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Abstract

We prove a convergence result for the standard Kuramoto model with all-to-all
coupling. Specifically, we show that the critical coupling strength associated with the
onset of completely phase-locked behaviour converges in probability as the number
of oscillators tends to infinity.
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1 Introduction

The Kuramoto model of a system of weakly coupled nonlinear oscillators on
a complete graph Kn, n ≥ 2, is given by [1, 2, 3, 4]:

θ̇i =xi +
k

n

n∑
j=1

sin(θj − θi), i = 1, . . . , n, (1)

where θi(·) ∈ R and xi ∈ R 1 denote the phase and intrinsic (or natural)
frequency of oscillator i respectively, and k ∈ R≥0 denotes the coupling coeffi-
cient or coupling strength. The behaviour of the system (1) depends strongly
upon the value of the coupling strength, as described in [3] and elsewhere. At
low values of k, the oscillators tend to oscillate more or less independently,

Email address: mark.verwoerd@nuim.ie (Mark Verwoerd and Oliver Mason).
1 The reason we use xi rather than the more common notation ωi to denote the
intrinsic frequency is that, in keeping with standard probabilistic notation, the latter
symbol is used here to define a probabilistic event.
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and little or no coherent behaviour is observed. As k is gradually increased,
the oscillators continue to oscillate incoherently for a while, but then slowly
lock into step as k exceeds the theshold value defined by the ‘Kuramoto cou-
pling’ [2, 5, 6] (for a symmetric unimodal distribution of intrinsic frequencies,
the value of the Kuramoto coupling (in the limit as n → ∞) is given by
k = 2

πg(µ)
, where g is the underlying density function and µ is the first mo-

ment of g [3]). From this point on, more and more oscillators join the cluster of
locked oscillators, until eventually a state is reached in which all the oscillators
are (pairwise) phase-locked. The value of the coupling that defines this final
transition to a global (or completely) phase-locked state is referred to here as
the critical coupling, and is denoted by kc. The present paper is concerned
with the behaviour of kc in the limit as the number of oscillators (n) tends to
infinity.

Of the two transitions mentioned above, the first transition, from incoherent
to partially coherent behaviour, has generally received most attention, ow-
ing perhaps to its more immediate physical significance. One drawback that
presents itself when studying the first transition, is that it is hard to charac-
terize mathematically. For this reason, an approach based on limits such as
developed here for the second transition would fail when applied to the first
transition. The difficulty with the first transition is that there is no obvious
critical phenomenon in the finite-dimensional Kuramoto model that one can
associate with the transition from incoherent to partially coherent behaviour.
For the second transition, such a critical phenomenon does exist, and is easily
defined. Indeed, for this case the critical phenomenon is precisely the emer-
gence of a (completely) phase-locked solution which defines the critical value
of the coupling coefficient, kc. In the present paper we show the random vari-
able kc, which generally depends upon the particular realization of intrinsic
frequencies, converges in probability as the number of oscillators tends to in-
finity. To the best of our knowledge, this is the first convergence result for the
classical Kuramoto model.

There are many papers that have dealt directly or indirectly with the second
transition. We mention some recent contributions most relevant to the present
work. References [11] and [12] provide a detailed account of the spectral prop-
erties of the phase-locked state (k ≥ kc) and the partially phase-locked state
(k < kc) respectively. In reference [8], the authors of the present paper de-
scribe a numerical algorithm for computing kc given any finite realization of
intrinsic frequencies [8] (see also Appendix A). An extension of this result to
the case of a complete bipartite graph is described in the follow-up paper [9].

The structure of the paper is as follows. In Sections 2 and 3 we fix our notation
and review relevant background material. The main result is presented in
Section 4, and this is followed by a discussion of its applications in Section 5.
Section 6 closes with conclusions.
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2 Mathematical preliminaries

2.1 Notation

Throughout the paper, R (C) denotes the field of real (complex) numbers,
R≥0 denotes the set of all non-negative real numbers, and N denotes the set of
positive integers. For v ∈ Rn and 1 ≤ i ≤ n, vi denotes the ith component of
v. For any real number x, |x| denotes the absolute value of x. For any n-tuple
x = (x1, x2, . . . , xn), the notation ⟨x⟩n denotes the arithmetic mean of x, that
is ⟨x⟩n := 1

n

∑n
j=1 xn.

