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Exercises Stochastic Performance Modelling
Instruction 1

Exercise 1 Let X be a non-negative random variable with E[X2] <∞, having probability density
function f(·).

Use partial integration to show that

E[X] =
∫ ∞
y=0

P(X > y)dy,

and
E[X2] =

∫ ∞
y=0

2yP(X > y)dy.

Exercise 2 Let Xi be an exponentially distributed random variable with parameter λi, i = 1, 2.

(a) Determine P(X1 > s+ t | X1 > s).
(b) Determine P(X1 ≤ X2).
(c) Determine P(min{X1, X2} < t).

Exercise 3 Consider two parallel processors, 1 and 2. Job Ai is being processed by processor
i = 1, 2. The processing times of jobs at processor i are exponentially distributed with parame-
ter λi, i = 1, 2. Job A3 is waiting in line and will be processed by the processor that completes its
current job first.

(a) Let λ1 = λ2 = λ. Without calculations, determine the probability that job A3 is the last
of the three jobs to be completed.
(b) Determine the probability that job A3 is the last of the three jobs to be completed for arbitrary
values of λ1 and λ2.

Exercise 4 (The Erlang distribution)
Let X1, X2, . . . be a sequence of independent, exponentially distributed random variables with com-
mon parameter λ.

(a) Determine the density of X1 +X2.
Hint: Use the following property: If X and Y are independent, non-negative random variables
with densities f(·) and g(·), respectively, then the density of X + Y equals

∫ t
u=0 f(u)g(t− u)du.

(b) Use induction on n to show that the density of Sn =
∑n

i=1Xi is given by

fSn(t) := λe−λt
(λt)n−1

(n− 1)!
.

Remark: This is the density of the Erlang distribution with parameters n and λ.
(c) Verify that the above density is the derivative with respect to t of the Erlang distribution given
in Section 2.2.4 of the lecture notes.

Exercise 5 (The hyper-exponential distribution)
Let Xi be an exponentially distributed random variable with parameter λi, i = 1, 2. Suppose B is
a random variable with P(B = 1) = p and P(B = 2) = 1− p, with 0 < p < 1. Let Y be defined as
follows: Y = X1 if B = 1 and Y = X2 if B = 2.

Calculate P(Y > x) by conditioning on the values of B. Subsequently, determine the density
of Y .
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Exercise 6 The discrete random variable N is said to have a geometric distribution if P(N = n) =
(1−p)pn−1, with p ∈ (0, 1) for all n = 1, 2, 3, . . .. Note that this is indeed a probability distribution
because

∑∞
k=0 x

k = 1
1−x , if |x| < 1.

(a) Use the above to show that P(N > m) = pm, for all m = 0, 1, 2, . . ..
(b) Show that the expectation of N is given by

∑∞
m=0 P(N > m), which, according to the above,

equals 1
1−p .

Hint: Compare with the expression for the mean in Exercise 1.

Let X1, X2, X3, . . . be a sequence of independent, exponentially distributed random variables with
common parameter λ. All Xi’s are independent of N . Let SN := X1 + X2 + . . . + XN , that is, if
N = n then SN is the sum of the first n terms of the sequence X1, X2, X3, . . ..

(c) Show that SN has an exponential distribution by arguing that the density of SN equals

fSN
(t) :=

∞∑
n=1

P(N = n)fSn(t),

where fSn(t) is given in Exercise 4.
Hint: Use that

∑∞
k=0

xk

k! = ex for any real number x.
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Exercises Stochastic Performance Modelling
Instruction 2

Exercise 7 Consider a Markov chain with state space {1, 2, 3} and transition probabilities p12 =
1, p21 = 1/2, p23 = 1/2, p32 = 1/2 and p33 = 1/2.

Determine the steady-state distribution of this Markov chain.

Exercise 8 Consider a Markov chain with state space {1, 2, 3, 4} and transition probability matrix

P =


0 1

4 0 3
4

0 0 1 0
0 2

3
1
3 0

0 0 0 1

 .
Let Xn be the state of the Markov chain at time n = 0, 1, 2, . . .. Calculate limn→∞ P(Xn = k|X0 =
1), k = 1, 2, 3, 4.

