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All rights are reserved. The author hereby gives a permission to print and distribute the
copies of these lecture notes intact and for as long as the lecture note copies are not for
any commercial purpose.

1Industrial and Enterprise Systems Engineering Department, University of Illinois at Urbana-
Champaign, Urbana IL 61801. E-mail: angelia@illinois.edu



2



Contents

1 Review and Miscellanea 7
1.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Vectors and Set Operations . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Linear Combination and Independence . . . . . . . . . . . . . . . . 8
1.1.3 Subspace and Dimension . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Affine Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Orthogonal Vectors and Orthogonal Subspace . . . . . . . . . . . . 10
1.1.6 Vector Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.7 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.8 Square Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.9 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . 12
1.1.10 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.11 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Real Analysis and Multivariate Calculus . . . . . . . . . . . . . . . . . . . 16
1.2.1 Vector Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Set Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Mapping and Function . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Fundamental Concepts in Convex Optimization 27
2.1 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 Special Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Set Operations Preserving Convexity . . . . . . . . . . . . . . . . . 32

2.2 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Differentiable Convex Functions . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Operations Preserving Convexity of Functions . . . . . . . . . . . . 39

2.3 Convex Constrained Optimization Problems . . . . . . . . . . . . . . . . . 42
2.3.1 Constrained Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.4 Projection Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3



4 CONTENTS

2.5 Lagrangian Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.1 Geometric Primal and Dual Problems . . . . . . . . . . . . . . . . . 56
2.5.2 Constrained Optimization Duality . . . . . . . . . . . . . . . . . . . 59
2.5.3 Linear Programming Duality . . . . . . . . . . . . . . . . . . . . . . 66
2.5.4 Slater Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5.5 Linear Constraint Condition . . . . . . . . . . . . . . . . . . . . . . 74
2.5.6 Quadratic Convex Problem . . . . . . . . . . . . . . . . . . . . . . 76
2.5.7 Karush-Kuhn-Tucker Conditions . . . . . . . . . . . . . . . . . . . 76
2.5.8 Representation and Constraint Relaxation Issues . . . . . . . . . . 81

3 Vector Space Methods for Static Optimization 83
3.1 Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Optimal Basic Feasible Solutions . . . . . . . . . . . . . . . . . . . 84
3.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Gradient Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2.1 Convergence for Constant and Diminishing Rule . . . . . . . . . . . 93
3.2.2 Convergence for Polyak’s Stepsize and its Modification . . . . . . . 96
3.2.3 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.4 Non-Projected Gradient . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.5 Gradient Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.6 Feasible Descent Method . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3 Dual Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3.1 Differentiable Dual Function . . . . . . . . . . . . . . . . . . . . . . 109

4 Network Applications 113
4.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Minimum Cost Network Flow Problem . . . . . . . . . . . . . . . . . . . . 116

4.2.1 Simplex Algorithm for Uncapacitated Min-Cost Flow . . . . . . . . 119
4.3 Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4 Maximum Flow Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5 Routing in Communication Network . . . . . . . . . . . . . . . . . . . . . 126
4.6 Joint Routing and Congestion Control . . . . . . . . . . . . . . . . . . . . 128
4.7 Rate Allocation in Communication Network . . . . . . . . . . . . . . . . . 131

5 Dynamic Programming 135
5.1 Fundamental Concepts and Problem Formulation . . . . . . . . . . . . . . 135

5.1.1 DP Algorithm for Finite Horizon Problem . . . . . . . . . . . . . . 139
5.1.2 Infinite Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Discounted Cost Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.1 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.2 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Stochastic Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.1 Basic Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.2 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



CONTENTS 5

5.3.3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4 Average Cost Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4.1 Basic Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4.2 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.4.3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



6 CONTENTS



Chapter 1

Review and Miscellanea

In this chapter, we review briefly without proof some basic concepts and facts of mathe-
matical (real) analysis and linear algebra. We do assume that the reader is familiar with
the elementary calculus and linear algebra such as fundamental properties and operations
with scalar functions (continuity, derivatives, integrals, etc.) and matrices (addition, mul-
tiplication, inversion, determinant, etc.).

1.1 Linear Algebra

This section provides notation, definitions, and basic results of linear algebra. More on this
material can be found, for example, in the textbook by Strang [32]. More general treatment
of matrices can be found in the book by Horn and Johnson [18].

1.1.1 Vectors and Set Operations

Vectors

We use Rn to denote the set of n-dimensional vectors. We view the vectors of Rn as
columns. Given a vector, x ∈ Rn, we write xi to denote its i-th component. We write
x ≥ 0 and x > 0 when, respectively, xi ≥ 0 and xi > 0 for all components i. For any
vectors x, y ∈ Rn, we write x ≥ y and x > y when x − y ≥ 0 and x − y > 0, respectively.
Similarly, we interpret x ≤ 0, x < 0, x ≤ y, and x < y.

For a vector x ∈ Rn, we write x+ to denote the vector of componentwise maximum of
x and the zero vector, i.e.,

x+ =

 max{x1, 0}
...

max{xn, 0}

 .

Note that x+ ≥ 0. Similarly, we define x− as the componentwise minimum of x and the
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8 CHAPTER 1. REVIEW AND MISCELLANEA

zero vector,

x− =

 min{x1, 0}
...

min{xn, 0}

 .

Note that x− ≤ 0. Furthermore, we have x = x+ + x−.
We use xT to denote the transpose of a vector x. Accordingly, we use xT y to denote

the inner product of two vectors x, y ∈ Rn, i.e., xT y =
∑n

i=1 xiyi. The vectors x, y ∈ Rn

are orthogonal when their inner product is zero, i.e., xT y = 0.

Set Operations

We denote the empty set by ∅. Given a set X ⊆ Rn, its complement set is

Xc = {x ∈ Rn | x /∈ X}.

Given a scalar α ∈ R and a set X ⊆ Rn, the scaled set αX is given by

αX = {z = αx | x ∈ X}.

Given two sets, their set difference X \ Y is the set given by

X \ Y = {z | z ∈ X and z /∈ Y } difference.

Given two sets, their set intersection X ∩ Y , union X ∪ Y , Cartesian product X × Y ,
and sum X + Y are the sets respectively given by

X ∩ Y = {z | z ∈ X and z ∈ Y } intersection

X ∪ Y = {z | z ∈ X or z ∈ Y } union

X × Y = {(x, y) | x ∈ X, y ∈ Y } Cartesian product

X + Y = {x + y | x ∈ X, y ∈ Y } sum.

The preceding definitions extend naturally to more than two sets. For example, the inter-
section of sets X1, . . . , Xm ⊆ Rn is given by

X1 ∩ · · · ∩Xm = {x | x ∈ Xi for all i = 1, . . . ,m}.

