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Abstract

We consider the game theoretic model of competitive information diffusion re-
cently introduced in [1]. We show that for the case of 2 competing agents, there
exists a Nash Equilibrium for this game on any tree. We also present an example
to show that this is not necessarily true for 3 or more agents.
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1. Introduction

In the recent papers [1, 2] a deterministic model for competitive information
diffusion on social networks was introduced and studied. The model considers
the diffusion process as a game played on the network by external agents. In
contrast to many other game theoretic models for the diffusion of information
and innovation [5, 3], it considers competition between different innovations
rather than the spread of a single innovation in a network. The main result
of [1] claimed that any network of diameter 2 possesses a pure strategy Nash
Equilibrium (N.E.). Unfortunately, as pointed out in [2], this result is not
true without additional technical assumptions. In fact, even for the case of
2 competing agents on a network of diameter 2, it is possible that the game
introduced in [1] does not possess a N.E.
Rather than restricting the diameter of the network, we focus instead on hierar-
chical structures, which can be represented by a tree. We show that the model of
[1] with 2 competing agents always possesses a N.E. when the underlying graph
is a tree. While the tree structure is clearly restrictive, it is worth noting that
many social networks, including the online example twitter, are hierarchical in
nature with ‘leaders’ and ‘followers’. Moreover, our result makes no assumption
concerning the diameter of the network; thus it opens an alternative line of
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research into the model of [1]. The layout of the note is as follows. In Section
2, we recall the basic model and set our notation. In Section 3, we present and
prove our result, while in Section 4 we present our conclusions.

2. Preliminaries

All the graphs considered in this note are simple and undirected. For a graph
G, we use V (G) to denote its vertex set and E(G) to denote its edge set. We
denote an edge between v, w in V (G) by vw. For v ∈ V (G), the neighbours
of v are given by N(v) = {w ∈ V (G) | vw ∈ E(G)}. If vw ∈ E(G), G − vw
denotes the graph obtained by removing the edge vw from E(G). Similarly if
vw 6∈ E(G), G + vw denotes the graph obtained by adding the edge vw to the
edge set of G. Also for v ∈ V (G), G−v denotes the graph obtained by removing
v and all of its incident edges from G. For a set X , |X | denotes the cardinality
of X .
A tree T is a connected acyclic graph. It is well known that in a tree T , there
exists a unique path between every pair of distinct vertices v, w in V (T ). Also,
for every edge vw ∈ E(T ), T − vw is disconnected.
Our primary interest in the current paper is to study the game theoretic model
of competitive information diffusion introduced in [1] on trees. We now recall
the model of competitive information diffusion from [1].

The Game D

Let G be a graph with |V (G)| = N and a set of agents [1, n] = {1, . . . , n} be
given. Initially (t = 0), each agent i selects one vertex, xi, in V (G), which is
labelled i. The n-tuple x = (x1, . . . , xn) is known as a strategy profile. We only
consider strategy profiles in which all of the xi are distinct. All other nodes
are initially labelled 0 (corresponding to white nodes in [1]). We use −1 to
denote grey nodes. In keeping with the original model of [1], grey nodes do not

propagate. The basic paradigm is as follows. At time t ≥ 1, if a white vertex v
(labelled 0) neighbours two vertices with distinct labels in [1, n] at time t − 1,
then v is labelled −1 (grey). If v neighbours a vertex labelled i ∈ [1, n] at
time t − 1 and has no neighbours labelled j ∈ [1, n]\{i}, then v is labelled i.
Otherwise, v’s label is unchanged.
Throughout the note, we refer to the above process as the game D. The process
terminates in a finite number of steps when no further vertices can be labelled
i ∈ [1, n]. The utility Ui(x) of agent i is the total number of vertices labelled i
when the process terminates. In a slight abuse of notation, we shall occasionally
write Ui(x1, . . . , xn) for Ui(x). A strategy profile x = (x1, . . . , xn) is a Nash
Equilibrium N.E. for D if no agent can unilaterally improve their utility by
changing to another starting vertex. Formally if

Ui(x1, . . . , xn) ≥ Ui(x1, . . . , xi−1, v, xi+1, . . . , xn)

for all v ∈ V (G)\{x1, . . . , xn}.
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3. Main Result

In this section, we show that for 2 agents competing on a tree, there always exists
a Nash equilibrium (N.E.) for the game D. Moreover, our result characterises
the N.E. on a tree T . We first note that for the general game with n > 2 agents,
this conclusion does not necessarily hold.

Example 3.1. Consider the game D on the tree below with 7 vertices and 3
agents. Consider, without loss of generality, a strategy profile x = (vi, vj , vk)

Figure 1: Three agents and no Nash Equilibrium on T

where i < j < k.
If vivj /∈ E(T ) then U1(x) is increased by player 1 switching to vertex vj−1. If

vjvk /∈ E(T ), U3(x) is increased by player 3 choosing vertex vj+1.

If vivj ∈ E(T ) and vjvk ∈ E(T ) then U2(x) = 1, and it is always possible for

player 2 to improve their utility by moving to either vi−1 or vk+1. Thus there

is no N.E. for D on T .

For the remainder of this section, we consider the game D with n = 2 agents
on a tree T with vertex set V and edge set E.
The next lemma notes that once one agent selects an initial vertex v, the optimal
choice for the other agent is a neighbour of v.

Lemma 3.1. Let v ∈ V be given. There exists w ∈ N(v) such that

U2(v, w) = max
x∈V

U2(v, x).

