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Abstract

In this work, we introduce the class of P 1
max-matrices for the max algebra and

derive some properties of these that echo similar results for P -matrices in the
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1. Introduction

The class of P -matrices has been extensively studied due to its importance
in fields such as statistics, optimization and dynamical systems [2, 3, 4, 5].
A matrix A ∈ Rn×n is a P -matrix if all of its principal minors are positive
[6]. The relevance of such matrices to the linear complementarity problem is
well documented and details can be found in [2]. P -matrices are also inti-
mately connected with the stability theory of positive linear systems and with
the long-term behaviour of Lotka-Volterra systems in ecological modelling [3].
Yet another context in which P -matrices play a role is in the study of globally
univalent functions, motivated by applications in Economics and Biology [4, 5].

The results to be presented here relate most directly to characterizations of
P -matrices within the class of so-called Z-matrices. Recall that a Z-matrix A
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is one for which aij ≤ 0 for i 6= j. For a Z-matrix A, the following conditions
are equivalent [7, 8]:

(i) A is a P -matrix;

(ii) A is positive-stable;

(iii) for every non-zero x ∈ Rn there is some i with xi(Ax)i > 0;

(iv) every principal submatrix of A is positive-stable;

(v) there exists some v > 0 with Av > 0.

Property (v) above is usually referred to as the S-property [6].
The authors of [1] investigated extending the P -property of a single matrix

to sets of matrices; specifically, they introduced the row-P -property for a set of
matrices and demonstrated that property (iii) above holds uniformly for all mat-
rices in a set if and only if the set possesses the row-P -property. Furthermore,
they also showed that the row-P -property was equivalent to the S-property for
a compact set of Z-matrices.

We shall be concerned with extending results such as those described above
concerning P -properties of single matrices and sets of matrices to the setting of
the max algebra. In keeping with [9], we define the max algebra to consist of the
non-negative real numbers equipped with the two operations a⊕ b = max(a, b)
and a ⊗ b = ab. These operations extend to nonnegative matrices and vectors
in the standard way. We shall explore the connection between matrix stability
in the max algebra and concepts analogous to P -matrices in this setting. The
specific notion of matrix stability considered here is that explored in [10] for
a single matrix and corresponds to asymptotic stability of the discrete-time
system

x(k + 1) = A⊗ x(k).

In Section 3, we introduce the concept of a P 1
max-matrix and show that

equivalences analogous to (i) - (v) given above also hold in the max algebra. In
Section 4, in analogy with the work of [1], we introduce the row-P 1

max-property
and the Smax-property for sets of matrices. We show that the results of [1] ex-
tend naturally to this setting and relate the Smax- property for a set of matrices
to the stability of its max-convex hull.

Moreover, we study difference equations and inclusions with delay over the
max algebra and investigate the role played by the P 1

max-property in the stability
of these. In particular, we show in Section 3 that the result of [11] on harmless
off-diagonal delays also holds for difference equations in the max algebra. In
Section 4, we present a further extension of this result to difference inclusions
over the max algebra.

2. Preliminaries and Notation

The set of all nonnegative real numbers is denoted by R+; the set of all
n-tuples of nonnegative real numbers is denoted by Rn+ and the set of all n× n
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matrices with nonnegative real entries is denoted by Rn×n+ . For v ∈ Rn+ and
1 ≤ i ≤ n, vi denotes the ith component of v. For A ∈ Rn×n+ and 1 ≤ i, j ≤ n,

aij refers to the (i, j)th entry of A. For 1 ≤ j ≤ n, A(j) denotes the jth row
of A. The matrix A = [aij ] is nonnegative (positive) if aij ≥ 0 (aij > 0) for
1 ≤ i, j ≤ n. This is denoted by A ∈ Rn×n+ (A > 0). Similarly, for v ∈ Rn,
we say v is nonnegative (positive) and write v ∈ Rn+ or v ≥ 0 (v > 0) if vi ≥ 0
(vi > 0) for 1 ≤ i ≤ n.

