and bounded. Hence, Theorem 1.2.1 of [1]

implies that it converges to an equilibrium which must be the origin. Finally, the monotonicity

of (6) implies that the solution x(t, φ) of (6) also converges to 0 as t→∞

Example 4.1: Consider the system

ẋ(t) = f(x(t)) + g(x(t− τ))

where

f(x1, x2, x3) =


−5x31 + x1x2

x1x3 − 7x22

x31x2 + 0.5x21x3 − 10x
5/3
3



g(x1, x2, x3) =


x31 + 2x3

0.5x21x2 + x1x3 + 1.5x22 + 2x
4/3
3

x1x
2
2 + x3x2 + 2x

5/3
3 + x51


It can be easily checked that both f and g are homogeneous of degree 2 with respect to the

dilation map δrλ with r = (1, 2, 3). Moreover, f is cooperative and g is non-decreasing for x ≥ 0.

Note that (f + g)(0.5, 0.3, 0.1) = (−0.15,−0.26,−0.02) � 0. Therefore, we can conclude

that the origin is the unique equilibrium of this system and the delayed system is globally

asymptotically stable for every non-negative delay.

V. NON-HOMOGENEOUS PLANAR SYSTEMS

In this section we prove that the two main results of this paper do not require the assumption

of homogeneity in the case of 2-dimensional cooperative systems. Throughout the section, f :
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W → R2 is assumed to satisfy (i) and (iii) of Assumption 3.1, while g satisfies (i) of Assumption

3.1. The main fact we shall need is the following result.

Theorem 5.1: Assume that the system ẋ(t) = f(x(t)) is GAS. Then given any x0 ∈ R2
+, there

exists v � x0 with f(v)� 0.

Proof: As f is cooperative and GAS, it follows from Lemma 3.1 that there cannot exist a non-

zero vector w ≥ 0 with f(w) ≥ 0. Write Ω := {x ∈ R2 : x � x0} and define Ω1 := {x ∈ Ω :

f1(x) < 0}, Ω2 := {x ∈ Ω : f2(x) < 0}. Now Ω is clearly a connected set and Ω1, Ω2 are open

subsets of Ω with Ω = Ω1 ∪ Ω2. As Ω is connected, it follows that Ω1 ∩ Ω2 is non-empty; but

this means that there exists some v � x0 with f(v)� 0 as claimed.

Theorem 5.2: If the system ẋ(t) = f(x(t)) is GAS, then it is D-stable.

Proof: Let d : R2 → R2 be a C1 mapping satisfying conditions (i) and (ii) of Definition 3.1.

We first prove that the system (2) has a unique equilibrium at the origin. As f is GAS, f(x) = 0,

x ≥ 0 implies x = 0. Hence, as di(x) > 0 for any x with xi > 0, it is immediate that (2) can

have no equilibrium in the interior of R2
+. Suppose now that diag(d(a))f(a) = 0 for some

a = (0, a2) with a2 > 0. (The case a = (a1, 0) with a1 > 0 is handled similarly.) As d2(a) > 0

by assumption, we must have f2(0, a2) = 0. Hence as (1) is GAS, f1(0, a2) < 0 (otherwise

f(a) ≥ 0 which contradicts that f is GAS). However, f1(0, 0) = 0 and

∂f1
∂x2

(s) ≥ 0

for all s ∈ R2
+, which implies that f1(0, a2) ≥ 0. This is a contradiction and we can conclude

that (2) has a unique equilibrium at the origin as claimed.

Theorem 5.1 implies that for any x0 ∈ R2
+, there exists some v � x0 with diag(d(v))f(v)� 0.

It now follows from Lemma 3.1 that the trajectory x(t, v) of (2) is non-increasing and bounded

from below. Hence as 0 is the only equilibrium of the system, x(t, v)→ 0 as t→∞. It follows

immediately from the monotonicity of (2) that x(t, x0) ≤ x(t, v) also converges to the origin.

This completes the proof.

Theorem 5.3: If the system ẋ(t) = (f + g)(x(t)) is GAS, then the delayed system

ẋ(t) = f(x(t)) + g(x(t− τ))

is GAS for any τ > 0.

Proof: Theorem 5.1 implies that for any initial condition φ ∈ C([−τ, 0],R2
+), there exists some

v ∈ R2
+ with φ(s) � v for all s ∈ [−τ, 0] and (f + g)(v) � 0. Further as the equilibria of
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11

(7) coincide with those of (6), it follows that (6) has a unique equilibrium at zero. These facts

combined with Lemma 4.1 imply that x(t, φ) ≤ x(t, v̂) tends to zero as t→∞.

VI. CONCLUSIONS

We have extended the notion of D-stability to nonlinear systems and shown that GAS cooperative

homogeneous systems are D-stable. We have also presented a strong stability result for delayed

systems of this class. Our results extend earlier work for linear systems and cooperative systems

homogeneous of degree one with respect to the standard dilation map. The assumption of

homogeneity is not needed for planar systems and it is the authors’ opinion that this assumption

is not required for higher dimensional systems either. This conjecture is the subject of ongoing

work, the results of which we hope to report in the future.
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