Exercise 9 A processor is inspected weekly in order to determine its condition. The condition
of the processor can either be perfect, good, reasonable, or bad. A new processor is still perfect
after one week with probability 0.7, with probability 0.2 the state is good, and with probability 0.1
it is reasonable. A processor in good condition is still good after one week with probability 0.6,
reasonable with probability 0.2, and bad with probability 0.2. A processor in reasonable condition
is still reasonable after one week with probability 0.5 and bad with probability 0.5. A bad processor
must be repaired. The repair takes one week, after which the processor is again in perfect condition.

(a) Formulate a Markov chain that describes the state of the machine, and draw the corresponding
transition diagram.
(b) Determine the steady-state distribution of the Markov chain.

Exercise 10 The number of orders being processed at a factory can be described by a Markov
chain with state space {0, 1, 2, 3, . . .}. For a given positive integer N , the transition probabilities
are P0,0 = 0.5, Pi,i+1 = 0.5 for i = 0, . . . , N , Pi,i+1 = p for i = N + 1, N + 2, . . ., Pi,i−1 = 0.5 for
i = 1, . . . , N and Pi,i−1 = 1− p for i = N + 1, N + 2, . . ., with p < 0.5.

(a) Why is this Markov chain irreducible, aperiodic and positive recurrent?
(b) Determine the steady-state distribution of the Markov chain.
(c) Let N = 3. Calculate the expected number of transitions needed to reach state 3, starting from
state 0.

Exercise 11 Consider a Markov chain with state space {1, 2, 3} and transition probabilities p11 =
p12 = 1/4, p13 = 1/2, p21 = 1/4, p23 = 3/4, p31 = p33 = 1/2.

(a) Determine the steady-state distribution of this Markov chain.
(b) Calculate the expected number of transitions (including transitions that do not alter the state)
needed to reach state 3, starting from state 1.

Exercise 12 Consider a Markov chain with state space {1, 2, 3, 4, 5, 6} and transition probability
matrix 

1
3 0 0 0 2

3 0
0 1

4
1
4 0 1

4
1
4

0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 4

5
1
5 0 0

 .
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(a) Draw the corresponding transition diagram, and determine the classes of communicating states.
(b) Verify – for all possible initial states – whether there exists a limiting distribution and, if so,
determine this distribution.
(c) What is the probability that state 1 is ever reached, starting in state 2?
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Exercises Stochastic Performance Modelling
Instruction 3

Exercise 13 Two types of consultations occur at a database according to two independent Poisson
processes: ‘read’ consultations occur at rate λR and ‘write’ consultations at rate λW .

(a) What is the probability that the time between two consecutive ‘read’ consultations is longer
than t?
(b) What is the probability that the first consultation occurring after time t = 0 is a ‘read’ consul-
tation?
(c) What is the probability that during the time interval [0, t] at most three ‘write’ consultations
occur?
(d) What is the probability that during the time interval [0, t] at least two consultations occur in
total?
(e) Determine the distribution of the number of ‘read’ consultations occurring during the time
interval [0, t], given that in total n consultations occurred during this time interval.

Exercise 14 The home page of the extremely popular T.E. Acher is frequently consulted by many
students worldwide. New ‘visits’ to the home page by students occur according to a Poisson process
with an average of 10 visits per hour. Mr. Acher is also highly respected by colleagues. The average
number of colleagues who visit the home page per hour is 2 (according to a Poisson process as well).

(a) What is the probability that the home page is visited at least twice during one hour?
(b) What is the probability that the home page is not visited at all over the course of 15 minutes?

A student who visits the home page ‘clicks’ on the link to an overview of Mr. Acher’s research
activities with probability 2/5.

(c) Determine the probability that during one work day (8 hours) exactly 1 student consults the
research overview.

Exercise 15 A production facility consists of two machines, M1 and M2. M1 makes electronic
parts of type A. The time it takes M1 to make a part is exponentially distributed with a mean
production time of 3 minutes. M2 makes electronic parts as well, the production time being expo-
nentially distributed with a mean of 6 minutes. The material used by M2 varies over time and, as
a consequence, the parts produced by M2 are of type A or B, each with probability 1

2 .

(a) What is the probability that M2 makes at least 3 parts during a half-hour period? (The
types of the parts produced are not relevant.)
(b) Suppose a customer requests a type-A part when this part type is not available from stock.
What is the probability that the customer must wait longer than 5 minutes until the next type-A
part is available?