Proof. Suppose the degree of v is d. As T is a tree, it is readily seen that T − v
has d connected components C1, .., Cd. Let ui denote the neighbour of v that is
in Ci for 1 ≤ i ≤ d.
If x ∈ V (Ci), y ∈ V (Cj), with i 6= j, the unique path in T from x to y includes
v. Hence, agent 2 cannot colour vertices in more than one component of T − v.
Thus maxx∈V U2(v, x) = max1≤i≤d |V (Ci)|.
Let k be such that |V (Ck)| = max1≤i≤d |V (Ci)|. Choose w ∈ N(v)∩V (Ck). For
any u ∈ V (Ck) the unique path (in T ) from v to u must contain w. It follows
that all vertices in Ck are labelled 2. Hence,

U2(v, w) = |V (Ck)| = max
x∈V

U2(v, x)

as claimed.

Lemma 3.2. Let x = (v, w) be a strategy profile such that vw ∈ E(T ). Let u ∈
N(v)\{w} and consider the strategy profile x′ = (v, u). Then U2(x

′) < U1(x)
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Proof. As T is a tree, T − vw has two connected components. Write Cv, Cw

for the component of T − vw containing v, w respectively. It is clear that all
vertices in Cv will be labelled 1 and all the vertices in Cw are labelled 2. Hence,
U1(x) = |V (Cv)|.
Now consider the profile x′ = (v, u) where u ∈ N(v)\{w}. Then u ∈ V (Cv).
Hence, for the strategy profile x′, no vertices in Cw are labelled 2, since the
path to any c ∈ V (Cw) must contain v. It follows that the vertices labelled 2
form a subset of V (Cv)\{v}. Thus

U2(x
′) ≤ |V (Cv)| − 1 < U1(x)

The following lemma shows that if a strategy profile consists of two neighbouring
vertices, then all vertices are either labelled 1 or 2 when the process terminates.

Lemma 3.3. Consider a strategy profile x = (v, w) such that vw ∈ E(T ). Then
U1(x) + U2(x) = |V (T )|.

Proof. As v, w are neighbours, they have no common neighbour as T is a tree.
Further, T − vw consists of two connected components, Cv and Cw. By similar
arguments to those employed in the previous results, it can be seen that every
vertex in Cv is labelled 1 while every vertex in Cw is labelled 2. So U1(x) =
|V (Cv)|, U2(x) = |V (Cw)| and hence U1(x) + U2(x) = |V (T )|.

We can now state the main result of the note, which shows that the game D

with 2 agents has a N.E. on any tree of any diameter.

Theorem 3.1. Let x = (v, w) be a strategy profile on a tree T such that vw ∈
E(T ) and

|U1(v, w)− U2(v, w)| = min
yz∈E(T )

|U1(y, z)− U2(y, z)|.

Then x is a Nash Equilibrium.

Proof. Without loss of generality, assume U2(x) ≥ U1(x). By Lemma 3.1, we
know that there is some u ∈ N(v) such that

U2(v, u) ≥ U2(v, y)

for all y ∈ V (T ). However, it follows from Lemma 3.2 that

U2(v, u) ≤ U1(v, w) ≤ U2(v, w).

Thus agent 2 certainly cannot increase their utility by unilaterally changing
strategy.
Next suppose that there exists some u ∈ V (T ) such that U1(u,w) > U1(v, w).
Lemma 3.1 implies that there exists such a u in N(w). From Lemma 3.3 we
know that

U1(u,w) + U2(u,w) = |V (T )| = U1(v, w) + U2(v, w).
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It follows immediately that U2(u,w) < U2(v, w). We now show that this leads
to a contradiction. There are three cases to consider.

Case 1: U1(u,w) ≥ U2(v, w)
From Lemma 3.2, we know that U1(u,w) ≤ U2(v, w)− 1 so this cannot happen.

Case 2: U1(u,w) < U2(v, w), and U2(u,w) > U1(u,w)
We know that U2(v, w) > U2(u,w), and U1(u,w) > U1(v, w). Thus, U2(v, w) +
U1(u,w) > U1(v, w) + U2(u,w). Rearranging, we see that

U2(v, w) − U1(v, w) > U2(u,w)− U1(u,w) > 0

which contradicts our initial assumption, that |U2(v, w)− U1(v, w)| is minimal.

Case 3: U1(u,w) < U2(v, w), and U2(u,w) ≤ U1(u,w)
We know from Lemma 3.2 that U1(u,w) ≤ U2(v, w) − 1. It similarly follows
that U2(u,w) ≥ U1(v, w) + 1. Taken together, these observations imply that

|U1(u,w)− U2(u,w)| = U1(u,w)− U2(u,w)

≤ U2(v, w) − U1(v, w) − 2

< U2(v, w) − U1(v, w).

This is again a contradiction.
Putting the above arguments together, we see that x = (v, w) is a N.E. as
claimed.

Example 3.2. In the tree T in Figure 2 below there is a unique Nash Equilib-

rium, x = (v, w). |U1(x)−U2(x)| = |7− 5| = 2 is clearly minimal over all pairs

of neighbours.

Figure 2: The tree T

4. Concluding Remarks

b As highlighted by the work of [1, 2] and [3, 4], identifying conditions for the
existence of N.E. for games on graphs is a difficult problem. We have shown that
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the model of competitive information diffusion studied in [1, 2] always admits
a N.E. on a tree when the number of agents is 2. While trees are a restrictive
class of graphs, they can serve as an idealisation of hierarchical structures that
arise in many social networks. Identifying other structures which guarantee
the existence of a N.E. and characterising these when they exist remains a
challenging question for future research.
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