
Network Architectures and Algorithms

R. Srikant
ECE and CSL

University of Illinois
rsrikant@illinois.edu

Lei Ying
ECE

Iowa State University
leiying@iastate.edu

June 3, 2011

2

Contents

1 Mathematics of Internet Architecture 5

1.1 Mathematical Background: Convex Optimization . 5

1.1.1 Convex Sets and Convex Functions . 5

1.1.2 Convex Optimization . 8

1.2 Resource Allocation as Utility Maximization . 12

1.2.1 Notions of Fairness . 15

1.3 Mathematical Background: Stability of Dynamical Systems 17

1.4 Distributed Algorithms: Primal Solution . 19

1.4.1 Price Functions and Congestion Feedback . 22

1.5 Distributed Algorithms: Dual Solution . 23

1.6 Relationship to TCP Protocols . 25

1.6.1 TCP-Reno . 26

1.6.2 TCP-Vegas: A Delay Based Algorithm . 30

2 Links: Statistical Multiplexing and Queues 35

2.1 Mathematical Background: The Chernoff Bound . 35

2.2 Statistical Multiplexing and Packet Buffering . 37

2.2.1 Queue Overflow . 37

2.3 Mathematical Background: Discrete-time Markov Chains 41

2.4 Delay and Packet Loss Analysis in Queues . 49

2.4.1 Little’s Law . 49

2.4.2 The Geo/Geo/1 Queue . 53

2.4.3 The Geo/Geo/1/B Queue . 54

2.4.4 The Discrete-Time G/G/1 Queue . 55

3 Scheduling in Packet Switches 59

3.1 Switch Architectures and Crossbar Switches . 60

3.1.1 Head-of-Line (HOL) Blocking and Virtual Output Queues 62

3.2 Capacity Region and MaxWeight Scheduling . 63

4 Scheduling in Wireless Networks 69

4.1 Channel-Aware Scheduling in Cellular Networks . 69

4.2 The MaxWeight Algorithm for the Cellular Downlink 71

4.3 MaxWeight Scheduling Ad Hoc P2P Wireless Networks 76

4.4 General MaxWeight Algorithms . 79

3

4 CONTENTS

4.5 Q-CSMA: A Distributed Algorithm for Ad Hoc P2P Networks 82
4.5.1 The Idea behind Q-CSMA . 83
4.5.2 Q-CSMA . 84

5 Back to Network Utility Maximization 89
5.1 A Joint Formulation of the Transport, Network and MAC Problems 89
5.2 Stability and Convergence: An Example for Cellular Networks 98
5.3 Ad Hoc P2P Wireless Networks . 101
5.4 Internet versus Wireless Formulations: An Example 103

Chapter 1

Mathematics of Internet Architecture

1.1 Mathematical Background: Convex Optimization

In this section, we present some basic results from convex optimization which we will find useful
in the rest of the chapter. Often, the results will be presented without proofs, but some concepts
will be illustrated with figures to provide an intuitive feel for the results.

1.1.1 Convex Sets and Convex Functions

We first introduce the basic concepts from optimization theory, including the definitions of convex
sets and convex functions.

Definition 1.1.1 (Convex Set) A set S ⊆ Rn is convex if αx+ (1− α)y ∈ S whenever x, y ∈ S
and α ∈ [0, 1]. Since αx + (1 − α)y, for α ∈ [0, 1], describes the line segment between x and y, a
convex set can be pictorially depicted as in Figure 1.1: Given any two points x, y ∈ S, the line
segment between x and y lies entirely in S. �

Figure 1.1: A convex set S ⊆ R2

Definition 1.1.2 (Convex Hull) The convex hull of set S, denoted by Co(S) is the smallest
convex set that contains S. See Figure 1.2 for an example. �

5

6 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Figure 1.2: The solid line forms the boundary of the convex hull of the shaded set.

Definition 1.1.3 (Convex Function) A function f(x) : S ⊆ Rn → R is a convex function if S
is a convex set and the following inequality holds for any x, y ∈ S and α ∈ [0, 1] :

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

f(x) is strictly convex if the inequality above is strict for all α ∈ (0, 1) and x 6= y. Pictorially, f(x)
looks like a bowl as shown in Figure 1.3. �

The line segment connecting the two points
and lies "above" the plot of

Figure 1.3: Pictorial description of a convex function in R2

Definition 1.1.4 (Concave Function) A function f(x) : S ⊆ Rn → R is a concave function
(strictly concave) if −f is a convex (strictly convex) function. Pictorially, f(x) looks like an inverted
bowl as shown in 1.4. �

Definition 1.1.5 (Affine Function) A function f(x) : Rn → Rm is an affine function if it is a
sum of a linear function and a constant, i.e., there exist α, a ∈ R such that

f(x) = αx+ a.

�

1.1. MATHEMATICAL BACKGROUND: CONVEX OPTIMIZATION 7

The line segment connecting the two points
and lies "below" the plot of

Figure 1.4: Pictorial description of a concave function in R2

The convexity of a function may be hard to verify from the definition given above. Therefore,
next we present several conditions that can be used to verify the convexity of a function. The proofs
are omitted here, and can be found in most textbooks on convex analysis or convex optimization.

Result 1.1.1 (First Order Condition I) Let f : S ⊂ R → R be a function defined over a
convex set S. If f is differentiable and the derivative f ′(x) is non-decreasing (increasing) in S, then
f(x) is convex (strictly convex over S). �

Result 1.1.2 (First Order Condition II) Let f : S ⊂ Rn → R be a differentiable function
defined over a convex set S. Then f is a convex function if and only if

f(y) ≥ f(x) + Of(x)(y − x) ∀x, y ∈ S, (1.1)

where

Of(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x), · · · , ∂f

∂xn
(x)

)
and xi is the ith component of vector x. Pictorially, if x is one-dimensional, this condition implies
that the tangent of the function at any point lies below the function as shown in Figure 1.5.

f(x) is strictly convex if the inequality above is strict for any x 6= y. �

Result 1.1.3 (Second Order Condition) Let f : S ⊂ Rn → R be a twice differentiable function
defined over the convex set S. Then, f is a convex (strictly convex) function if the Hessian matrix
H with

Hij =
∂2f

∂xi∂xj
(x)

is positive semidefinite (positive definite). �

8 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Figure 1.5: Pictorial description of inequality (1.1) in one-dimensional space

Result 1.1.4 (Strict Separation Theorem) Let S ⊂ Rn be a convex set and x be a point that
is not contained in S. Then there exists a vector β ∈ Rn, β 6= 0, and constant δ > 0 such that

n∑
i=1

βiyi ≤
n∑
i=1

βixi − δ

holds for any y ∈ S. �

1.1.2 Convex Optimization

We first consider the following unconstrained optimization problem:

max
x∈S

f(x), (1.2)

and present some important results without proofs.

Definition 1.1.6 (Local Maximizer and Global Maximizer) For any function f(x) over S ⊆
Rn, x∗ is said to be a local maximizer or local optimal point if there exists an ε > 0 such that

f(x∗ + δx) ≤ f(x∗)

for any ‖δx‖ ≤ ε, where ‖·‖ can be any norm. x∗ is said to be a global maximizer or global optimal
point if

f(x) ≤ f(x∗)

for any x ∈ S. When not specified, maximizer refers to global maximizer in this book. �

Result 1.1.5 If f(x) is a continuous function over a compact set S (i.e., S is closed and bounded
if S ⊆ Rn), then f(x) achieves a maximum over this set, i.e., maxx∈S f(x) exists. �

Result 1.1.6 If f(x) is differentiable, then any local maximizer x∗ in the interior of S ⊆ Rn
satisfies

Of(x∗) = 0. (1.3)

If f(x) is a concave function over S, condition (1.3) is also sufficient for x∗ to be a local maximizer.
�

1.1. MATHEMATICAL BACKGROUND: CONVEX OPTIMIZATION 9

Result 1.1.7 If f(x) is concave, then a local maximizer is also a global maximizer. In general,
multiple global maximizers may exist. If f(x) is strictly concave, then the global maximizer x∗ is
unique. �

Result 1.1.8 Results 1.1.6 and 1.1.7 hold for convex functions if the max in the optimization
problem (1.2) is replaced by min, and maximizer is replaced by minimizer in Results 1.1.6 and
1.1.7. �

Result 1.1.9 If f(x) is a differentiable function over set S and x∗ is a maximizer of the function,
then

Of(x∗)δx ≤ 0

for any feasible direction δx, i.e., for any δx such that x∗ + δx ∈ S.
Further if f(x) is a concave function, then x∗ is a maximizer if and only if

Of(x∗)δx ≤ 0

for any δx such that x+ δx ∈ S. �

Next, we consider an optimization problem with equality and inequality constraints as follows:

maxx∈S f(x) (1.4)

subject to hi(x) ≤ 0, i = 1, 2, ..., I (1.5)

gj(x) = 0, j = 1, 2, ..., J. (1.6)

A vector x is said to be feasible if x ∈ S, hi(x) ≤ 0 for all i, and gj(x) = 0 for all j. While (1.5) and
(1.6) are inequality and equality constraints, respectively, the set S in the above problem captures
any other constraints that are not in equality or inequality form.

A key concept that we will exploit later in the chapter is called Lagrangian duality. Duality
refers to the fact that the above maximization problem, also called the primal problem, is closely
related to an associated problem called the dual problem. Given the constrained optimization
problem in (1.4)-(1.6), the Lagrangian of this optimization problem is defined to be

L(x, λ, µ) = f(x)−
I∑
i=1

λihi(x) +

J∑
j=1

µjgj(x), λi ≥ 0 ∀i.

The constants λi ≥ 0 and µj are called Lagrange multipliers. The Lagrangian dual function is
defined to be

D(λ, µ) = sup
x∈S

L(x, λ, µ).

Let f∗ be the maximum of the optimization problem (1.4), i.e., f∗ = maxx∈S f(x). Then, we
have the following theorem.

Theorem 1.1.1 D(λ, µ) is a convex function and D(λ, µ) ≤ f∗.

10 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Proof The convexity comes from a known fact that the pointwise supremum of affine functions is
convex (see Figure 1.6). To prove the bound, note that hi(x) ≤ 0 and gj(x) = 0 for any feasible x,
so the following inequality holds for any feasible x,

L(x, λ, µ) ≥ f(x).

This inequality further implies that

sup
x∈S
h(x)≤0
g(x)=0

L(x, λ, µ) ≥ sup
x∈S
h(x)≤0
g(x)=0

f(x) = f∗.

Since removing some constraints of a maximization problem can only result in a larger maximum
value, we obtain

sup
x∈S

L(x, λ, µ) ≥ sup
x∈S
h(x)≤0
g(x)=0

L(x, λ, µ).

Therefore, we conclude that

D(λ, µ) = sup
x∈S

L(x, λ, µ) ≥ f∗.

�

Figure 1.6: The solid-line is the pointwise supremum of the four dashed-lines, and is convex.

Theorem 1.1.1 states that the dual function is an upper bound on the maximum of the opti-
mization problem (1.4)-(1.6). We can optimize over λ and µ to obtain the best upper bound, which
yields the following minimization problem, called the Lagrange dual problem:

inf
λ≥0,µ

D(λ, µ).

1.1. MATHEMATICAL BACKGROUND: CONVEX OPTIMIZATION 11

Let d∗ be the minimum of the dual problem, i.e., d∗ = infλ≥0,µD(λ, µ). The difference between
d∗ and f∗ is called the duality gap. For some problems, the duality gap is zero. We say strong
duality holds if d∗ = f∗. If strong duality holds, then one can solve either the primal problem or
the dual problem to obtain f∗. This is often helpful since sometimes one of the problems is easier
to solve than the other. A simple yet frequently used condition to check strong duality is Slater’s
condition, which is given below.

Theorem 1.1.2 (Slater’s condition) Consider the constrained optimization problem defined by
(1.4)-(1.6). Strong duality holds if the following conditions are true:

• f(x) is a concave function and hi(x) are convex functions.

• gj(x) are affine functions.

• There exists an x that belongs to the relative interior1 of S such that hi(x) < 0 for all i and
gj(x) = 0 for all j.

�

As mentioned earlier, when strong duality holds, we have a choice of solving the original opti-
mization in one of two ways: either solve the primal problem directly or solve the dual problem.
Later in this chapter, we will see that resource allocation problems in communication networks can
be posed as convex optimization problems, and we can use either the primal or the dual formula-
tions to solve the resource allocation problem. We now present a result which can be used to solve
convex optimization problems.

Theorem 1.1.3 (Karush-Kuhn-Tucker (KKT) Conditions) Consider the constrained opti-
mization problem defined in (1.4)-(1.6), where f is a concave function, hi (i = 1, . . . , I) are convex
functions and gj (j = 1, . . . , J) are affine functions. Let x∗ be a feasible point, i.e., a point that
satisfies all the constraints. Suppose there exist constants λ∗i ≥ 0 and µ∗j such that

∂f

∂xk
(x∗)−

∑
i

λ∗i
∂hi
∂xk

(x∗) +
∑
j

µ∗j
∂gj
∂xk

(x∗) = 0, ∀k, (1.7)

λ∗ihi(x
∗) = 0, ∀i, (1.8)

then x∗ is a global maximizer of the constrained optimization problem, (λ∗, µ∗) is a global minimizer
of the Lagrange dual problem, and strong duality holds. If f is strictly concave, then x∗ is also the
unique global maximizer. �

The KKT conditions (1.7)-(1.8) can be interpreted as follows. Consider the Lagrangian

L(x, λ, µ) = f(x)−
∑
i

λihi(x) +
∑
j

µjgj(x).

1For convex set S, a relative interior is a point x such that for any y ∈ S there exist z ∈ S and 0 < λ < 1 such
that x = λy + (1− λ)z.

12 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Condition (1.7) is the first-order necessary condition for the maximization problem maxx∈S L(x, λ∗, µ∗).
When strong duality holds, we have

f(x∗) = f(x∗)−
∑
i

λ∗ihi(x
∗) +

∑
j

µ∗jgj(x
∗),

which results in condition (1.8) since gj(x
∗) = 0 ∀j, and λ∗i ≥ 0 and hi(x

∗) ≤ 0 ∀i. We remark that
condition (1.8) is called complementary slackness.

1.2 Resource Allocation as Utility Maximization

The Internet is a shared resource, shared by many millions of users, who are connected by a huge
network consisting of many, many routers and links. The capacity of the links must be split in some
fair manner among the users. To appreciate the difficulty in defining what fairness means, let us
consider an every day example. Suppose that one has a loaf of bread which has to be divided among
three people. Almost everyone will agree that the fair allocation is to divide the loaf into three
equal parts and give one piece to each person. While this seems obvious, consider a slight variant of
the situation where one of the people is a two-year old child and the other two are football players.
Then, an equal division does not seem appropriate: the child cannot possibly consume the third
allocated to her, so a different division based on their needs may appear to be more appropriate.
The situation gets more complicated when there is more than one resource to be divided among
the three people. Suppose that there are two loafs of bread, one wheat and one rye, then a fair
division has to take into account the preferences of the individuals for the different types of bread.
Economists solve such problems by associating a so-called utility function with each individual, and
finding an allocation that maximizes the net utility of the individuals. We now formally describe
and model the resource allocation problem in the Internet.

Suppose we have a network with a set of traffic sources S and a set of links L. Each link l ∈ L
has a finite fixed capacity cl. Each source in S is associated with a fixed route r ⊂ L along which it
transmits at some rate xr to a fixed destination. In our model, a route is simply a collection of links
connecting a source to its destination. In fact, the order of the links in the route is irrelevant for our
mathematical model. Note that we can use the index r to indicate both a route and the source that
sends traffic along that route and we will follow this notation. Also since multiple sources could use
the same set of links as their routes, there could be multiple indices r which denote the same subset
of L. The utility that the source obtains from transmitting data on route r at rate xr is denoted
by Ur(xr). We assume that the utility function is continuously differentiable, non-decreasing and
strictly concave. The concavity assumption follows from the diminishing returns idea—a person
downloading a file would appreciate the effect of a rate increase from 1 kbps to 100 kbps much
more than an increase from 1 Mbps to 1.1 Mbps although the increase is the same in both cases.

The goal of resource allocation is to solve the following optimization problem, called Network
Utility Maximization (NUM):

max
xr

∑
r∈S

Ur(xr) (1.9)

1.2. RESOURCE ALLOCATION AS UTILITY MAXIMIZATION 13

subject to the constraints

∑
r:l∈r

xr ≤ cl, ∀l ∈ L, (1.10)

xr ≥ 0, ∀r ∈ S. (1.11)

The above inequalities state that the capacity constraints of the links cannot be violated and
that each source must be allocated a non-negative rate of transmission. The utility maximization
problem has a unique solution since a strictly concave function has a unique maximizer over a
closed and bounded set. In addition, the constraint set for the utility maximization problem is
convex which allows us to use the method of Lagrange multipliers and the Karush-Kuhn-Tucker
(KKT) theorem to solve the optimal solution. We consider an example of such a maximization
problem in a small network and show how one can solve the problem using the above method of
Lagrange multipliers.

Example 1 Consider the network in Figure 1.7 in which three sources compete for resources in
the core of the network. Links L1, L3 and L5 have a capacity of 2 units per second, while links L2

and L4 have capacity 1 unit per second. There are three flows and denote their data rates by x0,
x1 and x2.

Figure 1.7: Example illustrating network resource allocation. We assume that links L1, L3 and L5

have capacity 2, while L2 and L4 have capacity 1. The access links of the sources are assumed to
have infinite capacity. There are three flows in the system.

In our problem, links L3 and L4 are not used, while L5 does not constrain source S2. Assuming
log utility functions, the resource allocation problem is given by

max
x

2∑
r=0

log xr (1.12)

14 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

with constraints

x0 + x1 ≤ 1,

x0 + x2 ≤ 2,

x ≥ 0,

where x is the vector consisting of x0, x1 and x2. Now, since log x → −∞ as x → 0, the optimal
resource allocation will not yield a zero rate for any source, even if we remove the non-negativity
constraints. So the last constraint above is not active.

We define p1 and p2 to be the Lagrange multipliers corresponding to the capacity constraints
on links L1 and L2, respectively, and let p denote the vector of Lagrange multipliers. Then, the
Lagrangian is given by

L(x, p) = log x0 + log x1 + log x2 − p1(x0 + x1)− p2(x0 + x2).

Setting ∂L
∂xr

= 0 for each r gives

x0 =
1

p1 + p2
, x1 =

1

p1
, x2 =

1

p2
. (1.13)

Letting x0 +x1 = 2 and x0 +x2 = 1 (since we can always increase x1 or x2 until this is true) yields

p1 =

√
3√

3 + 1
= 0.634, p2 =

√
3 = 1.732.

Note that (1.8) is automatically satisfied since x0+x1 = 2 and x0+x2 = 1, and (1.7) is satisfied due
to equalities (1.13). Therefore, the values of the Lagrange multipliers actually are the minimizers
of the dual function. Hence, we have the final optimal allocation

x∗0 =

√
3 + 1

3 + 2
√

3
= 0.422, x∗1 =

√
3 + 1√

3
= 1.577, x∗2 =

1√
3

= 0.577.

A few facts are noteworthy in this simple network scenario:

• Note that x1 = 1/p1, and it does not depend on p2 explicitly. Similarly, x2 does not depend
on p1 explicitly. In general, we will see later that the optimal transmission rate for source r
is only determined by the Lagrange multipliers on its route. We will also see that this feature
is extremely useful in designing decentralized algorithms to reach the optimal solution.

• The value of xr is inversely proportional to the sum of the Lagrange multipliers on its route.
We will see later that, in general, xr is a decreasing function of the Lagrange multipliers.
Thus, the Lagrange multiplier associated with a link can be thought of the price for using that
link and the price of a route can be thought of as the sum of the prices of its links. If the price
of a route increases, then the transmission rate of a source using that route decreases.

�

In the above example, it was easy to solve the Lagrangian formulation of the problem since the
network was small. In the Internet which consists of thousands of links and possibly millions of
users, such an approach is not possible. In the next section, we will see that there are distributed
solutions to the optimization problem which are easy to implement in the Internet.

1.2. RESOURCE ALLOCATION AS UTILITY MAXIMIZATION 15

1.2.1 Notions of Fairness

In our discussion of the network utilization maximization, we have associated a utility function
with each user. The utility function can be viewed as a measure of satisfaction of the user when
it gets a certain data rate from the network. A different point of view is that a utility function
is assigned to each user in the network by a service provider with the goal of achieving a certain
type of resource allocation. For example, suppose U(xr) = log xr, for all users r. It is a well-known
property of concave functions that

Of(x∗)(x− x∗) ≤ 0, (1.14)

where x∗ is the maximizer of f(x). So the optimal rates which solve the network utility maximization
problem, {x∗r}, satisfy ∑

r

xr − x∗r
x∗r

≤ 0,

where {xr} is any other set of feasible rates. For log utility functions, this property states that,
under any other allocation, the sum of proportional changes in the users’ utilities will be non-
positive. Thus, if some User A’s rate increases, then there will be at least one other user whose rate
will decrease and further, the proportion by which it decreases will be larger than the proportion
by which the rate increases for User A. Therefore, such an allocation is called proportionally fair.
If the utilities are chosen such that Ur(xr) = wr log xr, where wr ≥ 0 is some weight, then the
resulting allocation is said to be weighted proportionally fair.

Another widely used fairness criterion in communication networks is called max-min fairness.
An allocation {x∗r} is called max-min fair if it satisfies the following property: if there is any other
allocation {xr} such a user s’s rate increases, i.e., xs > x∗s, then there has to be another user u
with the property

xu < x∗u and x∗u ≤ x∗s.

In other words, if we attempt to increase the rate for one user, then the rate for a less-fortunate
user will suffer. The definition of max-min fairness implies that

min
r
x∗r ≥ min

r
xr,

for any other allocation {xr}. To see why this is true, suppose that there exists an allocation such
that

min
r
x∗r < min

r
xr. (1.15)

This implies that, for any s such that minr x
∗
r = x∗s, the following holds: x∗s < xs. Otherwise, our

assumption (1.15) cannot hold. However, this implies that if we switch the allocation from {x∗r}
to {xr}, then we have increased the allocation for s without affecting a less-fortunate user (since
there is no less-fortunate user than s under {x∗r}). Thus, the max-min fair resource allocation
attempts to first satisfy the needs of the user who gets the least amount of resources from the
network. In fact, this property continues to hold if we remove all the users whose rates are the
smallest under max-min fair allocation, reduce the link capacities by the amounts used by these
users and consider the resource allocation for the rest of the users. The same argument as above
applies. Thus, max-min is a very egalitarian notion of fairness.

16 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Yet another form of fairness that has been discussed in the literature is called minimum potential
delay fairness. Under this form of fairness, user r is associated with the utility function −1/xr.
The goal of maximizing the sum of the user utilities is equivalent to minimizing

∑
r 1/xr. The term

1/xr can be interpreted as follows: suppose user r needs to transfer a file of unit size. Then, 1/xr
is the delay in associated with completing this file transfer since the delay is simply the file size
divided by the rate allocated to user r. Hence, name minimum potential delay fairness.

All of the above notions of fairness can be captured by using utility functions of the form

Ur(xr) =
x1−α
r

1− α
, (1.16)

for some α > 0. Resource allocation using the above utility function is called α-fair. Different
values of α yield different ideas of fairness. First consider α = 2. This immediately yields minimum
potential delay fairness. Next, consider the case α = 1. Clearly, the utility function is not well-
defined at this point. But it is instructive to consider the limit α→ 1. Notice that maximizing the

sum of x1−αr
1−α yields the same optimum as maximizing the sum of

x1−α
r − 1

1− α
.

Now, by applying L’Hospital’s rule, we get

lim
α→1

x1−α
r − 1

1− α
= log xr,

thus yielding proportional fairness in the limit as α→ 1.
Next, we argue that the limit α→∞ gives max-min fairness. Let x∗r(α) be the α-fair allocation.

Assume that x∗r(α) → x∗r as α → ∞ and x∗1 < x∗2 < . . . < x∗n. Let ε be the minimum difference of
{x∗r}, i.e., ε = minr(x

∗
r+1−x∗r). Then when α is sufficiently large, we have |x∗r(α)−x∗r | ≤ ε/4, which

implies that x∗1(α) < x∗2(α) < . . . < x∗n(α).
Now by the property of concave functions mentioned earlier (inequality (1.14)),∑

r

xr − x∗r(α)

x∗αr (α)
≤ 0.

Considering an arbitrary flow s, the above expression can be rewritten as

s∑
r=1

(xr − x∗r(α))
x∗αs (α)

x∗αr (α)
+ (xs − x∗s(α)) +

n∑
i=s+1

(xi − x∗i (α))
x∗αs (α)

x∗αi (α)
≤ 0.