The weighted directed graph of A is denoted by D(A). It is an ordered pair
(V,E) where V is a finite set of vertices {1, 2, ..., n} and E is a set of directed
edges, with an edge (i, j) from i to j if and only if aij > 0. A walk is a sequence
of vertices i = i1, i2, . . . , ik = j between any two vertices i, j in D(A), where
(ip, ip+1) is an edge for p = 1, . . . , k − 1. The weight of the walk i1, i2, ..., ik of
length k−1 is given by ai1i2ai2i3 ...aik−1ik . A path is a walk all of whose vertices
are distinct.

A cycle Γ of length k is a closed path of the form i1, i2, ..., ik, i1 where
i1, i2, ..., ik are in V and distinct. We use the notation π(Γ) = ai1i2ai2i3 · · · aiki1
for the weight and l(Γ) for the length of the cycle Γ. The kth root of its weight
is called its cycle geometric mean. For a matrix A ∈ Rn×n+ , the maximal cycle
geometric mean over all possible cycles in D(A) is denoted by µ(A). A cycle
with maximum cycle geometric mean is called a critical cycle. Vertices that lie
on some critical cycle are known as critical vertices. The critical matrix of A
[12, 13, 14], AC , is formed from the submatrix of A consisting of the rows and
columns corresponding to critical vertices as follows. Set aCij = aij if (i, j) lies

on a critical cycle and aCij = 0 otherwise.
As previously mentioned, the max algebra consists of the set of nonnegative

numbers together with two binary operations: a ⊕ b = max(a, b), a ⊗ b = ab
where a, b ∈ R+; these operations extend to nonnegative matrices and vectors
in the obvious fashion. Standard references on the properties of the max (and
max-plus) algebra include [15, 16, 17]. We denote by Ak⊗ = A⊗A⊗ ...⊗A︸ ︷︷ ︸

k times

the

kth power of A in the max algebra.
λ ∈ R+ is said to be a max eigenvalue of A if there is some v ∈ Rn+ with

(A⊗ v)i = max
1≤j≤n

aijvj = λvi, i = 1, 2, ..., n.

v is then said to be a max eigenvector. The maximum cycle geometric mean in
D(A), µ(A) (if D(A) is acyclic then we define µ(A) = 0), can be characterized
in the following equivalent ways:

(i) max{λ ∈ R+ : ∃v ∈ Rn+, v 6= 0 such that A⊗ v = λv} [10].

(ii) lim
k→∞

µ(Ak⊗)
1
k [12].

If A ∈ Rn×n+ is an irreducible matrix, then µ(A) is the unique max eigenvalue
of A and there is a positive max eigenvector v > 0 corresponding to it [9, 15].
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In keeping with [10] the matrix A is said to be asymptotically stable if
limk→∞Ak⊗ = 0. As shown in [[10], Theorem 2] and [18], this is equivalent to
µ(A) < 1.

In the conventional algebra, a matrix is a P -matrix if all of its principal sub-
matrices have positive determinant [6]. In defining the notion of P 1

max-matrices
in the next section, we shall make use of a definition of matrix permanent in
the max algebra [19, 20]. Formally, the max permanent is given by

permax(A) = max
σ∈Sn

n⊗
i=1

ai,σ(i) (1)

where Sn denotes the set of all permutations of the numbers 1, 2, ..., n.

3. P 1
max-matrices and Asymptotic Stability

In this section, we define the class of P 1
max-matrices. Further, we demons-

trate the relationship between these matrices and the stability properties of
matrices and difference equations in the max algebra. The results presented
here echo similar facts established for the conventional algebra.

Formally, A ∈ Rn×n+ is said to be a P 1
max-matrix if permax(B) < 1 for all

principal submatrices B of A. The following theorem presents some equivalent
conditions for A ∈ Rn×n+ to be a P 1

max-matrix.

