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Abstract. We consider a number of questions pertaining to the stability of pos-
itive switched linear systems. Recent results on common quadratic, diagonal, and
copositive Lyapunov function existence are reviewed and their connection to the
stability properties of switched positive linear systems is highlighted. We also gener-
alise the concept of D-stability to positive switched linear systems and present some
preliminary results on this topic.

1 Introduction

While the stability properties of positive linear time-invariant (LTI) systems
have been thoroughly investigated and are now completely understood, the
theory for nonlinear, uncertain and time-varying positive systems is consid-
erably less well-developed. In fact, many natural and fundamental questions
on the stability of such systems remain unanswered. It is clear that for many
practical applications there is a need to extend the theory for positive LTI sys-
tems to broader and more realistic system classes incorporating nonlinearities
and time-varying parameters.

Our principal focus in the present paper is on the stability properties of
switched positive linear systems [2]. In particular, we review recent work on the
stability of these systems, highlighting the connection between various notions
of stability and the existence of corresponding types of common Lyapunov
function. We also consider an extension of the concept of D-stability to positive
switched linear systems, present some preliminary results for this question and
highlight some directions for future research.
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2 Notation and Background

Throughout, R denotes the field of real numbers, R" stands for the vector
space of all n-tuples of real numbers and R™*" is the space of m x n matrices
with real entries. For 2 in R"?, z; denotes the i** component of z, and the
notation z > 0 (z > 0) means that ; > 0 (z; > 0) for 1 < i < n. The
notations x < 0 and z < 0 are defined in the obvious manner.

We write AT for the transpose of A € R"*" and for a symmetric P in
R™ ™ the notation P > 0 means that the matrix P is positive definite.

Throughout the paper, in an abuse of notation, for LTI systems we shall
use the term stability to denote asymptotic stability. Also, when referring to
switched linear systems, stability shall be used to denote asymptotic stability
under arbitrary switching [2].

For a positive LTI system

(1) = Ax(t) (1)

where A € R"*" is a Metzler matrix (meaning that the off-diagonal entries
of A are non-negative), the equivalences we collect in the following result are
well known.

Proposition 1. [] Let A € R"*" be a Metzler matriz. The following state-
ments are equivalent:

(i) The LTI system (1) is stable;

(i1) A is Hurwitz, meaning that its eigenvalues lie in the open left half plane;
(iii)There exists P > 0 such that ATP + PA < 0;

(iv)There ezists a diagonal matriz D > 0 such that ATD + DA < 0;

(v) There exists a vector v = 0 in R™ with Av < 0;

(vi)For any diagonal matriz D > 0, the system @(t) = DAx(t) is stable.

While the equivalence of (i), (ii) and (iii) in the previous result also holds
for any LTI system, properties (iv), (v) and (vi) are specific to positive LTI
systems.

The property described in (vi) is known as D-stability and establishes that
stability of positive LTI systems is robust with respect to parametric uncer-
tainties given by diagonal scaling. Later in the paper, we shall be concerned
with investigating the connection between concepts similar to those in (v) and
(vi) for switched positive linear systems. Before this, in the following section,
we shall review some recent work on the stability of switched positive linear
systems.

3 Lyapunov Functions and Stability for Switched
Positive Linear Systems

It is well known that a switched positive linear system of the form
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i) = Aa(t)  Alt) € {41, As) (2)

can be unstable for certain choices of switching sequence even when the indi-
vidual system matrices A;, Ay are asymptotically stable [2]. This observation
has led to great interest in the stability of such systems under arbitrary switch-
ing regimes. A key result in this connection is that stability of (2) is equivalent
to the existence of a common Lyapunov function for the individual compo-
nent LTT systems [2]. In the light of Proposition 1, three classes of Lyapunov
function naturally suggest themselves for positive switched linear systems:

(i) Common Quadratic Lyapunov Functions (CQLFs): V(z) = zT Pz where
P=PT >0and ATP+PA; <0fori=1,2;

(ii) Common Diagonal Lyapunov Functions (CDLFs): V(z) = zT Dz where
D = diag(dy,...,d,), D > 0 and AiTD + DA; <0 fori=1,2;

(iii)Common Linear Copositive Lyapunov Functions (CLLFs): V(z) = vTz
where v = 0 and ATv <0 fori=1,2;

In the interests of brevity, we shall abuse notation slightly and say that the
matrices A;, Ay have a CQLF, CDLF or CLLF rather than always referring
to the associated LTI systems.