Since |x∗r(α)− x∗r | ≤ ε/4, we further have

s∑
r=1

(xr − x∗r(α))
x∗αs (α)

x∗αr (α)
+ (xs − x∗s(α))−

n∑
i=s+1

|xi − x∗i (α)|(x
∗
s + ε/4)α

(x∗i − ε/4)α
≤ 0.

Note that x∗i − ε/4− (x∗s + ε/4) ≥ ε/2 for any i > s, so by increasing α, the third term in the above
expression will become negligible. Thus, if xs > x∗s(α), then the allocation for at least one user
whose rate satisfies x∗r(α) < x∗s(α) will decrease. The argument can be made rigorous and extended
to the case x∗r = x∗s for some r and s. Therefore as α→∞, the α-fair allocation approaches max-min
fairness.

1.3. MATHEMATICAL BACKGROUND: STABILITY OF DYNAMICAL SYSTEMS 17

1.3 Mathematical Background: Stability of Dynamical Systems

Consider a dynamical system defined by the following differential equation

ẋ = f(x), f : Rn → Rn, (1.17)

where ẋ is the derivative of x with respect to the time t. The time variable t has been omitted in
most of places when no confusion is caused. Assume that x(0) is given. Throughout we will assume
that f is a continuous function and that it also satisfies other appropriate conditions to ensure that
the differential equation has a unique solution x(t), for t ≥ 0.

A point xe ∈ Rn is said to be the equilibrium point of the dynamical system if f(xe) = 0. We
assume that xe = 0 is the unique equilibrium point of this dynamical system.

Definition 1.3.1 (Globally, asymptotically stable) xe = 0 is said to be a globally asymptoti-
cally stable equilibrium point if

lim
t→∞

x(t) = 0

for any x(0) ∈ Rn.

We first introduce the Lyapunov boundedness theorem.

Theorem 1.3.1 (Lyapunov boundedness theorem) Let V : Rn → R be a differentiable func-
tion with the following property:

V (x)→∞ as ‖x‖ → ∞. (1.18)

Denote by V̇ (x) the derivative of V (x) with respect to t, i.e.,

V̇ (x) = ∇V (x)ẋ = ∇V (x)f(x).

If V̇ (x) ≤ 0 for all x, then there exists a constant B > 0 such that ‖x(t)‖ ≤ B for all t.

Proof At any time T, we have

V (x(T)) = V (x(0)) +

∫ T

0
V̇ (x(t)) dt ≤ V (x(0)).

Note that condition (1.18) implies that {x : V (x) ≤ c} is a bounded set for any c. Letting c =
V (x(0)), the theorem follows.

�

Theorem 1.3.2 (Lyapunov global asymptotic stability theorem) If in addition to the con-
ditions in the previous theorem, we assume that V (x) is continuously differentiable and also satisfies
the following conditions:

(1) V (x) ≥ 0 ∀x and V (x) = 0 if and only if x = 0.

(2) V̇ (x) < 0 for any x 6= 0 and V̇ (0) = 0.

Then, the equilibrium point xe = 0 is globally, asymptotically stable.

18 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Proof We prove this theorem by contradiction. Suppose x(t) does not converge to the equilibrium
point 0 as t→∞.

Note that V (x(t)) is non-increasing because its derivative with respect to t is non-positive
(V̇ (x) ≤ 0) for any x. Since V (x(t)) decreases as a function of t and is lower bounded (since
V (x) ≥ 0 ∀x), it converges as t→∞. Suppose that V (x(t)) converges to, say, ε > 0. Define the set

C , {x : ε ≤ V (x) ≤ V (x(0))}.

The set C is bounded since V (x) → ∞ as ||x|| → ∞ and it is closed since V (x) is a continuous
function of x. Thus, C is a compact set.

Let

−a = sup
x∈C

V̇ (x)

where a > 0 is finite because V̇ (x) is continuous in x and C is a compact set. Now we write V (x(t))
as

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(s)) ds

≤ V (x(0))− at,

which implies that

V (x(t)) = 0, ∀ t ≥ V (x(0))

a
,

and

x(t) = 0, ∀ t ≥ V (x(0))

a
.

This contradicts with the assumption that x(t) does not converge to 0.

�
The Lyapunov global asymptotic stability theorem requires that V̇ (x) 6= 0 for any x 6= 0. In the

case V̇ (x) = 0 for some x 6= 0, global asymptotic stability can be studied using Lasalle’s invariance
principle. The proof of the theorem is omitted in this book

Theorem 1.3.3 (Lasalle’s invariance principle) Replace condition (2) of the previous theorem
by

V̇ (x) ≤ 0 ∀x,

and suppose that the only trajectory x(t) that satisfies

ẋ(t) = f(x(t)) and V̇ (x(t)) = 0, ∀t

is x(t) = 0 ∀t. Then x = 0 is globally, asymptotically stable. �

1.4. DISTRIBUTED ALGORITHMS: PRIMAL SOLUTION 19

1.4 Distributed Algorithms: Primal Solution

In the previous section, we formulated an optimization problem, the solution of which provided fair
resource allocation. However, the technique used to solve the optimization problem in Example
1 assumed that we had complete knowledge of the topology and routes. Clearly this is infeasible
in a giant network such as the Internet. In this section and the next, we will study distributed
algorithms which only require limited information exchange among the sources and the network for
implementation.

The approach in this section is called the primal solution. We first relax the capacity constraints:
instead of requiring that the total arrival rate at each link is less than the capacity, we assume that
there is a cost for sending data at a certain rate over a link. Then, instead of having these resource
constraints in the optimization problem, we subtract the cost from the total utility of the sources
in the network as follows:

W (x) =
∑
r∈S

Ur(xr)−
∑
l∈L

Bl

(∑
s:l∈s

xs

)
, (1.19)

where x is the vector of rates of all sources and Bl(.) is the cost of sending data on link l: it can
be interpreted as either a “barrier” function associated with link l which increases to infinity when
the arrival rate on link l approaches the link capacity cl or a “penalty” function which penalizes
the arrival rate for exceeding the link capacity. By appropriate choice of the function Bl, one can
solve the exact utility optimization problem posed in the previous section; for example, choose
Bl(y) to be zero if y ≤ cl and equal to ∞ if y > cl. However, such a solution may not be desirable
or required. For example, the design principle may be such that one requires the delays on all
links to be small. While it is not apparent in the deterministic formulation here, later in the book
we will see that even when the arrival rate on a link is less than its capacity, due to randomness
in the arrival process, packets in the network will experience delay or packet loss. The function
Bl(.) may thus be used to represent average delay, packet loss rate, etc. Thus, W (x) represents a
tradeoff: large values of xr increase utility, but result in packets incurring excessive delays or other
impairments at the link.

We first assume that Bl is a convex function so that the function (1.19) is a strictly concave
function.. Further, assume that Bl is continuously differentiable. Then, we can equivalently require
that

Bl

(∑
s:l∈s

xs

)
=

∫ ∑
s:l∈s xs

0
fl(y)dy, (1.20)

where fl(·) is an increasing, continuous function. We call fl(y) the congestion price function,
or simply the price function, associated with link l, since it associates a price with the level of
congestion on the link. It is straightforward to see that Bl defined in the above fashion is convex,
since integrating an increasing function results in a convex function (see Result 1.1.1).

We will assume that Ur and fl are such that the maximization of (1.19) results in a solution
with xr > 0 ∀r ∈ S. Now, the condition that must be satisfied by the maximizer of (1.19) is
obtained by differentiation and is given by

U ′r(xr)−
∑
l:l∈r

fl

(∑
s:l∈s

xs

)
= 0, r ∈ S. (1.21)

20 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

We now require a distributed algorithm that would drive x towards the solution of (1.21). A natural
candidate for such an algorithm is the so-called gradient ascent algorithm from optimization theory.

The idea here is that if we want to maximize a function of the from g(x), then we progressively
change x so that g(x(t+ δ)) > g(x(t)). We do this by finding the direction in which a change in x
produces the greatest increase in g(x). This direction is given by the gradient of g(x) with regard
to x. In one dimension, we merely choose the update algorithm for x as

x(t+ δ) = x(t) + k(t)
dg(x)

dx
δ,

where k(t) is a scaling parameter which controls the amount of change in the direction of the
gradient, or letting δ → 0

ẋ = k(t)
dg(x)

dx
. (1.22)

Let us try to design a similar algorithm for the network utility maximization problem. Consider
the algorithm

ẋr = kr(xr)

(
U ′r(xr)−

∑
l:l∈r

fl

(∑
s:l∈s

xs

))
. (1.23)

We have obtained the above by differentiating (1.19) with respect to xr to find the direction of
ascent, and used it along with a scaling function kr(·) to construct an algorithm of the form shown
in (1.22). The scaling function kr(·) must be chosen such that the equilibrium of the differential
equation is the same as the one obtained from (1.21). Thus, the equilibrium point of the differential
equation is the same as the solution to the resource allocation problem. The controller is called a
primal algorithm since it arises from the primal formulation of the utility maximization problem.
Note that the primal algorithm has many intuitive properties that one would expect from a resource
allocation/congestion control algorithm. When the route price qr =

∑
l:l∈r fl(

∑
s:l∈s xs) is large,

then the congestion controller decreases its transmission rate. Further, if xr is large, then U ′(xr)
is small (since Ur(xr) is concave) and thus the rate of increase is small as one would expect from a
resource allocation algorithm which attempts to maximize the sum of the user utilities.

We must now answer two questions regarding the performance of the primal congestion control
algorithm:

• What information is required at each source in order to implement the algorithm?

• Does the algorithm actually converge to the desired equilibrium point?

Below we consider the answer to the first question and develop a framework for answering the
second. The precise answer to the convergence question will be presented in the next subsection.

The first question is easily answered by studying (1.23). It is clear that all that the source r
needs to know in order to reach the optimal solution is the sum of the prices of each link on its
route. How would the source be appraised of the link prices? The answer is to use a feedback
mechanism—each packet generated by the source collects the price of each link that it traverses.
When the destination receives the packet, it sends this price information in a small packet (called
the acknowledgment packet or ack packet) that it sends back to the source.

1.4. DISTRIBUTED ALGORITHMS: PRIMAL SOLUTION 21

To visualize this feedback control system, we introduce a matrix R which is called the routing
matrix of the network. The (l, r) element of this matrix is given by

Rlr =

{
1 if route r uses link l
0 else

Let us define

yl =
∑
s:l∈s

xs, (1.24)

which is the load on link l. Using the elements of the routing matrix, yl can also be written as

yl =
∑
s

Rlsxs.

Letting y be the vector of all yl (l ∈ L), we have

y = Rx. (1.25)

Let pl(t) denote the price of link l at time t, i.e.,

pl(t) = fl

(∑
s:l∈s

xs(t)

)
= fl(yl(t)). (1.26)

Then the price of a route is just the sum of link prices pl of all the links in the route. So we define
the price of route r to be

qr =
∑
l:l∈r

pl. (1.27)

Also let p be the vector of all link prices and q be the vector of all route prices. We thus have

q = RT p (1.28)

The relationships derived above can be made clear using the block diagram in Figure 1.8.

We show that the primal controller of (1.23) is globally asymptotically stable by using the
Lyapunov function idea described in Section 1.3. Recall that W (x) is a strictly concave function.
Let x̂ be its unique maximizer. Then, W (x̂) −W (x) is non-negative and is equal to zero only at
x = x̂. Thus, W (x̂) −W (x) is a natural candidate Lyapunov function for the system (1.23). We
use this Lyapunov function in the following theorem.

Theorem 1.4.1 Consider a network in which all sources follow the primal control algorithm (1.23).
Assume that the functions Ur(·), kr(·) and fl(·) are such that V (x) = W (x̂) −W (x) is such that
V (x) → ∞ as ||x|| → ∞, x̂i > 0 for all i, and W (x) is as defined in (1.19). Then, the controller
in (1.23) is globally asymptotically stable and the equilibrium value maximizes (1.19).

22 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

Figure 1.8: A block diagram view of the congestion control algorithm. The controller at the source
uses congestion feedback from the link to perform its action.

Proof Differentiating V (.), we get

V̇ = −
∑
r∈S

∂V

∂xr
ẋr = −

∑
r∈S

kr(xr)
(
U ′r(xr)− qr

)2
< 0, ∀x 6= x̂, (1.29)

and V̇ = 0 if x = x̂. Thus, all the conditions of the Lyapunov theorem are satisfied and we have
proved that the system state converges to x̂, starting from any initial condition.

�
In the proof of the above theorem, we have assumed that the utility, price and scaling functions

are such that W (x) has some desired properties. It is very easy to find functions that satisfy
these properties. For example, if Ur(xr) = wr log(xr), and kr(xr) = xr, then the primal congestion
control algorithm for source r becomes

ẋr = wr − xr
∑
l:l∈r

fl(yl),

and thus the unique equilibrium point is wr/xr =
∑

l:l∈r fl(yl). If fl(.) is any polynomial function,
then W (x) goes to −∞ as ||x|| → ∞ and thus, V (x)→∞ as ||x|| → ∞.

1.4.1 Price Functions and Congestion Feedback

We had earlier argued that collecting the price information from the network is simple. If there
is a field in the packet header to store price information, then each link on the route of a packet
simply adds its price to this field, which is then echoed back to the source by the receiver in the
acknowledgment packet. However, packet headers in the Internet are already crowded with a lot
of other information, so Internet practitioners do not like to add many bits in the packet header
to collect congestion information. Let us consider the extreme case where there is only one bit
available in the packet header to collect congestion information. How could we use this bit to
collect the price of route? Suppose that each packet is marked with probability 1− e−pl when the

1.5. DISTRIBUTED ALGORITHMS: DUAL SOLUTION 23

packet passes through link l. Marking simply means that a bit in the packet header is flipped from
a 0 to a 1 to indicate congestion. Then, along a route r, a packet is marked with probability

1− e
∑
l:l∈r pl .

If the acknowledgment for each packet contains one bit of information to indicate if a packet
is marked or not, then by computing the fraction of marked packets, the source can compute the
route price

∑
l:l∈r pl. The assumption here is that xr’s change slowly so that each pl remains roughly

constant over many packets. Thus, one can estimate pl reasonably accurately.
Another price function of interest is found by considering packet dropping instead of packet

marking. If packets are dropped due to the fact that a link buffer is full when a packet arrives
at the link, then such a dropping mechanism is called a Droptail scheme. A crude approximation

to the drop probability (also known as packet loss rate) at link l is
(
yl−cl
yl

)+
, which is non-zero

only if yl =
∑

r:l∈ r xr is larger than cl. When packets are dropped at a link for source r, then
the arrival rate from source r at the next link on the route would be smaller due to the fact that
dropped packets cannot arrive at the next link. Thus, the arrival rate is “thinned” as we traverse
the route. However, this is very difficult to model in our optimization framework. Therefore, we
assume that the drop probabilities are small so that arrival rate of packets from a given source
is approximately the same at all links on its route. Further, the end-to-end drop probability on
a route can be approximated by the sum of the drop probabilities on the links along the route if
the drop probability at each link is small. Thus, the optimization formulation approximates reality
under these assumptions.

1.5 Distributed Algorithms: Dual Solution

In this section we consider another distributed algorithm based on the dual formulation of the
utility maximization problem. Consider the resource allocation problem that we would like to solve

max
xr

∑
r∈S

Ur(xr) (1.30)

subject to the constraints ∑
r:l∈r

xr ≤ cl, ∀l ∈ L, (1.31)

xr ≥ 0, ∀r ∈ S. (1.32)

The Lagrange dual of the above problem is obtained by incorporating the constraints into the
maximization by means of Lagrange multipliers as follows:

D(p) = max
{xr≥0}

∑
r

Ur(xr)−
∑
l

pl

(∑
s:l∈s

xs − cl

)
(1.33)

Here the pls are the Lagrange multipliers that we saw in Section 1.1. The dual problem may then
be stated as

min
p≥0

D(p).

24 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

As in the case of the primal problem, we would like to design an algorithm which ensures that
all the source rates to converge to the optimal solution. Notice that in this case we are looking for
a gradient descent (rather than a gradient ascent that we saw in the primal formulation), since we
would like to minimize D(p). To find the direction of the gradient, we need to know ∂D

∂pl
.

We first observe that in order to achieve the maximum in (1.33), xr must satisfy

U ′r(xr) = qr, (1.34)

where, as usual, qr =
∑

l:l∈r pl, is the price of a particular route r. Note that we have assumed
that xr > 0 in writing down (1.34). This would be true, for example, if the utility function is an
α-utility function with α > 0. Now,

∂D

∂pl
=

∑
r

U ′r(xr)
∂xr
∂pl
− (yl − cl)−

∑
k

pk
∂yk
∂pl

=
∑
r

U ′r(xr)
∂xr
∂pl
− (yl − cl)−

∑
k

pk
∑
r:k∈r

∂xr
∂pl

=
∑
r

U ′r(xr)
∂xr
∂pl
− (yl − cl)−

∑
r

∂xr
∂pl

∑
k:k∈r

pk

=
∑
r

U ′r(xr)
∂xr
∂pl
− (yl − cl)−

∑
r

∂xr
∂pl

qr.

Thus, using (1.34), we have

∂D

∂pl
= −(yl − cl). (1.35)

Recalling that, to minimize D(p), we have to descend down the gradient, from (1.34) and (1.35),
we have the following dual control algorithm:

xr = U ′r
−1

(qr) and (1.36)

ṗl = hl(yl − cl)+
pl
, (1.37)

where hl > 0 is a constant and (g(x))+
y denotes

(g(x))+
y =

{
g(x), y > 0,
max(g(x), 0), y = 0.

We use this modification to ensure that pl never goes negative since we know from the KKT
conditions that the optimal price is non-negative. Note that, if hl = 1, the price update above has
the same dynamics as the dynamics of the queue at link l. The price increases when the arrival rate is
larger than the capacity and decreases when the arrival rate is less than the capacity. Moreover, the
price can never become negative. These are exactly the same dynamics that govern the queue size
at link l. Thus, one does not even have to explicitly keep track of the price in the dual formulation;
the queue length naturally provides this information.

The stability of this algorithm follows in a manner similar to the primal algorithm by considering
D(p) as the Lyapunov function since the dual algorithm is simply a gradient algorithm for finding
the minimum of D(p).

In the next section, we will discuss practical TCP protocols based on the primal and dual
formulations. When we discuss these protocols, we will see that the price functions and congestion
control mechanisms obtained from the two formulations have different interpretations.

1.6. RELATIONSHIP TO TCP PROTOCOLS 25

1.6 Relationship to TCP Protocols

In this section, we explore the relationship between the algorithms discussed in the previous sections
and the protocols used in the Internet today. It is important to note that Internet congestion control
protocols were not designed using the optimization formulation of the resource allocation problem
that we have seen in the previous two sections. The predominant concern while designing these
protocols was to minimize the risk of congestion collapse, i.e., large-scale buffer overflows, and
hence they tended to be rather conservative in their behavior. Even though the current Internet
protocols were not designed with clearly-defined fairness and stability ideas in mind, they bear a
strong resemblance to the ideas of fair resource allocation that we have discussed so far. In fact,
the utility maximization methods presented earlier provide a solid framework for understanding the
operation of these congestion control algorithms. Further, going forward, the utility maximization
approach seems like a natural candidate framework used to modify existing protocols to adapt to
the evolution of the Internet as it continues to grow faster.

As mentioned in the first chapter, the congestion control algorithms used in today’s Internet
are based on window flow control. The idea is that each user maintains a number called a window
size, which is the number of unacknowledged packets that it is allowed to send into the network.
Any new packet can be sent only when an acknowledgment for one of the previous sent packets is
received by the sender as shown in Figure 1.9.

Figure 1.9: Window Flow Control. The window size is set to be 5, so at most five unacknowledged
packets are allowed. After an additional acknowledgement is received, one more packet can be sent
out.

The window size W is closely related to the data rate x of the flow as explained below. The
amount of time that elapses between the sending of a packet and the reception of feedback from
the destination is called the Round-Trip Time (RTT). We denote the RTT by T . Assume the
link speeds are very fast so that the time that it takes to process a packet at a link is negligible
compared to the RTT. Suppose that the window size is W and as a result, the source send W
packets into the network. Then, since the processing time is negligible, the acks for these packets
will arrive roughly at the same time at the source (after one RTT time). Thus, the average rate
of transmission x is just the window size divided by T , i.e., x = W/T. Clearly this model is very
crude, but it works surprisingly well in practice.

Because of this relation between window size and data rate, the data rate of a flow can be

26 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

controlled by adapting the window size. Transmission Control Protocol (TCP) is the protocol
that determines the increase/decrease of the window size in today’s Internet. There are several
different flavors of TCP congestion control, each of which operates somewhat differently. But all
versions of TCP are window-based protocols. TCP adapts the window size in response to congestion
information. The window size is increased if the sender determines that there is excess capacity
present in the route, and decreased if the sender determines that the current number of in-flight
packets exceeds the capacity of the route. A decision on whether to send a new packet, and whether
the window is to be increased or decreased, is taken upon reception of the acknowledgement packet.
This means that the decision-making process has no periodicity that is decided by a clock of fixed
frequency. TCP is therefore called self-clocking. Different versions of TCP use different algorithms
to determine when and how to increase/decrease the window sizes. We discuss these versions of
TCP next.

1.6.1 TCP-Reno

The most commonly used TCP versions used for congestion control in the Internet today are Reno
and NewReno. Both of them are updates of TCP-Tahoe, which was introduced in 1988. Although
they vary significantly in many regards, the basic approach to congestion control is similar. The
idea is to use successful reception packets as an indication of available capacity and dropped packets
as an indication of congestion. We consider a simplified model for the purpose of exposition. Each
time the destination receives a packet, it sends an acknowledgement (also called ack) asking for the
next packet in sequence. For example, when packet 1 is received, the acknowledgement takes the
form of a request for packet 2. If, instead of the expected packet 2, the destination receives packet
3, the acknowledgement still requests packet 2. Reception of three duplicate acknowledgments or
dupacks (i.e., four successive identical acks) is taken as an indication that packet 2 has been lost
due to congestion. The source then proceeds to cut down the window size and also to re-transmit
lost packets. In case the source does not receive any acknowledgements for a pre-determined time,
it assumes that all its packets in flight have been lost and times out.

When a non-duplicate acknowledgment is received, the protocol increases its window size. The
amount by which the window size is increased depends upon the TCP transmission phase. TCP
operates in two distinct phases. When file transfer begins, the window size is 1, but the source
rapidly increases its transmission window size so as to reach the available capacity quickly. Let
us denote the window size by W . The algorithm increases the window size by 1 each time an
acknowledgement is received, i.e., W ← W + 1. This is called the slow-start phase. Since we
have assumed that packet processing time at a link is small compared to the RTT, the number of
acknowledgements received by a source in one RTT would be approximately equal to the window
size. If we increase the window size by one for each successful packet transmission, this also
means that (if all transmissions are successful) the window would roughly double in each RTT,
so we have an exponential increase in rate as time proceeds. Slow-start refers to the fact that
the window size is still small in this phase, but the rate at which the window increases is quite
rapid. When the window size either hits a threshold, called the slow-start threshold or ssthresh or
if a packet loss is detected (immediately leading to a halving of window size), the algorithm shifts
to a more conservative window-increase algorithm called the congestion avoidance phase. When
in the congestion-avoidance phase, the algorithm increases the window size by 1/W every time
feedback of a successful packet transmission is received, so we now have W ←W + 1/W . Thus, in

1.6. RELATIONSHIP TO TCP PROTOCOLS 27

each RTT, the window increases by one packet, i.e., a linear increase in rate as a function of time.
When a packet loss is detected by the receipt of three dupacks, the slow-start threshold (ssthresh)
is set to W/2 and TCP Reno cuts its window size by half, i.e., W ← W/2. Protocols of this sort
where the increment is by a constant amount, but the decrement is by a multiplicative factor are
called additive-increase multiplicative-decrease (AIMD) protocols. When packet loss is detected by
a time-out, the window size is reset to 1 and TCP enters the slow-start phase. We illustrate the
operation of TCP-Reno in Figure 1.10.

Figure 1.10: Operation of TCP-Reno. The window size first exponentially increases during the
slow start phase until reaching ssthresh (=12). Then TCP-Reno enters congestion avoidance phase
and the window size linearly increases. When a loss is detected by receiving three dupacks at the
9th RTT, the ssthresh is set to be 8, and the window size is set to 8 and increases linearly. When
a time-out occurs at the 16th RTT, the ssthresh is set to be 7. The window size is set to be 1, and
TCP-Reno enters the slow-start phase.