Theorem 3.1. Let A ∈ Rn×n+ . Then the following are equivalent:

(i) A is a P 1
max-matrix;

(ii) A is asymptotically stable, that is, µ(A) < 1 [10];

(iii) for each x 6= 0 in Rn+, there exists an i ∈ {1, 2, ..., n} such that (A⊗ x)i <
xi;

(iv) for all principal submatrices B of A, µ(B) < 1;

(v) there exists a vector v > 0 such that A⊗ v < v.

Proof
(i) ⇐⇒ (ii) Assume that we have permax(B) < 1 for all principal submat-

rices B of A. Let (i1, i2, ..., ik, i1) be a critical cycle in D(A). (If there is no
cycle in D(A) then µ(A) = 0 and we are done.) Further, let B ∈ Rk×k+ be the
principal submatrix of A corresponding to i1, i2, ..., ik. Then we have

ai1i2ai2i3 ...aiki1 = b1,σ(1)b2,σ(2)...bk,σ(k) ≤ permax(B)

for some permutation σ ∈ Sk. It follows immediately that µ(A) < 1.
For the converse, assume µ(A) < 1. So, all cycle products of any length

in D(A) are less than 1. Let a principal submatrix B ∈ Rk×k+ of A be given
with permax(B) equal to bi1,σ(i1)bi2,σ(i2)...bik,σ(ik) for some 1 ≤ i1, i2, ..., ik ≤
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n. Since σ ∈ Sk is a permutation and can be written as a product of cyclic
permutations, it follows that permax(B) can be decomposed into cycle products.
It is immediate that permax(B) < 1.

(ii) ⇐⇒ (iii) Let µ(A) < 1. Suppose that there exists x 6= 0 in Rn+ such
that (A⊗ x)i ≥ xi for each i ∈ {1, 2, ..., n}. Then A⊗ x ≥ x. This implies that
Ak⊗⊗x ≥ x for some x 6= 0 in Rn+. Thus, as k →∞, the kth power of A doesn’t
converge to zero which contradicts µ(A) < 1.

Conversely, assume (iii) and let i1, i2, ..., ik, ik+1 = i1 be a cycle of length
k with the cycle product ai1i2ai2i3 ...aiki1 in D(A) for i1, i2, ..., ik ∈ {1, 2, ..., n}.
(If D(A) contains no cycles, then µ(A) = 0 and we are done.) Define x ∈ Rn+
as follows:

xi2 = 1

xij =
xij−1

aij−1ij

, j = 3, ..., k

xi1 =
xik
aiki1

xp = 0, p 6= {i1, i2, ..., ik}.

By assumption there exists some index i with (A⊗ x)i < xi. Clearly i must be
in {i1, i2, ..., ik}. Consider the following two cases.

• i = i1 ⇒ ai1i1xi1 ⊕ ai1i2xi2 ⊕ ... ⊕ ai1ikxik < xi1 . Since xi1 =
xik

aiki1
6= 0,

it easily follows from the second term in the left side that ai1i2xi2 < xi1 .
Hence,

ai1i2xi2 <
xik
aiki1

=
xi2

ai2i3ai3i4 ...aiki1
⇒ ai1i2ai2i3 ...aiki1 < 1.

• i = ij(1 < j ≤ k) ⇒ aiji1xi1 ⊕ aiji2xi2 ⊕ ...⊕ aijikxik < xij . Similarly, it
follows from the (j + 1)th term that

aijij+1
xij+1

< xij ⇒ aijij+1

xij
aijij+1

< xij ⇒ 1 < 1.

The second condition is not possible. As a result, we have ai1i2ai2i3 ...aiki1 < 1.
As this is true for any cycle in D(A), it follows that µ(A) < 1.