1.1.2 Linear Combination and Independence

Given scalars α1, . . . , αm ∈ R and vectors x1, . . . , xm ∈ Rm, the vector z given by

z = α1x1 + . . . + αmxm

is referred to as a linear combination of vectors x1, . . . , xm.
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The vectors x1, . . . , xm are said to be linearly dependent when the zero vector can be
obtained as a nonzero linear combination of these vectors. Formally, x1, . . . , xm are linearly
dependent when there exists scalars α1, . . . , αm not all equal to zero and such that

α1x1 + . . . + αmxm = 0.

The vectors x1, . . . , xm are said to be linearly independent when they are not linearly
dependent. Formally, they are independent when the equality

α1x1 + . . . + αmxm = 0

holds only for α1 = 0, . . . , αm = 0. In other words, the vectors x1, . . . , xm are linearly
independent when the zero vector cannot be obtained as a nonzero linear combination of
these vectors.

1.1.3 Subspace and Dimension

A nonempty set S ⊆ Rn is a subspace of Rn when every linear combination of its elements
belongs to S. Formally, S is subspace when for every set of vectors x1, . . . , xm ∈ S we have

α1x1 + . . . + αmxm ∈ S for any set of scalars α1, . . . , αm.

Note that Rn is a subspace. Also, the set containing only the zero vector is also a subspace.
Given a subspace S ⊆ Rn and a set of vectors x1, . . . , xm in S, the vectors x1 . . . , xm are

said to span the subspace S when every vector in S can be expressed as a linear combination
of vectors x1, . . . , xm, i.e.,

S = {α1x1 + · · ·+ αmxm | αi ∈ R for all i}.

A set of vectors x1, . . . , xm ∈ S is said to be a basis of the subspace S when the vectors
x1, . . . , xm span the subspace S and they are linearly independent. A subspace S ⊆ Rn

can have more than one basis. However, every basis of S has the same number of vectors.
This common number is the dimension of the subspace S. Note that the zero subspace,
S = {0}, has zero dimension.

We use ej to denote a vector in Rn whose j-th entry is 1 and all other entries are 0.
The vectors e1, . . . , en are the standard basis for Rn. Note that these vectors are mutually
orthogonal, i.e.,

eT
i ej = 0 for all i 6= j.

They are also refereed to as standard orthogonal basis for Rn.

1.1.4 Affine Sets

A set X ⊆ Rn is an affine set when X is a translation of a subspace in Rn, i.e., when X
can be written as

X = x + S = {x + s | s ∈ S} (1.1)
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for some x ∈ X and some subspace S ⊆ Rn. We also say that the affine set X is generated
by the subspace S. The dimension of an affine set X is the same as the dimension of its
generating subspace S. For example, every set {x} for x ∈ Rn is an affine (singleton) set
since {x} = x + {0}. Each of these sets has zero dimension. The dimension of an affine set
X is denoted by dimX.

If X is an affine set then the subspace S that generates X is unique. However, the
translation vector x in Eq. (1.1) is not unique. In fact, any vector x ∈ X can be used.
Formally, if X is an affine set generated by the subspace S, then we have

X = x0 + S for any x0 ∈ X.

1.1.5 Orthogonal Vectors and Orthogonal Subspace

We say that vectors x, y ∈ Rn are orthogonal when their inner product is zero, i.e., when
xT y = 0. We often write x ⊥ y to denote that x and y are orthogonal.

Given a set X ⊆ Rn, the orthogonal complement of X is the set X⊥ of vectors y that
are orthogonal to every element in X, i.e.,

X⊥ = {y | yT x = 0 for all x ∈ X}.

Note that X⊥ is a subspace regardless whether X is a subspace or not. For a subspace
S, its orthogonal complement is also referred to as orthogonal subspace of S. Note that
(S⊥)⊥ = S. Furthermore, the sum of the dimensions of a subspace S ⊆ Rn and its
orthogonal subspace S⊥ is equal to the dimension of the underlying space Rn, i.e.,

dimS + dimS⊥ = n for a subspace S ⊆ Rn.

1.1.6 Vector Norm

A vector norm is a scalar function that assigns a nonnegative scalar to every vector x ∈ Rn.
Specifically, a norm ‖ · ‖ : Rn → [0, +∞) is a scalar function with the following defining
properties:

1. Nonnegativity ‖x‖ ≥ 0 for all x ∈ Rn, where ‖x‖ = 0 if and only if x = 0.

2. Homogeneity ‖αx‖ = |α| ‖x‖ for any x ∈ Rn and any α ∈ R.

3. Triangle Inequality or Subadditivity ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

For the most part, we use Euclidean norm given by

‖x‖ =
√

xT x =

√√√√ n∑
i=1

x2
i .

Occasionally, we also use 1-norm and ∞-norm, respectively, given by

‖x‖1 =
n∑

i=1

|xi|,
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‖x‖∞ = max
1≤i≤n

|xi|.

When we write ‖ · ‖, then it is Euclidean norm. The following are important relations:

|xT y| ≤ ‖x‖ · ‖y‖ for any x, y ∈ Rn Schwartz inequality1.

‖x + y‖2 = ‖x‖2 + ‖y‖2 for any x, y ∈ Rn with xT y = 0 Pythagorean Theorem.

1.1.7 Matrices

Notation and Basics

Given a matrix A, we use Aij or [A]ij to denote its ij-th entry. We write Ai or [A]i to
denote its i-th row vector. Similarly, we use Aj or [A]j to denote its j-th column vector.
We denote the identity matrix by I. We use AT to denote the transpose of the matrix A.

The rank of A is the largest number of linearly independent columns of A. We say that
A has full column rank when the columns of A are linearly independent. Similarly, We
say that A has full row rank when the rows of A are linearly independent. We say that A
has full rank when its rank is equal to the minimum of m and n. The matrix A and its
transpose AT have the same rank.

Null Space and Range

Given an m× n matrix A, the null space of A is the set NA defined by

NA = {x ∈ Rn | Ax = 0}.

The range of A is the set RA given by

RA = {y ∈ Rm | y = Ax for some x ∈ Rn}.

Both the null space and the range are subspaces (of Rn and Rm, respectively). There
is an important orthogonality relation between the null space of A and the range of its
complement AT . In particular, we have

N⊥
A = R.

AT (1.2)

1.1.8 Square Matrices

For a square matrix A, we use detA to denote its determinant. The matrix is said to be
singular when its determinant is zero; otherwise, it is nonsingular or invertible.

For an n× n nonsingular matrix A, its inverse is the (n× n) matrix A−1 such that

A−1A = AA−1 = I.