Now, the slow-start phase of a flow is relatively insignificant if the flow consists of a large number
of packets. So we will consider only the congestion-avoidance phase. Let us call the congestion
window at time t as W (t). This means that the number of packets in-flight is W (t). The time taken
by each of these packets to reach the destination, and for the corresponding acknowledgement to
be received is T. The RTT is a combination of propagation delay and queueing delay, but we ignore
the fluctuations in queueing delay and assume that the RTT is a constant.

Let us now write down TCP Reno’s behavior in terms of the differential equation models.
Consider a flow r. As defined above, let Wr(t) denote the window size and Tr its RTT. Earlier we
used the notation qr(t) to denote the price of a route r. TCP uses packet loss probability as the
price of a route. So we use the same notation qr(t) to denote the packet loss probability under
TCP. We can model the congestion avoidance phase of TCP-Reno as

Ẇr(t) =
xr(t− Tr)(1− qr(t))

Wr(t)
− βxr(t− Tr)qr(t)Wr(t). (1.38)

The above equation can be derived as follows:

• The rate at which the source obtains acknowledgements is xr(t − Tr)(1 − qr(t)). Since each
acknowledgement leads to an increase by 1/Wr(t), the rate at which the window size increases
is given by the first term on the right side.

28 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

• The rate at which packets are lost is xr(t − Tr)qr(t). Such events would cause the window
size to be decreased by a factor that we call β. This is the second term on the right side.
Considering the fact that there is a halving of window size due to loss of packets, β would
be naturally taken to be 1/2. However, studies show that a more precise value of β when
making a continuous-time approximation of TCP’s behavior is close to 2/3.

To compare the TCP formulation above to the resource allocation framework, we write Wr(t)
in terms of xr(t) (Wr(t) = xr(t)T) which yields

ẋr =
xr(t− Tr)(1− qr(t))

T 2
r xr(t)

− βxr(t− Tr)qr(t)xr(t). (1.39)

The equilibrium value of xr is found by setting ẋr = 0, and is seen to be

x̂r =

√
1− q̂
βq̂

1

Tr
,

where q̂r is the equilibrium loss probability. For small values of q̂r (which is what one desires in the
Internet),

x̂r ∝ 1/(Tr
√
q̂r),

i.e., the equilibrium rate of TCP-rate is inversely proportional to the RTT and the square-root
of the loss probability. This result is well-known and widely used in the performance analysis of
TCP-Reno.

Relationship with Primal Algorithm

Now, consider the controller (1.39) again. Suppose that there were no feedback delay, but the
equation is otherwise unchanged. So T 2

r that appears in (1.39) is just some constant now. Also, let
qr(t) be small, i.e., the probability of losing a packet is not too large. Then the controller reduces
to

ẋr =
1

T 2
r

− βx2
rqr

= βx2
r

(
1

βT 2
r x

2
r

− qr
)
.

Comparing the above equation with the primal congestion controller (1.23), we find that the utility
function of source r satisfies

U ′r(xr) =
1

βT 2
r x

2
r

.

We can find the source utility (up to an additive constant) by integrating the above, which yields

Ur(xr) = − 1

βT 2
r xr

.

Thus, TCP-Reno can be approximately viewed as a control algorithm that attempts to achieve
weighted minimum potential delay fairness.

1.6. RELATIONSHIP TO TCP PROTOCOLS 29

If we do not assume that qr is small, the delay-free differential equation is given by

ẋr =
1− qr
T 2
r

− βx2
rqr

= (βx2
r + 1/T 2

r)

(
1

βx2
r + 1

T 2
r

1

T 2
r

− qr

)
,

Thus,

U ′r(xr) =
1

T 2
r

1

βx2
r + 1

T 2
r

⇒ Ur(xr) =
1

Tr
√
β

tan−1
(√

β Trxr

)
,

where the utility function is determined up to an additive constant.

A Generalization of TCP-Reno

Instead of increasing the window size by 1/W for each ack and halving upon detecting a loss, one
could consider other increase-decrease choices as well. Consider a protocol where W ←W + a Wn

when an acknowledgement is received, while a loss triggers a window decrease given by W ←
W − b Wm. Setting a = 1, n = −1, b = 0.5, and m = 1 would yield TCP-Reno type behavior. The
equivalent rate-based equation describing the dynamics of such a protocol would be

ẋr =
xr(t− Tr)

Tr
(a(xr(t) Tr)

n(1− qr(t)) − b(xr(t) Tr)
mqr(t)) . (1.40)

Ignoring the feedback delay in obtaining the congestion information, the above differential equation
becomes

ẋr =
xr
Tr

(a(xr Tr)
n(1− qr(t))− b(xr Tr)

mqr) ,

which can be rewritten as

ẋr = (axn+1
r Tn−1

r)

(
1 +

b

a
(xrTr)

m−n
)(

1

1 + b
a(xrTr)m−n

− qr

)
.

Note that
1

1 + b
a(xrTr)m−n

is a decreasing function (thus, its derivative will be negative) if m > n and hence one can view the
above differential equation as the congestion controller for source r with a concave utility function∫ xr

0

1

1 + b
a(xTr)m−n

dx.

Different choices of a, b, m, and n have been studied for various applications, but so far TCP-Reno
continues to be the most dominant form of TCP and therefore, we do not discuss these variants
here.

30 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

1.6.2 TCP-Vegas: A Delay Based Algorithm

We now consider another variation of TCP called TCP-Vegas. TCP-Vegas uses queueing delay,
instead of packet loss as TCP-Reno, to infer congestion in the network. The idea is to first identify
the propagation delay of the route by assuming that it is equal to the smallest RTT seen by the
source. This is a reasonable assumption if we assume that queues empty occasionally in which
case the only delay is the propagation delay. Let us denote the estimated propagation delay by
Tp. Any excess delay above this amount would be queueing delay and we denote it by Tq. The
objective of the algorithm is to calculate the value of window size such that the number of packets
in the network is small. When this occurs, the rate of generation of packets is equal to the available
capacity on the route. We now study the details of this algorithm.

If there is no queueing delay, the throughput would be approximately given by

e =
W

Tp
,

where W is the window size. However, the actual throughput is the number of packets that make
it successfully to the destination in a fixed amount of time. To calculate this quantity, the source
sends a marked packet and waits for it to be acknowledged. The duration of time that it takes for
this event to occur is the round-trip time Tp + Tq. Suppose during this time, the source receives S
acknowledgments, then the actual throughput is estimated as

a =
S

Tp + Tq
.

Whenever we receive the acknowledgment for a marked packet at some time t, we have two
values—the expected throughput e(t) and the actual throughput a(t). If a(t) is less than e(t), it
means that our transmission rate is too high, so we should cut down the window size. On the other
hand, if a(t) is greater than e(t), it means that the estimate of the available rate is too low and we
should increase the window size. Formally, we define constants α and β, with α ≤ β and proceed
as follows:

• if α ≤ (e(t)− a(t)) ≤ β, then do nothing. This means that our estimate of the throughput is
fairly accurate, and everything is as it should be.

• if (e(t) − a(t)) > β, decrease the window size by 1 for the next RTT. This means that our
estimate is too high and the window size must be reduced.

• if (e(t) − a(t)) < α, increase the window size by 1 for the next RTT. This means that our
estimate is too low and the network can support more than we think.

Note that both the increase and decrease of window size are linear in nature. Also, the algorithm
uses the usual slow start mechanism, with exponential growth initially. The behavior of TCP-Vegas
under ideal conditions would look something like Figure 1.11.

Next, we interpret TCP-Vegas as a resource allocation algorithm in the utility maximization
framework. We assume α = β and the propagation delay is estimated accurately, i.e., for source r,
Tpr(t) ≡ Tpr for all t.

At equilibrium, the estimated throughput is the same as the actual throughput, with the window
size and the number of acknowledgements received in an RTT being the same. If we denote

1.6. RELATIONSHIP TO TCP PROTOCOLS 31

Figure 1.11: Operation of TCP-Vegas. It preserves the slow-start phase, but doubles the window
size every other RTT to have a accurate comparison between the actual throughput and expected
throughput. After switching to congestion avoidance mode, the window increases and decreases
linearly. Ideally, the algorithm should converge to a stable window size (e.g., during the 17th and
18th RTTs). When a time-out occurs (during the 19th RTT), the window size is reduced by 1/4.

the equilibrium window size and queueing delay of source r by Ŵr and T̂qr respectively (and by
assumption, the propagation delay Tpr is correctly estimated), then

Ŵr

Tpr
− Ŵr

Tpr + T̂qr
= α. (1.41)

At equilibrium, the transmission rate x̂ is approximately

x̂r = Ŵr/(Tpr + T̂qr),

which means that (1.41) can be simplified to

αTpr
x̂r

= T̂qr. (1.42)

Now that we know what the equilibrium transmission rate looks like, let us study what the
equilibrium queueing delay T̂qr would look like. If the queue length at equilibrium is denoted by

b̂l, then the equilibrium queueing delay at link l is b̂l/cl (where cl is the capacity of link l). So we
have

T̂qr =
∑
l:l∈r

b̂l
cl
. (1.43)

Also, if ∑
k:l∈k

x̂k < cl,

then there is no queueing delay, i.e., b̂l = 0 in this case. Note that since the aggregate equilibrium
transmission rate of all flows using link l cannot exceed the link capacity, we cannot possibly have

32 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

that ∑
k:l∈k

x̂k > cl.

Thus, if b̂l 6= 0, it means that ∑
k:l∈k

x̂k = cl.

Thus, we have from the above and (1.42), that the equilibrium conditions are

αTpr
x̂r

=
∑
l:l∈r

b̂l
cl
,

with

b̂l
cl

(∑
k:l∈k

x̂k − cl

)
= 0 ∀ l.

These are the KKT conditions for the utility maximization problem

max
{xr}

αTpr log xr, (1.44)

subject to ∑
r:l∈r

xr ≤ cl, ∀ l

xr ≥ 0,∀r

with b̂l
cl

as the Lagrange multipliers. Thus, assuming it converges to some equilibrium rates, TCP-
Vegas is weighted-proportionally fair. If we let each flow have a different value of α, i.e., we associate
αr with route r, then the equilibrium rates will maximize

∑
r αrTpr log xr. Recall that we have

assumed that αr = βr in this analysis.

Relation to Dual Algorithms and Extensions

We now consider the relationship between TCP-Vegas and dual algorithms. A weighted propor-
tionally fair dual algorithm would use the controller obtained by substituting wr log(xr) as the
utility function in (1.36) and (1.37), which yields

xr =
wr
qr

and (1.45)

ṗl = hl(yl − cl)+
pl
. (1.46)

To avoid confusion, we note that wr is the weight assigned to source r and is unrelated to the
window size Wr. If we choose hl = 1

cl
, then the price function of a link becomes the queueing delay

experienced by packets using that link, which, when added to a constant propagation delay, is the
feedback that is used in the TCP-Vegas algorithm.

1.6. RELATIONSHIP TO TCP PROTOCOLS 33

Let us study the source rates achieved in TCP-Vegas more closely to create a fluid model
equivalent. From the algorithm description (with α = β), TCP-Vegas updates its window size Wr

based on whether

Wr

Tpr
− Wr

Tpr + Tqr
< α or

Wr

Tpr
− Wr

Tpr + Tqr
> α. (1.47)

Using the approximation xr = Wr
Tpr+Tqr

, we can rewrite the conditions as

xr Tqr < αTpr or xr Tqr > αTpr. (1.48)

As in (1.43), we also have

Tqr =
∑
l:l∈r

bl
cl

=
∑
l:l∈r

pl, (1.49)

where bl is the queue length at link l, and we have used pl to denote the queueing delay at link l,
which acts as the price function for TCP-Vegas. Combining the above expressions, the condition
for increase/decrease becomes

xr
∑
l:l∈r

pl < αTpr or xr
∑
l:l∈r

pl > αTpr, (1.50)

So the window control algorithm can be written as

Wr ←
[
Wr +

1

Tpr + Tqr
sgn (αTpr − xr Tqr)

]+

Wr

, (1.51)

where sgn(z)= −1 if z < 0, sgn(z)= 1 if z > 0, and sgn(z)= 0 if z = 0. Thus, we can now write
down the differential equations describing TCP-Vegas as

ṗl =
1

cl
(yl − cl)+

pl
(1.52)

Ẇr =

[
1

Tpr + Tqr
sgn (αTpr − xr Tqr)

]+

Wr

(1.53)

xr =
Wr

Tpr + Tqr
, (1.54)

with Tqr =
∑

l:l∈r pl. The above is not the same as the dual algorithm that we derived in the
previous section. However, the price update dynamics are the same as the price update for the
dual algorithm. Further, at the source, by attempting to increase or decrease the rate based on
whether xr is less than or greater than αTpr/Tqr, it is clear the source attempts to drive the system
towards

xr =
αTpr
Tqr

=
αTpr∑
l∈r pl

,

which is the desired source behavior for a dual congestion controller. Thus, one can interpret
TCP-Vegas as an algorithm that approximates the dual congestion control algorithm.

34 CHAPTER 1. MATHEMATICS OF INTERNET ARCHITECTURE

A modification of TCP-Vegas called FAST-TCP has been suggested for very high-speed net-
works. In FAST-TCP, the window size is increased or decreased depending upon how far the
window size is from a desired equilibrium point. The fluid model describing the protocol is

ṗl =
1

cl
(yl − cl)+

pl
(1.55)

Ẇr = γr (αr − xr Tqr)+
Wr

(1.56)

xr =
Wr

Tpr + Tqr
, (1.57)

where αr determines the desired equilibrium point and γr is a scaling constant. Replacing the sgn
function in TCP-Vegas with the difference between the current operating point and the desired
equilibrium allows FAST-TCP to rapidly approach the desired equilibrium point.

Chapter 2

Links: Statistical Multiplexing and
Queues

In Chapter 1, we assumed that the transmission rates xr are positive, and derived fair and stable
resource allocation algorithms. In reality, since data is transmitted in the form of packets, the rates
xr are converted to discrete window sizes, which results in bursty (non-smooth) arrival rates at the
links in the network. In addition, many flows in the Internet are very short (consisting of only a
few packets) for whom the convergence analysis in the previous chapter does not apply. Further,
there may also be flows which are not congestion controlled. We address these deviations from
our basic model by considering packet arrivals at links to be random processes. In this chapter,
for such random arrival processes, we are interested in answering the following questions: what are
the buffer sizes required to temporarily store bursty packet arrivals before transmission over a link;
what is the relationship between buffer overflow probabilities, delays and the burstiness of the arrival
processes; how do we provide isolation among flows so that each flow is guaranteed a minimum rate
at a link, independent of the burstiness of the other flows sharing the link?

2.1 Mathematical Background: The Chernoff Bound

In this section, we present the Chernoff bound, which provides a bound on the tail distribution of
the sum of independent random variables.

Lemma 2.1.1 (Markov’s Inequality) For a positive random variable X, the following inequality
holds for any ε > 0 :

Pr(X ≥ ε) ≤ E(X)

ε
.

Proof Define a random variable Y such that Y = ε if X ≥ ε and Y = 0 otherwise. So

E[X] ≥ E[Y] = εPr(X ≥ ε).

�

35

36 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Theorem 2.1.2 (The Chernoff Bound) Consider a sequence of independently and identically
distributed (i.i.d.) random variables {Xi} with mean µ = E[Xi]. For any constant x, the following
inequality holds:

Pr

(
n∑
i=1

Xi ≥ nx

)
≤ exp

(
−n sup

θ≥0
{θx− logM(θ)}

)
, (2.1)

where M(θ) , E
[
eθX1

]
is the moment generating function of X1.

If {Xi} are Bernoulli random variables with parameter µ, and x > 0, then

Pr

(
n∑
i=1

Xi ≥ n(µ+ x)

)
≤ exp (−nD((µ+ x)‖µ)) , (2.2)

where

D((µ+ x)‖µ) = (µ+ x) log
µ+ x

µ
+ (1− µ− x) log

1− µ− x
1− µ

is the Kullback-Leibler distance between Bernoulli random variables with parameter µ + x and
parameter µ.

Proof For any θ ≥ 0, we have

Pr

(
n∑
i=1

Xi ≥ nx

)
≤ Pr(eθ

∑n
i=1Xi ≥ eθnx)

≤
E
[
eθ

∑n
i=1Xi

]
eθnx

, (2.3)

where the first inequality becomes an equality if θ > 0 and the second inequality follows from the
Markov inequality. Since inequality (2.3) holds for all θ ≥ 0, we further obtain

Pr(
n∑
i=1

Xi ≥ nx) ≤ inf
θ≥0

E
[
eθ

∑n
i=1Xi

]
eθnx

= e−n supθ≥0{θx−logM(θ)}. (2.4)

Recall that M(θ) , E
[
eθXi

]
is the moment generating function of Xi. Inequality (2.4) is called the

Chernoff bound.

Inequality (2.2) holds because

sup
θ≥0
{θx− logM(θ)} = D((µ+ x)‖µ)

when {Xi} are Bernoulli random variables and x > 0.

�

2.2. STATISTICAL MULTIPLEXING AND PACKET BUFFERING 37

2.2 Statistical Multiplexing and Packet Buffering

When multiple data sources share the same link, the bandwidth of the link needs to be allocated
properly. To guarantee no packet loss and small transmission latencies, one may allocate the
bandwidth according to data sources’ peak transmission rates. For example, if a data source has
a peak rate of R bits/second, then a bandwidth of R bits/second of the link is reserved for that
source. This approach will provide very good Quality of Services (QoSs) to data sources in terms
of bandwidth, delay and jitter, but could cause the link to be under-utilized since the typical total
data rate of the sources may be much smaller than the sum of their peak rates.

The bandwidth allocated to sources is often much smaller than the sum of their peak rates, and
is slightly larger than the sum of the average rates of the sources. The link then relies on the fact
that the probability that the sum of rates exceeds the sum of the average rates is small. This type
of resource allocation is called statistical multiplexing. Compared to bandwidth allocation based
on peak rates, statistical multiplexing allows a link to support a larger number of data sources, as
shown in a simple example below.

Example 2 Consider a link with bandwidth 10 Mbps, which is shared by multiple data sources. At
any given time, a source is active with a probability of 0.1, and transmits at a rate of 100 Kbps
when active.

If the link bandwidth is allocated according to the peak rate, then the link needs to reserve 100
Kbps for each source. In this case, the maximum number of sources that can be allowed is given by

10 Mbps

100 Kbps
= 100.

Now consider statistical multiplexing and assume there are n sources using the link. Define Xi

to be a random variable such that Xi = 1 if source i is active and Xi = 0 otherwise. We apply the
Chernoff bound for Bernoulli random variables to bound the probability that the aggregated rate of
active sources exceeds the link capacity, i.e., the following overflow probability

Pr

(
n∑
i=1

Xi ≥ 100

)
. (2.5)

The result is illustrated in Figure 2.1.
We observe that the link can accommodate up to 750 sources if the overflow probability is allowed

to be 0.01%. We can increase the number of sources to 800 if the overflow probability is allowed to
be 1%. Thus, statistical multiplexing can dramatically increase network capacity at the cost of very
small loss probabilities. �

2.2.1 Queue Overflow

In Example 2, we have seen that statistical multiplexing performs well even without buffer. In
practice, when the number of arrivals exceeds the link capacity, the packets will first be stored in a
buffer, instead of being dropped immediately. The focus of the rest of this chapter is to understand
the behavior of the buffer under various arrival processes and buffer models. As a starting point,
we assume the buffer is of infinite size and calculate the probability that the amount of buffered
packets exceeds a certain threshold B.

38 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Figure 2.1: The overflow probabilities versus the number of sources in the network

buffer with infinite size

server with capacity c

Figure 2.2: A queue shared by n sources

We model a single link shared by n sources as a discrete time queueing system with a single
server and infinite buffer space, as shown in Figure 2.2. The server represents the link and can
serve c packets per time slot. We assume packets are of the same size here, and will study varying
packet sizes later. We define ai(t) to be the number of packets injected by source i in time slot t,
and assume ai(t) are i.i.d. across time and sources. Further, assume λ , E[ai(t)] < c/n, so the
overall arrival rate is less than the link capacity.

Let q(t) denote the number of buffered packets (queue length) time t. We assume packets arrive
at the beginning of each time slot and depart at the end of each time slot, and q(t) is measured
before packet arrivals. The queue evolution can be described as follows:

q(t+ 1) = (q(t) + a(t)− c)+,

where a(t) =
∑n

i=1 ai(t) and x+ = max{0, x}. Assuming the system starts from t = 0 with empty
queue, i.e., q(0) = 0, we next consider the queue length at time k. According to the definition of
x+, we first have

q(k) = (q(k − 1) + a(k − 1)− c)+ = max {q(k − 1) + a(k − 1)− c, 0},

and

q(k − 1) = max {q(k − 2) + a(k − 2)− c, 0}.

2.2. STATISTICAL MULTIPLEXING AND PACKET BUFFERING 39

Substituting the second equation into the first one, we obtain

q(k) = max {max{q(k − 2) + a(k − 2)− c, 0}+ a(k − 1)− c, 0}
= max {q(k − 2) + a(k − 1) + a(k − 2)− 2c, a(k − 1)− c, 0}.

Recursively applying the procedure above, we get

q(t) = max
t≥k≥1

(
k∑
s=1

a(t− s)− kc

)
. (2.6)

Next we compute the probability that the queue length at time t exceeds B for some constant
B. Based on equation (2.6), we have

Pr(q(t) ≥ B) = Pr

(
max
t≥k≥1

(
k∑
s=1

a(t− s)− kc

)
≥ B

)
.

Note that

Pr

(
max
t≥k≥1

(
k∑
s=1

a(t− s)− kc

)
≥ B

)
= Pr

(
t⋃

k=1

(
k∑
s=1

a(t− s)− kc ≥ B

))
.

Following the union bound,

Pr

(
max
t≥k≥1

(
k∑
s=1

a(t− s)− kc

)
≥ B

)
≤

t∑
k=1

Pr

(
k∑
s=1

a(t− s)− kc ≥ B

)

=

t∑
k=1

Pr
(
eθ

∑k
s=1 a(t−s) ≥ eθ(kc+B

)
≤

t∑
k=1

E
[
eθ

∑k
s=1 a(t−s)

]
e−θ(kc+B),

where the last inequality follows the Markov inequality.
Since ai(t) are i.i.d. across time slots and sources,

E
[
eθ

∑k
s=1 a(t−s)

]
=

k∏
s=1

n∏
i=1

E
[
eθai(t−s)

]
= M(θ)nk,

where M(θ) = E[eθai(t)] is the moment generating function. Defining Λ(θ) = logM(θ), we obtain
the following upper bound:

Pr(q(t) ≥ B) ≤
t∑

k=1

enkΛ(θ)e−θ(kc+B), (2.7)

which leads to the following theorem that shows that the probability of queue overflow decreases
exponentially as B increases.

40 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Theorem 2.2.1 For all θ > 0 such that Λ(θ)
θ < c

n , the queue overflow probability satisfies

Pr(q(t) ≥ B) ≤ enΛ(θ)−θc

1− enΛ(θ)−θc e
−θB. (2.8)

Proof Note that upper bound (2.7) can be rewritten as

Pr(q(t) ≥ B) ≤
t∑

k=1

e−k(θc−nΛ(θ))e−θB ≤ e−θB
∞∑
k=1

ek(nΛ(θ)−θc). (2.9)

When Λ(θ)
θ < c

n holds, we have e(nΛ(θ)−θc) < 1 which implies that

∞∑
k=1

ek(nΛ(θ)−θc) =
enΛ(θ)−θc

1− enΛ(θ)−θc .

So the theorem holds.

�
From the above result, we see that the overflow probability decreases exponentially with B with

decay rate θ provided that
c

n
>

Λ(θ)

θ
.

Theorem 2.2.1 shows that when the link capacity per source is greater than Λ(θ)/θ, the overflow

probability deceases exponentially at rate θ when the buffer size B increases. The quantity Λ(θ)
θ is

called the effective bandwidth of a source.

We now look at the range of this effective bandwidth. Suppose that ai(t) take values in a finite
set such that

ai(t) ∈ {a1, a2, ..., am} and aj < aj+1.

Define

pj , Pr(ai(t) = aj) > 0 ∀ j ∈ {1, 2, ...,m}.

Note that the larger the θ, more stringent is the QoS requirement. Consider two extreme cases:

• If θ is close to 0, then

Λ(θ)

θ
=

logE
[
eθai(t)

]
θ

≈(a)
logE[1 + θai(t)]

θ

=
log(1 + θλ)

θ
→(b) λ as θ → 0,

where both (a) and (b) can be precisely justified using Taylor’s theorem.