Both machines occasionally produce defective parts (this can not be detected until the part is put
into use). A part produced by M1 is defective with probability 1

5 ; for M2 the percentage of defective
parts is even as high as 40%, regardless of the part type.

(c) What is the probability that a customer for a type-A part receives a defective part?
(d) Suppose customers request parts according to a Poisson process of rate λ. What is the proba-
bility that no part is produced during the period between two consecutive customer requests?
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Exercise 16 Consider the Markov chain with state space {1, 2, 3, 4, 5, 6} and transition probability
matrix

P =



0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

0 1 0 0 0 0
1
4 0 3

4 0 0 0
0 1

2 0 0 0 1
2

0 1
4 0 0 3

4 0

 .

(a) Draw the corresponding transition diagram, and determine the classes of communicating states.
(b) Determine the steady-state distribution of this Markov chain.
(c) What is the probability that, starting from state 1, the process never makes a direct transition
from state 1 to state 3?
(d) Calculate the expected number of transitions needed to reach state 2, starting from state 1.

Exercise 17 Consider a Markov process with state space {1, 2, 3} and infinitesimal generator

Q =

 −1 1
2

1
2

1
2 −1 1

2
3
2

3
2 −3

 .

(a) Determine the steady-state distribution of this Markov process.
(b) Also determine the steady-state distribution of the underlying Markov chain.

Exercise 18 Consider the Markov chain of Exercise 11. From this Markov chain we construct
a Markov process: each visit to state i consists of an exponentially distributed sojourn time with
parameters µ1 = 1/2, µ2 = 1/3 and µ3 = 1 in states 1, 2 and 3, respectively. Observe that it
is possible for both states 1 and 3 to return to this state after such an exponentially distributed
sojourn time.

(a) Determine the fraction of time spent in each of the states i = 1, 2, 3.
(b) Determine the generator matrix of this Markov process (use the answer to question (a)).
(c) Calculate the expected amount of time to reach state 3, starting from state 1. (Note that this
is different from the expected number of transitions.)
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Exercises Stochastic Performance Modelling
Instruction 4

Exercise 19 A repair man fixes broken TV sets. Broken TV sets arrive at his repair shop accord-
ing to a Poisson process, with an average of 10 broken TV sets per work day (8 hours). The repair
times are exponentially distributed with a mean of 30 minutes.

(a) What is the fraction of time that the repair man has no work to do?
(b) How many TV sets are, on average, at his repair shop?
(c) What is the mean sojourn time (waiting time plus repair time) of a TV set?

Exercise 20 A total of N lorries drive back and forth between a loading platform and an unload-
ing platform of a transshipment terminal. Lorries queue up at the loading platform to be loaded
by a (single) crane, with exponentially distributed loading times (per lorry) with parameter λ, all
loading times being independent of each other. Similarly, items are removed from the lorries by
a single crane at the unloading platform, with (independent) exponentially distributed unloading
times with parameter µ, λ 6= µ. Lorry driving times between the two platforms may be neglected
(with respect to loading and unloading times), and it is further assumed that there is an abundance
of items at the loading platform and that the system is in equilibrium.

(a) What is the probability that k of the N lorries are at the loading platform?
(b) The dynamics of this model are identical to that of a well-known queueing model. Describe
that queueing model.

Exercise 21 Consider an M/M/1 queue with arrival rate λ and service rate µ, with µ > λ. Let Cn
be the expected time for the system to empty, starting with n customers, n = 0, 1, . . . (so C0 = 0).

(a) Show that the Cn’s satisfy the following recursive relationship:

Cn =
1

λ+ µ
+

µ

λ+ µ
Cn−1 +

λ

λ+ µ
Cn+1, n = 1, 2, . . . .

(b) Show that C1 = 1
µ−λ .

Hint: Argue that C1 is the expected time that the server is working without interruption and that
1/λ is the expected time that the system is empty without interruption; then C1

C1+1/λ must be equal
to λ/µ.
(c) Argue that the expected time to decrease the queue length from 2 customers to 1 customer
is equal to C1, so that C2 = 2C1, and in general Cn = nC1. Verify this by substitution into the
recursive relationship.

Exercise 22 A repair facility for automatic copiers has three repair men. Repair requests occur
according to a Poisson process with a rate of λ = 5 per day. The repair times are exponentially
distributed with a mean of 1/µ = 0.5 day. The system is assumed to be in equilibrium.