The inverse matrix A−1 is unique.
For n× n nonsingular matrices A and B, the following relation holds

(AB)−1 = B−1A−1.

Additional important properties of square matrices are given in the following lemma.
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Lemma 1 For a square matrix A, the following statements are equivalent:

(a) A is nonsingular.

(b) AT is nonsingular.

(c) A has full column rank.

(d) A has full row rank.

(e) Ax = 0 if and only if x = 0.

(f) For every y ∈ Rn, the equation AX = y as a unique solution x ∈ Rn.

(g) The inverse A−1 exists and it is unique.

1.1.9 Eigenvalues and Eigenvectors

Given an n × n square matrix A, we say that a complex number λ is an eigenvalue of A
when

Ax = λx for some nonzero x ∈ Rn.

A vector x 6= 0 satisfying the preceding relation is referred to as an eigenvector of A
associated with the eigenvalue λ. Note that the eigenvalues are in general complex numbers.
Furthermore, every square matrix has n eigenvalues (possibly repeated). Also, if λ is a
complex eigenvalue of A, then the complex conjugate λ̄ is also an eigenvalue of A.

The set of all eigenvalues of A is the spectrum of A and is denoted by σ(A). The spectral
radius of A is the largest magnitude of the eigenvalues, and it is denoted by ρ(A). Formally,
it is given by

ρ(A) = max
λ∈σ(A)

|λ|.

The determinant of A is equal to the product of the eigenvalues of A, i.e.,

detA = λ1 · · ·λn.

The trace of A, denoted by TrA, is defined as the sum of the diagonal entries of A

TrA =
n∑

i=1

Aii.

The trace of A is equal to the sum of the eigenvalues of A,

TrA =
n∑

i=1

λi.

Some additional properties of the eigenvalues of square matrices are given in the fol-
lowing lemma.

Lemma 2 Let A be an n× n square matrix. We have:
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(a) AT has the same eigenvalues as A, i.e., σ(AT ) = σ(A).

(b) Let B be a square matrix, and assume that B = CAC−1 for some invertible matrix
C. Then, the matrices A and B have the same eigenvalues, i.e., σ(A) = σ(B).

(c) Let A be invertible and let its eigenvalues be λ1, . . . , λn. Then, the eigenvalues of A−1

are 1
λ1

. . . , 1
λn

, i.e.,

σ(A−1) =

{
1

λ

∣∣∣λ ∈ σ(A)

}
.

(d) Let λ1, . . . , λn be the eigenvalues of A. Then, the eigenvalues of the matrix αI + A
are α + λ1, . . . , α + λn, i.e.,

σ(αI + A) = α + σ(A).

(e) Let λ1, . . . , λn be the eigenvalues of A. Then, the eigenvalues of Ak are λk
1, . . . , λ

k
n,

i.e.,

σ(Ak) = {λk | λ ∈ σ(A)}.

1.1.10 Matrix Norms

There are several matrix norms. Here, we exclusively consider the matrix norms induced
by vector norms. We write ‖A‖ to denote the matrix norm induced by Euclidean vector
norm, which is given by

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

.

Similarly, we write ‖A‖1 and ‖A‖∞ to denote the matrix norms induced by vector 1-norm
and ∞-norm, respectively, which are given by

‖A‖1 = sup
x 6=0

‖Ax‖1

‖x‖1

,

‖A‖∞ = sup
x 6=0

‖Ax‖∞
‖x‖∞

,

The norm ‖A‖ induced by Euclidean vector norm is also known as spectral norm. It
satisfies the following relation

‖A‖ = max
{√

λ | λ is an eigenvalue of AT A
}

.

The norm ‖A‖1 induced by vector 1-norm is also known as maximum column sum matrix
norm. It is equivalently given by the following relation:

‖A‖1 = max
j

∑
i

|Aij|.
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Similarly, the norm ‖A‖∞ induced by vector ∞-norm is also known as maximum row sum
matrix norm. The following relation holds:

‖A‖∞ = max
i

∑
j

|Aij|.

In the space of all square matrices A, the spectral radius ρ(A) is a continuous function
of A (the distance between A and B is measured by ‖A−B‖, or any other matrix norm).

Note that in view of Lemma 2(a), we have for any square matrix A,

‖A‖ = ‖AT‖.

1.1.11 Symmetric Matrices

A matrix is said to be symmetric when A = AT . Symmetric matrices have special eigenvalue
properties, as given in the following.

Lemma 3 Let A be an n× n symmetric matrix. We have

(a) The eigenvalues of A are real.

(b) There exist unit-norm and mutually orthogonal eigenvectors x1, . . . , xn associated with
eigenvalues λ1, . . . , λn of A, respectively, i.e., the vectors such that

Axi = λixi with ‖xi‖ = 1 for all i = 1, . . . , n,

xT
i xj = 0 for all i 6= j.

Furthermore, the matrix A has the following representation

A =
n∑

i=1

λi xix
T
i .

Additional important properties related to the norm of a square matrix A and its powers
Ak are discussed in the following lemma.

Lemma 4 Let A be a square symmetric matrix. We have:

(a) ‖A‖ = ρ(A) = maxλ∈σ(A) |λ|.

(b) ‖Ak‖ = ‖A‖k for any integer k ≥ 0.

(c) Assume that A is nonsingular. Then

‖A−1‖ = max
λ∈σ(A)

1

|λ|
.

(d) Let A be of size n×n and let λ1 ≤ · · · ≤ λn be its eigenvalues sorted in a nondecreasing
order. Then,

λ1‖x‖2 ≤ xT Ax ≤ λn‖x‖2 for all x ∈ Rn.
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Positive Semidefinite and Positive Definite Matrices

Let A be an n× n symmetric matrix A. The matrix A is positive semidefinite when

xT Ax ≥ 0 for all x ∈ Rn.

The matrix A is positive definite if the preceding inequality is strict when x 6= 0, i.e.,

xT Ax > 0 for all x ∈ Rn with x 6= 0.

Similarly, A is negative semidefinite when

xT Ax ≤ 0 for all x ∈ Rn,

and it is negative definite if the preceding inequality is strict when x 6= 0, i.e.,

xT Ax < 0 for all x ∈ Rn with x 6= 0.

Note that positive semidefinite, positive definite as well as negative semidefinite and
negative definite matrices are all square and symmetric by definition.

Lemma 5 Let A be a symmetric matrix.

(a) A is positive semidefinite if and only if all its eigenvalues are nonnegative.

(b) A is positive definite if and only if all its eigenvalues are positive.

(c) A is negative semidefinite (negative definite) if and only if all its eigenvalues are
nonnegative (negative).