2.2 Probability

The terminology and notation adopted here is standard. For background on
basic probability theory, the interested reader should consult [10]. Let (Ω,F ,P)
be a probability space. A random variable is a function X : Ω 7→ R with the
property that {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R. We say that X is
continuous if its distribution F (x) = P(X ≤ x) can be written as

F (x) =
∫ x

−∞
f(u)du

for some integrable f : R 7→ [0,∞). The function f is called the (probability)
density function of X. The expectation of a continuous random variable X
with density function f is given by

EX =
∫ ∞

−∞
uf(u)du

whenever this integral exists. Two random variables X and Y are independent
if {X ≤ x} and {Y ≤ y} are independent events for all x, y ∈ R. If X and Y
are independent then for all a, b ∈ R we have that E(aX+ bY ) = aEX+ bEY .
Let X,X1, X2, . . . be random variables on some probability space (Ω,F ,P).
We say that Xn → X almost surely, written Xn

a.s.→ X, if {ω ∈ Ω : Xn(ω) 7→
X(ω) as n → ∞} is an event with probability 1. We say that Xn → X in

probability, written Xn
P→ X, if P(|Xn −X| > ϵ) → 0 as n → ∞ for all ϵ > 0.

The following implication holds: (Xn
a.s.→ X) ⇒ (Xn

P→ X). We shall need the
following results:

Theorem 1 (Hoeffding’s inequality) Let X1, . . . , Xn be independent ran-
dom variables. Suppose there exist a, b ∈ Rn such that P(Xi ∈ [ai, bi]) = 1. Let
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S :=
∑n

j=1 Xj. Then

P(S − ES ≥ n t) ≤ exp
(
− 2n2t2∑n

j=1(bi − ai)2

)
, t > 0.

Theorem 2 (Strong law of large numbers) Let X1, X2, . . . , Xn be inde-
pendent identically distributed random variables. Then

1

n

n∑
j=1

Xj → µ almost surely, as n → ∞,

for some constant µ, if and only if EX1 < ∞. In this case, µ = EX1.

In the paper, we shall use a weaker version of the strong law of large numbers,
which may be stated as follows:

Corollary 1 Let X1, X2, . . . , Xn be independent identically distributed ran-
dom variables and suppose EX1 < ∞. Then

1

n

n∑
j=1

Xj → EX1 in probability, as n → ∞.

3 Background and Problem Statement

3.1 Background

The asymptotic analysis presented in this paper is based on recent results on
global phase-locking obtained by the authors [8, 9] (see [11, 12] for related
work). Before we proceed with stating the problem, we review some relevant
results from the aforementioned work. To start with, we define the notion of
‘critical coupling’, as follows:

Definition 1 (Critical coupling) Let n ∈ N, n ≥ 2, and let x ∈ Rn be
given. Consider the Kuramoto model of coupled oscillators on the complete
graph Kn (1). For this model, we define the critical coupling, kc, as follows:

kc :=min

k ≥ 0 : ∃ϕ ∈ Rns.t.
k

n

n∑
j=1

sin(ϕj − ϕi) = ⟨x⟩n − xi for all i

 .

In other words, kc is the smallest nonnegative value of the coupling strength
for which the system (1) admits a (global) phase-locked solution.
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We have the following result [8]:

Theorem 3 Let x ∈ Rn be given and suppose xi ̸= xj for some (i, j). Then
the equation

2
1

n

n∑
j=1

√√√√1−
(
xj − ⟨x⟩n

u

)2

=
1

n

n∑
j=1

1√
1−

(
xj−⟨x⟩n

u

)2 . (2)

has a unique solution un ∈ (maxj |xj − ⟨x⟩n|, 2maxj |xj − ⟨x⟩n|], and we have
that

kc =
un

1
n

∑n
j=1

√
1−

(
xj−⟨x⟩n

un

)2
.

(3)

If xi = xj for all (i, j), we define un := 0 and kc := 0.

Equation (3) expresses the critical coupling kc in terms of un, the solution
to Equation (2). The latter can be evaluated to within user-defined precision
with the algorithm described in Appendix A.

3.2 Problem statement

The proof of our main result, which we present in Section 4.2, requires several
technical steps and is quite involved, but the main idea is easy to follow.
Indeed, the idea is to invoke the law of large numbers on the expressions in
Eqns. (2) and (3) which allows one in the limit to pass from sample means to
expected values (from summations to integrals). The main technical difficulty
with this approach is that in order to invoke the law of large numbers one must
require the terms under the summation to be independent, which in our case
they are not. What saves the argument is the fact that in the limit, we can
replace ⟨x⟩n with µ, which gives us the independence we need. Unfortunately,
the necessary proofs require a rather notation-heavy technical apparatus. The
purpose of the present section is to set up this apparatus and to state the
problem formally.