(a) Determine the transition diagram with the corresponding transition rates.
(b) What is the mean number of copiers at the repair facility?
(c) What is the mean out-of-order time (waiting time plus repair time) of a copier at the repair
facility?
(d) What is the mean number of active repair men? What is the utilization factor of a repair man,
i.e., the fraction of time that the repair man is busy?
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Exercises Stochastic Performance Modelling
Instruction 5

Exercise 23 Two types of customers arrive at a post office with a single counter. Customers of
type 1 are patient and always join the waiting line (if any) and wait for service. Customers of
type 2 are less patient and only queue up if (upon arrival) there are less than K customers at
the post office. Type-1 customers arrive according to a Poisson process with rate λ, and type-2
customers arrive according to an independent Poisson process with rate γ. Customer service times
are type-independent and exponentially distributed with mean 1/µ.

(a) Determine the set of equilibrium equations, and calculate the equilibrium distribution.
(b) Determine an expression for the fraction of customers that impatiently leave the post office
without having received service.

Exercise 24 At a post office with a single counter customers arrive according to a Poisson process
with a rate of 60 customers per hour. Half of the customers have a service time that is the sum of
a fixed time of 15 seconds and an exponentially distributed time with a mean of 15 seconds. The
other half have an exponentially distributed service time with a mean of 1 minute.

Determine the mean waiting time and the mean queue length.

Exercise 25 Consider the M/G/1 queue with arrival rate λ = 1
3 and with the following hyper-

exponential service time distribution:

B(x) =
1 + a

2

(
1− e−

1+a
2
x
)

+
1− a

2

(
1− e−

1−a
2
x
)
, x ≥ 0,

with 0 ≤ a < 1.

(a) Determine the mean and the variance of the service times.
(b) For which values of a is the expected waiting time of a customer larger than the expected
duration of a busy period?
(c) Verify that the behavior of this queue when a→ 1 is very different from the case a = 1.

Exercise 26 Consider an M/G/1 queue with arrival rate λ, mean service time E[B] and second
moment of the service times E[B2].

(a) Suppose λ = 3
2 , E[B] = 1

2 and E[B2] = 1
2 . Determine the expected values of the waiting

time, the sojourn time, the queue length, the number of customers in the system and the busy
period.
(b) Suppose that from measurements it is observed that the expected waiting time equals 5, that
the traffic load ρ equals 2

3 , and that the mean number of customers in system is 8. Determine the
arrival rate and the first two moments of the service time distribution. What are the expected
values of the queue length and the sojourn time?
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Exercises Stochastic Performance Modelling
Instruction 6

Exercise 27 Verify Example 6.2.1 in the lecture notes.

Exercise 28 A processor is used for two types of jobs: primary and secondary jobs. Primary jobs
are generated according to a Poisson process with rate λ, and require exponentially distributed
service times with mean 1/µ. We assume that ρ := λ/µ < 1. When no primary jobs are available,
the processor can render service to secondary jobs, of which there is always at least one waiting in
line. As soon as a primary job arrives, the secondary job in service is interrupted. However, it takes
a random amount of time T before the service of the primary job can start (for instance, because
data of the secondary job needs to be saved on a hard disk). The set-up time T is exponentially
distributed with mean 1/θ. When service of a primary job is completed, the first arrived primary
job waiting in line is taken into service immediately (in that case there is no additional set-up time).

(a) Determine the arrival relation for the mean waiting time of a primary job. (Recall that the
arrival relation expresses the mean waiting/sojourn time in terms of the mean number of customers
found in the system upon arrival and their remaining service times.)
(b) Determine the mean waiting time and sojourn time of primary jobs, as well as the mean total
number of primary jobs in the system and the mean number of waiting primary jobs.
(c) Why is the increase in waiting time (and sojourn time) compared to the M/M/1 queue without
set-up times not smaller than E[T ] = 1/θ?

Now assume that service times and set-up times have general distributions with means E[B] and
E[T ] and second moments E[B2] and E[T 2]. As before, we assume that ρ := λE[B] < 1.

(d) What is the probability that the processor is working on secondary jobs when a primary job
arrives? And what is the probability that the processor is in the process of conducting a set-up
when a primary job arrives?
(e) What is the arrival relation for the mean waiting time in this case?
(f) Determine the mean waiting time and the mean sojourn time of primary jobs.