(d) Let A be positive definite. Then, its inverse is also positive definite.

A positive semidefinite matrix has a symmetric square root matrix denoted by A1/2.
The symmetric square root matrix A1/2 is such that

A1/2A1/2 = A.

Further properties of the square root matrix are given in the following lemma.

Lemma 6 Let A be a positive semidefinite matrix. Then:

(a) A1/2 is nonsingular if and only if A is nonsingular.

(b) A−1/2A−1/2 = A−1.

(c) AA1/2 = A1/2A.
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1.2 Real Analysis and Multivariate Calculus

This section contains a brief review of basic notions and results related to vector sequences
(such as accumulation points and convergence), topological properties of sets in Rn (such as
closed and open sets), and vector functions (such as continuity, differentiability and Taylor
expansions). More on these topics can be found in many textbooks on real analysis such
as, for example, Rudin [27], Kolmogorov and Fomenko [20], and Zorich [35]. Also, a good
summary of these results (and more) can be found in the books by Bertsekas [5], Bertsekas,
Nedić and Ozdaglar [9], Boyd and Vandenberghe [13] and Polyak [25].

Throughout this section, we consider n-dimensional vector space Rn equipped with
the standard inner product xT y =

∑n
i=1 xiyi and the Euclidean norm ‖x‖ =

√
xT x =√∑n

i=1 x2
i .

1.2.1 Vector Sequence

Given a vector sequence {xk} ⊂ Rn and an infinite index set K ⊆ {1, 2, . . .}, we refer to
the sequence {xk | k ∈ K} as a subsequence of the sequence {xk}. We also use {xk}K or
{xki

} to denote a subsequence of {xk}. We say that the sequence {xk} is bounded when for
some scalar C, we have

‖xk‖ ≤ C for all k.

The sequence {xk} converges to a vector x̃ ∈ Rn if

lim
k→∞

‖xk − x̃‖ = 0.

The vector x̃ is referred to as the limit of {xk}. When the sequence {xk} converges to a
vector x̃, we also write xk → x̃.

If the sequence does not converge, we say that it diverges or that it is a divergent
sequence. Somewhat abusing the terminology, we say that the sequence {xk} converges to
∞ when limk→∞ ‖xk‖ = ∞.

A vector y ∈ Rn is an accumulation point of the sequence {xk} when there is a subse-
quence {xki

} of the sequence {xk} converging to y, i.e., such that xki
→ y as i →∞.

Theorem 1 (Bolzano) A bounded sequence {xk} ⊂ Rn has at least one accumulation point.

Given a scalar sequence {xk} ⊂ R, we say that a is an upper bound for {xk} when

xk ≤ a for all k.

The smallest upper bound for {xk} is referred to as the supremum of {xk}, and it is denoted
by supk xk. If there exists an index k̃ such that

xk̃ = sup
k

xk,

then we say that the supremum of xk is attained, and we write maxk xk instead of supk xk.
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Similarly, we say that b is a lower bound for {xk} when

b ≤ xk for all k.

The largest lower bound for {xk} is referred to as the infimum of {xk}, and it is denoted
by infk xk. When there exists an index k̃ such that

xk̃ = inf
k

xk,

then we say that the infimum of xk is attained, and we write mink xk instead of infk xk.
We note that both the infimum and the supremum of {xk} may be infinite. Moreover, we
always have

inf
k

xk ≤ sup
k

xk.

We refer to the largest accumulation point a as the limit superior of {xk} and we write

lim sup
k→∞

xk = a.

Note that this includes the possibility that a may be infinite (i.e., a = −∞ or a = +∞).
Similarly, we refer to the smallest accumulation point b as the limit inferior of {xk} and
we write

lim inf
k→∞

xk = b,

including the possibility that b is infinite.
We always have

inf
k

xk ≤ lim inf
k→∞

xk ≤ lim sup
k→∞

xk ≤ sup
k

xk.

Furthermore, there holds
lim inf

k→∞
xk = lim sup

k→∞
xk

if and only if {xk} is convergent, including the possibilities xk → +∞ or xk → −∞.

1.2.2 Set Topology

Open, Closed and Compact Sets

Let X ⊆ Rn be a nonempty set. The set X is bounded when there exists a scalar C such
that

‖x‖ ≤ C for all x ∈ X.

A vector x̃ is an accumulation (or a limit) point of the set X when there is a sequence
{xk} ⊆ X such that xk → x̃. The set X is closed when it contains all of its accumulation
points. The set X is open when its complement set Xc = {x ∈ Rn | x 6∈ X} is closed.

A set X is either open or closed, or none of the above (neither open nor closed). The only
exceptions to this rule are the whole vector space Rn and the empty set ∅. By convention,
the sets Rn and ∅ are the only sets that are both open and closed.

We have:
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• A subspace of Rn is closed.

• An affine set in Rn is closed.

• The set B(x, r) ⊆ Rn given by

B(x, r) = {y ∈ Rn | ‖y − x‖ ≤ r} for some x ∈ Rn and r > 0

is closed. This ball if also referred to as the closed ball centered at x with radius r.

There is an alternative (equivalent) way of defining open and closed sets. The preceding
definition starts with the notion of a closed set, and then defines an open set as the set
whose complement is closed.

In the following definition of an open set, we use the notion of an open ball in Rn. An
open ball in Rn centered at x and with radius r > 0, denoted by B(x, r), is the set given by

B(x, r) = {y ∈ Rn | ‖y − x‖ < r}.

Given a set X ⊆ Rn, the set X is open if for every x ∈ X there is a radius r small enough
(depending on x) such that the ball B(x, r) is contained in the set X, i.e., for every x ∈ X
there is r > 0 such that B(x, r) ⊆ X. The set X is closed if its complement Xc is open.

Let J be some set. We say that J is finite if J has finitely many elements i.e., the
cardinality of J is finite. The following are some important properties of a family of
open/closed sets.

Lemma 7 Let {Xj | j ∈ J} be a family of sets Xj ⊆ Rn, where I is some index set.

(a) If Xj is closed for each j ∈ J , then the intersection set ∩j∈JXj is closed.

(b) If Xj is open for each j ∈ J , then the union set ∪j∈JXj is open.

(c) If J is finite and Xj is closed for each j ∈ J , then the union ∪j∈JXj is closed.

(d) If J is finite and Xj is open for each j ∈ J , then the intersection ∩j∈JXj is open.

A set X is compact when every sequence {xk} ⊆ X has an accumulation point x̃ that
belongs to the set X. Compact sets in Rn have another characterization as given in the
following.

Lemma 8 The set X is compact if and only if it is closed and bounded.