Let X1, X2, . . . , Xn be independent and identically distributed random vari-
ables with density function p : R 7→ R≥0 and expected value µ := EX1 =∫
R x p(x)dx. Let Sp := {x ∈ R : p(x) > 0} denote the support of p. We assume
the following:

Assumption 1 The density function p is (piecewise) continuous and has
bounded support. Moreover,∫

Sp

(
u2√

u2 − (x− µ)2
− 2

√
u2 − (x− µ)2

)
p(x)dx < ∞ (4)
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for all u ≥ supx∈Sp
|x− µ|.

Remark 1 Assumption 1 is a technical assumption that will facilitate the
forthcoming analysis. The class of distributions satisfying this assumption is
sufficiently rich for our present purposes. Note in particular that Assumption 1
is satisfied by all piecewise continuous p such that supx∈Sp

|x| < ∞ (bounded
support) and supx∈Sp

p(x) < ∞ (bounded range). Moreover, since the integrand
is a monotone decreasing function of u, if follows that if (4) is satisfied for
u = supx∈Sp

|x− µ|, then it is satisfied for all u ≥ supx∈Sp
|x− µ|.

Define Dn := {(x, u, a) ∈ Rn × R × R : u > max1≤j≤n |xj − a| > 0}, and let
fn : Dn 7→ R and f : [supx∈Sp

|x− µ|,∞) 7→ R be given by

fn(x, u, a) :=
1

n

n∑
j=1

u2√
u2 −

(
xj − a

)2 − 2
1

n

n∑
j=1

√
u2 −

(
xj − a

)2
, (5)

f(u) :=
∫
Sp

(
u2√

u2 − (x− µ)2
− 2

√
u2 − (x− µ)2

)
p(x)dx. (6)

We next define the function un : Rn × R 7→ R. For all (x, a) ∈ Rn × R such
that maxj |xj −a| > 0, un(x, a) is the unique solution of fn(x, un(x, a), a) = 0.
In the case that maxj |xj − a| = 0, we define un(x, a) = 0.

Let X denote the n-tuple of iid random variables (X1, . . . , Xn) and let ⟨X⟩n :=
1
n

∑n
j=1 Xj. The random variables un(X, ⟨X⟩n), un(X, a) (for a ∈ R) are de-

fined in the usual manner, as is the random variable kc(X),

kc(X) :=
un(X, ⟨X⟩n)

1
n

∑n
j=1

√
1−

(
Xj−⟨X⟩n

un(X,⟨X⟩n)

)2 .

The purpose of this note is to show that, under suitable technical conditions,

un(X, ⟨X⟩n)
P→ un(X,µ)

P→ u∗,

where

u∗ :=

f−1(0) if f(supx∈Sp
|x− µ|) > 0,

supx∈Sp
|x− µ| otherwise,

It then follows that there exists k∗ ≥ 0 such that kc(X)
P→ k∗.
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4 A convergence result

4.1 Key technical results

We shall now present some technical results that will be helpful in proving
our main result. Proofs can be found in Appendix B. We adopt the following
notation:

∂ufn(x, u, a) :=
∂fn(x, ξ, a)

∂ξ

∣∣∣∣∣
ξ=u

, ∂afn(x, u, a) :=
∂fn(x, u, ξ)

∂ξ

∣∣∣∣∣
ξ=a

,

and

∂aafn(x, u, a) :=
∂2fn(x, u, ξ)

∂ξ2

∣∣∣∣∣
ξ=a

.

Our first lemma establishes a few useful facts about fn and un.

Lemma 1 The following statements are true for all n:

(i) For all (x, u, a) ∈ Dn, we have that |∂afn(x, u, a)| ≤
√
2 |∂ufn(x, u, a)| .

(ii) For all (x, u, a) ∈ Dn, we have that ∂ufn(x, u, a) ≤ −1 and ∂aafn(x, u, a) >
0.

(iii) Let c > 0 and suppose un(x, ⟨x⟩n) < (1 + c)maxj |xj − ⟨x⟩n|. Suppose in
addition that un(x, µ) < un(x, ⟨x⟩n). Then:

|un(x, µ)− un(x, ⟨x⟩n)|< |µ− ⟨x⟩n|+ c max
j

|xj − ⟨x⟩n|.

(iv) Let c > 0 and suppose un(x, ⟨x⟩n) ≥ (1 + c)maxj |xj − ⟨x⟩n|. Then:

|∂ufn(x, un(x, ⟨x⟩n), ⟨x⟩n)| ≤
(
1−

( 1

1 + c

)2)− 3
2

.