(ii) ⇐⇒ (iv) First, let µ(A) < 1. Then, all cycle products in D(A) are less
than one. Let a principal submatrix B∗ of A be given and let Γ be a critical
cycle in D(B∗). Since Γ also defines a cycle in D(A), π(Γ) < 1. As Γ was
arbitrary, µ(B∗) < 1. The converse is immediate.

(ii) ⇐⇒ (v) First, suppose µ(A) < 1. Let 1n ∈ Rn+ denote the vector of all
ones. We can choose ε > 0 so that µ(A + ε1n1

T
n ) < 1. Since A + ε1n1

T
n is an

irreducible matrix, it follows from the Perron-Frobenius theorem for the max
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algebra [9] that there is some v > 0 with (A+ ε1n1
T
n )⊗v = µ(A+ ε1n1

T
n )v < v.

It follows immediately that

A⊗ v ≤ (A+ ε1n1
T
n )⊗ v < v.

For the converse, assume that there exists v > 0 satisfying A ⊗ v < v. As
above, choose ε > 0 so that

(A+ ε1n1
T
n )⊗ v < v.

As (A + ε1n1
T
n ) is irreducible, A + ε1n1

T
n has a positive left max eigenvector

w > 0 [9]. Multiplying both sides of the above equation with wT from the left,
we see that

wT ⊗ (A+ ε1n1
T
n )⊗ v < wT ⊗ v.

Since w is the left max eigenvector ofA+ε1n1
T
n , it follows that µ(A+ε1n1

T
n )wT⊗

v < wT ⊗ v.
But wT ⊗ v > 0 which implies directly that

µ(A) ≤ µ(A+ ε1n1
T
n ) < 1.

This completes the proof.
The final result of this section is concerned with the relation of the P 1

max-
property to the stability of delayed difference equations over the max algebra.
In [11], it was shown for conventional algebra that off-diagonal delays had no
effect on the stability of a differential equation if and only if −A is a P -matrix
where A is the system matrix. We shall prove a corresponding fact for difference
equations in the max algebra without restricting diagonal delays to be zero.

Consider the delayed system of difference equations given by

xi(k + 1) =

n⊕
j=1

aijxj(k − τij), i = 1, 2, ..., n (2)

where A ∈ Rn×n+ and τij ≥ 0 are nonnegative integers for all 1 ≤ i, j ≤ n.

Theorem 3.2. Consider the system of delayed difference equations (2) where
τij ≥ 0 for all i, j. The following are equivalent:

(i) A is a P 1
max-matrix;

(ii) (2) is asymptotically stable for all τij ≥ 0;

(iii) (2) is asymptotically stable for some τij ≥ 0.

Proof: We shall prove that (i) implies (ii) and that (iii) implies (i). The
implication (ii) ⇒ (iii) is trivial.

Assume that A is a P 1
max-matrix and let τij ≥ 0 be any set of nonnegative

integer delays. Define the state vector by x(k) = (x1(k), x2(k), ..., xn(k))T ∈ Rn+
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and suppose that the delays τij take values in the set {0, 1, ..., τmax} for all
1 ≤ i, j ≤ n, where τmax = max

i,j
τij .

As all delays are nonnegative integers less than or equal to τmax, we can
write the delayed system in (2) in the following form

x(k + 1) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕ ...⊕Aτmax
⊗ x(k − τmax) (3)

where Aw(w = 0, 1, ..., τmax) in Rn×n+ are defined as follows. The (i, j)th entry
of Aw is equal to aij if τij = w and all other entries of Aw are zero. Note that

A = A0 ⊕A1 ⊕ ...⊕Aτmax .

By setting x̂(k) = (x(k − τmax), x(k − τmax + 1), ..., x(k))T ∈ Rn(τmax+1)
+ , we

see that the stability of (2) is equivalent to the stability of
x(k − τmax + 1)
x(k − τmax + 2)

...
x(k)

x(k + 1)


︸ ︷︷ ︸

x̂(k+1)

=


0 I 0 ... 0 0
0 0 I ... 0 0
...

...
...