A closed ball in Rn is compact. Neither a subspace nor an affine set is compact since none
of such sets is bounded.
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Closure, Interior and Boundary

Let X ⊆ Rn be a nonempty set. The closure of the set X is the set of all accumulation
points of X, and it is denoted by clX. Note that, we always have

X ⊆ clX,

where the equality holds only when X is closed.
A vector x ∈ X is an interior point of X when there exists a ball centered at x with

some radius r such that B(x, r) ⊆ X. The set of all interior points of a set X is referred
to as the interior of X, and it is denoted by intX. We always have

intX ⊆ X,

where the equality holds only when X is open.
A vector x̃ ∈ Rn is a boundary point of the set X when for every radius r, the ball

B(x̃, r) contains the points that belong to the set X and the points that do not belong to
the set X. Formally, x̃ is a boundary point of X when

B(x̃, r) ∩X 6= ∅ and B(x̃, r) ∩Xc 6= ∅ for all r > 0.

1.2.3 Mapping and Function

Mapping

Let X ⊆ Rn. A mapping from a set X to Rm is an operation that to every x ∈ X assigns
a vector y ∈ Rm. We write F : X → Rm to denote a mapping F from the set X to Rm.
We refer to X as a domain of the mapping F . The domain of a mapping F is denoted by
domF . The image of X under the mapping F is the following set

F (X) = {y ∈ Rm | y = F (x) for some x ∈ X}.

Given a set Y ⊆ Rm, the inverse image of Y under the mapping F is the following set

F−1(Y ) = {x ∈ X | F (x) ∈ Y }.

Let F be a mapping F : X → Rm with X ⊆ Rn. The mapping F is affine when for
some matrix A and a vector b ∈ Rm,

F (x) = Ax + b for all x ∈ X.

For example, a space translation (i.e., for a given x0 ∈ Rn, F (x) = x + x0 for all x ∈ Rn)
is an affine mapping from Rn to Rn.

The mapping F is linear when for a matrix A,

F (x) = Ax for all x ∈ X.

For example, given the coordinate subspace S = {x ∈ Rn | xj = 0 for j ∈ J}, where
J ⊆ {1, . . . , n}, the projection on the subspace S is a linear mapping from Rn to Rn, i.e.,
the mapping F given by

F (x) = Ax where Aii = 1 for i 6∈ J and Aij = 0 otherwise

is linear from Rn to Rn.
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Function

When f is a mapping from a set X ⊆ Rn to the scalar set R, we say that f is a function.
Some special functions defined on Rn include

• Quadratic function given for an n×n matrix Q, a vector a ∈ Rn, and a scalar b ∈ R, by

f(x) = xT Qx + aT x + b for all x ∈ Rn.

• Affine function given for a vector a ∈ Rn and a scalar b ∈ R, by

f(x) = aT x + b for all x ∈ Rn.

• Linear function given for a vector a ∈ Rn, by

f(x) = aT x for all x ∈ Rn.

• Constant function given for a scalar b ∈ R, by

f(x) = b for all x ∈ Rn.

1.2.4 Continuity

Let F : X → Rm be a mapping with X ⊆ Rn, and let x ∈ X be a given vector. We say
that F is continuous at the vector x when the vectors F (xk) converge to F (x) for every
sequence {xk} ⊆ X converging to x, i.e.,

F (xk) → F (x) for every {xk} ⊆ X with xk → x.

We say F is continuous over X when F is continuous at every x ∈ X. When F : Rn → Rm

is continuous over Rn, we just say that F is continuous. For example, any vector norm in
Rn is a continuous function.

A mapping F : X → Rm, with X ⊆ Rn, is Lipschitz (continuous) over X if there exists
a scalar c > 0 (possibly depending on X) such that

‖F (x)− F (y)‖ ≤ c‖x− y‖ for all x, y ∈ X.

When the preceding relation holds for X = Rn, we simply say F is Lipschitz (continuous).
A function f : X → R is lower semicontinuous at a vector x ∈ X when

f(x) ≤ lim inf
k→∞

f(xk) for every {xk} ⊆ X with xk → x.

A function f is upper semicontinuous at a vector x ∈ X when the function −f is lower
semicontinuous at x, i.e.,

f(x) ≥ lim sup
k→∞

f(xk) for every {xk} ⊆ X with xk → x.

When f is lower semicontinuous at every point x in some set X, we say f is lower semi-
continuous over X. When f is lower semicontinuous at every point x ∈ Rn, we say f is
lower semicontinuous. Analogous terminology is used for upper semicontinuity.
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Lemma 9 The following are some properties of continuous mappings.

(a) Let Y ⊆ Rp. Let F : Rn → Rm be a continuous mapping over Rn and G : Y → Rn be
a continuous mapping over Y . Then, their composition F ◦G : Y → Rm given by

(F ◦G)(y) = F (G(y)) for all y ∈ Y

is continuous over Y .

(b) Let F : Rn → Rm be a continuous map.

(i) Let X ⊂ Rn be a compact set. Then, the image F (X) of X under F is compact.

(ii) Let Y ⊆ Rm. If Y is open, then the inverse image F−1(Y ) is open. If Y is
closed, then the inverse image F−1(Y ) is closed.

Given a function f : Rn → R, the (lower) level set Lγ(f) of f for a given γ ∈ R is the
set defined by

Lγ(f) = {x ∈ Rn | f(x) ≤ γ}.
When f is lower semicontinuous the level set Lγ(f) is closed for each γ. In fact, a stronger
relation holds, as given in the following.

Theorem 2 The function f : Rn → R is lower semicontinuous if and only if the level set
Lγ(f) is closed for each γ ∈ R.

Let X ⊆ Rn and f : X → R. The function f is coercive over X when it satisfies the
following relation

lim
k→∞

f(xk) = +∞ for every sequence {xk} ⊆ X with ‖xk‖ → ∞.

When X = Rn in the preceding relation, we just say f is coercive.
In the next theorem, we provide a condition on the function f and the given set X that

is necessary for the attainment of both the infimum of f(x) over X and the supremum of
f over X.

Theorem 3 (Weierstrass) Let f : Rn → R be a continuous function and X ⊆ Rn be a
nonempty compact set. Then, both infx∈X f(x) and supx∈X f(x) are finite, and there exist
vectors x∗ ∈ X and x̃ ∈ X such that

f(x∗) = inf
x∈X

f(x) and f(x̃) = sup
x∈X

f(x).

The following theorem provides some conditions on the function f and the given set X
that can guarantee only the attainment of the infimum of f(x) over X.