Remark 2 Propositions (iii) and (iv) of Lemma 1 still hold if we interchange
⟨x⟩n and µ.

Our next lemma shows that un(x, ⟨x⟩n) → un(x, µ) as ⟨x⟩n → µ. This is
an important intermediate step because it suggests that, in the limit, we can
replace ⟨X⟩n with µ, enabling us to invoke the law of large numbers (as shown
in the forthcoming Propositions 1 and 2).

Lemma 2 For every ϵ > 0 there exists δ > 0 such that the implication

|µ− ⟨x⟩n| < δ ⇒ |un(x, µ)− un(x, ⟨x⟩n)| < ϵ

holds for all n.
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We have the following proposition.

Proposition 1 Let X = (X1, X2, . . . , Xn) be an n-tuple of independent and
identically distributed random variables with density function p, and suppose
p satisfies the conditions of Assumption 1. Then we have that:

un(X, ⟨X⟩n)
P→ un(X,µ).

Proposition 2 Let X = (X1, . . . , Xn) be and n-tuple of independent iden-
tically distributed random variables with density function p, and suppose p
satisfies the conditions of Assumption 1. Then we have that:

un(X,µ)
P→ u∗,

where u∗ is given by (7).

4.2 The main result

We are now ready to state our main result, which is essentially a corollary of
Propositions 1 and 2 combined.

Theorem 4 Let X = (X1, X2, . . . , Xn) be an n-tuple of independent and iden-
tically distributed random variables with density function p and suppose p sat-
isfies the conditions of Assumption 1. Then we have that

(a) un(X, ⟨X⟩n)
P→ u∗;

(b) kc(X)
P→ u∗/

∫
Sp

√
1−

(
x−µ
u∗

)2
p(x)dx.

Proof: Combining Propositions 1 and 2, we have that un(X, ⟨X⟩n)
P→ u∗.

This proves the part (a). To prove part (b), recall that

kc(X)=
un(X, ⟨X⟩n)2

1
n

∑n
j=1

√
un(X, ⟨X⟩n)2 − (Xj − ⟨X⟩n)2

,

when un(X, ⟨X⟩n) ̸= 0 and kc(X) = 0 otherwise. Under the hypotheses of

Assumption 1, we have that u∗ > 0 and
∫
Sp

√
(u∗)2 − (x− µ)2p(x)dx > 0.

Hence, if we can show that (i) un(X, ⟨X⟩n)2
P→ (u∗)2, and (ii):

1

n

n∑
j=1

√
un(X, ⟨X⟩n)2 − (Xj − ⟨X⟩n)2

P→
∫
Sp

√
(u∗)2 − (x− µ)2p(x)dx,
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then we are done (if A
P→ a and B

P→ b, then A
B

P→ a
b
provided b ̸= 0). To

prove (i), note that for some c ≥ 0, we have that,

|un(X, ⟨X⟩n)2−(u∗)2| = |un(X, ⟨X⟩n)−u∗|·|un(X, ⟨X⟩n)+u∗| ≤ c |un(X, ⟨X⟩n)−u∗|.

This implies that

P(|un(X, ⟨X⟩n)2 − (u∗)2| > ϵ) ≤ P(|un(X, ⟨X⟩n)− u∗| > ϵ

c
). (7)

Under the hypotheses of the theorem the right hand side of inequality (7) tends
to zero for every ϵ > 0 as n → ∞ (this was established in part (a)), and hence

so does the left hand side. We conclude that un(X, ⟨X⟩n)2
P→ (u∗)2. The proof

of (ii) requires some more work, but essentially proceeds along the same lines.

The idea is to use standard estimates (such as |
√
a −

√
b| ≤

√
|a− b| which

holds for all nonnegative a, b) to show that ⟨X⟩n
P→ µ and un(X, ⟨X⟩n)

P→ u∗

imply that

1

n

n∑
j=1

√
un(X, ⟨X⟩n)2 − (Xj − ⟨X⟩n)2

P→ 1

n

n∑
j=1

√
(u∗)2 − (Xj − µ)2.

The result then follows from the law of large numbers (Corollary 1). This
completes the proof.

Note that in order to evaluate the expression for the critical coupling, we
need an estimate for u∗. In general, this requires solving the integral equation
f(u) = 0. However, in the special case when f(supx∈Sp

|x − µ|) ≥ 0, u∗ is
simply given as u∗ = supx∈Sp

|x − µ|. The examples in the next section will
deal exclusively with the latter case.