. . .
...

...
0 ... ... ... 0 I

Aτmax
... ... ... A1 A0


︸ ︷︷ ︸

C

⊗


x(k − τmax)

x(k − τmax + 1)
...

x(k − 1)
x(k)


︸ ︷︷ ︸

x̂(k)

where C ∈ Rn(τmax+1)×n(τmax+1)
+ is the companion matrix associated to (2).

It follows from Theorem 3.1 that A is a P 1
max-matrix if and only if µ(A) < 1.

Since A = A0⊕A1⊕...⊕Aτmax
, it follows from Theorem 5.1 in [21] that µ(C) < 1.

Thus, the system (2) is asymptotically stable.
Now assume that for some integer values of τij ≥ 0, the system (2) is asymp-

totically stable. Then we can proceed as above to write the system in the form
(3). By assumption the companion matrix C associated with the system will
have µ(C) < 1. It then follows from Theorem 5.1 in [21] that µ(A) < 1 and
hence that A is a P 1

max-matrix by Theorem 3.1.
This completes the proof.

4. The row-P 1
max-property and Smax-property for sets of matrices

and Generalised Spectral Radius

In this section, in the spirit of [1] we extend the P 1
max-property to sets of

matrices and derive analogous results to the equivalence of (i), (ii), (iii) and
(v) established in Theorem 3.1. Further, we are concerned with the relation
between the row-P 1

max-property for sets of matrices, the Smax-property and the
stability of discrete inclusions in the max algebra.

Throughout this section, Ψ ⊂ Rn×n+ denotes a finite set of n×n nonnegative
matrices:

Ψ := {A1, A2, ..., Ap : p > 0}. (4)
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We define the row representative set of Ψ as follows

R = {M ∈ Rn×n+ : for 1 ≤ j ≤ n there exists Aij ∈ Ψ with M (j) = A
(j)
ij
}. (5)

Briefly, the matrices M ∈ R are formed by choosing corresponding rows from
some Aij ∈ Ψ where 1 ≤ ij ≤ p. The following two definitions play a central
role in what follows and are inspired by the work of [1] for the conventional
algebra.

(i) Ψ has the row-P 1
max-property if every matrix M ∈ R is a P 1

max-matrix.

(ii) Ψ has the Smax-property if there is v > 0 such that Ai ⊗ v < v for all
i ∈ {1, 2, ..., p}.

Note that if Ψ has the row-P 1
max-property, then each Ai ∈ Ψ is also a P 1

max-
matrix. Hence, Ψ is called a P 1

max-matrix set over the max algebra.
Given the set Ψ, we define the matrix S ∈ Rn×n+ by

S = A1 ⊕A2 ⊕ ...⊕Ap. (6)

Max-Convex Hull

The max-convex hull of Ψ is given by

COmax(Ψ) = {
p⊕
i=1

αiAi : Ai ∈ Ψ, αi ≥ 0, 1 ≤ i ≤ p and

p⊕
i=1

αi = 1}. (7)

COmax(Ψ) is said to be asymptotically stable if µ(A) < 1 for all A ∈ COmax(Ψ).

Generalised Spectral Radius

In our main result, Theorem 4.1 below, we shall present some facts relating
P 1
max-matrix sets and the stability of discrete inclusions in the max algebra. We

first recall the definition of the generalised spectral radius for the max algebra,
which will play a key role in what follows.

Formally, we consider the inclusion:

x(k + 1) ∈ Aw ⊗ x(k), w ∈ {1, 2, ..., p} (8)

associated with the set of matrices Ψ. We say that (8) is asymptotically stable
if all solutions x(k) converge to zero as k tends to ∞.