Recall the following well-known necessary condition for the stability of pos-
itive switched linear systems (in fact this is a necessary condition for stability
for general switched linear systems)[2].

Lemma 1. Let Ay, Ay € R"*" be Metzler and Hurwitz. Suppose that the as-
sociated switched positive linear system (2) is stable. Then for any real v > 0,
Ay + vAs is Hurwitz.

(i) Common Quadratic Lyapunov Functions (CQLFs)

In [1], the relationship between the existence of CQLFSs, the stability of
all matrices of the form A; + yAs with v > 0, and the stability of the sys-
tem (2) was considered. For 2-dimensional systems, the following result was
established.

Theorem 1. Let Ay, Ay € R?*? be Hurwitz and Metzler. Then the following
statements are equivalent:

(a) A1, As have a CQLF;
(b) The switched system (2) is stable;
(c) Ay + vAs is Hurwitz for all real v > 0.

Further, the equivalence of (b) and (c) can be extended to the case of an
arbitrary finite number of positive LTI systems. Formally, it was shown in [1]
that given Metzler, Hurwitz matrices Ay, ..., Ay in R2%2, the switched system
(t) = A(t)x(t), A(t) € {A1,..., A} is stable if and only if A1 +y2A42+ -+
Y Ayp is Hurwitz for all real v9 > 0,...9 > 0.

The equivalence of (a), (b) and (c) fails immediately for 3-dimensional
systems. Moreover, the equivalence of (b) and (c) is not true for arbitrary
dimensions[1]. In fact, in a very recent paper [3], a 3-dimensional example of
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an unstable switched system for which Ay + yAs was Hurwitz for all v > 0
was explicitly described. In connection with CQLF existence and the stability
of positive switched linear systems, it has been shown in [11] for 2 and 3
dimensional systems that if rank(A4y — A;) = 1, and Ay, A; are both Hurwitz,
then the associated LTI systems always possess a CQLF and the switched
linear system (2) is stable.

(1) Common Diagonal Lyapunov Functions (CDLFs)

As stable positive LTI systems have diagonal Lyapunov functions, it is
natural to ask under what conditions families of such systems will possess a
common diagonal Lyapunov function. In the paper [9], the following result
was derived for systems with irreducible system matrices (for the definition
of irreducible matrices, see [5]).

Theorem 2. Let Ay, Ay € R™*™ be irreducible, Metzler and Hurwitz. Ay, Ay
have a CDLF if and only if Ay + DAsD is Hurwitz for all diagonal matrices
D > 0.

The above result allows us to establish a connection between the existence of
a CDLF and a form of robust stability for switched positive linear systems.
First of all, note that for A;, As irreducible, Metzler and Hurwitz, Theorem
2 shows that if Ay, As have a CDLF, then so do Dy A Dy, DyAs D5 for any
choice of diagonal matrices Dy > 0, Dy > 0. Hence the existence of a CDLF
guarantees the stability of the positive switched linear system

for any diagonal matrices Dy > 0, D2 > 0.

Conversely, if A1, A5 do not have a CDLF, then it follows from Theorem 2
that there is some diagonal matrix D > 0 such that A; +D A5 D is not Hurwitz.
This then immediately implies from Lemma 1 that the switched system (3) is
not stable with Dy = I, and Dy = D. This discussion establishes the following
result.