2.3. MATHEMATICAL BACKGROUND: DISCRETE-TIME MARKOV CHAINS 41

• If θ is very large, then

Λ(θ)

θ
=

log
(∑m

j=1 e
θajpj

)
θ

≈(c)

log
(
eθampm

)
θ

→ am as θ →∞,

where approximation (c) holds because eθaj/eθam → 0 as θ →∞ for any aj < am.
Thus, the effective bandwidth of the source increases from the mean arrival rate λ to the

maximum arrival rate am, as the QoS parameter θ becomes more and more stringent.
Besides the overflow probability in Theorem 2.2.1, other performance metrics, such as expected

queue length and queueing delay, and the probability of packet loss when the buffer size is finite,
are also important in practice. Markov chains and queueing theory will be introduced next for
the purpose of quantitatively understanding these performance metrics, at least for simple arrival
processes.

2.3 Mathematical Background: Discrete-time Markov Chains

Let {Xk} be a discrete-time stochastic process which takes on values in a countable set S, where
k is time index, called the state space. {Xk} is called a discrete-time Markov chain (or simply a
Markov chain, when the discrete nature of the time index is clear) if

Pr(Xk = ik | Xk−1 = ik−1, Xk−2 = ik−2, . . .) = Pr(Xk = ik | Xk−1 = ik−1),

where ij ∈ S.
A Markov chain is said to be time homogeneous if Pr(Xk = j | Xk−1 = i) is independent of k.

We will only consider time-homogeneous Markov chains here. Associated with each Markov chain
is a matrix called the probability transition matrix, denoted by P, whose (i, j)th element is given by
Pij = Pr(Xk = j | Xk−1 = i). Let p[k] denote a row vector of probabilities with pj [k] = Pr(Xk = j).
This vector of probabilities evolves according to the equation

p[k] = p[k − 1] P.

Thus, p[0] and P capture all the relevant information about the dynamics of the Markov chain.
The following questions are important in the study of Markov chains:

• Does there exist a π so that π = πP? If such a π exists, it is called a stationary distribution.

• If there exists a unique stationary distribution, does limk→∞ p[k] = π for all p[0]? In other
words, does the distribution of the Markov chain converge to the stationary distribution
starting from any initial state?

While the existence of a unique stationary distribution is desirable in the applications studied
in this book, not all Markov chains have a unique steady-state distribution. We will first present an
example of Markov chain which does not have a stationary distribution and then another example

42 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

where a stationary distribution exists but the probability distribution over the states does not
converge to the stationary distribution in steady-state. Motivated by these examples, we will impose
some conditions to guarantee the existence of a stationary distribution to which the Markov chain
converges in steady state.

Example 3 Consider a trivial two-state Markov chain with states a and b such that the chain
remains in the initial state for time slots k ≥ 0. Thus, the transition probability matrix for this

Markov chain is given by P =

(
1 0
0 1

)
. Therefore, πP = π is true for any distribution π and the

stationary distribution is not unique. The Markov chain in this example is such that if it started in
one state, then it remained in the same state forever. In general, Markov chains where one state
cannot be reached from some other state will not possess a unique stationary distribution. �

The above example motivates the following definitions.

Definition 2.3.1 Let Pnij = Pr(Xk+n = j | Xk = i).

1. State j is said to be reachable from state i, if there exists n ≥ 1 so that Pnij > 0.

2. A Markov chain is said to be irreducible if a state i is reachable from any other state j.

�

In this chapter, we will mostly consider Markov chains that are irreducible. The Markov chain
in Example 3 was not irreducible.

Example 4 Again let us consider a two-state Markov chain with two states a and b. The Markov
chain behaves as follows: if it is in state a at the current time slot, then it jumps to b at the next
time slot, and vice versa. Thus,

P =

(
0 1
1 0

)
.

The stationary distribution is obtained by solving πP = π, which gives π = (1/2 1/2) . How-
ever, the system does not converge to this stationary distribution starting from any initial condi-
tion. To see this, note that if p[0] = (1 0), then p[1] = (0 1) , p[2] = (1 0) , p[3] = (0 1) ,
p[4] = (1 0) , Therefore limk→∞ p[k] 6= π. The reason that this Markov chain does not con-
verge to the stationary distribution is due to the fact that the state periodically alternated between
a and b. �

Motivated by the above example, the following definitions lead up to the classification of a
Markov chain as being either periodic or aperiodic.

Definition 2.3.2 The following definitions classify Markov chains and their states as periodic or
aperiodic:

1. State i is said to have a period di ≥ 1 if di is the greatest integer such that Pnii = 0 if n is not a multiple of di.
If Pnii = 0 ∀n, we say that di =∞.

2.3. MATHEMATICAL BACKGROUND: DISCRETE-TIME MARKOV CHAINS 43

2. State i is said to be aperiodic if di = 1.

3. A Markov chain is said to be aperiodic if all states are aperiodic.

�

Next, we state the following useful lemma which will be useful later to identify whether a Markov
chain is aperiodic or not.

Lemma 2.3.1 Every state in an irreducible Markov chain has the same period. Thus, in an
irreducible Markov chain, if one state is aperiodic, then the Markov chain is aperiodic. �

The Markov chain in Example 4 was not aperiodic. The following theorem states that Markov
chains which do not exhibit the type of behavior illustrated in the examples possess a stationary
distribution to which the distribution converges, starting from any initial state.

Theorem 2.3.2 A finite state space, irreducible Markov chain has a unique stationary distribution
π and if it is aperiodic, limk→∞ p[k] = π, ∀p[0]. �

Example 5 The following example illustrates the computation of the stationary distribution of a
Markov chain. Consider a three-state Markov chain with the state space {a, b, c} as shown in Figure
2.3. If the Markov chain is in state a, it switches from the current state to one of the other two

a b c

1/4

1/4 1/2

1/21/2

1

Figure 2.3: A three-state Markov chain

states, each with probability 1/4, or remains in the same state. If it is in state b, then it switches
to state c with probability 1/2 or remains the same state. If it is in state c, it switches to state a
with probability 1. Thus,

P =

 1/2 1/4 1/4
0 1/2 1/2
1 0 0

 .

This Markov chain is irreducible since it can go from any state to any other state in finite time
with non-zero probability. Next, note that there is a non-zero probability of remaining in state a
if the Markov chain starts in state a. Therefore, Pnaa > 0 for all n and state a is aperiodic. Since
the Markov chain is irreducible, this implies that all the states are aperiodic. Thus, the finite-state
Markov chain is irreducible and aperiodic, which implies the existence of a stationary distribution

44 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

to which the probability distribution converges, starting from any initial distribution. To compute
the stationary distribution π, we solve the equation

π = πP,

where π = (πa πb πc) , subject to the constraint πa + πb + πc = 1 and πa, πb, πc ≥ 0, to obtain
π = (1/2 1/4 1/4) . �

If the state space is infinite, the existence of a stationary distribution is not guaranteed even if
the Markov chain is irreducible as the following example illustrates.

Example 6 Let the state space be the set of integers, and define the Markov chain as follows:

Xk+1 = Xk + 1 w. p. 1/3,

= Xk − 1 w. p. 1/3,

= Xk w. p. 1/3.

It is easy to verify that this Markov chain is irreducible and aperiodic with probability transition
matrix:

P =

. . .

0 1/3 1/3 1/3 0 0 0
0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0

. . .

 .

If a stationary distribution π exists, it has to satisfy π = πP, which can be rewritten as

πk =
1

3
πk−1 +

1

3
πk +

1

3
πk+1, ∀k.

Thus, we have to solve for {πk} that satisfy

2πk = πk−1 + πk+1, ∀k
∞∑

k=−∞
πk = 1

πk ≥ 0, ∀k.

We will now show that we cannot find a distribution π that satisfies the above set of equations.
Note that

π2 = 2π1 − π0

π3 = 2π2 − π1 = 2(2π1 − π0)− π1

= 3π1 − 2π0

π4 = 6π1 − 4π0 − 2π1 + π0

= 4π1 − 3π0

...

πk = kπ1 − (k − 1)π0

= (k − 1)(π1 − π0) + π1, k ≥ 2

2.3. MATHEMATICAL BACKGROUND: DISCRETE-TIME MARKOV CHAINS 45

Thus,

if π1 = π0 > 0, then πk = π1, ∀k ≥ 2 and
∞∑
k=0

πk > 1,

if π1 > π0, then πk →∞,
if π1 < π0, then πk → −∞,

if π1 = π0 = 0, then πk = 0 ∀k ≥ 0.

A little thought shows that the last statement is also true for k < 0. Thus, a stationary distribution
cannot exist. �

Example 6 illustrates the need for more conditions beyond irreducibility to ensure the existence
of stationary distributions in countable state space Markov chains. Towards this end, we introduce
the notion of recurrence and related concepts.

Definition 2.3.3 The following definitions classify the states of a Markov chain as recurrent or
transient:

1. The recurrence time Ti of state i of a Markov chain is defined as

Ti = min{n ≥ 1 : Xn = i given X0 = i.}

(Note that Ti is a random variable.)

2. A state i is said to be recurrent if Pr(Ti <∞) = 1. Otherwise, it is called transient.

3. The mean recurrence time Mi of state i is defined as Mi = E[Ti].

4. A recurrent state i is called positive recurrent if Mi <∞. Otherwise, it is called null recurrent.

5. A Markov chain is called positive recurrent if all of its states are positive recurrent.

�

The next two lemmas and theorem are stated without proof.

Lemma 2.3.3 Suppose {Xk} is irreducible and one of its states is positive recurrent, then all of
its states are positive recurrent. (The same statement holds if we replace positive recurrent by null
recurrent or transient.) �

Lemma 2.3.4 If state i of a Markov chain is aperiodic, then limk→∞ pi[k] = 1
Mi
. (This is true

whether or not Mi <∞ and even for transient states by defining Mi =∞ when state i is transient.)
�

Theorem 2.3.5 Consider a time-homogeneous Markov chain which is irreducible and aperiodic.
Then, the following results hold:

• If the Markov chain is positive recurrent, then there exists a unique π such that π = πP and
limk→∞ p[k] = π. Further πi = 1

Mi
.

46 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

• If there exists a positive vector π such π = πP and
∑

i πi = 1, then it must be the stationary
distribution and limk→∞ p[k] = π. (From Lemma 2.3.4, this also means that the Markov chain
is positive recurrent.)

• If there exists a positive vector π such that π = πP and
∑

i πi is infinite, then a stationary
distribution does not exist and limk→∞ pi[k] = 0 for all i.

�

The following example is an illustration of the application of the above theorem.

Example 7 Consider a simple model of a wireless link where, due to channel conditions, either
one packet or no packet can be served in each time slot. Let s(k) denote the number of packets
served in time slot k and suppose that s(k) are i.i.d. Bernoulli random variables with mean µ.
Further, suppose that packets arrive to this wireless link according to a Bernoulli process with mean
λ, i.e., a(k) is Bernoulli with mean λ where a(k) is the number of arrivals in time slot k and a(k)
are i.i.d. across time slots. Assume that a(k) and s(k) are independent processes. We specify the
following order in which events occur in each time slot:

• We assume that any packet arrival occurs first in the time slot, followed by any packet depar-
ture.

• Packets that are not served in a time slot are queued in a buffer for service in a future time
slot.

Let q(k) be the number of packets in the queue at the beginning of time slot k. Then q(k) is a
Markov chain and evolves according to the equation

q(k + 1) = (q(k) + a(k)− s(k))+ .

We are interested in the steady state distribution of this Markov chain. The Markov chain can be
pictorially depicted as in Figure 2.4 where the circles denote the states of the Markov chain (the
number of packets in the queue) and the arcs denote the possible transitions with the number on an
arc denoting the probability of that transition occurring. For example, Pi,i+1, the probability that

0 1 2

Figure 2.4: The discrete-time Markov chain for the queue

the number of packets in the queue increases from i to i+ 1 from one time slot to the next is equal
to the probability that there was an arrival but no departure in the time slot. Thus,

Pi,i+1 = λ(1− µ).

2.3. MATHEMATICAL BACKGROUND: DISCRETE-TIME MARKOV CHAINS 47

Similarly, Pii for i > 0 is equal to the probability of no arrival and no departure or one arrival and
one departure in a time slot and thus,

Pii = λµ+ (1− λ)(1− µ).

On the other hand, P00 is simply the probability of no arrival which is equal to 1− λ. If i > 0, then
Pi,i−1 = 1 − Pii − Pi,i+1. First,we note that it is easy to see that this Markov chain is irreducible
and aperiodic. To compute π, we have to solve for π = πP which can be written explicitly as

πi = πi−1Pi−1,i + πiPii + πi+1Pi+1,i, i > 0 (2.10)

π0 = π0P00 + π1P10.

The above equations have a simple interpretation: the stationary probability of being in i is equal
to sum of the probability of being in state i in the previous time-slot multiplied by the probability of
continuing in the same state and the probability being in another state and making a transition to
state i. The above set of equations should be augmented with the constraint

∑
i πi = 1 to solve for

π.
Using the fact Pii + Pi,i−1 + Pi,i+1 = 1, a little thought shows that if we find π that satisfies

πiPi,i+1 = πi+1Pi+1,i, ∀i,

then it also solves (2.10). Thus,

πi+1 =
(1− µ)λ

(1− λ)µ
πi,

which implies

πi =

(
(1− µ)λ

(1− λ)µ

)i
π0. (2.11)

Since
∑

i≥0 πi = 1, we obtain

π0

∞∑
i=0

(
(1− µ)λ

(1− λ)µ

)i
= 1.

If we assume λ < µ, then
(1− µ)λ

(1− λ)µ
< 1,

and

π0 = 1− (1− µ)λ

(1− λ)µ
.

Thus, the stationary distribution is completely characterized.
If λ ≥ µ, then let π0 = 1 and from (2.11), it is clear that

∑
i πi =∞. Thus, from Theorem 2.3.5,

the Markov chain is not positive recurrent if λ ≥ µ. �

As noted in the above example, the following theorem provides a sufficient condition for verifying
the stationary distribution of a DTMC.

Theorem 2.3.6 Consider a time-homogeneous Markov chain which is irreducible and aperiodic.
If there exists a positive vector π such πiPij = πjPji and

∑
i πi = 1, then it must be the stationary

distribution. �

48 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Unlike the above example, there are also many instances where one cannot easily find the sta-
tionary distribution by solving π = πP. But we would still like to know if the stationary distribution
exists. It is often easy to verify the irreducibility and aperiodicity of a Markov chain, but, in general,
it is difficult to directly verify whether a Markov chain is positive recurrent from the definitions
given earlier. Instead, there is a convenient test called Foster’s test or the Foster-Lyapunov test to
check for positive recurrence which we state next.

Theorem 2.3.7 (Foster-Lyapunov Theorem) Let {Xk} be an irreducible Markov chain with a
state space S. Suppose that there exist a function V : S → R+ and a finite set B ⊆ S satisfying
the following conditions:

1. E[V (Xk+1)− V (x) | Xk = x] ≤ −ε if x ∈ Bc for some ε > 0, and

2. E[V (Xk+1)− V (x) | Xk = x] ≤ A if x ∈ B for some A <∞.

Then the Markov chain {Xk} is positive recurrent.

Proof We will prove the result under the further assumption that {Xk} is aperiodic. Note that
the theorem itself does not require the Markov chain to be aperiodic. Following the two conditions
stated in the theorem, we have

E[V (Xk+1)− V (Xk) | Xk = x] ≤ −εIx∈Bc +AIx∈B
= −εIx∈Bc +A−AIx∈Bc
= −(A+ ε)Ix∈Bc +A.

Taking expectations on both sides, we get

E[V (Xk+1)]− E[V (Xk)] = −(A+ ε) Pr(Xk ∈ Bc) +A,
N∑
k=0

(E[V (Xk+1)]− E[V (Xk)]) = −(A+ ε)

N∑
k=0

Pr(Xk ∈ Bc) +AN.

Thus,

E[V (XN+1)]− E[V (X0)] = −(A+ ε)
N∑
k=0

Pr(Xk ∈ Bc) +AN

(A+ ε)

N∑
k=0

Pr(Xk ∈ Bc) = AN + E[V (X0)]− E[V (XN+1)]

≤ AN + E[V (X0)]

A+ ε

N

N∑
k=0

Pr(Xk ∈ Bc) ≤ A+
1

N
E[V (X0)]

lim
N→∞

sup
1

N

N∑
k=0

Pr(Xk ∈ Bc) ≤
A

A+ ε

lim
N→∞

inf
1

N

N∑
k=0

Pr(Xk ∈ B) ≥ ε

A+ ε

2.4. DELAY AND PACKET LOSS ANALYSIS IN QUEUES 49

Suppose that any state of the Markov chain is not positive recurrent, all states are not positive
recurrent since the Markov chain is irreducible. Thus, Mi =∞, ∀i and limk→∞ pi[k] = 0, ∀i. Thus,

limk→∞ Pr(Xk ∈ B) = 0 or lim
N→∞

inf
1

N

N∑
k=1

Pr(Xk ∈ B) = 0, which contradicts the fact that it is

≥ ε
A+ε .

�
Next, we present two extensions of the Foster-Lyapunov Theorem without proof.

Theorem 2.3.8 An irreducible Markov chain {Xk} is positive recurrent if there exists a function
V : S → R+, a positive integer L ≥ 1 and a finite set B ⊆ S satisfying the following conditions:

E[V (Xk+L)− V (x) | Xk = x] ≤ −εIx∈Bc +AIx∈B

for some ε > 0 and A <∞. . �

Theorem 2.3.9 An irreducible Markov chain {Xk} is positive recurrent if there exists a function
V : S → R+, a function η : S → R+, and a finite set B ⊆ S satisfying the following conditions:

E[V (Xk+η(x))− V (x) | Xk = x] ≤ −εη(x)Ix∈Bc +AIx∈B

for some ε > 0 and A <∞. �

The following theorem provides conditions under which a Markov chain is not positive recurrent.

Theorem 2.3.10 An irreducible Markov chain {Xk} is either transient or null recurrent if there
exists a function V : S → R+ and and a finite set B ⊆ S satisfying the following conditions:

• E [V (Xk+1)− V (Xk) | Xk = x] ≥ 0, ∀x ∈ Bc

• There exists some x ∈ Bc such that V (x) > V (y) for all y ∈ B, and

• E [|V (Xk+1)− V (Xk)| |Xk = x] ≤ A for some A <∞ and ∀x ∈ S.

�

2.4 Delay and Packet Loss Analysis in Queues

2.4.1 Little’s Law

We start this section with the famous Little’s law, which states that the expected waiting time
in queueing system, is equal to the product of the mean arrival rate and the mean queue length.
Little’s law holds for very general arrival processes and service disciplines, and for both discrete
time and continuous time queueing systems. In this book, we only derive Little’s law for discrete
time queueing systems. The derivation for continuous time systems is similar.

50 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

We assume packets arrive at the beginning of a time slot and are served at the end of a time
slot. The queue length at time slot t, denoted by q(t), is the number of packets remaining in the
system at the beginning of time slot t, before packet arrivals occur.

Let A(t) denote the number of packet arrivals up to but not including time slot t, and Ii(t) be
an indicator of the presence of packet i in the queue at time t, i.e.,

Ii(t) =

{
1, if packet i arrived in a time slot < t and departed in a time slot ≥ t,
0, otherwise.

,

where packets are indexed according to arrival times and ties are broken arbitrarily. Note that
Ii(t) = 0 if packet i arrives in time slot t. Since Ii(t) = 1 means packet i remains in the system at
the beginning of time slot t, q(t) can be written as

q(t) =

A(t)∑
i=1

Ii(t).

Further, the waiting time of packet i, denoted by wi, is defined to be

wi =
∞∑
t=1

Ii(t).

Note that according this definition, the waiting time of a packet is zero if the packet arrives and
departs in the same time slot.

We define λ(T) to the average arrival rate by time slot T, i.e.,

λ(T) =
A(T + 1)

T
;

and L(T) to be the average queue length by time slot T, i.e.,

L(T) =

∑T
t=1 q(t)

T
.

Further, we define W (n) to be the average waiting time of the first n packets that departed from
the system, i.e.,

W (n) =
1

n

n∑
k=1

wik ,

where ik is the index of the kth packet that left the system. We further define the following three
limits:

λ = lim
T→∞

λ(T), L = lim
T→∞

L(T) and W = lim
n→∞

W (n).

So λ is the average arrival rate, L is the average queue length, and W is the average waiting time.

Theorem 2.4.1 (Little’s Law) Assuming that λ and W exist and are finite, L exists and L =
λW.

2.4. DELAY AND PACKET LOSS ANALYSIS IN QUEUES 51

Proof According to the definition of L(T), we have

L(T) =
1

T

T∑
t=1

q(t) =
1

T

T∑
t=1

A(t)∑
i=1

Ii(t) =
1

T

A(T)∑
i=1

T∑
t=1

Ii(t).

We first derive an upper bound on L. Note that

T∑
t=1

Ii(t) ≤
∞∑
t=1

Ii(t) = wi,

so

L(T) =
1

T

A(T)∑
i=1

T∑
t=1

Ii(t) ≤
1

T

A(T)∑
i=1

wi.

When λ and W exist and are finite, we have

lim
T→∞

1

T

A(T)∑
i=1

wi = lim
T→∞

T − 1

T

A(T)

T − 1

∑A(T)
i=1 wi
A(T)

= λW,

so

L = lim
T→∞

L(T) ≤ λW. (2.12)

Next we show that λW is also a lower bound on L. To prove that, we denote D(T) to be the
set of packets that have departed before time slot T. Note that the packets can be served in an
arbitrary order, so D(T) can be an arbitrary subset of {1, · · · , A(T)}.

Since any packet i (i ∈ D(T)) departed from the buffer before time slot T, we have wi =∑T−1
t=1 Ii(t), which leads to the following lower bound on L(T) :

L(T) =
1

T

A(T)∑
i=1

T∑
t=1

Ii(t) ≥
1

T

∑
i∈D(T)

wi =
|D(T)|
T

× 1

|D(T)|
∑

i∈D(T)

wi.

Now, if the following two limits hold

lim
T→∞

|D(T)|
T

≥ λ and lim
T→∞

∑
i∈D(T)

wi ≥W, (2.13)

then we have L ≥ λW, so the theorem holds.

To prove (2.13), we will establish the following claim: Given any ε > 0, there exist constants
aε, bε and δε such that (i) δε → 0 as ε→ 0, and (ii) for any T ≥ bε,

{aε, · · · , A((1− δε)T)} ⊆ D(T).

This claim indicates for sufficiently large T, most packet that arrived before time slot T must
have departed by time slot T. From this claim, it is straightforward to show (2.13).

52 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

We now verify the claim to complete the proof. Since limn→∞W (n)/n exists and is finite,

lim
n→∞

wn
n

= lim
n→∞

∑n
i=1wi
n

− lim
n→∞

n− 1

n

∑n−1
i=1 wi
n− 1

= W −W
= 0.

So given any ε > 0, there exists nε such that wn ≤ εn for all n ≥ nε. Further, limT→∞
A(T)
T = λ

implies that given ε > 0, there exists Tε such that

(λ− ε)T ≤ A(T) ≤ (λ+ ε)T (2.14)

for any T ≥ Tε.
Given ε, we choose T large enough such that

T ≥ Tε
1− ε(λ+ ε)

(2.15)

T ≥ nε
(λ− ε)(1− ε(λ+ ε))

. (2.16)

Since (1− ε(λ+ ε))T ≥ Tε according to (2.15),

A((1− ε(λ+ ε))T) ≥ (λ− ε)(1− ε(λ+ ε))T ≥ nε,

where the first and second inequalities follows from condition (2.14) and (2.16), respectively. Now
for any packet i such that nε ≤ i ≤ A((1− ε(λ+ ε))T), according to the definition of nε,

wi ≤ εi ≤ εA((1− ε(λ+ ε))T) ≤ ε(λ+ ε)(1− ε(λ+ ε))T ≤ ε(λ+ ε)T,

where the third inequality holds due to conditions (2.14) and (2.15). To that end, packet i for
nε ≤ i ≤ A((1− ε(λ+ ε))T) must depart by

(1− ε(λ+ ε))T − 1 + wi ≤ (1− ε(λ+ ε))T − 1 + ε(λ+ ε)T = T − 1,

so
{nε, · · · , A((1− ε(λ+ ε))T} ⊆ D(T).

The claim therefore holds with aε = nε, bε = max
{

Tε
1−ε(λ+ε) ,

nε
(λ−ε)(1−ε(λ+ε))

}
, and δε = ε(λ + ε)

which goes to 0 as ε→ 0.