As with discrete linear inclusions in the conventional algebra, the generalised
spectral radius is intimately related to the asymptotic stability of (8). The max-
algebraic version of this concept was introduced in [22] and a version of the so-
called Generalised Spectral Radius Theorem was presented there. Subsequent
work showing the connection between the max version of the generalised spectral
radius and the conventional spectral radius of Hadamard powers was presented
in [23].
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Before proceeding, we need to introduce some notation. For the set Ψ, let
Ψm
⊗ denote the set of all products of matrices from Ψ of length m ≥ 1 in the

max algebra

Ψm
⊗ := {Aj1 ⊗ · · · ⊗Ajm : 1 ≤ ji ≤ p for 1 ≤ i ≤ m}. (9)

The max version of the generalised spectral radius, µ(Ψ) is defined by

µ(Ψ) = lim sup
m→∞

( max
ψ∈Ψm

⊗

µ(ψ))
1
m . (10)

As shown in [22], µ(Ψ) < 1 is equivalent to the asymptotic stability of (8).
The next result is the main contribution of this section. In it, we show

the relationship between the row-P 1
max-property, the Smax-property and the

stability of discrete inclusions with delay for the max algebra.
In statement (v) of the theorem, for w ∈ {1, 2, ..., p} the notation awij denotes

the (i, j)th entry of the matrix Aw ∈ Ψ.

Theorem 4.1. Let Ψ be a set of n×n nonnegative matrices given by (4). Then
the following are all equivalent:

(i) Ψ has the row-P 1
max-property;

(ii) the generalised spectral radius µ(Ψ) < 1;

(iii) Ψ has the Smax-property;

(iv) COmax(Ψ) is asymptotically stable;

(v) the delayed difference inclusion given by

xi(k + 1) ∈
n⊕
j=1

awijxj(k − τij), i = 1, 2, ..., n, w ∈ {1, 2, ..., p} (11)

is asymptotically stable for all τij ≥ 0, 1 ≤ i, j ≤ n.

Before proving this result, we shall state two key propositions. First, we relate
the stability of the matrix S given by (6) to the Smax-property of the set R.

Proposition 4.1. Let S be the matrix given by (6) and v > 0 be given. Then,
S ⊗ v < v is equivalent to M ⊗ v < v for all M ∈ R.

Proof Let v > 0 be given and let M be a matrix in R. From the definition of
R, for each j ∈ {1, 2, ..., n} there exists some Aij ∈ Ψ with 1 ≤ ij ≤ p such that

M (j) = A
(j)
ij

. It is explicit that for all j, if S ⊗ v < v, then

M (j) ⊗ v = A
(j)
ij
⊗ v ≤ S(j) ⊗ v < vj .
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Hence, M ⊗ v < v for all M ∈ R. For the converse, if M ⊗ v < v for all M ∈ R,
Ai⊗v < v for all Ai ∈ Ψ since every matrix is also a row representative of itself.
Thus, we observe that

p⊕
i=1

Ai ⊗ v <
p⊕
i=1

v ⇒ S ⊗ v < v.

The next proposition is a restatement of a result of [25] for the max-plus
algebra, which was phrased in the language of discrete event systems. In the
interests of clarity and completeness we provide a direct max-algebraic proof
here.

Proposition 4.2. Let Ψ be a set of n × n nonnegative matrices given by (4).
Let S be the matrix given by (6). Then, µ(S) = µ(Ψ).

Proof: We shall first show that µ(Ψ) ≤ µ(S). Consider some ψ ∈ Ψm
⊗ . It is

explicit that ψ ≤ Sm⊗ . Then, we have µ(ψ) ≤ µ(Sm⊗ ). Since this is true for any
ψ, we can write

max
ψ∈Ψm

⊗

µ(ψ) ≤ µ(Sm⊗ ).

Taking mth root and lim supm→∞ of both sides, we obtain

lim sup
m→∞

( max
ψ∈Ψm

⊗

µ(ψ))
1
m ≤ lim sup

m→∞
µ(Sm⊗ )

1
m = µ(S),

where the final equality follows from the remarks in Section 4 of [12]. Thus, we
have µ(Ψ) ≤ µ(S).