Theorem 4 Let X ⊆ Rn be a nonempty set and let f : X → R be a function lower
semicontinuous over X. Furthermore, let any of the following conditions be satisfied:

(i) The function f is coercive over X and the set X is closed.
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(ii) For some γ ∈ R, the set {x ∈ X | f(x) ≤ γ} is nonempty and compact.

(iii) The set X is compact.

Then, infx∈X f(x) is finite and there exists a vector x∗ ∈ X such that

f(x∗) = inf
x∈X

f(x).

1.2.5 Differentiability

Differentiable Functions

Let f : Rn → R be a function, and let a vector x ∈ Rn and a direction d ∈ Rn be given.
Consider the limit

f ′(x; d) = lim
λ↓0

f(x + λd)− f(x)

λ
,

where λ ↓ 0 means that λ → 0 with λ > 0. When this limit exists, we say that f ′(x; d) is
the directional derivative of f along direction d at the point x.

Suppose that f at the point x has directional derivatives f ′(x; d) in all directions d ∈
Rn. If the directional derivative function f ′(x; ·) : Rn → R is linear, we say that f is
differentiable at x. This type of differentiability is also known as Gateaux differentiability.
It is equivalent to the existence of the gradient ∇f(x) of f at x, which satisfies

f ′(x; d) = ∇f(x)T d for all d ∈ Rn.

The gradient ∇f(x) is a column vector given by

∇f(x) =


∂f(x)
∂x1
...

∂f(x)
∂xn

 ,

where ∂f(x)
∂xi

for each i = 1, . . . , n is a partial derivative of f at x given by

∂f(x)

∂xi

= lim
λ→0

f(x + λei)− f(x)

λ
,

with ei being i-th basis vector in Rn (see Section 1.1.3). When f is differentiable at x for
all x in some (open) set X, we say f is differentiable over X. If f is differentiable over Rn,
we just say f is differentiable.

Let f be differentiable over some (open) set X and assume that ∇f(·) is continuous
function over X. We then say that f is continuously differentiable over X. In this case,
the following relation holds

lim
‖d‖→0

f(x + d)− f(x)−∇f(x)T d

‖d‖
= 0 for all x ∈ X.
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Let f : Rn → R have second partial derivatives ∂2f(x)
∂xi∂xj

for all i, j at a given vector x.

Then, we say f is twice differentiable at x. The matrix ∇2f(x) with entries [∇2f(x)]ij =
∂2f(x)
∂xi∂xj

is the Hessian of f at x, i.e., the Hessian ∇2(x) is given by

∇2f(x) =


∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂xn∂xn

 .

Since the second partial derivatives are symmetric,

∂2f(x)

∂xi∂xj

=
∂2f(x)

∂xj∂xi

for all i, j,

the Hessian ∇2f(x) is a symmetric matrix.
If the Hessian ∇2f(x) exists at every x in an (open) set X, we say that f is twice

differentiable over X. In addition, when the Hessian is continuous over X, we say f
is twice continuously differentiable over X. Similarly, we say f is twice (continuously)
differentiable, when f is twice (continuously) differentiable over Rn.

Mean Value Theorem

The following theorem provide some useful properties of continuous and twice continuous
differentiable functions.

Theorem 5 Let X ⊆ Rn be an open set and let x, y ∈ X be arbitrary. Also, let f : X → R.

(a) If f is continuously differentiable over X, then

f(y) = f(x) +∇f(z)T (y − x),

where z = αx + (1− α)y for some scalar α ∈ [0, 1].

(b) If f is twice continuously differentiable over X, then

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x),

where ξ = βx + (1− β)y for some scalar β ∈ [0, 1].

Taylor Expansions

The following theorem provides useful function value approximations based on Taylor’s
series expansion.

Theorem 6 Let X ⊆ Rn be an open set and let x, y ∈ X be arbitrary. Also, let f : X → R.

(a) If f is continuously differentiable over X, then

f(y) = f(x) +∇f(x)T (y − x) + o(‖y − x‖).



24 CHAPTER 1. REVIEW AND MISCELLANEA

(b) If f is twice continuously differentiable over X, then

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) + o(‖y‖2).

Here, o(α) is a continuous function such that limα→0
o(α)

α
= 0.

A function with Lipschitz continuous gradient can be approximated by a quadratic
function as seen in the following theorem.

Theorem 7 Let f : Rn → R be a continuously differentiable function with Lipschitz gra-
dient, i.e., for some scalar c > 0,

‖∇f(x)−∇f(y)‖ ≤ c‖x− y‖ for all x, y ∈ Rn.

Then, we have for all x, y ∈ Rn,

f(y) ≤ f(x) +∇f(x)T (y − x) +
c

2
‖y − x‖2.

Differentiable Mappings

Let F : Rn → Rm be a mapping given by

F (x) =

 f1(x)
...

fm(x)

 ,

where fi : Rn → R for all i. When each fi is differentiable function at a given x, then the
mapping F is differentiable at x. The matrix whose rows are ∇f1(x)T , . . . ,∇fm(x)T is the
Jacobian of F at x. The Jacobian is an m× n matrix denoted by JF (x), i.e.,

JF (x) =

 ∇f1(x)T

...
∇fm(x)T

 .

Chain Rules

Let G : Rp → Rn be a mapping differentiable at x, and let F : Rn → Rm be another
mapping differentiable at G(x). Then, the composite mapping F ◦G is differentiable at x
and the following chain rule holds for the Jacobian J(F ◦G)(x):

J(F ◦G)(x) = JF (G(x)) JG(x).

When G is a linear mapping given by

G(x) = Ax for all x ∈ Rp and some n× p matrix A,
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then
J(F ◦G)(x) = JF (Ax)) A.

Let G : Rp → Rn be a mapping differentiable at x, and let f : Rn → R be a function
differentiable at G(x). Then, the composite function f ◦ G is differentiable at x and the
following chain rule holds for the gradient ∇(f ◦G)(x):

∇(f ◦G)(x) = JG(x)T ∇f(G(x)).

When G is a linear mapping given by

G(x) = Ax for all x ∈ Rp and for an n× p matrix A,

then
∇(f ◦G)(x) = AT∇f(Ax)).

Moreover, if f is twice differentiable at Ax, then the following chain rule holds for the
Hessian ∇2(f ◦G)(x):

∇2(f ◦G)(x) = AT ∇2f(Ax)A.

Let f : Rn × Rm → R be a function of the variable (x, y) where x ∈ Rn and y ∈
Rm. Then, the gradients ∇xf(x, y) and ∇yf(x, y) of f at (x, y) with respect to x and y,
respectively, are given by

∇xf(x, y) =


∂f(x,y)

∂x1
...