5 Application of the main result

To illustrate the result of Theorem 4, we present two examples. In the first ex-
ample, we consider distributions of intrinsic frequencies described by a family
of symmetric density functions with finite support that includes the uniform
density function. In the second example, we consider a distribution described
by an asymmetric density function. The purpose of this example is to show
that the application of our result is not limited to symmetric distributions.
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5.1 Critical coupling in the limit for a class of symmetric density functions
with finite support

Let α > −1
2
, c > 0, and let pα(x) : R 7→ R≥0 be given as

pα(x) :=

 1
c
√
π

Γ(α+ 3
2
)

Γ(α+1)

(
1−

(
x−µ
c

)2)α
, |x− µ| < c;

0, |x− µ| ≥ c.
(8)

Note that Eα(x) :=
∫
R x pα(x)dx = µ, and that pα(µ−x) = pα(µ+x) for all x.

In other words, pα is symmetric about its mean, µ. Figure 1 shows the graph
of pα(µ− x) on the interval [0, c] for selected values of α. Note that p0 is the

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

α = −
1

4

α = + 1

4

α = 4

(

x

c

)

→

c
p

α
(µ

−
x
)
→

Fig. 1. The graph of pα(µ− x) on the interval [0,c] for α ∈ {−1
4 ,

1
4 , 4}.

uniform density function on (−c, c). For all α we have that Spα = (−c, c) and
supx∈Spα

|x − µ| = c. For the family of distributions considered here we can
evaluate f(supx∈Spα

|x− µ|) analytically. Indeed, we have that

f( sup
x∈Spα

|x− µ|) :=

−
(

2
α(α+1)(1+2α)

· Γ2(α+ 3
2
)

Γ2(α)

)
c, α > −1

2
, α ̸= 0;

0, α = 0,

where (·) is the Gamma function. It follows that f(supx∈Spα
|x−µ|) > 0 if and

only if α < 0. By Theorem 4, this implies that for all α ≥ 0, we have that

kc(X)
P→ c∫

Sp

√
1−

(
x−µ
c

)2
p(x)dx

=
Γ(α+ 1)Γ(α+ 2)

Γ2(α+ 3
2
)

c.

In particular, for α = 0 we have that Kc
P→ 4

π
c = 2

πp0(µ)
, which coincides with

the Kuramoto coupling value for the onset of partially phase-locked behaviour.
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Figure 2 shows how, for the case c = 1
2
, α = 0, both the critical coupling

kc(x) :=
un(x, ⟨x⟩n)

1
n

∑n
j=1

√
1−

(
xj−⟨x⟩n

un(x,⟨x⟩n)

)2 , (9)

and the estimate obtained by replacing ⟨x⟩n with µ,

k̂c(x) :=
un(x, µ)

1
n

∑n
j=1

√
1−

(
xj−µ

un(x,µ)

)2 , (10)

converge to the expected value EXkc(X) = 2
π
as the number of oscillators

increases. Figure 3 shows, again for the case c = 1
2
, α = 0, the behaviour

of un(x, ⟨x⟩n) and un(x, µ) as a function of n. Note that un(x, µ) appears to
converge much faster than un(x, ⟨x⟩n). For α > 0, we have that

kc(X)
P→
(

1
2

√
π · Γ(α+ 2)

Γ(α+ 3
2
)

)
2

πpα(µ)
,

which suggests that the relative difference between the Kuramoto coupling
and the critical coupling in the sense of Definition 1 diverges as α tends to
infinity, with the former (associated with the onset of global phase-locking)
tending to c and the latter (associated with the onset of partial phase-locking)
tending to 0.

102 103 104
0.61

0.62

0.63

0.64

0.65

0.66

n→

k
c
(x

),
k̂
c
(x

)
→

2
π

un(x,〈x〉n)

1
n

∑

n
j=1

√

1−
(

xj−〈x〉n

un(x,〈x〉n)

)2

un(x,µ)

1
n

∑

n
j=1

√

1−
(

xj−µ

un(x,µ)

)2

Fig. 2. The graph of kc and k̂c, (9) and (10), for a given realization of intrinsic
frequencies x = (x1, . . . , xn) and selected values of n in the interval [102, 104].
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102 103 104

0.49

0.5

0.51

0.52

0.53

0.54

n →

u
n
(x

,
{
µ
,
〈x
〉 n
}
)
→

1

2

un(x, 〈x〉n)

un(x, µ)

Fig. 3. The graph of un(x, ⟨x⟩n) and un(x, µ) for a particular realization of intrinsic
frequencies x = (x1, . . . , xn) and selected values of n in the interval [102, 104].