To complete the proof, we show that µ(S) ≤ µ(Ψ). Let Γ be a critical
cycle of length k in D(S) with product π(Γ) = si1i2si2i3 ...siki1 (i1, i2, ..., ik ∈
{1, 2, ..., n}). Since S = A1 ⊕ A2 ⊕ ... ⊕ Ap, it follows that there are indices
j1, j2, ..., jk ∈ {1, 2, ..., p} such that

µ(S)k = π(Γ) = aj1i1i2a
j2
i2i3

...ajkiki1 ≤ (Aj1 ⊗Aj2 ⊗ ...⊗Ajk)i1i1 .

Write M = Aj1 ⊗Aj2 ⊗ ...⊗Ajk . Then, M ∈ Ψk
⊗. For all r ≥ 1,

(Mr
⊗)i1i1 ≥ µ(S)kr.

Note that Mr
⊗ ∈ Ψkr

⊗ and the above relation implies that maxψ∈Ψkr
⊗
µ(ψ)

1
kr ≥

µ(S). If we take lim supm→∞ of both sides, we obtain

lim sup
m→∞

( max
ψ∈Ψm

⊗

µ(ψ))
1
m ≥ µ(S).

Thus, we have µ(S) ≤ µ(Ψ).
So, µ(S) = µ(Ψ) as claimed.
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Proof of Theorem 4.1: We will show that each of the conditions from (i)
to (v) is equivalent to µ(S) < 1.

(i) : First, denote the multigraph associated with the set Ψ by D(Ψ). This
consists of the vertices {1, 2, ..., n} with an edge of weight akij from i to j for

every Ak ∈ Ψ with 1 ≤ k ≤ p for which akij > 0. With analogous definitions to
the case of a simple graph, µ(D) denotes the maximal cycle geometric mean of
D(Ψ).

Now, assume that Ψ has the row-P 1
max-property. Then, µ(M) < 1 for all

M ∈ R. This implies that all cycle products in D(Ψ) are less than one. It
follows from Lemma 5.1 in [21] that µ(D) = µ(S). So, we obtain that µ(S) < 1.

For the converse, assume µ(S) < 1. Then, from Theorem 3.1 there exists a
vector v > 0 such that S ⊗ v < v. It automatically follows from Proposition 4.1
that µ(M) < 1 for all M ∈ R. So, every M ∈ R is a P 1

max-matrix. Thus, Ψ has
the row-P 1

max-property.
(ii) : It is immediate from Proposition 4.2 that µ(Ψ) < 1 if and only if

µ(S) < 1.
(iii) : First, assume Ψ has the Smax-property. Then, there exists a vector

v > 0 such that Ai ⊗ v < v for 1 ≤ i ≤ p. As in the proof of Proposition 4.1 if

we add both sides from 1 to p such that
p⊕
i=1

Ai⊗ v <
p⊕
i=1

v, we obtain S⊗ v < v.

Thus, µ(S) < 1.
The converse is trivial.
(iv) : Let COmax(Ψ) be asymptotically stable. Notice that S ∈ COmax(Ψ).

We immediately see that µ(S) < 1.
Now, let µ(S) < 1. Since A ≤ S for all A ∈ COmax(Ψ), COmax(Ψ) is

asymptotically stable.
(v) : Following the same procedure as in Theorem 3.2, we can define τmax =

max
i,j

τij , x̂(k) = (x(k−τmax), x(k−τmax +1), ..., x(k))T and companion matrices

C1, C2, ..., Cp where

Cw =


0 I 0 ... 0 0
0 0 I ... 0 0
...

...
...

. . .
...

...
0 ... ... ... 0 I

Bwτmax
... ... ... Bw1 Bw0


for 1 ≤ w ≤ p. Note that Aw =

τmax⊕
i=0

Bwi .