Proposition 2. Let Ay, Ay € R"*™ be irreducible, Metzler and Hurwitz. The
switched system (3) is stable for any diagonal matrices D1 > 0, Dy > 0 if and
only if Ay, Ay have a CDLF.

(11i) Common Linear Copositive Lyapunov Functions (CLLFs)

It is also possible to establish the stability of positive switched linear sys-
tems using copositive linear Lyapunov functions. As noted in [6], traditional
Lyapunov functions may give conservative stability conditions for positive
switched systems as they fail to take into account that trajectories are natu-
rally constrained to the positive orthant. The existence of a CLLF for a pair
of Metzler, Hurwitz matrices Ay, As is equivalent to the feasibility of the lin-
ear inequalities v > 0, ATv < 0, ATv < 0. In the following sections, we shall
investigate closely the connection between the related but distinct question of
the feasibility of v > 0, A;v < 0, Av < 0 and an extension of the concept of
D-stability for switched positive linear systems.



Stability of Positive Switched Systems 5

Note that an algebraic condition for CLLF existence was derived in [10].
In the interests of brevity, we shall not explicitly state this result here but
rather state the following technical result which follows from Theorem 3.1 in
that paper. This fact shall prove useful in our later discussion.

Lemma 2. Let Ay, Ay € R"*™ be Metzler and Hurwitz. Suppose that there is
no non-zero v = 0 in R™ with Ajv <0, Ay < 0. Then there is some diagonal
D > 0 such that Ay + DAy is singular.

4 Switched Positive Linear Systems and D-Stability: The
2-d Case

In this and the following section, we shall investigate the following generali-
sation of the notion of D-stability to positive switched linear systems.

Definition 1. Let Ay, Ay € R"*" be Metzler and Hurwitz. The associated
switched positive linear system (2) is said to be D-stable if for any diagonal
matrices Dy, Dy € R"™*™ with Dy > 0, Dy > 0, the system

is stable.

For positive LTI systems, Proposition 1 shows that stability and D-stability
are equivalent. Our first observation, in Example 1, is to note that this equiva-
lence is not true in the switched case. First of all, we note the following simple
necessary condition for D-stability, which follows immediately from Lemma 1.

Lemma 3. Let Ay, Ay € R"*"™ be Metzler and Hurwitz. Suppose that the as-
sociated switched positive linear system (2) is D-stable. Then for any diagonal
matriz D > 0, Ay + DA is Hurwitz.

Ezample 1. Consider the Metzler, Hurwitz matrices in R?*?

~2. 0 15
a=(3h) 4= (305)

It is straightforward to verify that A; + yA, is Hurwitz for all v > 0. Hence
by Theorem 1, the associated switched system is stable. On the other hand,

choosing
20 0
D= ( 0 0.5>

it is easily verified that A; + DA is not Hurwitz. Hence by Lemma 3 the
associated switched system is not D-stable.



6 O. Mason, V. S. Bokharaie, R. Shorten

The above example illustrates that for switched positive linear systems, the
concepts of stability and D-stability are not equivalent, in contrast to the LTI
system case. In the following result, we show that the necessary condition
given in Lemma 3 is also sufficient for D-stability for 2-dimensional systems.

Theorem 3. Let Ay, Ay € R*>*? be Metzler and Hurwitz. The positive switched
linear system (2) is D-stable if and only if Ay +D Ay is Hurwitz for all diagonal
matrices D > 0.

Proof: Lemma 3 has already established the necessity of this condition. For
sufficiency let D; > 0, Dy > 0 be diagonal matrices and let v > 0 be any non-
negative real number. By hypothesis, A; + 7D1_1D2A2 is Hurwitz for v > 0
and it is trivially true for v = 0. However, this matrix is also Metzler and hence
by point (vi) of Proposition 1, D1 A +~vyDsAs = D1(A; +7Df1D2A2) is also
Hurwitz. It now follows immediately from Theorem 1 that the switched system
(4) associated with Dy Ay, Do A, is stable. As this is true for any diagonal
D, >0, Dy > 0, the system (2) is D-stable.