�
The above derivation of Little’s law assumes that L, λ, and W are sample path averages. In

applications, we will apply Little’s law to steady-state expected queue lengths, steady-state expected
arrival rates and steady-state expected waiting times. Thus, we will make an implicit assumption
throughout the book that the stochastic processes that we consider are ergodic, i.e., processes for
which steady-state expectations and sample-path averages are equal. Further, we will also assume
that λ and W exist as required by Little’s law.

Next we will consider single server queueing systems under various traffic and buffer models.
The results help us understand queueing delays and packet drop probabilities over a link.

2.4. DELAY AND PACKET LOSS ANALYSIS IN QUEUES 53

2.4.2 The Geo/Geo/1 Queue

We consider a single-server queue with infinite buffer space. Packets arrive to this queue according
to an i.i.d. Bernoulli process with parameter λ. In each time slot, either one packet is served with
probability µ or no packet is served with probability 1 − µ. Equivalently, we can assume that the
server serves one unit of data per time slot and packet sizes are geometrically distributed with mean
1/µ. Under these assumptions, the inter-arrival and departure times are geometrically distributed,
so the queue is called Geo/Geo/1 queue.

0 1 2

Figure 2.5: The birth-death process of Geo/Geo/1 queue

This simple queuing system can be viewed as a birth-death process as shown in Figure 2.5,
where the state of the Markov chain is the queue length. The parameter

α = Pr(1 arrival, no departure) = λ(1− µ)

is the probability that the queue length increases by one, and

β = Pr(no arrival, 1 departure) = (1− λ)µ

is the probability that the queue length decreases by one.
Let π denote the steady-state distribution of the Markov chain. We will attempt to find π by

solving the local balance equation
βπi+1 = απi,

Dividing β at both sides yields
πi+1 = ρπi (2.17)

where ρ = α
β = λ(1−µ)

µ(1−λ) . Since equality (2.17) holds for all i, we can further obtain

πi = ρiπ0. (2.18)

Normalizing to make the sum of the probabilities equal to one, we have

∞∑
i=0

πi = π0

∞∑
i=0

ρi = 1. (2.19)

If ρ < 1, i.e., λ
µ < 1, then from (2.19), we get π0

1−ρ = 1, and π0 = 1− ρ. According to (2.18),

πi = ρi(1− ρ)

and the Markov chain is positive recurrent. If ρ ≥ 1, then
∑

i πi =∞. So the Markov chain is not
positive recurrent.

54 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Assume that ρ < 1, then the average queue length

E[q] =
∞∑
i=0

ρi(1− ρ)i

= (1− ρ)ρ
∞∑
i=1

iρi−1

= (1− ρ)ρ
1

(1− ρ)2

=
ρ

1− ρ
.

By Little’s law, the average waiting time of a packet is

W =
L

λ
=

ρ

λ(1− ρ)
.

2.4.3 The Geo/Geo/1/B Queue

We now consider the same queuing model as the previous subsection, but we further assume that
the buffer size is finite. We let the maximum buffer size be denoted by B, i.e., B is the maximum
number of packets allowed in the queue. When the buffer is full, newly arriving packets are dropped.
It is easy to see that q(t) again is a Markov chain as shown in Figure 2.6, and the steady-state
distribution satisfies:

βπi+1 = απi

for 0 ≤ i ≤ B − 1. Defining ρ = α
β , we have

πi+1 = ρπi

for 0 ≤ i ≤ B − 1. Normalizing the probabilities, we have π0
∑B

i=0 ρ
i = 1, which implies that

π0
1− ρB+1

1− ρ
= 1.

Hence, we obtain

π0 =
1− ρ

1− ρB+1

πi =
(1− ρ)ρi

1− ρB+1
, i = 0, 1, 2, · · · , B.

Note that the Markov chain is positive recurrent for any ρ because this is a finite-state Markov
chain. Therefore, in this Geo/Geo/1/B queue model, we should look at the fraction of arriving
packets that are dropped.

Denote by pd the fraction of arriving packets that are dropped, i.e.,

pd = lim
T→∞

∑T
t=0 I{q(t)=B,a(t)=1}∑T

t=0 I{a(t)=1}
,

2.4. DELAY AND PACKET LOSS ANALYSIS IN QUEUES 55

0 1 2 B

Figure 2.6: The birth-death process of Geo/Geo/1/B queue

where a(t) = 1 if there is a packet arrival at time t, and a(t) = 0 otherwise. In other words, pd is
the fraction of time slots that the buffer is full when there is an arrival.

Assuming ergodicity and q(t) is in its steady-state, we obtain

pd = lim
T→∞

1
T

∑T
t=1 I{q(t)=B,a(t)=1}

1
T

∑T
t=1 I{a(t)=1}

=
Pr(a(t) = 1, q(t) = B)

Pr(a(t) = 1)

= Pr(q(t) = B|a(t) = 1).

Since the arrivals are i.i.d. across time slots, and independent of the services, q(t) is independent
of a(t), which implies that

pd = Pr(q(t) = B) = πB. (2.20)

Thus, we have used the fact that the next arrival is independent of past arrivals and services. This
observation may not be true for other arrivals, but it holds for Bernoulli arrival processes. Equation
(2.20) is a special case of more general result called the BASTA property: Bernoulli Arrivals See
Time Averages since pd (what the arrivals see) is equal to πB (the time average).

2.4.4 The Discrete-Time G/G/1 Queue

We now consider a G/G/1 queue where the first G refers to the fact that arrival process is general
and the second G refers to the fact that the service process is general. We assume the arrivals (and
potential departures) are i.i.d. across time and the arrival process is independent of the potential
departure process. We also assume both the arrival process and potential departure process have
finite second moments.

The queue dynamics can be described as:

q(t+ 1) = (q(t) + a(t)− s(t))+ ,

where a(t) is the number of packet arrivals at the beginning of time slot t, and s(t) is the number
of packet departures at the end of time slot t. Assume the first and second moments of a(t) and
s(t) exist, and

E[a(t)] = λ and E[a2(t)] = m2a

E[s(t)] = µ and E[s2(t)] = m2s.

The next theorem states that the queuing system is positive recurrent when λ < µ, i.e., mean
arrival rate is strictly less than mean service rate.

56 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Theorem 2.4.2 The discrete-time G/G/1 queue is positive recurrent when λ < µ. Further, using
q(∞) to informally denote the queue in steady-state, the following inequality holds

E [q(∞)] ≤ m2a +m2s − 2λµ

2(µ− λ)
.

Proof Considering the Lyapunov function

V (t) ,
1

2
q2(t),

the drift of the Lyapunov function is given by

E [V (t+ 1)− V (t)|q(t) = q] =
1

2
E
[
((q + a(t)− s(t))+)2 − q2

]
≤ 1

2
E
[
(q + a(t)− s(t))2 − q2

]
=

1

2
E
[
(a(t)− s(t))2 + 2q(a(t)− s(t))

]
=

1

2
[m2a +m2s − 2λµ+ 2q(λ− µ)]

=
m2a +m2s − 2λµ

2
+ q(λ− µ). (2.21)

Fix ε > 0. If
m2a +m2s − 2λµ

2
+ q(λ− µ) ≤ −ε

or in other words,

q ≥
(
ε+

m2a +m2s − 2λµ

2

)
1

µ− λ
,

then

E [V (t+ 1)− V (t)|q(t) = q] ≤ −ε.

Invoking the Foster-Lyapunov Theorem (Theorem 2.3.7), we conclude that the Markov chain is
positive recurrent, and has a stationary distribution.

We will now obtain a bound on the mean queue length. Taking expectations on both sides of
inequality (2.21), we have

E [V (t+ 1)− V (t)] ≤ m2a +m2s − 2λµ

2
+ E [q(t)] (λ− µ).

Supposing the system is in steady-state and E[V (t)] exists in steady-state, we have

E [V (t+ 1)− V (t)] = 0.

Using q(∞) to informally denote steady-state, we get

E [q(∞)] ≤ m2a +m2s − 2λµ

2(µ− λ)
,

which we call the discrete-time Kingman bound.

2.4. DELAY AND PACKET LOSS ANALYSIS IN QUEUES 57

�
The discrete-time Kingman bound is actually tight when λ→ µ. We define q̄(λ) , E[q(∞)] to

be the expected queue length when the arrival rate is λ.
Assume that limλ→µm2a(λ) = m̂2a exists. For example, for i.i.d. Bernoulli arrivals,

m2a = E[a2(t)] = λ,

so
lim
λ→µ

m2a = µ.

Then as λ→ µ, the discrete-time Kingman bound becomes

lim
λ→µ

(µ− λ)q̄(λ) =
m̂2a +m2s − 2µ2

2
. (2.22)

Using Little’s law, we also have an upper bound on the queueing delay given by

W ≤ m2a +m2s − 2λµ

2λ(µ− λ)
.

58 CHAPTER 2. LINKS: STATISTICAL MULTIPLEXING AND QUEUES

Chapter 3

Scheduling in Packet Switches

In Chapter 1, we learned about routing algorithms that determine the sequence of links a packet
should traverse to get to its destination. But we did not explain how a router actually moves a
packet from one link to another. To understand this process, let us first look at the architecture of
a router. Generally speaking, a router has four major components: the input and the output ports
which are interfaces connecting the router to input and output links, respectively, a switch fabric
and a routing processor, as shown in Figure 3.1. The routing processor maintains the routing table
and makes routing decisions. The switch fabric is the component that moves packets from one link
to another link.

to output 3to output 1 to output 2

switch

input ports
output links

input buffers output buffers
output portsinput links

routing processor

Figure 3.1: A router has four major components: input ports, output ports, switch fabric and
routing processor. Each input/output port is connected to an input/output link and maintains an
input/output buffer. Packets are moved from input buffers to output buffers via the switch fabric.

Earlier, we implicitly assumed that this switch fabric operates infinitely fast, so packets are
moved from input ports to output ports immediately. This allowed us to focus on the buffers at
output ports. So all our discussions so far on buffer overflow probabilities are for output queues

59

60 CHAPTER 3. SCHEDULING IN PACKET SWITCHES

since an output buffer is the place where packets “enter” a link. However, in reality, the switch
fabric does not really operate at infinite speed. In particular, packets encounter queueing delays
at input ports before they are transferred to output ports. Therefore, buffers are required at both
input and output ports to store packets. The question we now address is how to operate the switch
fabric so that the average queue lengths at input port buffers are finite?

3.1 Switch Architectures and Crossbar Switches

The most popular switch architecture today is the crossbar switch architecture. Figure 3.2 shows
a crossbar switch with three input ports and three output ports. An N ×N crossbar switch (i.e.,
a switch with N input ports and N output ports) consists of N2 crosspoints. An input port is
connected to an output port when the corresponding crosspoint is closed as shown in Figure 3.2.
At most one crosspoint can be closed at each row and at most one can be closed at each column.
In other words, at any given time, one input port can be connected to at most one output port,
and vice versa.

Figure 3.2: A crossbar switch with three input ports and three output ports. Three crosspoints are
closed, connecting three input ports to three output ports.

A simple way to represent a crossbar switch is to use a complete bipartite graph as shown
in Figure 3.3. An N × N complete bipartite graph consists of N2 edges, representing the N2

crosspoints. The definitions of bipartite and complete bipartite graphs are presented below.

Definition 3.1.1 (Bipartite Graph) A bipartite graph is a graph whose vertices can be parti-

3.1. SWITCH ARCHITECTURES AND CROSSBAR SWITCHES 61

Figure 3.3: The bipartite graph representation of the switch in Figure 3.2

tioned into two sets I and O such that all edges connect a vertex in I to a vertex in O. For a
crossbar switch, I is the set of input ports and O is the set of output ports. �

Definition 3.1.2 (Complete Bipartite Graph) A complete bipartite graph is a bipartite graph
where every vertex in I is connected to every vertex in O. �

Definition 3.1.3 (Matching) In a graph, a matching is a set of edges such that no two share
a common vertex. In other words, each node is associated with at most one edge in a matching.
Figure 3.4 illustrates both a valid matching and an invalid matching. �

Figure 3.4: Matching in a graph

Definition 3.1.4 (Schedule) In a crossbar switch, a schedule is a set of connections from input
ports to output ports such that no input port is connected to two output ports and vice versa. �

According to the definitions of a matching and a schedule, a schedule has to be a valid matching
in the bipartite graph representing the switch. An important problem in crossbar switch design is

62 CHAPTER 3. SCHEDULING IN PACKET SWITCHES

to develop scheduling algorithms that find good matchings at each time instant to transfer packets
from input buffers to output buffers, which is the main focus of this chapter. We assume that
all packets are of equal size. If this is not the case, then packets are divided into equal sized
chunks called cells at input ports and reassembled at the output ports. We do not consider this
fragmentation and reassembly process in this book.

3.1.1 Head-of-Line (HOL) Blocking and Virtual Output Queues

When the speed of a switch is not fast enough, packets will be queued at input buffers. We first
consider the case where each input port is associated with a queue where packets are transmitted
in a First-In, First-Out fashion, called a FIFO queue, the switch operates in a time-slotted fashion,
and one and at most one packet can be transferred from an input queue to an output queue during
one time slot if they are connected. Assume the status of input queues at the beginning of a
time slot is as shown in Figure 3.5. If the switch can freely select any packet in an input queue
to transfer, then the switch can transfer one packet from input queue 1 to output queue 2, one
from input queue 2 to output queue 3, and one from input queue 3 to output queue 1. However,
because input queues are FIFO queues, the switch can only access the first packet in each queue
(also known as the head-of-the-line packet). Since no head-of-line packet is destined to output port
1, even though output port 1 is free, those packets destined to output port 1 cannot be transferred.
Therefore, the switch can make only two transfers as shown in Figure 3.5. This phenomena whereby
packets behind the first packet in each queue may be blocke is called Head-of-Line (HOL) blocking,
which can significantly degrade the performance of a switch.

3

output queue 1

output queue 2

output queue 3

input queue 1

input queue 2

input queue 3

3

3 3

to output 1 to output 2 to output 33

Figure 3.5: HOL blocking at input queues

HOL blocking occurs because the switch can only access head-of-line packets. So each input
queue can only be connected to the output queue to which its head-of-line packet is destined, which
significantly limits the flexibility in selecting a schedule. One approach to resolve this HOL blocking
problem is to maintain a separate queue for each output port at each input port, called virtual output
queues (VOQs), as shown in Figure 3.6. With VOQs, at each input port, the switch can access one
packet for each output port (if such a packet exists). Assuming all VOQs are nonempty, an input
port can transfer one packet to any output port. Consider the same situation as in Figure 3.5, but
with VOQs, the switch can transfer one packet to each output queue simultaneously as shown in

3.2. CAPACITY REGION AND MAXWEIGHT SCHEDULING 63

Figure 3.6, so is fully utilized.

output queuesVOQs

3

Figure 3.6: HOL blocking at input queues

3.2 Capacity Region and MaxWeight Scheduling

While VOQs resolve the HOL blocking problem, it is yet clear whether the switch can operate at
its full capacity To address this question, we first need to understand what “full capacity” means,
i.e., understand the capacity region of a switch. We let VOQ(i, j) denote the VOQ for output port
j at input port i, and qij(t) denote the length of VOQ(i, j) at time slot t. Further, denote by aij(t)
the number of packets arriving at input i at time slot t, and destined to output port j. We assume
aij(t) is a Bernoulli random variable with parameter λij , and aij(t)

′s are independent across time
and input-port and output-port pairs. We further assume that one packet can be transferred from
an input port to an output port in one time slot.

Define the arrival rate matrix λ to be an N ×N matrix such that the (i, j)th entry is λij . We
say arrival rate matrix λ is supportable if there exists a switch scheduling under which

lim
t→∞

Pr (|q(t|) <∞) = 1. (3.1)

So λ is supportable if the VOQs remain finite. We will first characterize the set of supportable
arrival rate matrices.

Since at most one packet can be transferred from an input port in one time slot, a necessary
condition for λ to be supportable is

N∑
j=1

λij ≤ 1,

i.e., the aggregate arrival rate to input port i should be no more than one (packet per time slot).
Similarly, each output port can accept at most one packet in each time slot, so

N∑
i=1

λij ≤ 1,

64 CHAPTER 3. SCHEDULING IN PACKET SWITCHES

i.e., the number packets destined to output port j cannot exceed one (packet per time slot) on
average. Based on the two conditions above, we define set C to be

C =

λ : λ ≥ 0,

N∑
i=1

λij ≤ 1 for any j and

N∑
j=1

λij ≤ 1 for any i

 .

We will see in this section that C is the capacity region of the switch, and any λ that lies strictly
inside C can be supported by a scheduling algorithm, called the MaxWeight scheduling algorithm.

The first result we will present is that no scheduling algorithm can support λ if λ is not in C.

Theorem 3.2.1 If λ 6∈ C, then no scheduling algorithm can support arrival rate matrix λ.

Proof Let M(t) denote the schedule used in time slot t. So M(t) is a N × N matrix such that
Mij(t) = 1 if input port i is connected to output port j in time slot t, and Mij(t) = 0 otherwise.

According to the definition of C, λ 6∈ C implies that either
∑

i λij > 1 for some j or
∑

j λij > 1
for some i. Suppose the first case occurs and there exist j∗ and ε > 0 such that

∑
i λij∗ ≥ 1 + ε. In

this case, we consider the value of
∑

i qij∗(t+ 1). Note that

qij(t+ 1) = (qij(t) + aij(t)−Mij(t))
+ ≥ qij(t) + aij(t)−Mij(t),

so

∑
i

qij∗(t+ 1) ≥
t∑

s=1

(∑
i

aij∗(s)−
∑
i

Mij∗(s)

)
.

According to the Strong Law of Large Numbers (SLLN), with probability one,

lim
t→∞

1

t

t∑
s=1

∑
i

aij∗(s) =
∑
i

λij∗ ≥ 1 + ε.

Further, since M(t) is a matching,
∑

iMij∗(t) ≤ 1 for all t. So we have

1

t

t∑
s=1

∑
i

Mij∗(s) ≤ 1.

Therefore, with probability one, ∑
i

qij∗(t)→∞ as t→∞.

So λ is not supportable. The same proof works if
∑

j λij ≥ 1 for some i.

�
The theorem above shows that any arrival rate matrix outside of C cannot be supported. We

next present an algorithm that supports an arrival rate matrix that lies strictly in C. Recall that an
N ×N switch can be represented by an N ×N complete bipartite graph. Let H denote the total
number of matchings in an N × N complete bipartite graph, and M (h) denote the hth matching,

3.2. CAPACITY REGION AND MAXWEIGHT SCHEDULING 65

where we use (·) to indicate that the superscript is an index not power. Note that M (h) is an

N × N matrix such that M
(h)
ij = 1 if input port i is connected to output port j and M

(h)
ij = 0

otherwise. We now present the MaxWeight scheduling algorithm, which will be shown to support
any λ strictly within the capacity region C. We now introduce the MaxWeight scheduling algorithm
that can support any λ such that (1 + ε)λ ∈ C. The MaxWeight scheduling algorithm associates a

weight q
(h)
ij with the link corresponding to VOQ(i, j) in the bipartite graph representation of the

switch. It then finds a matching which maximizes the sum of the weights of the links included in
the matching; hence the name MaxWeight algorithm.

MaxWeight Scheduling: The switch finds a matching M(t) such that

M(t) ∈ arg max
M(h)

∑
ij

qij(t)M
(h)
ij ,

and transfers a packet from VOQ(i, j) to output port j if Mij(t) = 1 and qij(t) + aij(t) > 0,
i.e., there is a packet in the queue.

Queue length qij(t) can be thought as the weight associated with edge (i, j) in the complete
bipartite graph representing the switch. Therefore, the MaxWeight algorithm finds a matching
with the maximum sum weight among all matchings, so is called MaxWeight scheduling.

Example 8 Consider a 3 × 3 cross-bar switch, with the states of VOQs are shown in Figure 3.7.
MaxWeight scheduling will schedule the two links shown on the left. This schedule has a sum weight
of 4. The matching on the right has a sum weight equal to 3, so will not be selected by the algorithm.
�

VOQs

MaxWeight Matching

Figure 3.7: An example of MaxWeight scheduling in a 3× 3 switch

To analyze the performance of MaxWeight scheduling, we need the Birkhoff-von Neumann
theorem which establishes the connection between doubly stochastic matrices and permutation
matrices.

66 CHAPTER 3. SCHEDULING IN PACKET SWITCHES

Definition 3.2.1 (Doubly Stochastic Matrix) An N ×N matrix λ is a doubly stochastic ma-
trix if 0 ≤ λij ≤ 1,

∑N
i=1 λij = 1, and

∑N
j=1 λij = 1. �

Definition 3.2.2 (Permutation Matrix) An N×N matrix U is a permutation matrix if
∑N

i=1 Uij =

1,
∑N

j=1 Uij = 1 and Uij ∈ {0, 1}. �

Lemma 3.2.2 (Birkhoff-von Neumann Theorem) An N ×N matrix λ is a doubly stochastic
matrix if and only if it is a convex combination of permutation matrices, i.e., there exists β ≥ 0
such that

∑
h βh = 1 and λ =

∑
h βhU

(h), where U (h)s are permutation matrices. �

We comment that a doubly stochastic matrix λ belongs to set C, and a permutation matrix is
a valid matching.

Theorem 3.2.3 MaxWeight scheduling can support any arrival rate matrix λ such that (1+ε)λ ∈ C.

Proof Note that q(t) is an irreducible Markov chain under MaxWeight scheduling (see Exercise 2
for the details). We prove this theorem by demonstrating that q(t) is positive recurrent. Defining
the Lyapunov function to be

V (q(t)) =
∑
ij

q2
ij(t),

we next will prove that if (1 + ε)λ ∈ C for some ε > 0, then

E [V (q(t+ 1))− V (q(t))| q(t) = q] ≤

∑
ij

λij

+N − 2ε
∑
i,j

λijqij . (3.2)

Therefore, the theorem follows from the Foster-Lyapunov theorem (Theorem 2.3.7).
To prove result (3.2), we first have

V (q(t+ 1))− V (q(t))

=
∑
ij

(
(qij(t) + aij(t)−Mij(t))

+)2 −∑
ij

q2
ij(t)

≤
∑
ij

(qij(t) + aij(t)−Mij(t))
2 −

∑
ij

qij(t)

=
∑
ij

(2qij(t) + aij(t)−Mij(t)) (aij(t)−Mij(t))

=
∑
ij

2qij(t) (aij(t)−Mij(t)) +
∑
ij

(aij(t)−Mij(t))
2 .

Note that

E

∑
ij

(aij(t)−Mij(t))
2

∣∣∣∣∣∣ q(t) = q

 ≤ E

∑
ij

(
a2
ij(t) +M2

ij(t)
)∣∣∣∣∣∣ q(t) = q

=

∑
ij

λij

+N,

3.2. CAPACITY REGION AND MAXWEIGHT SCHEDULING 67

where E[a2
ij(t)|q(t) = q] = λij because aij(t) is Bernoulli and independent of q(t), and E[

∑
ijM

2
ij(t)|q(t) =

q] ≤ N becauseM(t) is a matching. So taking conditional expectations on both sides of the equation
above, we obtain

E [V (q(t+ 1))− V (q(t))| q(t) = q] ≤

∑
ij

λij

+N + 2
∑
ij

qij (λij − E[Mij(t)|q(t) = q]) . (3.3)

Since there exists ε > 0 such that (1 + ε)λ ∈ C. According to the Birkhoff-von Neumann
theorem, there exists a vector β ≥ 0 such that

∑
h βh = 1 and (1 + ε)λ ≤

∑
h βhU

(h), where U (h)s
are permutation matrices and ≤ means element-wise inequalities here. Therefore,

(1 + ε)
∑
ij

qijλij ≤
∑
ij

qij

(∑
h

βhU
(h)
ij

)
=
∑
h

βh

∑
ij

qijU
(h)
ij

≤

(∑
h

βh

)max
h

∑
ij

qijU
(h)
ij

= max

h

∑
ij

qijU
(h)
ij

 .

Since permutation matrices are valid matchings, we further have

(1 + ε)
∑
ij

qijλij ≤ max
h

∑
ij

qijU
(h)
ij ≤ max

h

∑
i,j

qijM
(h)
ij =

∑
i,j

qijE[Mij(t)|q(t) = q],

where the last equality yields from the definition of MaxWeight scheduling. Substituting the in-
equality above into inequality (3.3) yields

E [V (q(t+ 1))− V (q(t))| q(t) = q] ≤

∑
ij

λij

+N − 2ε
∑
i,j

λijqij . (3.4)

Hence, inequality (3.2) holds, and the proof completes.