∂f(x,y)
∂xn

 , ∇yf(x, y) =


∂f(x,y)

∂y1

...
∂f(x,y)

∂ym

 .

Let F : Rp → Rn and G : Rp → Rm be two mappings differentiable at z ∈ Rp. Let
f : Rn ×Rm → R be a function of (x, y) differentiable at (F (z), G(z)). Then, the gradient
∇zf(F (z), G(z)) is given by

∇zf(F (z), G(z)) = JF (z)T∇xf(F (z), G(z)) + JG(z)T∇yf(F (z), G(z)).
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Chapter 2

Fundamental Concepts in
Convex Optimization

Convex optimization is an important topic with many practical application areas such
as communication and networks, estimation and statistical signal processing, and control
systems. In this section, we discuss the fundamental notions, principles and results of
convex optimization.

In particular, we introduce the notion of a convex set and convex function, and discuss
the basic operations on such sets and functions that preserve convexity. We then focus on
convex constrained optimization problems and provide necessary conditions for existence of
solutions as well as necessary and sufficient optimality conditions. We study the projection
problem on a convex set, and discuss separation results which provide a link to the La-
grangian duality. We then focus on Lagrangian duality and discuss the linear programming
duality, Slater condition, and Karush-Kuhn-Tucker conditions characterizing a primal-dual
optimal pair.

The interested reader can find a more in depth coverage of the convexity theory in
the seminal book by Rockafellar [26], convex analysis and optimization in the textbook by
Bertsekas, Nedić, and Ozdaglar [9], convex optimization with wide range of engineering
applications in the books by Boyd and Vandenberghe [13] and Ben-Tal and Nemirovski [3],
convex analysis and nonlinear optimization by Borwein and Lewis [12].

2.1 Convex Sets

2.1.1 Definition

Convexity is defined through the notion of a line segment. Given two vectors x and y in Rn,
the line segment connecting x and y is the set [x, y] formally given by

[x, y] = {αx + (1− α)y | α ∈ [0, 1]}.

Definition 1 A set X is convex when with any two points x, y ∈ X, the line segment [x, y]
also belongs to the set X, i.e.,

αx + (1− α)y ∈ X for any x, y ∈ X and α ∈ (0, 1).

27
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Figure 2.1: A convex set contains a segment [x, y] for any x, y belonging to the set.

Figure 2.2: The hexagon to the left is convex, the other two sets are nonconvex.

Note that the empty set is convex by convention. A convex set definition is illustrated
in Figure 2.1. Some additional pictorial examples of convex and nonconvex sets are given
in Figure 2.2. Furthermore, using the definition of a convex set, one can verify that the
following sets are convex:

(a) Any subspace of Rn.

(b) Any affine set in Rn.

(c) Any open ball in Rn; also, any closed ball in Rn.

(d) A singleton set, i.e., the set {x} for a vector x.

(e) A line given by two vectors x and y, which is the set {x + t(y − x) | t ∈ R}.

(f) A ray defined by a vector x, which is the set {λx | λ ≥ 0}.

(g) The nonnegative orthant in Rn, which is the set Rn
+ = {x ∈ Rn | x ≥ 0}.

(h) The positive orthant in Rn, which is the set Rn
++ = {x ∈ Rn | x > 0}.

(i) The set {x ∈ R2 | x1 > 0, x2 ≥ 0}.
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Figure 2.3: A convex cone containing the origin.

2.1.2 Special Convex Sets

We next discuss some special convex sets. We start with a cone, which in general need not
be convex. We then provide a necessary and sufficient condition for convexity of a cone.

A set C ⊆ Rn is a cone when with every x ∈ C, the whole ray {λx | λ > 0} also belongs
to the set C, i.e.,

λx ∈ C for all x ∈ C and λ > 0.

A cone may or may not contain the origin. Also, it may or may not be convex. For example,
the set {x ∈ R2 | x1x2 = 0} is a cone that contains the origin and it is nonconvex. The set
{x ∈ R2 | x1x2 = 0, x 6= 0} is a cone that does not contain the origin and it is nonconvex.
The positive orthant Rn

++ = {x ∈ Rn | x > 0} is a cone that does not contain the origin
and is convex. Another convex cone containing the origin is illustrated in Figure 2.3.

Lemma 10 (Convex Cone): A cone C is convex if and only if C + C ⊆ C.

Proof. Suppose C is convex, and let x, y ∈ C. By convexity of C, we have z = 1
2
(x+y) ∈ C.

Since C is a cone, it follows that 2z ∈ C, thus implying that x+ y ∈ C. Hence C +C ⊆ C.

Now assume that C + C ⊆ C, and let x, y ∈ C and α ∈ (0, 1) be arbitrary. Note that
1− α > 0. Since C is a cone, it follows that αx ∈ C and (1− α)y ∈ C. Using C + C ⊆ C,
we obtain αx + (1− α)y ∈ C, showing that C is convex.

A hyperplane is a set of the form {x ∈ Rn | aT x = b} for a nonzero vector a ∈ Rn and a
scalar b. The vector a is referred to as the normal vector of the hyperplane. A hyperplane
is illustrated in Figure 2.4.

A half-space is a set of the form {x | aT x ≤ b} with a nonzero vector a ∈ Rn. A
hyperplane in Rn divides the space into two half-spaces: {x | aT x ≤ b} and {x | aT x ≥ b}
(cf. Figure 2.4). Note that hyperplanes and half-spaces are convex. In addition, hyperplanes
are affine sets.

A polyhedral set is a set given by finitely many linear inequalities, i.e., a set of the form

{x ∈ Rn | aT
i x ≤ bi, i = 1, . . . ,m},
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Figure 2.4: A hyperplane is shown in the plot to the left, while the two half-spaces generated
by this hyperplane are depicted in the plot to the right.

Figure 2.5: A polyhedral set.

where ai ∈ Rn and bi ∈ R for all i, or compactly

{x ∈ Rn | Ax ≤ b} where A is an m× n matrix.

Such a set is illustrated in Figure 2.5. Note that the polyhedral set description may include
linear equalities in addition to linear inequalities, i.e., the set {x ∈ Rn | Ax ≤ b, Bx = d}
is polyhedral. Every polyhedral set is convex.

An ellipsoid is a set of the form

E = {x ∈ Rn | (x− x0)
T P−1(x− x0) ≤ 1},

where x0 ∈ Rn is some vector and P is a symmetric and positive definite matrix. An
ellipsoid is illustrated in Figure 2.6. The vector x0 is the center of the ellipsoid E . Note
that a (closed) ball {x ∈ Rn | ‖x − x0‖ ≤ r} is a special case of the ellipsoid E where
P = r2I. Ellipsoids are convex sets.