The next result establishes a connection between the existence of a com-
mon solution to the inequalities v > 0, A;v < 0 for i = 1,2 and D-stability
for (2).

Corollary 1. Let A, Ay € R?*? be Metzler and Hurwitz. Then:

(i) If there is some v = 0 with Ajv < 0, Asv < 0 then the system (2) is
D-stable;

(ii)If (2) is D-stable then there exists some non-zero v = 0 with Ajv < 0,
AQ’U j 0.

Proof: (i) Suppose there is some v > 0 with 4;v < 0 for i = 1,2. Then for
any diagonal D > 0, DAsv < 0 and (A + DAs)v < 0. Moreover, Ay + DA,
is Metzler. Hence, from point (v) of Proposition 1, it follows that A; + DA,
is Hurwitz. Theorem 3 now implies that the switched system (2) is D-stable.

(ii) If (2) is D-stable, then Theorem 3 implies that A; + DA, is Hurwitz
for all diagonal D > 0. It now follows from Lemma 2 that there must exist
some non-zero v = 0 with Ajv <0, Asv < 0.

Note that the sufficient condition for D-stability presented in Corollary 1
is not necessary as demonstrated by the following example.

Example 2. Consider the Metzler, Hurwitz matrices A;, As given by:

-2 1 -3 1
= (3 5) = (30)
Using Theorem 4.1 of [10] it is straightforward to show that there is no vector
v > 0 with Ajv < 0, Av < 0. On the other hand, it can be verified alge-

braically that for any diagonal D > 0, A; + DA, is Hurwitz and hence the
switched system (2) is D-stable by Theorem 3.
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5 D-Stability in Higher Dimensions

In this section, we highlight a result extending Corollary 1 to higher dimen-
sional positive switched systems. We only provide an outline of the proof here
due to space limitations.

Theorem 4. Let Ay, Ay € R"*"™ be Metzler and Hurwitz. Then:

(i) If there is some v > 0 with Ajv < 0, Asv < O then the system (2) is
D-stable;

(ii)If (2) is D-stable then there exists some non-zero v = 0 with Ajv < 0,
A2U j 0.

Proof Outline: The key to proving (i) is to show that the existence of such
a v is sufficient for the stability of the switched system (2). Once this is
established, the result follows immediately as D1 Ajv < 0, DaAsv < 0 for any
diagonal Dy > 0, D> > Q.

To show that the existence of v > 0 satisfying Ajv < 0, Asv < 0 implies
the system (2) is stable, we first show that any trajectory starting from the
initial condition given by v converges asymptotically to the origin. We can then
combine this fact with the monotonicity properties of positive LTI systems
[4] to conclude that (2) is stable. The result given by (ii) follows immediately
from Lemma 3 and Lemma 2.

Note that the result given by (i) provides a condition for stability of (2)
that is distinct although related to the condition given by CLLF existence.

6 Concluding remarks

In this paper, we have discussed a number of problems relating to the stability
properties of switched positive linear systems. In particular, we have reviewed
recent work on common quadratic, copositive and diagonal Lyapunov func-
tions for these systems and on the relationship between the existence of such
functions and various notions of stability for switched positive systems. We
have also discussed the notion of D-stability for positive switched systems
and presented separate necessary and sufficient conditions for D-stability for
n-dimensional systems. More detailed and complete results have also been
given for 2-dimensional systems.

A number of interesting directions for future research emerge from the
work described here. For instance, it would be interesting to investigate the
possibility of Theorem 3 extending to dimensions higher than 2, even for some
restricted system class. Also, the question of whether stability and D-stability
are equivalent for any subclass of positive switched linear systems arises nat-
urally. It is straightforward to show that this is true for upper (or lower)
triangular positive systems, for example, but are there any more interesting
such classes?
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