�
From Theorems 3.2.1 and 3.2.3, we conclude that any arrival rate matrix λ not in C cannot be

supported by any switch scheduling algorithm, while any λ that is strictly in C can be supported
by MaxWeight scheduling. Therefore, C is called the capacity region of an N × N switch, and
MaxWeight scheduling is said to be a throughput optimal algorithm.

68 CHAPTER 3. SCHEDULING IN PACKET SWITCHES

Chapter 4

Scheduling in Wireless Networks

So far we have looked at resource allocation algorithms in networks with wireline links. In this
chapter, we consider networks with wireless components. The major difference between wireless
and wireline networks is that, in wireless networks, links contend for a common resource, namely,
the wireless spectrum. As a result, we have to design Medium Access Control (MAC) algorithms
to decide which links access the wireless medium at each time instant. As we will see, wireless
MAC algorithms share features similar to scheduling algorithms in the switch fabric of a high-
speed router, which were studied in the previous chapter. However, there are some differences:
wireless networks are subject to time-varying link quality due to channel fluctuations, also known
as channel fading. In addition, some wireless networks do not have a central coordinator to perform
scheduling, so scheduling decisions have to be taken independently by each link. We will address
these issues specific to wireless networks in this chapter.

4.1 Channel-Aware Scheduling in Cellular Networks

Mobile 1

Mobile 2

Flow 1

Flow 2

Figure 4.1: A downlink network with a single base station and two mobiles

We first use a simple example to demonstrate the importance of considering channel state
information in scheduling. Consider a downlink network with a single base-station and two mobiles
as shown in Figure 4.1. Assume the system is time-slotted. The base station has only one antenna,
and can only transmit to one mobile at a time. So we do not deal with interference in this example.

69

70 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

We further assume the two channels are independent ON-OFF channels, and each channel is
ON with probability 1/2. When a channel is ON, one packet can be transmitted over the channel.
This ON-OFF channel model is a abstraction of a situation where the quality of the channels are
time-varying due to fading. Suppose we assume that the base station uses a fix transmit power,
and that mobiles can successfully decode a packet transmission only when the Signal to Noise
Ratio (SNR) is above a threshold. (Note that SNR is the same as SINR discussed earlier when the
interference power is zero.) Then, the ON state corresponds to the state of the channel when the
SNR is above the desired threshold. Since hi(t) is time-varying, the channel can be modeled as an
ON-OFF channel.

Next we consider two scheduling policies, a channel-unaware policy and a channel-aware schedul-
ing policy, to demonstrate the importance of including channel state information in scheduling. The
channel unaware scheduling is presented below, which schedules the mobiles independent of their
channel states.

Channel Unaware Scheduling: The base station selects mobile i with probability αi, and
transmits a packet to mobile i.

Under this channel unaware scheduling, the rate allocated to mobile i is

αi Pr(channel i is on) =
αi
2

(packets/slot).

Thus, by varying α1 and α2, any service rate vector of the form (α1/2, α2/2) can be achieved by
the channel unaware scheduling algorithm, where α1 + α2 ≤ 1.

The channel aware scheduling is presented below, where the base station schedules the mobiles
based on their channel states.

Channel Aware Scheduling: Assume that the base station knows the states of both
channels through the feedback from the mobiles. If only one mobile’s channel is ON, the base
station schedules the mobile with ON channel; otherwise, the base station schedules mobile
i with probability αi.

Under this scheduling algorithm, mobile 1 (2) is scheduled with probability one when its channel
is ON, and mobile 2’s (1’s) channel is OFF; and mobile 1 is scheduled with probability αi when
both channels are ON. Therefore, the rate allocated to mobile i (i = 1, 2) is

Pr(channel i is ON, the other channel if OFF) + αi Pr(both channels are ON)

=
1

4
+ αi

1

4

=
(1 + αi)

4
.

The set of rate allocations (µ1, µ2) such that

µ1 ≤
(1 + α1)

4
and µ2 ≤

(1 + α2)

4
(4.1)

is feasible under the channel aware scheduling.
By varying α1 and α2, we can plot the capacity regions of both scheduling algorithms, as

shown in Figure 4.2. The capacity region of channel aware scheduling is clearly larger than that

4.2. THE MAXWEIGHT ALGORITHM FOR THE CELLULAR DOWNLINK 71

0 1/2

1/2

(3/8, 3/8)

Figure 4.2: The region Co{(0, 0), (0, 1/2), (1/2, 0)} is the capacity region of the channel unaware
scheduling, and the region Co{(0, 0), (0, 1/2), (3/8, 3/8), (1/2, 0)} is the capacity region of the chan-
nel aware scheduling.

of channel unaware scheduling. This example demonstrates the importance of exploiting channel
state information in scheduling. To implement channel-aware scheduling, one needs to know the
state of the channels. We will assume that such channel-state information can be obtained without
much overhead.

4.2 The MaxWeight Algorithm for the Cellular Downlink

Motivated by the simple example above, in this section, we consider channel aware scheduling in a
general cellular downlink network with a single base station and N mobiles. We further make the
following assumptions:

(i) Assume the network has M channel states, indexed by m, where the channel state refers to
the states of all channels in the network.

(ii) The base station can transmit to one mobile at a time.

(iii) Define cm to be the channel rate vector when the channel is in state m, where cm,i is the
transmission rate to mobile i, if it is scheduled. Assume there exists cmax < ∞ such that
cm,i ≤ cmax for all i and m. Let µi(t) denote the transmission rate to mobile i at time t, so
µi(t) = cm,i if mobile i is scheduled in state m.

(iv) The channel state process is i.i.d. across time slots. The probability that the channel is in
state m is denoted by πm.

(v) Packet arrival processes are independent across users and time slots. Let ai(t) denote the the
number of packet arrivals for mobile i at time slot t, which is a random variable that takes
positive integer values, with mean λi and a finite variance σ2

i for user i. We further assume
Pr(ai(t) = 0) > 0 for all i.

72 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

(vi) The base station maintains a separate queue for each mobile. Let qi(t) denote the number of
packets buffered at the base station for mobile i at the beginning of time slot t, before arrivals
occur.

The assumptions that the base station can transmit to one mobile at a time, i.i.d. channel fading,
and i.i.d. arrival processes can be relaxed. We impose these assumptions to simplify the analysis.

Similar to switch scheduling, arrival rate vector λ is said to be supportable if there exists a
scheduling algorithm under which

lim
t→∞

Pr (q(t) <∞) = 1.

Next we first characterize the capacity region of the cellular downlink defined above, and then
present a scheduling algorithm that supports any arrival rate vector that lies strictly in the capacity
region.

Definition 4.2.1 (Capacity Region C) An arrival rate vector λ is in C if there exists {αm,i ≥ 0}
(interpret αm,i as the probability user i is scheduled in channel state m) such that

λi ≤
M∑
m=1

αm,icm,iπm, ∀i (4.2)

and ∑
i

αm,i ≤ 1 ∀m.

�

Note the set C satisfies the property that given any λ ∈ C, λ(i), such that λ
(i)
i = 0 and λ

(i)
j = λj for

j 6= i, also belongs to C. A convex set with this property is called coordinate convex.

Example 9 Consider the network with single base station and two mobiles, presented in Section
4.1. The network has four states: (0, 0) (both channels are OFF), (0, 1) (channel 1 is off and
channel 2 is ON), (1, 0)(channel 1 is on and channel 2 is OFF), and (1, 1) (both channels are ON).
Since a channel is equally likely to be ON or OFF, we have

π(0,0) = π(0,1) = π(1,0) = π(1,1) = 0.25.

The capacity region C is the set of λ′s such that

λ1 ≤ α(0,0),1 × 0× π(0,0) + α(0,1),1 × 0× π(0,1) + α(1,0),1 × 1× π(1,0) + α(1,1),1 × 1× π(1,1)

λ2 ≤ α(0,0),2 × 0× π(0,0) + α(0,1),2 × 1× π(0,1) + α(1,0),2 × 0× π(1,0) + α(1,1),2 × 1× π(1,1).

Clearly, to maximize throughput, we should not schedule an OFF channel, so

α(0,0),1 = α(0,0),2 = α(0,1),1 = α(1,0),2 = 0

α(0,1),2 = α(1,0),1 = 1.

4.2. THE MAXWEIGHT ALGORITHM FOR THE CELLULAR DOWNLINK 73

Therefore, the capacity region can be written as

λ1 ≤ π(1,0) + α(1,1),1π(1,1) =
1 + α(1,1),1

4

λ2 ≤ π(0,1) + α(1,1),2π(1,1) =
1 + α(1,1),2

4
,

which is equivalent to (4.1). �

The following theorem shows that any λ 6∈ C is not supportable.

Theorem 4.2.1 No scheduling algorithm can support arrival rate vector λ /∈ C. .

Proof Note that C is convex. According to the Strict Separation Theorem (Theorem 1.1.4), if
λ 6∈ C, then there exist β ∈ RN , β 6= 0 and δ > 0 such that∑

i

βiλi ≥
∑
i

βixi + δ (4.3)

for any x ∈ C.
Now suppose β ≥ 0. Define V (t) =

∑
i βiqi(t). Note that

qi(t+ 1) = (qi(t) + ai(t)− µi(t))+ ≥ qi(t) + ai(t)− µi(t),

which implies that

V (t+ 1) ≥
t∑

s=1

∑
i

βi (ai(s)− µi(s)) .

Denote by m(t) the channel state at time t. According to the SLLN, with probability one,

lim
t→∞

1

t

t∑
s=1

∑
i

βiai(s) =
∑
i

βiλi

lim
t→∞

1

t

t∑
s=1

Im(s)=l = πl.

Due to inequality (4.3), we can further obtain that with probability one,

lim
t→∞

1

t

t∑
s=1

∑
i

βiai(s) ≥ lim
t→∞

1

t

t∑
s=1

βiµi(s) + δ,

which implies that limt→ V (t) =∞ with probability one. So λ is not supportable.
We now prove that there exists a β ≥ 0 satisfying condition (4.3) to complete the theorem.

Given any β that satisfies (4.3), we define β̃ to be β̃i = βi if βi ≥ 0 and β̃i = 0 otherwise. Since
λ ≥ 0, we first have ∑

i

β̃iλi ≥
∑
i

βiλi. (4.4)

74 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

Next, given any x ∈ C, we define x̃ such that x̃i = xi if βi ≥ 0 and x̃i = 0 otherwise. So we have
β̃ixi = βix̃i, and ∑

i

β̃ixi =
∑
i

βix̃i ≤
∑
i

βiλi, (4.5)

where the last inequality holds because according to the definition of C, x̃ also belongs to C given
x ∈ C. Combining inequalities (4.4) and (4.5), we conclude that β̃ is a nonnegative vector that
satisfies condition (4.3).

�
If the average arrival rate λ and channel state distribution π are known, we can choose α that

satisfies (4.2), and schedule the mobiles according to the channel state and α. Knowing arrival rate
λ and channel state distribution π, however, is difficult in reality. The question, therefore, is can
we design a traffic-blind policy, such as MaxWeight for high-speed switches, for wireless networks?

We note that scheduling in wireless networks has some similarities with that in high-speed
switches. In fact, if the channel state is fixed instead of time varying, then a downlink network
can be viewed as a switch with single input port and N output ports. So a natural question is
whether a variation of the MaxWeight algorithm can be used to achieve the maximum throughput
in cellular networks. We next present the MaxWeight algorithm for wireless downlink networks,
and prove its throughput optimality.

MaxWeight Scheduling for Downlink Networks: At each time instant t, the base
station transmits to mobile i such that

i ∈ arg max
j
cm(t),jqj(t)

with rate cm(t),i, breaking ties at random.

Example 10 Again, consider the network with single base station and two mobiles, presented in
Section 4.1, which has four states:

• When both channels are off, no mobile is scheduled.

• When channel 1 is off and channel 2 is on, c1(t)q1(t) = 0 ≤ c2(t)q2(t) = q2(t), so mobile 2 is
scheduled.

• When channel 1 is on and channel 2 is off, c1(t)q1(t) = q1(t) ≥ c2(t)q2(t) = 0, so mobile 1 is
scheduled.

• When both channels are on, c1(t)q1(t) = q1(t) and c2(t)q2(t) = q2(t), so the base station
schedules the mobile with longer queue length.

�

In the next theorem, we show that MaxWeight scheduling can stabilize any λ that lies strictly
inside set C.

Theorem 4.2.2 Given any arrival rate vector λ such that (1 + ε)λ ∈ C for some ε > 0, q(t) is a
positive recurrent under the MaxWeight algorithm.

4.2. THE MAXWEIGHT ALGORITHM FOR THE CELLULAR DOWNLINK 75

Proof It is easy to verify q(t) is an irreducible Markov chain under the assumption that Pr(ai(t) =
0) > 0 all i. We first prove the following fact, which is the key to this proof. Given q(t) = q, under
MaxWeight scheduling,

E

[∑
i

qiµi(t)

]
≥
∑
i

qiγi ∀ γ ∈ C. (4.6)

According to definition of C, for any γ ∈ C, there exists α such that γi ≤
∑M

m=1 αm,icm,iπm for
all i. So ∑

i

qiγi ≤
∑
i

qi

(
M∑
m=1

αm,icm,iπm

)

=

M∑
m=1

πm

(∑
i

qiαm,icm,i

)

≤
M∑
m=1

πm

(
max
i
qicm,i

)
,

where the last inequality holds because
∑

i αm,i ≤ 1 for all i. Now given q(t) = q and c(t) = cm,
MaxWeight scheduling selects a mobile with the largest qicm,i, so

E

[∑
i

qiµi(t)

]
=

M∑
m=1

πm

(
max
i
qicm,i

)
≥
∑
i

qiγi,

and (4.6) holds.
Define the Lyapunov function to be

V (q(t)) =

N∑
i=1

q2
i (t).

The conditional drift of the Lyapunov function is

E [V (q(t+ 1))− V (q(t))|q(t) = q]

= E

[
N∑
i=1

(q2
i (t+ 1)− q2

i (t))

∣∣∣∣∣ q(t) = q

]

= E

[
N∑
i=1

(
(qi(t) + ai(t)− µi(t))+)2 − q2

i (t)

∣∣∣∣∣ q(t) = q

]

≤ E

[
N∑
i=1

(qi(t) + ai(t)− µi(t))2 − q2
i (t)

∣∣∣∣∣ q(t) = q

]

= E

[
N∑
i=1

(ai(t)− µi(t))2 + 2qi(t)(ai(t)− µi(t))

∣∣∣∣∣ q(t) = q

]
(4.7)

= E

[
N∑
i=1

(ai(t)− µi(t))2

∣∣∣∣∣ q(t) = q

]
+ 2

∑
i

qi (λi − E [µi(t)|q(t) = q]) .. (4.8)

76 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

Since the arrival processes are assumed to be independent of the queue state,

E

[
N∑
i=1

(ai(t)− µi(t))2

∣∣∣∣∣ q(t) = q

]

= E

[
N∑
i=1

a2
i (t)− 2ai(t)µi(t) + µ2

i (t)

∣∣∣∣∣ q(t) = q

]

≤
N∑
i=1

(
σ2
i + c2

max

)
. (4.9)

Since there exists ε > 0 such that (1 + ε)λ ∈ C, based on the fact (4.6), we have∑
i

qi(1 + ε)λi ≤
∑
i

qiE [µi(t)|q(t) = q] . (4.10)

Substituting inequalities (4.9) and (4.10) into (4.8), we obtain

E [V (q(t+ 1))− V (q(t))|q(t) = q] ≤
N∑
i=1

(
σ2
i + c2

max

)
− 2ε

N∑
i=1

qiλi.

So the Markov chain q(t) is positive recurrent according to Theorem 2.3.8, and the theorem holds.

�

4.3 MaxWeight Scheduling Ad Hoc P2P Wireless Networks

Ad hoc wireless networks refer to wireless networks in which wireless devices directly communicate
with each other, instead of going through base stations or access points. While wireless access net-
works, including cellular networks and Wireless Local Area Networks (WLAN), are most common
today; ad hoc wireless networks have emerged for a wide range of applications such as city-wide
wireless mesh networks, wireless sensor networks, and vehicular networks.

In this and the next section, we will focus on modeling and design of scheduling algorithms
for ad hoc wireless networks. We will assume that the ad hoc network operates in a peer-to-peer
fashion, i.e., a source node directly transmits a packets to its destination without using multi-hop
routing. Multi-hop wireless networks will be considered in the next chapter.

Figure 4.3 shows an example of an ad hoc P2P network, where nodes are distributed in a two-
dimensional space, and form multiple source-destination pairs (called links). We will focus our
attention on resolving interference in ad hoc wireless networks by assuming all channels are time-
invariant channels, i.e., no fading. We further model the interference as a conflict graph in which
each node represents a wireless link and an edge from node a to node b means link a interferes link
b, so link a should keep silent when link b is active. For example, if only non-adjacent links can
transmit simultaneously, then the conflict graph associated with the network in Figure 4.3 is shown
in Figure 4.4.

Note that a collection of nodes (which are wireless links in the real network) in the conflict
graph can be scheduled simultaneously if they do not interfere with each other. Such a set of nodes
is called a schedule and because of the importance of this concept, we present it as a definition
below.

4.3. MAXWEIGHT SCHEDULING AD HOC P2P WIRELESS NETWORKS 77

link 1

link 2

link 6

link 5

link 3

link 4

Ctrl
Fn

Alt

Alt Gr

Ctrl

Shift

Z
X

C
V

B
N

M
,

.
/

A
S

D
F

G
H

J
K

L
;

'

Q
W

E
R

T
Y

U
I

O
P

[
]

1
2

3
4

5
6

7
8

9
0

-
=

!
@

#

$
%

^

&

*

(

)
_

+

4

5

6

*

{

}

7

8

9

/

1

2

3

_

0

\

|

:

"

<

>

?

.

+

`
~Esc

F1
F2

F3
F14

F5
F6

F7
F8

F9
F10

F11
F12

Caps LockTab

NumLk
Scr Lk SysRqPrtSc BreakPause

Ins
Del

Backspace

Enter

Shift

Home

Pg Up

Pg Dn

End

$

€

Ctrl
Fn

Alt

Alt Gr

Ctrl

Shift

Z
X

C
V

B
N

M
,

.
/

A
S

D
F

G
H

J
K

L
;

'

Q
W

E
R

T
Y

U
I

O
P

[
]

1
2

3
4

5
6

7
8

9
0

-
=

!
@

#

$
%

^

&

*

(

)
_

+

4

5

6

*

{

}

7

8

9

/

1

2

3

_

0

\

|

:

"

<

>

?

.

+

`
~Esc

F1
F2

F3
F14

F5
F6

F7
F8

F9
F10

F11
F12

Caps LockTab

NumLk
Scr Lk SysRqPrtSc BreakPause

Ins
Del

Backspace

Enter

Shift

Home

Pg Up

Pg Dn

End

$

€

Ctrl
Fn

Alt

Alt Gr

Ctrl

Shift

Z
X

C
V

B
N

M
,

.
/

A
S

D
F

G
H

J
K

L
;

'

Q
W

E
R

T
Y

U
I

O
P

[
]

1
2

3
4

5
6

7
8

9
0

-
=

!
@

#

$
%

^

&

*

(

)
_

+

4

5

6

*

{

}

7

8

9

/

1

2

3

_

0

\

|

:

"

<

>

?

.

+

`
~Esc

F1
F2

F3
F14

F5
F6

F7
F8

F9
F10

F11
F12

Caps LockTab

NumLk
Scr Lk SysRqPrtSc BreakPause

Ins
Del

Backspace

Enter

Shift

Home

Pg Up

Pg Dn

End

$

€

Figure 4.3: An ad hoc P2P wireless network

link 1

link 2 link 3

link 4

link 5

link 6

Figure 4.4: A conflict graph associated with the network in Figure 4.3

Definition 4.3.1 (Schedule) A set of links that can be active simultaneously without interfering
each other. �

Consider the conflict graph in Figure 4.4, the link set {1, 3} is an schedule. The scheduling
problem can be thought of as finding a good schedule in the conflict graph at each time instant.

Inspired by the MaxWeight algorithm for high-speed switches and for the cellular downlink, we
are interested in the performance of MaxWeight scheduling in ad hoc P2P wireless networks. For
simplicity, we assume Bernoulli arrivals, and one packet can be transmitted in one time slot if a link
is on. Let ql(t) denote the number of packets queued at the transmitter of link l. We also assume
the conflict graph has H distinct schedules. Let M (1),M (2), . . . ,M (H) represent the H schedules,
where each M is a vector of size L and L is the number of links in the network. According to this
definition,

M
(h)
l =

{
1 if link l is in schedule M (h)

0 else.

The MaxWeight algorithm for ad hoc P2P wireless networks is presented below, where in each
time instant, a schedule with the largest sum queue length is used, i.e., the links in the schedule
transmit and all other links keep silent.

78 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

MaxWeight Scheduling for Ad Hoc P2P Wireless Networks: At each time instant
t, the network schedules the links in schedule M(t) such that

M(t) ∈ arg max
M(h)

∑
l

M
(h)
l ql(t). (4.11)

Break ties arbitrarily.

Example 11 Consider a conflict graph shown in Figure 4.5. MaxWeight scheduling will schedule
{4, 6}, which has the maximum sum weight 21. �

link 1

link 2 link 3

link 4

link 5

link 6

Figure 4.5: A conflict graph

We next define the set C to be

C =

{
λ : λl ≤

H∑
h=1

αhM
(h)
l ∀l, for some α ≥ 0 such that

∑
h

αh ≤ 1

}
,

where αh can be viewed as the probability to schedule M (h). The next theorem says that C is the
capacity region of the ad hoc P2P wireless network.

Theorem 4.3.1 No scheduling algorithm can support arrival rate vector λ /∈ C.

Proof The proof is based on the strict separation theorem and SLLN, and is similar to the proof
of Theorem 4.2.1.

�
We now prove that the MaxWeight algorithm is throughput optimal in ad hoc P2P wireless

networks.

Theorem 4.3.2 Given an arrival rate vector λ such that (1 + ε)λ ∈ C for some ε > 0, q(t) is
positive recurrent under MaxWeight scheduling.

4.4. GENERAL MAXWEIGHT ALGORITHMS 79

Proof According to the definition of C, given any γ ∈ C, there exists α ≥ 0 such that
∑

h α ≤ 1
and

γ ≤
∑
h

αhM
(h).

So given q(t) = q,

∑
l

qlγl ≤
∑
l

ql

(∑
h

αhM
(h)
l

)
=

(∑
h

αh

)(∑
l

qlM
(h)
l

)
≤ max

h

∑
l

qlM
(h)
l =

∑
l

qlMl(t),

where the last equality follows from the definition of MaxWeight scheduling.
If there exists ε > 0 such that (1 + ε)λ ∈ C, then given q(t) = q,∑

l

ql(1 + ε)λl ≤
∑
l

qlMl(t),

and ∑
l

qlλl −
∑
l

qlMl(t) ≤ −ε
∑
l

qlλl.

Considering Lyapunov function V (q(t)) =
∑

l q
2
l (t) and following the argument given in the proof

of Theorem 4.2.2, we can prove that q(t) is positive recurrent.

�

4.4 General MaxWeight Algorithms

We have now seen that the MaxWeight algorithm is a powerful scheduling mechanism, which is
throughput optimal in the contexts of switch scheduling, cellular downlink networks and ad hoc P2P
networks. The MaxWeight algorithm uses queue lengths as link weights so that if a flow does not
receive enough service, its queue builds up, which forces the algorithm to allocate more resources
to the flow. This interaction between queue lengths and scheduling guarantees the throughput
optimality of resource allocation. The reader may wonder whether other choices of link weights
can work as well. In this section, we will see that a large class of functions (of queue lengths) that
are increasing and differentiable can be used as link weights while still maintaining throughput
optimality.

Denoting by wl(ql) the weight associated with link l, we present the general MaxWeight algo-
rithm, in the setting of ad hoc peer-to-peer networks without fading. The algorithm can be easily
extended to networks with fading channels.

General MaxWeight Scheduling for Ad Hoc P2P Wireless Networks: At time
instant t, the network schedules the links in schedule M(t) such that

M(t) ∈ arg max
M(h)

∑
l

wl(ql(t))M
(h)
l .

If there is more than one such schedules, break ties arbitrarily.

80 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

We next introduce a class of weight functions, called valid weight functions, such that the
general MaxWeight scheduling is throughput optimal if all link weights are valid weight functions.

Definition 4.4.1 (Valid Weight Functions for MaxWeight Scheduling) We say a function
w(·) is a valid weight function if the following conditions hold:

(i) Function w(x) is increasing and differentiable for x ≥ 0, and w(x) = 0.

(ii) As x→∞, w(x)→∞.