Then the inclusion (11) is equivalent to the inclusion

x̂(k + 1) ∈ Cw ⊗ x̂(k), w = 1, 2, ..., p. (12)

By Proposition 4.2, (12) is asymptotically stable if and only if µ(C1⊕C2⊕ ...⊕
Cp) < 1.
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Define C̄ = C1 ⊕ C2 ⊕ ...⊕ Cp and write

C̄ =


0 I 0 ... 0 0
0 0 I ... 0 0
...

...
...

. . .
...

...
0 ... ... ... 0 I

B̄τmax
... ... ... B̄1 B̄0

 .

Then for i = 0, . . . , τmax, B̄i =
p⊕

w=1
Bwi . It follows from Theorem 5.1 in [21]

that µ(C̄) < 1 if and only if

µ(

τmax⊕
i=0

B̄i) < 1.

However

τmax⊕
i=0

B̄i =

τmax⊕
i=0

p⊕
w=1

Bwi

=

p⊕
w=1

τmax⊕
i=0

Bwi

=

p⊕
w=1

Aw = S.

Thus we have shown that (12) is asymptotically stable if and only if µ(S) < 1.
This completes the proof.
Comments on Theorem 4.1 The above result establishes that Ψ has the
Smax-property if and only if µ(M) < 1 for all M in R. This echoes Theorem
11 of [1] and the result of [24] on linear copositive Lyapunov functions in the
conventional algebra. Note that as in Theorem 3.2, point (v) above is also
equivalent to the asymptotic stability of (12) for some τij ≥ 0.

Finally, we present the following result, which is a max-algebra version of
Theorem 2 in [1]. As before, the notation awij is used to denote the (i, j) entry

of the matrix Aw, while A(j) is used to denote the jth row of A.

Proposition 4.3. Let Ψ be a set of n × n nonnegative matrices given by (4).
Ψ has the row-P 1

max-property if and only if for any x 6= 0 in Rn+, there exists
an index k(1 ≤ k ≤ n) such that (Ai ⊗ x)k < xk for every matrix Ai ∈ Ψ
(1 ≤ i ≤ p).

Proof Let Ψ have the row-P 1
max-property. Assume that there exists an x∗ 6= 0

in Rn+ such that for every index j with 1 ≤ j ≤ n there is Aij ∈ Ψ satisfying
(Aij ⊗ x∗)j ≥ x∗j . It is obvious that (S ⊗ x∗)j ≥ x∗j . For each j, there exists

an index k ∈ {1, 2, ..., n} such that sjkx
∗
k ≥ x∗j . Since sjk = a

ij
jk for some

12



ij ∈ {1, 2, ..., p}, we have A
(j)
ij
⊗ x∗ ≥ x∗j . We can then construct M ∈ R by

setting M (j) = A
(j)
ij

and it is clear that M ⊗ x∗ ≥ x∗. This contradicts the

assumption that every matrix in R is a P 1
max-matrix.

Conversely, let M ∈ R be given and let x 6= 0 be in Rn+. Then, there is some
k such that (Ai ⊗ x)k < xk,∀i ∈ {1, 2, ..., p}. Since it is true for all Ai ∈ Ψ,
we also have (S ⊗ x)k < xk. It implies that (M ⊗ x)k < xk. Hence, M is a
P 1
max-matrix. Thus, Ψ has the row-P 1

max-property. This completes the proof.

5. Conclusions

We have defined P 1
max-matrices over the max algebra and shown how some

basic properties of P -matrices extend to this class. Further, the relation bet-
ween the P 1

max-property, the Smax-property and stability of delayed difference
equations has been described. In the spirit of [1] we have also extended the
P 1
max-property to sets of matrices and shown that the relation between P-matrix

sets and the S-property for Z-matrices in the conventional algebra extends to
this new setting. The implications of the row-P 1

max-property for the stability of
max-convex hulls, as well as delayed and undelayed difference inclusions have
also been explored.
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