Exercise 29 A machine mounts electronic components on three different types of printed circuit
boards, type A, B and C boards say. On average 54 type-A boards arrive per hour, 48 type-B
boards, and 18 type-C boards. The arrival processes are Poisson. The mounting times are exactly
20 seconds for type A, 30 seconds for type B, and 40 seconds for type C. The boards are processed
in order of arrival.

(a) Calculate for each type of printed circuit board the mean sojourn time and also calculate
the mean overall sojourn time.

Now suppose that there are priority rules in effect. Type-A boards have the highest priority, type-B
boards have intermediate priority, and type-C boards have the lowest priority. The priorities are
non-preemptive.

(b) Calculate for each type of printed circuit board the mean sojourn time and also calculate the
mean overall sojourn time.

Exercise 30 Consider a single processor which handles three types of tasks. Type-i tasks arrive
according to a Poisson process with rate λi, and the service requirements of type-i tasks are expo-
nentially distributed with mean 1/µi, i = 1, 2, 3, with λ1/µ1 +λ2/µ2 +λ3/µ3 < 1. Tasks are served

10



in order of arrival.

(a) Argue why the system may be viewed as an M/H3/1 queue, where H3 represents a hyper-
exponential service requirement distribution.
(b) Determine the mean waiting time of type-1 tasks.
(c) Suppose that at some point in time there are at least three tasks present in the system. What
is the probability that the first two waiting tasks (thus excluding the task in service) belong to
different types?
(d) Now suppose that the tasks are served according to a preemptive-resume priority strategy,
which assigns the highest priority to type-1 tasks, the next highest priority to type-2 tasks, and
the lowest priority to type-3 tasks. Determine the mean waiting time of an arbitrary task.

11



Exercises Stochastic Performance Modelling
Instruction 7

Exercise 31 A total of K jobs circulate in a closed network of four queues (Q0, Q1, Q2, Q3), each
with a single server. At each of the four queues, the jobs are served in order of arrival, and the
service times are exponentially distributed with means 1

µ0
= 2, 1

µ1
= 1

3 and 1
µ2

= 1
µ3

= 1
2 , respec-

tively. Each job must sequentially undergo service in Q1, Q2 and Q3, but sometimes the service in
Q1 is not successful, in which case an additional service must be performed at Q0. A service at Q1

is successful with probability 2
3 , in which case the job is forwarded to Q2, then (always) to Q3 and

then (always) back to Q1. If the service at Q1 is not successful, then the job is sent to Q0 and from
there, after receiving service, returned to Q1 in order to be processed there again.

(a) Determine the relative number of visits to each of the four queues.
(b) Determine the joint equilibrium distribution of the numbers of jobs at the four queues (includ-
ing jobs possibly in service)? Also indicate how the normalizing constant can be computed.
(c) Argue without any calculations that only Q0 saturates, if the number of jobs in the network
grows large (K →∞), i.e., argue that in that case only in Q0 the (mean) number of jobs tends to
infinity.
Hint: compare the (relative) loads of the queues.
(d) Choose K = 2. Use the Mean-Value Analysis algorithm to determine the mean number of jobs
at each of the four queues (including jobs possibly in service).

Exercise 32 A total of K jobs circulate in a closed network of four queues (Q1, Q2, Q3, Q4), each
with a single server. A job completed at Q1 always moves to Q2. Upon service completion at Q2, a
job moves with probability 1

2 to Q1, with probability 1
4 to Q3, and with probability 1

4 to Q4. Upon
service completion at Q3 or Q4, jobs always return (with probability 1) to Q2. At each of the four
queues, the jobs are served in order of arrival, and the service times are exponentially distributed
with means 12 ms (milliseconds), 2 ms, 8 ms and 8 ms, respectively.

(a) Use the so-called traffic equations to determine the relative number of visits to each of the
four queues.
(b) Determine the joint equilibrium distribution of the numbers of jobs at the four queues (includ-
ing jobs possibly in service).

For parts (c) and (d) we assume that K = 2 (a total of two jobs in the network).

(c) Determine the probability distribution of the number of jobs present at Q1 (including the
job possibly in service), and use this to determine the throughputs at Q1 and Q2.
(d) Use the Mean-Value Analysis algorithm to determine the mean number of jobs at each of the
four queues (including jobs possibly in service).
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