(iii) Given any δ > 0, there exist a constants Bδ ≥ 0 such that for any x ≥ 0,

(1− δ)w(x+ 1)−Bδ ≤ w(x) ≤ (1 + δ)w
(
(x− 1)+

)
+Bδ. (4.12)

�

Note that the third condition simply says that w(x) does not change significantly when x increases
or decreases by one. Specifically, when w(x) is small, |w(x)− w(x± 1)| is bounded by a constant,

and when w(x) is large, w(x+1)
w(x) and w(x)

w(x−1) are bounded by constants.
The following theorem states that the general MaxWeight scheduling is throughput optimal

if all weight functions are valid weight functions. To simplify notation and analysis, we assume
arrivals are Bernoulli.

Theorem 4.4.1 Assume that the arrival processes to links in an ad hoc P2P network are Bernoulli
processes. The general MaxWeight scheduling can support any λ such that (1 + ε)λ ∈ C.

Proof Following the proof of Theorem 4.3.1, given q(t) = q, the general MaxWeight algorithm
guarantees that

(1 + ε)
∑
l

wl(ql)λl ≤
∑
l

wl(ql)Ml(t). (4.13)

Now we need to choose a proper Lyapunov function to show that q(t) is positive recurrent. We
consider the following Lyapunov function:

V (q(t)) =
∑
l

∫ ql(t)

0
wl(x)dx.

The conditional drift of the Lyapunov function is

E [V (q(t+ 1))− V (q(t))|q(t) = q]

= E

[∑
l

(∫ ql(t+1)

0
wl(x) dx−

∫ ql(t)

0
wl(x) dx

)∣∣∣∣∣ q(t) = q

]

= E

[∑
l

wl(q̃l)(ql(t+ 1)− ql(t))

∣∣∣∣∣ q(t) = q

]
,

where the last equality follows from the mean-value theorem and

q̃l ∈ [min(ql(t), ql(t+ 1)),max(ql(t), ql(t+ 1))].

4.4. GENERAL MAXWEIGHT ALGORITHMS 81

Note that if ql(t) + al(t) > 0, then ql(t+ 1) = ql(t) + al(t)−Ml(t); otherwise, ql(t+ 1) = ql(t) = 0
and q̃l = 0. Therefore,

E [V (q(t+ 1))− V (q(t))|q(t) = q] ≤ E

[∑
l

wl(q̃l)(al(t)−Ml(t))

∣∣∣∣∣ q(t) = q

]
. (4.14)

Since ql(t) can at most increase or decrease by one in one time slot, q̃l ∈ [(ql(t)− 1)+, ql(t) + 1].
Since wl(x) is a valid weight function, it is increasing in x and satisfies condition (4.12). Therefore,
given any δ > 0, there exists Bl,δ > 0 such that

wl(q̃l) ≥ wl((ql(t)− 1)+) ≥
wl(ql(t))−Bl,δ

1 + δ

wl(q̃l) ≤ wl(ql(t) + 1) ≤
wl(ql(t)) +Bl,δ

1− δ
.

Replacing wl(q̃l) in inequality (4.14) using above two inequalities, we obtain

E [V (q(t+ 1))− V (q(t))|q(t) = q]

≤
∑
l

wl(ql) +Bl,δ
1− δ

λl −
∑
l

wl(ql)−Bl,δ
1 + δ

E[Ml(t)|q(t) = q]

≤ K +
1

1− δ
∑
l

wl(ql)λl −
1

1 + δ

∑
l

wl(ql)E[Ml(t)|q(t) = q]

= K +
1

1 + δ

(
1 + δ

1− δ
∑
l

wl(ql)λl −
∑
l

wl(ql)E[Ml(t)|q(t) = q]

)
,

where

K =
∑
l

Bl,δλl
1− δ

+
∑
l

Bl,δ
1 + δ

.

Now choose a small enough δ such that (1 + δ)/(1− δ) ≤ 1 + ε/2. Then from inequality (4.13),
we have

E [V (q(t+ 1))− V (q(t))|q(t) = q] ≤ K − ε

2

1

1 + δ

∑
l

wl(ql)λl.

Since wl(q) → ∞ as q → ∞, we can conclude that q(t) is positive recurrent by invoking the
Foster-Lyapunov theorem, which completes the proof.

�
So by selecting different weight functions, we can construct different throughput optimal schedul-

ing algorithms. While all of these algorithms are throughput optimal, they may differ in their delay
performances. However, the delay performance of these algorithms is hard to analyze and will not
be considered here. We end this section by giving two examples of valid weight functions.

Example 12 Weight function w(q) = κqm for some m > 0 and κ > 0 is a valid weight function.
Note that

κqm =
1

(1 + 1/q)m
κ(q + 1)m.

82 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

So given δ > 0, there exists qδ such that for any q ≥ qδ,

κqm ≥ (1− δ)κ(q + 1)m.

So for any q ≥ 0,

κqm ≥ (1− δ)κ(q + 1)m − (1− δ)κ(qδ + 1)m.

Similarly, when q ≥ 1,

κqm =
1

(1− 1/q)m
κ(q − 1)m.

So given δ > 0, there exists q̃δ such that for any q ≥ q̃δ,

κqm ≤ (1 + δ)κ(q − 1)m,

which implies that for any q ≥ 0,

κqm ≤ (1 + δ)κ((q − 1)+)m + κq̃mδ .

Choosing Bδ = max{(1 − δ)κ(qδ + 1)m, κq̃mδ }, we conclude that κqm is a valid weight function
for m > 0 and κ > 0. �

Example 13 Weight function w(q) = κ log(1 + q) for some κ > 0 is a valid weight function. We
note that

κ log(1 + q + 1) = κ log(1 + q)

(
1 +

1

1 + q

)
= κ log(1 + q) + κ log

(
1 +

1

1 + q

)
≤ κ log(1 + q) + κ log 2.

If q ≥ 1, we have

κ log(1 + q − 1) = κ log(1 + q) + κ log

(
1− 1

1 + q

)
≥ κ log(1 + q)− κ log 2.

If 0 ≤ q < 1, we have

κ log
(
1 + (q − 1)+

)
= κ log 1 = 0

≥ κ log(1 + q)− κ log 2.

We therefore conclude that κ log(1 + q) is a valid weight function by choosing Bδ = κ log 2. �

4.5 Q-CSMA: A Distributed Algorithm for Ad Hoc P2P Networks

The key step of the MaxWeight algorithm is to find the maximum weight independent set of the
conflict graph. In wireless access networks, the base station (or access point) can collect channel
and queue state information and solve the maximum weight independent set problem. In ad hoc
P2P wireless networks, due to the lack of a centralized infrastructure, nodes have to make their
own decisions on turning on or off based on local information, which requires us to seek distributed
scheduling algorithms. In this section, we present the Queue-length-based CSMA/CA (Q-CSMA)
algorithm for ad hoc P2P networks. Q-CSMA implements MaxWeight scheduling in a distributed
fashion when link weights change slowly over time, so is throughput optimal.

4.5. Q-CSMA: A DISTRIBUTED ALGORITHM FOR AD HOC P2P NETWORKS 83

4.5.1 The Idea behind Q-CSMA

Assume the conflict-graph of an ad hoc network has H independent sets. The key idea behind
Q-CSMA is to select independent sets according to the following distribution:

πh =
1

Z
exp

(∑
l

wlM
(h)
l

)
, (4.15)

where wl is the weight associated with link l and

Z =
H∑
h=1

exp

(∑
l

wlM
(h)
l

)
is the normalization factor. The reason to choose such a distribution is that the expected weight
E[
∑

l wlMl] under this distribution satisfies

E

[∑
l

wlMl

]
≥ max

h

∑
l

wlM
(h)
l −H, (4.16)

which is close to the maximum weight when {wl} are sufficiently large. So when link weights are
fixed and sufficiently large, if we generate a sufficient number of independent sets according to
distribution (4.15), the algorithm performs like MaxWeight scheduling.

We next prove result (4.16). Define

γh =
∑
l

wlM
(h)
l ,

i.e., the sum weight associated with independent set M (h). Let I∗ denote the set of maximum
weight independent sets, i.e.,

I∗ =

{
h :
∑
l

wlM
(h)
l = max

k

∑
l

wlM
(k)
l

}
,

and h∗ denote an element of I∗. The expected weight by selecting independent sets according to
distribution (4.15) can be written as

E

[∑
l

wlMl

]
=

∑
h

πhγh

= γh∗ −
∑
h/∈I∗

eγh

Z
(γh∗ − γh)

= γh∗ −
eγh∗

Z

∑
h/∈I∗

(
eγh−γh∗

)
(γh∗ − γh)

≥(a) γh∗ −
∑
h/∈I∗

1

= γh∗ − (H − |I∗|)
≥ γh∗ −H,

where inequality (a) holds because xe−x ≤ 1 and eγh∗/Z ≤ 1.

84 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

4.5.2 Q-CSMA

We now present a distributed algorithm that generates independent sets according to distribution
(4.15). We assume that wl’s are fixed and do not change with time. In reality, wl(ql) will change, but
if it changes very slowly, for example, if wl(ql) is chosen to be slightly smaller than log(1 + ql), one
can show that the stability results will not be affected, in manner that can be precisely described.
We will not do so here. We will describe a DTMC whose states are the independent sets, and show
that the steady-state distribution of this DTMC has the desired form. We will then describe a
distributed algorithm under which the MAC layer behaves like the DTMC.

Recall that schedule is a set of links that are allowed to transmit at the same time, so a schedule
has to be an independent set in the corresponding conflict graph. Further, define the transmission
state of a link to be the indicator of whether the link is transmitting or not. We consider an
algorithm that behaves as follows:

(i) The network first picks a set of link, say D, which are allowed to change their transmission
states. All other links are not allowed to change their transmission states. We assume that
D itself is a valid schedule, although we do not use D as a schedule. We call set D a decision
schedule.

(ii) Links in D that have a neighbor in the conflict graph which was transmitting in the previous
slot will also not be allowed to change their transmission states.

(iii) Among the remaining links, each of them decides to turn on with probability αl, for link l,
and turn off with probability (1− αl).

Note that D is a valid schedule, and links that can interfere with those links in the previous schedule
were removed in step (ii), so after step (iii), the set of on links forms a valid schedule.

Let S(t) denote the schedule used in time slot t. Suppose D is chosen with some probability p(D),
independently at the beginning of each time slot. Then, S(t) is determined by D(t) and S(t − 1)
under the algorithm above, so forms a DTMC. If we are lucky, then the DTMC is reversible, and
the steady state distribution is easy to verify.

We now derive conditions on p(D) and αl to ensure that the DTMC is reversible. For this
purpose, let x be a schedule (independent set) and x + m1 −m2 be another schedule, where m1

are links that are not in x, and m2 are links that are in x. Let us consider the transition from x to
x+m1 −m2 and vice versa.

Figure 4.6: The transition from x to x+m1 −m2 and vice versa

The transition from x to x+m1−m2 means the network will turn on those links in m1 and turn
off those links in m2. Similarly, the transition from x+m1 −m2 to x means the network will turn
off those links in m1 and turn on links in m2. For the transition from x to x+m1 −m2 to occur,

4.5. Q-CSMA: A DISTRIBUTED ALGORITHM FOR AD HOC P2P NETWORKS 85

the decision schedule D must contain both m1 and m2 and similarly when in state x + m1 −m2.
Pictorially, D will look like something in Figure 4.7.

Figure 4.7: The gray area is D and m1 ∪m2 ⊆ D. Other links can also belong to D.

Let γx to the sum weight associated with schedule x, i.e., γx =
∑

l∈xwl. According to Theorem
2.3.6, the DTMC has (4.15) as the stationary distribution if πxPx,y = πyPy,x, where x and y are
two schedules. In other words, the DTMC has stationary distribution (4.15) when the following
equation holds:

eγx

Z
Px,x+m1−m2 =

eγx+γm1−γm2

Z
Px+m1−m2,x,

which is equivalent to

eγx

Z

∑
D:m1∪m2⊆D

Pr(D\(m1 ∪m2) do not change state)

×Pr(m1 turns on)× Pr(m2 turns off)× p(D)

=
eγx+γm1−γm2

Z

∑
D:m1∪m2⊆D

Pr(D\(m1 ∪m2) do not change state)

×Pr(m1 turns off)× Pr(m2 turns on)× p(D).

A sufficient condition for the equality above to hold is

eγm2 Pr(m1 turns on)× Pr(m2 turns off)

= eγm1 Pr(m1 turns off)× Pr(m2 turns on). (4.17)

Note that Pr(D\(m1 ∪m2) do not change state) is a complicated expression, but it is the same for
each D on the right-hand-side and left-hand-side. It even depends on x, but this fact is irrelevant
to us.

A sufficient condition for (4.17) to hold is for any subset of links m,

eγm Pr(m turns off) = Pr(m turns on),

86 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

which is equivalent to ∏
l∈m

ewl(1− αl) =
∏
l∈m

αl, (4.18)

where αl is the probability that link l turns on if it is part of the decision schedule and is allowed to
change its transmission state. Matching the terms for the same l, we have that a sufficient condition
for (4.18) to hold is

ewl(1− αl) = αl,

which requires

αl =
ewl

1 + ewl
.

We note that αl is a function of wl only, and does not depend on the weights of other links, which
means that link l can make on-off decision based on local information.

In summary, if link l knows it is in the decision schedule and none of its neighbors is in the
previous schedule, then it can turn on-off probabilistically according to its weight wl. The schedule
S(t) a reversible Markov chain, and its steady-state distribution is (4.15).

We assume each link can sense whether other links in its neighborhood transmitted in the
previous time-slot using carrier sensing, so both steps (ii) and (iii) can be done locally. So to have
a distributed scheduling algorithm, we have to have a distributed mechanism to pick the decision
set D, which has to be a valid schedule so that each link in D can individually decide to be on or off
without considering other links’ decisions. Further, the process of generating D needs to guarantee
that the DTMC is aperiodic and irreducible. The following protocol is one way to generate D in a
distributed fashion:

(a) At the beginning of each time slot, each link transmits a “control” message with probability
β, independent of all other links. The parameter β can be any arbitrary fixed value in (0, 1).

(b) If a control message collides with a neighbor’s control message, then the link does not become
a part of D. Else, it become a part of decision set D.

Clearly, D is an independent set because two conflicting links cannot both present in D. Further,
from any state x, the process above guarantees that the transition probability from x to the schedule
in which all links are off is strictly positive, so the Markov chain is irreducible and aperiodic.

The Q-CSMA algorithm is presented in Algorithm 1.

Example 14 Consider a three-link ad hoc network and its conflict graph as shown in Figure 4.8.
Assume x(t−1) = {1, 0, 0}, i.e., link 1 is on and links 2 and 3 are off. In the following, we illustrate
the Q-CSMA at time t for two specific decision schedules D1 = {1, 3} and D = {2} :

• If the decision schedule is {1, 3}, link 1 will continue to transmit with probability ew1

1+ew1 = e
1+e ,

and turns off with probability 1
1+e , and link 3 turns on with probability ew3

1+ew3 = e
1+e and turns

off with probability 1
1+e .

• If the decision schedule is {2}, since link 1 was transmitting in the previous time slot, link 2
does not change its transmission state and will remain off.

�

4.5. Q-CSMA: A DISTRIBUTED ALGORITHM FOR AD HOC P2P NETWORKS 87

Algorithm 1 Q-CSMA

1: while t ≥ 0 do
2: Set wl = log(1 + ql(t)).
3: At the beginning of each time slot, each link transmits a “control” message with probability

β, independent of all other links. The parameter β can be any arbitrary fixed value in (0, 1).
4: if A control message collides with a neighbor’s control message. then
5: The link does not become a part of D.
6: else
7: The link become a part of decision set D.
8: end if
9: for l ∈ D do

10: if link l has a neighbor in the conflict graph which was transmitting in the previous time
slot. then

11: link l does not change its transmission state.
12: else
13: link l turns on with probability ewl

1+ewl , and turns off with probability 1
1+ewl .

14: end if
15: end for
16: end while

link 1

link 2

link 3

link 1 link 2 link 3

w1=1 w2=2 w3=1

conflict-graph

Figure 4.8: A three-link example illustrating the Q-CSMA

We finally comment that we have made a number of assumptions in describing the above
algorithm:

• Each link can sense whether other links in its neighborhood transmitted in the previous time-
slot. This is accomplished by a protocol called “carrier-sensing”. Each link in our model
senses the presence or absence of transmission energy or a “carrier” its neighborhood. Hence,
the algorithm is Carrier Sensing Multiple Access.

• We also assume that when two control messages collide, it can be detected.

88 CHAPTER 4. SCHEDULING IN WIRELESS NETWORKS

• We assume that the process of selecting D takes negligible time. This is a reasonable assump-
tion if packet sizes are much longer than the time to transmit an intent message and detect
collisions.

• We assume time is slotted.

Some of these assumptions will not hold in practice. At the end of the chapter, we will provide
references which address these issues.

Chapter 5

Back to Network Utility
Maximization

In the previous chapter, we looked at scheduling in wireless networks, where the focus was to
design a scheduling algorithm that can support any traffic strictly within the capacity region.
Implicitly, we assumed that data flows were regulated by congestion control so the incoming traffic
was always within the capacity region. However, in practice, the behaviors of congestion control
algorithms themselves may be affected by scheduling algorithms. For example, if TCP-Vegas were
implemented, then the source rates would be regulated based on queueing delays, which could be
quite different under different scheduling algorithms.

In this chapter, we will consider the network utility maximization problem for wireless networks,
and derive joint congestion control, routing and scheduling algorithms that maximize the net utility.
For wireless networks, the link capacity constraints will be written differently from those in wired
networks. The rationale behind this difference will be explained at the end of this chapter.

5.1 A Joint Formulation of the Transport, Network and MAC
Problems

We consider a wireless network with N nodes that are distributed in a two-dimensional space.
We are going to take into account both interference and channel fading in the same model. The
transmission rates between node pairs are determined by the channel state in the network, denoted
by m. Recall that the channel state is a variable which describes the channel conditions in the
network. For example, if the channel conditions are good, then the realized data rates will be high;
otherwise, the rates will be low.

In addition to the channel state, interference determines the data rates at which different node
pairs can communicate at the same time. Let r denote the data rate vector, where rij is the data
rate from node i to node j. The vector r is assumed to take on values in a discrete set Rm, when
the channel is in state m. The set Rm captures interference effects and power constraints. We

further assume that given any r ∈ Rm, r(i), such that r
(i)
i = 0 and r

(i)
j = rj for j 6= i, also belongs

to Rm. Under this reasonable assumption, Co(Rm) is coordinate convex. The following example
illustrates the idea.

89

90 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

node 1 node 2

node 3 node 4

Figure 5.1: A four-node wireless network. The solid lines represent intended transmissions and
dashed lines represent interference.

Example 15 Consider a four-node network as shown in Figure 5.1. Node 1 wants to transmit
to node 2, and node 3 wants to transmit to node 4. For simplicity, assume each node has three
different power levels: {0, p1a, p1b} are the power levels available at node 1 and {0, p3a, p3b} are the
power levels available at node 3. Further suppose that hij is the channel gain from node i to node j,
i.e., if node i transmits at power Pi, then the received power at node j is Pihij. The transmission
rates are functions of SINRs, i.e.,

r12 = f(P1, P3, h12, h32, n2)

r34 = f(P3, P1, h34, h14, n4),

where ni is the variance of the Gaussian background noise experienced by node i and f is some
function. By varying the power levels P1 and P3 over {0, p1a, p1b} and {0, p3a, p3b}, respectively,
we get different values of (r12, r34), which is what we denote by the set Rm. In this example, the
channel state can be thought of as depicting the channel gains {hij}. We assume that if r ∈ Rm,
then the same vector with one element replaced by zero also belongs to Rm. In other words, a user
has the choice to transmit at rate zero.

Assuming simple coding and modulation schemes, the transmission rates can be written as

r12 =
1

2
log2

(
1 +

P1h12

n2 + P3h32

)
r34 =

1

2
log2

(
1 +

P3h34

n4 + P1h14

)
.

Assuming the channel gains, power levels and variances of the noises are as shown in Table 5.1,
the set Rm is illustrated in Figure 5.2. Note a vector in Co(Rm) is a linear combination of vectors
in Rm, so any rate vector in Co(Rm) can be achieved by time-sharing. The capacity region given
channel state m, therefore, is Co(Rm). Given the parameters in Table 5.1, the capacity region is
shown in Figure 5.3. �

5.1. A JOINT FORMULATION OF THE TRANSPORT, NETWORK ANDMAC PROBLEMS91

Channel gain h12 = h34 = 1 and h14 = h32 = 0.1

Power levels P1 ∈ {0, 10, 15} and P3 ∈ {0, 5, 10}
Variances of noises n2 = n4 = 1.

Table 5.1: Channel gains, power levels, and variances of noises

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Transmission rate from node 1 to node 2

T
ra

ns
m

is
si

on
 r

at
e

fr
om

 n
od

e
3

to
 n

od
e

4

Figure 5.2: The set Rm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Transmission rate from node 1 to node 2

T
ra

ns
m

is
si

on
 r

at
e

fr
om

 n
od

e
3

to
 n

od
e

4

Figure 5.3: The set Co(Rm).

In general, the channel state can vary over time. In our discrete-time model, we assume that
πm is the fraction of time that the channel is in state m. Assume there are M possible states, then∑

1≤m≤M
πm = 1.

Now let r be an element of the set Rm, and αm,r be the fraction of time that the rate vector
r is used by the network when the channel state is m. Then the data rate realized from node i to

92 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

node j is given by

µij =
∑
m

πm
∑
r∈Rm

αm,rrij .

The set of achievable rates (achieved by varying α) is called the link capacity region, and is denoted
by C.

We note that for given m,

Co(Rm) =

{
µ : µ =

∑
r∈Rm

αm,rr such that αm ≥ 0 and
∑
r∈Rm

αm,r = 1

}
.

Therefore, an equivalent way to express C is

C =

{
µ : µ =

∑
m

πmrm, rm ∈ Co(Rm)

}
.

The link capacity region when
the channel is in state 1

Transmission rate of mobile 1

T
ra

ns
m

is
si

on
 r

at
e

of
 m

ob
ile

 2

The link capacity region when
the channel is in state 2

The link capacity region

Figure 5.4: The link capacity region with fading channels.

Example 16 Consider a network with two links. Assume the network has two states: state 1 and
state 2. Each state occurs with probability 1/2. The link capacity region is plotted in Figure 5.4. �

We now introduce the network utility maximization problem for general wireless networks,
where multihop flows are allowed. Let F be the set of flows in the network. A flow f is associated
with a source node s(f) and a destination node d(f). We assume that a flow can split its packets
along multiple routes. In our model, even the routes are not pre-specified, in general. The algorithm
that we will design will automatically find appropriate routes through the network.

Let xf be the rate at which source s(f) generates data. Let µ
(d)
ij be the rate at which the data

to destination d is transmitted over link (i, j). For {xf} to be accommodated in the network, {µ(d)
ij }

must satisfy the following equation for each node i and each destination d :

xf Is(f)=i,d(f)=d +
∑

j:(j,i)∈L

µ
(d)
ji ≤

∑
k:(i,k)∈L

µ
(d)
ik , (5.1)

5.1. A JOINT FORMULATION OF THE TRANSPORT, NETWORK ANDMAC PROBLEMS93

where L is the set of links. This constraint says that, at each node i, the total incoming data rate
due to destination d (the left-hand-side of the constraint) must be less than or equal to the total
outgoing rate allocated to destination d (the right-hand-side of the constraint).

Associate a concave utility function Uf (xf) with flow f . Our resource allocation problem is to
find the appropriate α to solve the following network utility maximization problem.

max
x,α≥0

∑
f

Uf (xf) (5.2)

subject to: xf Is(f)=i,d(f)=d +
∑
j

µ
(d)
ji ≤

∑
k

µ
(d)
ik ∀i ∀d (5.3)

∑
d

µ
(d)
ij =

∑
m

πm
∑
r∈Rm

αm,rrij ∀(i, j) ∈ L (5.4)

∑
r∈Rm

αm,r = 1 ∀m (5.5)

By abusing notation for convenience, we will denote constraints (5.4) and (5.5) by

µ ∈ C.

To solve the problem, append (5.3) to the objective using Lagrange multipliers to get

max
x,µ≥0

∑
f

Uf (xf)−
∑
i,d

φid

xf Is(f)=i,d(f)=d +
∑
j

µ
(d)
ji −

∑
k

µ
(d)
ik

subject to

µ ∈ C.