5.2 Critical coupling in the limit for a non-symmetric distribution with finite
support

Next we consider a simple non-symmetric density function p : R 7→ R≥0,

p(x) :=

2− 2x for 0 < x ≤ 1,

0 elsewhere.

For this distribution we have that µ = 1
3
, Sp = (0, 1) and supx∈Sp

|x− µ| = 2
3
.

Inspection shows that

f(sup
x∈Sp

|x− µ|)= f(
2

3
) = − 8

27

√
3.

Hence, by Theorem 2, we have that

kc(X)
P→

supx∈Sp
|x− µ|∫

Sp

√
1−

(
x−µ

supx∈Sp
|x−µ|

)2
p(x)dx

=
2
3
8
27
π

=
9

4π
.

This is consistent with simulation results (data not shown).
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6 Conclusion

In this paper we proved a convergence result for the Kuramoto model. In
particular, we showed that, under appropriate technical conditions on the
distribution of intrinsic frequencies, the critical coupling strength associated
with the emergence of global phase-locked solutions converges in probability
as the number of oscillators tends to infinity. In general, this critical value
differs from the Kuramoto coupling, which relates to the existence of partially
phase-locked stationary solutions, but for some distributions they coincide
(notably for the uniform distribution). We hope that the results described in
this paper contribute to a better understanding of the asymptotic properties
of the classical Kuramoto model.

A Algorithm for computing the critical coupling

The algorithm below computes the solution un to Equation (2) for a given
vector x = (x1, x2, . . . , xn) of intrinsic frequencies, with precision AbsTol.

1. a := maxj |xj − ⟨x⟩n|;
2. u := 2 · a;
3. AbsTol := 10−6;
4. Err := 1;
5. ∆u :=

1
2
(u− a);

6. while |Err| > AbsTol

6.1. Err :=
∑

j

√
1−

(
xj−⟨x⟩n

u

)2
− 1

2

∑
j

1√
1−
(

xj−⟨x⟩n
u

)2
;

6.2. if Err ≥ 0

u := u− ∆u;

∆u := 1
2
∆u;

6.3. else

u := u+ ∆u;

∆u := 1
2
∆u;

6.4. end

7. end
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B Proofs

B.1 Proof of Lemma 1

Proof: . To prove Proposition (i), let (x, u, a) ∈ Dn. Then by definition
we have that u > maxj |xj − a| and the result follows by inspection:

|∂afn(x, u, a)|=

∣∣∣∣∣∣ 1n
n∑

j=1

(xj − a

u

)(
3− 2

(xj − a

u

)2)(
1−

(xj − a

u

)2)− 3
2

∣∣∣∣∣∣ ,
≤max

j

∣∣∣∣(xj − a

u

)(
3− 2

(xj − a

u

)2)∣∣∣∣ 1n
n∑

j=1

(
1−

(xj − a

u

)2)− 3
2

,

≤
√
2

1

n

n∑
j=1

(
1−

(xj − a

u

)2)− 3
2

︸ ︷︷ ︸
=:−∂ufn(x,u,a)

.

Proposition (ii) again follows by inspection. Indeed, we have that

∂ufn(x, u, a)=− 1

n

n∑
j=1

(
1−

(xj − a

u

)2)− 3
2

≤ −1,

∂aafn(x, u, a)=
1

n

n∑
j=1

(
3

u
)
(
1−

(xj − a

u

)2)− 5
2

> 0.

To prove Proposition (iii), note that, under the given hypotheses,

max
j

|xj − µ| < un(x, µ) < un(x, ⟨x⟩n) < (1 + c)max
j

|xj − ⟨x⟩n|.

This implies that

|un(x, µ)− un(x, ⟨x⟩n)|< (1 + c)max
j

|xj − ⟨x⟩n| −max
j

|xj − µ|,

=max
j

|xj − ⟨x⟩n| −max
j

|xj − µ|+ c max
j

|xj − ⟨x⟩n|,

≤ |µ− ⟨x⟩n|+ cmax
j

|xj − ⟨x⟩n|,

as required. Finally, let c > 0 and suppose un(x, ⟨x⟩n) ≥ (1+c)maxj |xj−⟨x⟩n|.
Proposition (iv) follows by inspection:

14



∣∣∣∂ufn(x, un(x, ⟨x⟩n), ⟨x⟩n)
∣∣∣ := ∣∣∣∣ 1n

n∑
j=1

(
1−

(
xj − ⟨x⟩n
un(x, ⟨x⟩n)

)2)− 3
2
∣∣∣∣

≤ max
j

(
1−

(
xj − ⟨x⟩n
un(x, ⟨x⟩n)

)2)− 3
2

=
(
1− (1 + c)−2

)− 3
2 .