Note that for fixed φid, the maximization over x and µ can be separated. The optimization problem
can be decomposed into the following two optimization problems:

Sub-problem 1:
∑
f

max
xf≥0

(
Uf (xf)− φs(f)d(f)xf

)
, (5.6)

and

Sub-problem 2: max
µ∈C

∑
i,d

φid

∑
k

µ
(d)
ik −

∑
j

µ
(d)
ji

 (5.7)

If the Lagrange multipliers φ are known, then the sub-problem 1 (5.6) is equivalent to

max
xf≥0

Uf (xf)− φs(f)d(f)xf ∀f. (5.8)

Thus, each user can determine its transmission rate based on the Lagrange multiplier associated
with its ingress node and its destination.

To understand (5.7), note that∑
i,d

φid
∑
k

µ
(d)
ik =

∑
i,k

∑
d

µ
(d)
ik φid =

∑
i,j

∑
d

µ
(d)
ij φid

94 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

and ∑
i,d

φid
∑
j

µ
(d)
ji =

∑
i,j

∑
d

µ
(d)
ji φid =

∑
i,j

∑
d

µ
(d)
ij φjd,

where the second equality is obtained by switching the indices i and j. Therefore, (5.7) can be
written as

max
µ∈C

∑
i,j

∑
d

µ
(d)
ij (φid − φjd) = max

µ∈C

∑
ij

max
d

(φid − φjd)

(∑
d

µ
(d)
ij

)
.

Substituting for µ
(d)
ij from (5.4) yields

max
α

∑
i,j

max
d

(φid − φjd)

(∑
m

πm
∑
r∈Rm

αm,rrij

)
.

Using the linearity of the above expression, it can be simplified to (left as an exercise to the
reader):

max
r∈Rm

∑
i,j

rij max
d

(φid − φjd). (5.9)

Note that (5.9) is the so-called back-pressure algorithm. It is a MaxWeight algorithm, where the
weight of each link is

max
d

(φid − φjd),

and (φid − φjd) is called the backpressure of destination d on link (i, j). Note that if

max
d

(φid − φjd) < 0

then the MaxWeight algorithm will choose rij = 0.
If the Lagrange multipliers {φid} were known, then the congestion control algorithm (5.8) and

the MaxWeight scheduling algorithm (5.9) solve the resource allocation problem. So the problem
becomes to estimate the Lagrange multipliers.

As in the dual algorithm for the Internet, a natural algorithm to estimate φid is the following:

φid(t+ 1) =

φid(t) + ε

xf (t)Is(f)=i,d(f)=d +
∑
j

µ
(d)
ji (t)−

∑
k

µ
(d)
ik (t)

+

, (5.10)

where µ
(d)
ji (t) and xf (t) are the solutions of (5.6) and (5.7) with φid replaced by the estimate

φid(t). Note that (5.10) is a difference equation counterpart of the differential equation in the dual
algorithm for the Internet, and ε is a step-size parameter.

Computing µ
(d)
ji (t) requires the knowledge of πm, which may be unknown. Suppose that the

channel state at time t is m(t), and r(t) is the solution to (5.9), then we can try to use the following
difference equation to estimate the Lagrange multipliers:

φid(t+ 1) =

φid(t) + ε

xf (t)Is(f)=i,d(f)=d +
∑
j

r
(d)
ji (t)−

∑
k

r
(d)
ik (t)

+

, (5.11)

5.1. A JOINT FORMULATION OF THE TRANSPORT, NETWORK ANDMAC PROBLEMS95

where

r
(d)
ij (t) =

{
rij(t), if d = d∗

0, otherwise.
(5.12)

and d∗ is a solution to
max
d

(φid(t)− φjd(t)).

If more than one d achieves the maximum, then an arbitrary such d is chosen to be d∗.
The behavior of φid/ε in equation (5.11) looks almost like the queue length at node i for

destination d. The only difference from the real queue dynamics is that it may not be possible to

transfer r
(d)
ji (t) packets from qjd to qid

1 since there may not be enough packets in qjd. Thus, the
true queue dynamics would satisfy

qid(t+ 1) ≤

qid(t) +

xf (t)Is(f)=i,d(f)=d +
∑
j

r
(d)
ji (t)−

∑
k

r
(d)
ik (t)

+

. (5.13)

The exact dynamics would depend on the policy used to allocate packets along multiple links at
each node when there are not enough packets to transfer as dictated by the MaxWeight algorithm.
As we will see, the exact dynamics are not important for our analysis. Using the queue length qid
to approximate φid turns out to be good enough.

Based on the derivation above, we obtain a joint congestion control, routing and scheduling
algorithm, where each source adjusts its transmission rate based on optimization problem (5.8),
and the network determines routing and scheduling by solving optimization problem (5.9). The
Lagrange multipliers in (5.8) and (5.9) are replaced by per-destination queues maintained at each
node. A detailed description is presented in Algorithm 2.

Note that in (5.14), we added a constraint xf ≤ xmax so that the source will not transmit with
infinite speed when qs(f),d(f)(t) = 0. This constraint does not change the optimal solution when
xmax > x∗f , which can be guaranteed by choosing a sufficiently large xmax, e.g., xmax ≥ rmax, where
rmax is the maximum link capacity in the network.

Example 17 Consider a network with three nodes as shown in Figure 5.5, where we have two
flows: one flow from node 1 to node 4, and another flow from node 1 to node 2. In this network, all
nodes maintain a queue for node 4 because node 4 is reachable from all other nodes in the network.
Only nodes 1 and 2 maintain queues for node 2 because node 2 cannot be reached from other nodes.
We further note that qdd ≡ 0, so q22 = q44 = 0.

Assume that the utility function of flow (1, 4) is 2 log x(1,4), and the utility function of flow (1, 2)
is log x(1,2). Further assume and ε = 0.1, xmax = 10, and Rm(t) = {(r1,2, r1,3, r2,4, r3,4) : (4, 0, 0, 5), (0, 2, 3, 0)} .
Then Algorithm 2 works as follows:

• Given the utility function, we can explicitly solve (5.14). We have

x(1,4)(t) = min

{
2

εq14(t)
, xmax

}
= 2

x(1,2)(t) = min

{
1

εq12(t)
, xmax

}
= 1.

1Abusing terminology, we use qjd to denote the queue at node i for destination d and also use it to denote the
corresponding queue length.

96 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

Algorithm 2 Joint Congestion Control, Routing, and Scheduling Algorithm

1: while t ≥ 0 do
2: Congestion control: The base station computes xf (t) by solving the following optimization

problem:
max

0≤xf≤xmax

Uf (xf)− εqs(f)d(f)(t)xf , (5.14)

and then generates af (t) packets, where af (t) is a random variable taking integer values and
with mean xf (t) (e.g., af (t) can be a Poisson random variable with parameter xf (t)).

3: Routing: Node i routes packets with destination d∗ij(t) from node i to node j, where

d∗ij(t) ∈ arg max
d

(qid(t)− qjd(t)).

4: Rate scheduling: The network schedules link rate vector r(t) such that

r(t) ∈ arg max
r∈Rm(t)

∑
i,j

wij(t)rij ,

where wij(t) = qid∗ij(t)(t)− qjd∗ij(t)(t).
5: Data transmission: Node i transmits µij(t) packets with destination d∗ij to node j, which

will be stored in queue qjd∗ij , where µij(t) = min{rij(t), qid∗ij(t)(t)}.
6: Queue dynamics: The queue qid evolves as follows:

qid(t+ 1) = qid(t) + af (t)Is(f)=i,d(f)=d +
∑
j

µ
(d)
ji (t)−

∑
k

µ
(d)
ik (t).

7: end while

node 1

destination 4

destination 2

node 4

node 3

node 2flow (1,4)

flow (1,2)
10

10

4

66

0

0

Figure 5.5: A four-node wireless network.

5.2. STABILITY AND CONVERGENCE: AN EXAMPLE FOR CELLULAR NETWORKS 97

• At link (1, 2), the backpressure of destination 4 is 6 and the backpressure of destination 2 is
10, so link (1, 2) will transmit packets to destination 2, and the link weight w12 = 10. All other
links serve packets to destination 4, and the link weights are w13 = 4, w34 = 6 and w24 = 4.

• Given the link weights, it is not hard to verify that link rate vector {4, 0, 0, 5} results in a
larger

∑
i,j wijrij than {0, 2, 3, 0}. Therefore, node 1 transmits 4 packets with destination 2 to

node 2, and node 3 transmits 5 packets with destination 4 to node 4.

�

To understand the performance of the joint algorithm, we will assume that {af (t)} are indepen-
dent across time, and the channel state process is i.i.d. across time with πm being the probability
the channel is in state m. Under these conditions, q(t) is a DTMC. We further assume that the
arrival processes and channel state process are such that the DTMC is irreducible. We then have
the following theorem, which states that under the joint algorithm, the expected sum queue length
is bounded and the resource allocation maximizes the network utility when ε→ 0.

Theorem 5.1.1 The irreducible DTMC q(t) is positive recurrent under the joint algorithm and

lim
t→∞

E

∑
i,d

qid(t)

 ≤ B1

ε
(5.15)

for some B1 <∞.

Further, let

yf = lim
t→∞

E [xf (t)] .

Then ∑
f

Uf (x∗f)−B2ε ≤
∑
f

Uf (yf) (5.16)

for some B2 <∞, where {x∗f} is the solution to (5.2) subject to (5.3), (5.4) and (5.5). �

Note that the theorem suggests a tradeoff: if our realized utility
∑

f Uf (yf) is close to the

optimal utility
∑

f Uf (x∗f), then the upper bound on the sum of the queue lengths is large O(1
ε).

While the estimate of the sum queue lengths is only an upper bound, this behavior is to be expected
for the following reason: if we get close to the optimal solution, it means that some of the constraints
(5.3) must be close to tight. But these constraints simply state that the arrival rate is no more than
the departure rate at a queue. Recalling our discussion of discrete time queuing systems earlier,
when the arrival rate is close to the service rate, the expected queue length in the steady-state can
be large.

We will not prove the above theorem. We will discuss some special cases and provide a proof
in one of these special cases.

98 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

source 1 source 2 source N

Figure 5.6: A cellular network with N mobiles

5.2 Stability and Convergence: An Example for Cellular Net-
works

We first consider a cellular downlink network as shown in Figure 5.6, where packets are injected by
the sources into the base station, and the base station needs to deliver the packets to the mobiles.
Here since each flow goes over only one link (from the base station to a mobile), the notation can
be simplified as follows:

• xi: the average rate at which the source sending content to mobile i injects data into the base
station,

• µi: the average rate at which the base station transmits to mobile i.

The rest of the variables are as before.
The NUM problem in this case is

maxx,α,µ≥0
∑N

i=1 Ui(xi)

subject to xi ≤ µi
µi =

∑
m πm

(∑
r∈Rm αm,rri

)
.

Using the decomposition as before, we arrive at Algorithm 3.
In the above, we make the same assumptions as before on arrival processes and channel-state

distribution so that q(t) is an irreducible Markov chain. We will give a proof of Theorem 5.1.1 for
this special case.

Proof In this proof, we will first show q(t) is positive recurrent, and then prove the resource
allocation under the joint algorithm is close to the optimal resource allocation based on the fact
that q(t) is positive recurrent. Consider the Lyapunov function

V (q(t)) =
1

2

∑
i

q2
i (t).

5.2. STABILITY AND CONVERGENCE: AN EXAMPLE FOR CELLULAR NETWORKS 99

Algorithm 3 Joint Congestion Control and Scheduling for Cellular Downlink Networks

1: while t ≥ 0 do
2: Congestion control: Source i injects ai(t) packets into the base station such that E[ai(t)] =

xi(t), and
xi(t) ∈ arg max

0≤xi≤xmax

Ui(xi)− εqi(t)xi.

3: MaxWeight scheduling: The transmission rate vector r(t) is chosen to be a solution of
the following optimization problem:

max
r∈Rm(t)

N∑
i=1

riqi(t).

Ties are broken at random.
4: The evolution of the queues: The queue maintained for mobile i evolves as follows:

qi(t+ 1) = (qi(t) + ai(t)− ri(t))+ .

5: end while

The drift of the Lyapunov function given the queue and channel states is

E [V (q(t+ 1))− V (q(t))|q(t) = q]

=
1

2
E

[∑
i

q2
i (t+ 1)− q2

i (t)

∣∣∣∣∣ q(t) = q

]

=
1

2
E

[∑
i

((qi(t) + ai(t)− ri(t))+)2 − q2
i (t)

∣∣∣∣∣ q(t) = q

]

≤ 1

2
E

[∑
i

(qi(t) + ai(t)− ri(t))2 − q2
i (t)

∣∣∣∣∣ q(t) = q

]

=
1

2
E

[∑
i

(ai(t)− ri(t))2 + 2qi(t)(ai(t)− ri(t))

∣∣∣∣∣ q(t) = q

]
≤ K +

∑
i

qixi(t)−
∑
i

qiE[ri(t)|q(t) = q],

where we assume E[a2
i (t)] ≤ σ2

max and K =
N(σ2

max+r2max)
2 . Now adding and subtracting 1

ε

∑
i Ui(xi)

at the right-hand-side of the inequality above results in

E [V (q(t+ 1))− V (q(t))|q(t) = q]

≤ K +
∑
i

qixi(t)−
1

ε

∑
i

Ui(xi(t)) +
1

ε

∑
i

Ui(xi(t))−
∑
i

qir̄i,

where r̄i = E[ri(t)|q(t) = q].

Since xi(t) maximizes Ui(x) − εqix for 0 ≤ x ≤ xmax, and x∗i ≤ xmax (recall x∗ is the optimal

100 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

resource allocation), we have

1

ε
Ui(x

∗
i (1− δ))− qix∗i (1− δ) ≤

1

ε
Ui(xi(t))− qixi(t),

where 0 ≤ δ < 1. So we can obtain

E [V (q(t+ 1))− V (q(t))|q(t) = q]

≤ K +
∑
i

qix
∗
i (1− δ)−

∑
i

1

ε
Ui(x

∗
i (1− δ)) +

1

ε

∑
i

Ui(xi(t))−
∑
i

qir̄i

= K +
∑
i

qi(x
∗
i − r̄i)− δ

∑
i

qix
∗
i +

1

ε

∑
i

(Ui(xi(t))− Ui(x∗i (1− δ))) (5.17)

≤ K̃ +
∑
i

qi(x
∗
i − r̄i)− δ

∑
i

qix
∗
i ,

where K̃ = K + 1
ε

∑
i(Ui(xmax)− Ui(x∗i (1− δ))). It is not difficult to show that under MaxWeight

scheduling, r(t) solves

max
r∈Rm(t)

∑
i

rm(t),iqi,

and r̄ = E[r(t)|q(t) = q] is a maximizer to the following problem:

max
r∈C

∑
i

riqi.

So
∑

i qix
∗
i ≤

∑
i qir̄i and

E [V (q(t+ 1))− V (q(t))|q(t) = q] ≤ K̃ − δ
∑
i

qix
∗
i . (5.18)

Since δ can be chosen to any value between 0 and 1, q(t) is positive positive recurrence according
to the Foster-Lyapunov theorem if x∗i > 0 for all i.

Thus, we do not even need the strict concavity of Ui(xi). We only need concavity and the
requirement that there exists an optimal solution x∗ such that x∗i > 0 for all i, which we assume
to be true.

Since q(t) is positive recurrent, a stationary distribution for q(t) exists, and

E [V (q(t+ 1))− V (q(t))] = 0

in the steady-state. So assuming q(t) is in the steady state, we take expectations at both sides of
inequality (5.18) and obtain

0 ≤ K̃ − δ
∑
i

E [qi(t)]x
∗
i ,

which implies that

E

[∑
i

qi(t)

]
≤ K̃

δmini x∗i

5.3. AD HOC P2P WIRELESS NETWORKS 101

when q(t) is in the steady-state.

Since
∑

i qix
∗
i ≤

∑
i qir̄i, by choosing δ = 0, we can further obtain from (5.17) that

E

[∑
i

Ui(x
∗
i)− Ui(xi(t))

]
≤ εK,

or

E

[∑
i

Ui(x
∗
i)

]
≤ E

[∑
i

Ui(xi(t))

]
+ εK

when q(t) is in the steady state.

We remark that that the upper bound on the sum queue length is at the order of O(1/ε) while
the difference between the network utility under the joint algorithm and the optimal network utility
is at the order of O(ε).

�

5.3 Ad Hoc P2P Wireless Networks

We now consider network utility maximization in ad hoc P2P network. We assume that the channel
state does not vary so we omit the subscript m. Further, instead of using a double subscript (i, j)
to denote a link, we use l to denote a link. We let xl denote the rate at which the source using
link l transmits data, and µl denote the rate allocated to link l by the network. The necessary
conditions for xl to be supportable include

xl ≤ µl ∀l (5.19)

µl =
∑
r∈C

αrrl ∀l (5.20)∑
r∈R

αr = 1. (5.21)

The NUM problem is therefore to

max
x,µ,α≥0

∑
l

Ul(xl)

subject to the constraints in (5.19)-(5.21).

The joint congestion control and scheduling algorithm is presented in Algorithm 4. The proof
is similar to the cellular case, and left as an exercise.

Often, the interference constraints in the ad hoc network can be represented by a conflict graph
as we explained in the previous chapter, which is a special case of the model we described here. To
see this, we will consider a simple example.

Example 18 Consider the conflict graph as shown in Figure 5.7. In this example, link 1 and link
4 can be scheduled simultaneously or link 2 and link 3 can be scheduled simultaneously. Assume

102 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

Algorithm 4 Joint Congestion and Scheduling for Ad Hoc Peer-to-Peer Networks

1: while t ≥ 0 do
2: Congestion control: The transmitter of link l computes the rate

xl(t) = arg max
0≤xl≤xmax

Ul(xl)− εql(t)xl,

and injects al(t) packets into its buffer, where al(t) is an integer and E[al(t)] = xl(t).
3: MaxWeight scheduling: The network selects the link rate vector r(t) such that

r(t) ∈ arg max
r∈R

∑
l

ql(t)rl.

Ties are broken at random.
4: Queue evoluation: The queue maintained at the transmitter of link l evolves as follows:

ql(t+ 1) = (ql(t) + al(t)− rl(t))+ .

5: end while

2

1 4

3

Figure 5.7: An example of conflict graph, in which a node represents a wireless link and a link
represents a conflict of two links.

that when link l is scheduled, it can transmit at a maximum rate of cl, which we will assume is an
integer. Then, the possible rate vectors under the two schedules are:

a =

c1

0
0
c4

 and b =

0
c2

c3

0

The convex hull of these two rate vectors and vector 0 is given by

Co({a, b, 0}) = {r : r = αa+ βb for some α, β ≥ 0 and α+ β ≤ 1},

which is also the capacity region obtained based on the conflict graph and convex hull model described
in the previous chapter.

5.4. INTERNET VERSUS WIRELESS FORMULATIONS: AN EXAMPLE 103

Instead, one can also enumerate all possible rate vectors as follows:

A =

r1

0
0
r4

 : r1 ≤ c1, r4 ≤ c4, r1, r4 ≥ 0, integers

and

B =

0
r2

r3

0

 : r2 ≤ c2, r3 ≤ c3, r2, r3 ≥ 0, integers

 .

Letting Ĉ = A ∪ B, then C can be equivalently defined as

C = {r : ∃γi ∈ Ĉ, αi ≥ 0,
∑
i

αi = 1 such that r =
∑
i

αiγi}.

This is the definition that we have used in this chapter. It is not difficult to see that these definitions
are equivalent. �

5.4 Internet versus Wireless Formulations: An Example

flow a

flow b flow c

1 2 3

Figure 5.8: A simple line network with two links and three flows

Consider a simple 2-link, 3-flow network as shown in Figure 5.8. Assume that the two links can
operate simultaneously. For example, it could be a wireline network or two wireless links operating
in different frequency bands so that they do not interfere with each other. Let both links have
capacity of one.

Then, in the network utility maximization formulations in this chapter, we set up the following
resource allocation problem:

Formulation 1: maxx,µ≥0
∑

f=a,b,c Uf (xf)

xa ≤ µ(3)
12

xb ≤ µ
(2)
12

xc + µ
(3)
12 ≤ µ

(3)
23

µ
(2)
12 + µ

(3)
12 ≤ 1

µ
(3)
23 ≤ 1,

104 CHAPTER 5. BACK TO NETWORK UTILITY MAXIMIZATION

where the x’s are the flow rates and the µ’s are the data rates allocated to per destination queues
at each link. As we have seen, this results in congestion control, which acts on the ingress queues
at the sources, along with a back-pressure algorithm as shown in Figure 5.9. In this case, the back-
pressure algorithm is not used to schedule links since two links can be on simultaneously. However,
it determines which queue will be served on each link at each time instant.

1 2 3
10

8

5

0

0

back-pressure

back-pressure

congestion control
of flow a

congestion control
of flow b

congestion control
of flow c

queue for destination 3

queue for destination 2

Figure 5.9: The NUM architecture of Formulation 1

An alternative formulation was presented in Chapter 1, which is:

Formulation 2: maxx≥0 Ua(xa) + Ub(xb) + Uc(xc)

xa + xb ≤ 1

xa + xc ≤ 1.

This results in a congestion control algorithm which simply uses the price feedback from the network.
There was no back-pressure algorithm. In other words, we did not need to maintain separate queues
for different destinations, and all packets can be stored in a FIFO queue as shown in Figure 5.10.
We next discuss the difference between these two formulations.

flow a

flow b flow c

1 2 3
10 12 0

congestion control
at flow a

congestion control
at flow b

FIFO queue for
all flows

congestion control
of flow c

feedback

feedback feedback

Figure 5.10: The NUM architecture of Formulation 2

In Formulation 1, we correctly model the fact that a flow’s packets do not arrive at each of the
links in its path instantaneously. Flow a’s packets have to arrive at node 1, then at node 2 and

5.4. INTERNET VERSUS WIRELESS FORMULATIONS: AN EXAMPLE 105

finally at node 3 to depart the network. So the departures from the first link are the arrivals to the
second link. Hence, the constraints are

xa ≤ µ(3)
12 and xb + µ

(3)
12 ≤ µ

(3)
23 .

On the other hand, in Formulation 2, we assume that packets from flow a arrive at all the links
on its path simultaneously. This leads to a simpler algorithm.

While Formulation 1 is exact, we believe that Formulation 2 is appropriate for the wired Internet.
The reason is that the Internet, except at access points, operate at less than full capacity. Hence,
queues tend to be small or at least can be made small with a well-designed algorithm. So the delays
are small and it seems reasonable to assume that packets arrive instantaneously at all links in its
path.

On the other hand, in wireless networks, such an assumption may not be reasonable. Due to
interference constraints (for instance, if the two links in this example can not transmit simultane-
ously), their queues will accumulate at one link when the other is being scheduled. So Formulation
1 may be more reasonable.

In conclusion, Formulation 1 is more reasonable in wireless networks with interference, while
Formulation 2 seems to be appropriate for wireline networks and leads to simpler algorithm.

	Mathematics of Internet Architecture
	Mathematical Background: Convex Optimization
	Convex Sets and Convex Functions
	Convex Optimization

	Resource Allocation as Utility Maximization
	Notions of Fairness

	Mathematical Background: Stability of Dynamical Systems
	Distributed Algorithms: Primal Solution
	Price Functions and Congestion Feedback

	Distributed Algorithms: Dual Solution
	Relationship to TCP Protocols
	TCP-Reno
	TCP-Vegas: A Delay Based Algorithm

	Links: Statistical Multiplexing and Queues
	Mathematical Background: The Chernoff Bound
	Statistical Multiplexing and Packet Buffering
	Queue Overflow

	Mathematical Background: Discrete-time Markov Chains
	Delay and Packet Loss Analysis in Queues
	Little's Law
	The Geo/Geo/1 Queue
	The Geo/Geo/1/B Queue
	The Discrete-Time G/G/1 Queue

	Scheduling in Packet Switches
	Switch Architectures and Crossbar Switches
	Head-of-Line (HOL) Blocking and Virtual Output Queues

	Capacity Region and MaxWeight Scheduling

	Scheduling in Wireless Networks
	Channel-Aware Scheduling in Cellular Networks
	The MaxWeight Algorithm for the Cellular Downlink
	MaxWeight Scheduling Ad Hoc P2P Wireless Networks
	General MaxWeight Algorithms
	Q-CSMA: A Distributed Algorithm for Ad Hoc P2P Networks
	The Idea behind Q-CSMA
	Q-CSMA

	Back to Network Utility Maximization
	A Joint Formulation of the Transport, Network and MAC Problems
	Stability and Convergence: An Example for Cellular Networks
	Ad Hoc P2P Wireless Networks
	Internet versus Wireless Formulations: An Example