This concludes the proof.

B.2 Proof of Lemma 2

Proof: Define λ := supx,y∈Sp
|x−y| and note that λ < ∞ by Assumption 1.

We distinguish two cases: (i) xi = xj for all (i, j); (ii) xi ̸= xj for some (i, j).
To prove case (i), let ϵ > 0 be given and define δ := ϵ. Under the given
hypotheses, it follows from the definition of un that un(x, µ) = |µ− ⟨x⟩n| and
un(x, ⟨x⟩n) = 0. Now suppose |µ − ⟨x⟩n| < δ. Then by construction we have
that

|un(x, µ)− un(x, ⟨x⟩n)| = |µ− ⟨x⟩n| < δ = ϵ,

as required. To prove case (ii), let xi ̸= xj for some (i, j) and suppose un(x, ⟨x⟩n) >
un(x, µ) (in case un(x, ⟨x⟩n) = un(x, µ) there is nothing to prove, while in case
un(x, ⟨x⟩n) < un(x, µ) the result follows by analogy with the present case).

Let ϵ > 0 be given and define δ := 1
2
ϵmin{1,

√
2
(
1−

(
1 + ϵ

2λ

)−2) 3
2} . We

distinguish two cases:(ii-a) un(x, ⟨x⟩n) < (1 + ϵ
2λ
)maxj |xj − ⟨x⟩n|;

(ii-b) un(x, ⟨x⟩n) ≥ (1 + ϵ
2λ
)maxj |xj − ⟨x⟩n|.

First we consider case (ii-a). Suppose |µ−⟨x⟩n| < δ. Under the given hypothe-
ses, it follows from Lemma 1, Proposition (iii), that

|un(x, µ)− un(x, ⟨x⟩n)|< |µ− ⟨x⟩n|+
ϵ

2λ
max

j
|xj − ⟨x⟩n| <

1

2
ϵ+

1

2
ϵ = ϵ,

as required. Next we consider case (ii-b). Firstly, note that under the given
hypotheses fn(x, ·, µ) is strictly concave and differentiable on (max1≤j≤n |xj −
µ|,∞). This implies that

0 < un(x, ⟨x⟩n)− un(x, µ) ≤
∣∣∣∣ fn(x, un(x, ⟨x⟩n), µ)
∂ufn(x, un(x, ⟨x⟩n), µ)

∣∣∣∣ < ∞.

(see Figure B.1 for an illustration). Secondly, note that, restricted to the in-
terval I := [min{µ, ⟨x⟩n},max{µ, ⟨x⟩n}], the function fn(x, un(x, ⟨x⟩n), ·) is
Lipschitz. In particular, we have that

|fn(x, un(x, ⟨x⟩n), µ)−fn(x, un(x, ⟨x⟩n), ⟨x⟩n)| < max
a∈I

|∂afn(x, un(x, ⟨x⟩n), a)| |µ−⟨x⟩n|.
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Since ∂aafn(x, un(x, ⟨x⟩n), a) > 0 by Lemma 1, Proposition (ii), it follows that
maxa∈I |∂afn(x, un(x, ⟨x⟩n), a)| = maxa∈{µ,⟨x⟩n} |∂afn(x, un(x, ⟨x⟩n), a)|. Now
recall that fn(x, un(x, ⟨x⟩n), ⟨x⟩n) = 0 by definition of un(x, ⟨x⟩n). It follows
that

∣∣∣un(x, ⟨x⟩n)− un(x, µ)
∣∣∣≤ max

a∈{µ,⟨x⟩n}

∣∣∣∣∂afn(x, un(x, ⟨x⟩n), a)
∂ufn(x, un(x, ⟨x⟩n), µ)

∣∣∣∣|µ− ⟨x⟩n|.(B.1)

Direct application of Lemma 1, Propositions (i), (ii), and (iv) yields:

|∂afn(x, un(x, ⟨x⟩n), µ)| ≤
√
2|∂ufn(x, un(x, ⟨x⟩n), µ)|,

|∂ufn(x, un(x, ⟨x⟩n), µ)| ≥ 1,

|∂ufn(x, un(x, ⟨x⟩n), ⟨x⟩n)| ≤
(
1−

(
1 +

ϵ

2λ

)−2)− 3
2 .

Combined with (B.1) this gives us

∣∣∣un(x, ⟨x⟩n)− un(x, µ)
∣∣∣≤√

2max
{
1,
(
1−

(
1 +

ϵ

2λ

)−2)− 3
2

}
|µ− ⟨X⟩n|,

=
√
2
(
1−

(
1 +

ϵ

2λ

)−2)− 3
2 |µ− ⟨x⟩n|

Now in conclusion suppose |µ−⟨x⟩n| < δ. Then by construction we have that
|un(x, µ) − un(x, ⟨x⟩n)| < ϵ. This proves the case un(x, µ) < un(x, ⟨x⟩n). To
prove the case un(x, µ) > un(x, ⟨x⟩n), interchange µ and ⟨x⟩n as suggested by
Remark 2. Inspection shows that all the inequalities still hold. This concludes
the proof.

B.3 Proof of Proposition 1

Proof: What we need to show is that, for all ϵ > 0,

P(|un(X, ⟨X⟩n)− un(X,µ)| > ϵ) → 0 as n → ∞.

Let ϵ > 0 and define δ(ϵ) := 1
2
ϵmin{1,

√
2
(
1−

(
1 + ϵ

2λ

)−2) 3
2}, where, as be-

fore, λ := supx,y∈Sp
|x− y|. Then by Lemma 2 we have that

P(|un(X, ⟨X⟩n)− un(X,µ)| > ϵ)≤P(|µ− ⟨X⟩n| ≥ δ(ϵ)).

Moreover, by Hoeffding’s inequality (Theorem 1) we have that

P(|µ− ⟨X⟩n| ≥ δ(ϵ)) ≤ exp
(−2nδ(ϵ)2

λ

)
.
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∣

∣
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∣

∣

∣

un(x, µ)
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u
maxj |xj−〈x〉n| →

f
n
(x

,u
,{

µ
,〈

x
〉 n
}
)
→

Fig. B.1. Illustration with the proof of Lemma 2.

This implies that

P(|un(X, ⟨X⟩n)− un(X,µ)| > ϵ)≤ exp
(−2nδ(ϵ)2

λ

)
. (B.2)

We observe that the right hand side of (B.2) tends to 0 as n → ∞ and does

so for every ϵ > 0. We conclude that un(X, ⟨X⟩n)
P→ un(X,µ).

B.4 Proof of Proposition 2

Proof: Let f be given by (5). Observe that f is strictly decreasing:

∂f(ξ)

∂ξ

∣∣∣∣∣
ξ=u

=−
∫
Sp

(
1−

(
x− µ

u

)2
)− 3

2

p(x)dx < 0.

Suppose f(supx∈Sp
|x − µ|) > 0. Since f(u) < 0 for large u, by continuity

there exists u′ > supx∈Sp
|x − µ| such that f(u′) = 0. Let ϵ > 0 be small (in
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particular, let ϵ < u′ −maxx∈Sp |x− µ|). Then by Corollary 1, noting that

Zi :=
u2√

u2 −X2
i

− 2
√
u2 −X2

i , i = 1, . . . , n,

are independent and identically distributed random variables, we have that

fn(X, u′ − ϵ, µ)
P→ f(u′ − ϵ) > 0 and fn(X, u′ + ϵ, µ)

P→ f(u′ + ϵ) < 0. By
continuity of f and fn this implies that P(|u′ − un(X,µ)| > ϵ+ δ) → 0 for all

δ > 0 as n → ∞. Since this is true for every ϵ it follows that un(X,µ)
P→ u′.

Note that u′ = u∗ by definition. Now suppose instead f(supx∈Sp
|x − µ|) ≤ 0

and define u′ := supx∈Sp
|x−µ|. Let ϵ > 0. Again by Corollary 1 we have that

fn(u
′ + ϵ, µ)

P→ f(u′ + ϵ) < 0. By the same argument as above this implies
that P(un(X,µ) − u′ > δ + ϵ) → 0 for all δ > 0 and all ϵ > 0 as n → ∞.
What remains to be shown is that P(un(X,µ)−u′ < −δ) → 0 for all δ > 0 as
n → ∞. Recall that un(X,µ) > maxj |Xj−µ|. It is easy to see that, under the
conditions of Assumption 1, P(maxj |Xj − µ| − u′ < −δ) → 0 for all δ > 0 as
n → ∞. This implies that P(un(X,µ)−u′ < −δ) → 0 for all δ > 0 as n → ∞,
as required. Note that u′ = u∗ by definition. This concludes the proof.
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