A norm cone is the set of the form

C = {(x, t) ∈ Rn × R | ‖x‖ ≤ t},
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Figure 2.6: An ellipsoid in R2 with the center at xc.

Figure 2.7: An ice-cream cone, a norm cone for Euclidean norm.

where the norm ‖ · ‖ can be any norm in Rn. The norm cone for Euclidean norm is also
known as ice-cream cone, depicted in Figure 2.7. Any norm cone is convex.

A simplex is a set of the form{
α1v1 + . . . + αmvm

∣∣∣ m∑
i=1

αi = 1, αi ≥ 0 for all i = 1, . . . ,m

}
,

where v1, . . . , vm ∈ Rn are some vectors. The dimension of the simplex is the maximum
number of linearly independent vectors among v2−v1, . . . , vm−v1. Every simplex is convex.
Some special simplices include:

Unit simplex

{
x ∈ Rn

∣∣∣ x ≥ 0,
n∑

i=1

xi ≤ 1

}
,

P robability simplex

{
x ∈ Rn

∣∣∣ x ≥ 0,
n∑

i=1

xi = 1

}
.
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2.1.3 Set Operations Preserving Convexity

Convexity of a given set X can be verified by

• Recognizing that the set is one of the “special convex sets” such as polyhedral, sim-
plex, norm cone, etc.

• Proving that the set is convex by directly applying the definition, i.e., showing that
αx + (1− α)y ∈ X for every x, y ∈ X and α ∈ (0, 1).

• Show that the set is obtained from one of the “recognizable” (special) convex sets
through an operation that preserves convexity.

The following theorem provides some basic operations on convex sets that preserve con-
vexity.

Theorem 8 Let X, X1, X2 ⊆ Rn be convex sets. Then, the following sets are also convex:

(a) The scaled set tX = {tx | x ∈ X} for any (fixed) t ∈ R.

(b) The set sum X1 + X2.

(c) The set intersection X1 ∩X2.

(d) The Cartesian product X1 ×X2.

Proof. (a) If t = 0, then tX = {0}, which is evidently convex, so assume that t 6= 0.
Let x, y ∈ tX and α ∈ (0, 1). Then, x

t
∈ X and y

t
∈ X. Since X is convex, it follows

αx
t
+ (1− α)y

t
∈ X, and therefore, by multiplying with t we see that αx + (1− α)y ∈ tX.

Hence, tX is convex.

(b) Let x, y ∈ X1 + X2 and α ∈ (0, 1). Then, x = x1 + x2 for some x1 ∈ X1 and x2 ∈ X2.
Similarly, y = y1 + y2 for some y1 ∈ X1 and y2 ∈ X2. Since X1 and X2 are convex, we have
αx1 +(1−α)y1 ∈ X1 and αx2 +(1−α)y2 ∈ X2. Hence, αx1 +(1−α)y1 +αx2 +(1−α)y2 ∈
X1 + X2, or equivalently α(x1 + x2) + (1 − α)(y1 + y2) = αx + (1 − α)y ∈ X1 + X2, thus
showing that X1 + X2 is convex.

(c) Let x, y ∈ X1 ∩X2 and α ∈ (0, 1). Since x, y ∈ X1 and the set X1 is convex, it follows
that αx + (1 − α)y ∈ X1. Similarly, we conclude that αx + (1 − α)y ∈ X2. Therefore,
αx + (1− α)y ∈ X1 ∩X2, showing that X1 ∩X2 is convex.

(d) Let x, y ∈ X1 × X2 and α ∈ (0, 1). Since x, y ∈ X1 × X2, we have x = (x1, x2)
and y = (y1, y2) with xi, yi ∈ Xi for i = 1, 2. The sets X1 and X2 are convex, so that
αx1 +(1−α)y1 ∈ X1 and αx2 +(1−α)y2 ∈ X2. Hence (αx1 +(1−α)y1, αx2 +(1−α)y2) ∈
X1×X2, or equivalently α(x1, x2)+(1−α)(y1, y2) = αx+(1−α)y ∈ X1×X2, thus showing
that X1 ×X2 is convex.

As a consequence of Theorem 8(b), for a given set X and a vector a, the translated
set X + a is convex when X is convex. In particular, this follows by letting X1 = X and
X2 = {a} and by noting that the singleton set X2 = {a} is convex.

Convexity of a set is preserved under linear transformations, as shown in the following
theorem.
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Theorem 9 Let X ⊆ Rn and Y ⊆ Rm be convex sets, and let A be an m × n matrix.
Then, the following sets are also convex:

(a) The image set AX of X under A.

(b) The inverse image A−1Y of Y under A.

Proof. (a) Recall that the image AX is given by

AX = {y ∈ Rm | y = Ax for some x ∈ X}.

Let y1, y2 ∈ AX and α ∈ (0, 1). By the definition of the image set AX, we have y1 = Ax1

and y2 = Ax2 for some vectors x1, x2 ∈ X. Since the set X is convex, the vector αx1 +(1−
α)x2 belongs to X. We have A(αx1 + (1− α)x2) = αAx1 + (1− α)Ax2 = αy1 + (1− α)y2,
and since αx1 +(1−α)x2 ∈ X, it follows that αy1 +(1−α)y2 ∈ AX. Hence AX is convex.

(b) Recall that the inverse image A−1Y is given by

A−1Y = {x ∈ Rn | Ax ∈ Y }.

Let x1, x2 ∈ A−1Y and α ∈ (0, 1). By the definition of the inverse image A−1Y , we have
Ax1 ∈ Y and Ax2 ∈ Y . For the vector αx1+(1−α)x2, we have A(αx1+(1−α)x2) = αAx1+
(1−α)Ax2, which belongs to the set Y by convexity Y . Therefore, αx1+(1−α)x2 ∈ A−1Y ,
thus showing that A−1Y is convex.

As a consequence of Theorem 9(a), a coordinate projection of a convex set X is convex.
For example, given a convex set X ⊆ R2, the set {x1 | (x1, x2) ∈ X for some x2} is convex.

2.2 Convex Functions

Informally speaking, a function f : Rn → R is convex when for every segment [x1, x2], as the
vector xα = αx1+(1−α)x2 varies within the line segment [x1, x2], the points (xα, f(xα)) on
the graph {(x, f(x) | x ∈ Rn} lie below the segment connecting (x1, f(x1)) and (x2, f(x2)),
as illustrated in Figure 2.8.

Let f be a function. The domain of f is a set in Rn defined by

dom(f) = {x ∈ Rn | f(x) is well defined (finite)}.

Definition 2 A function f is convex if its domain dom(f) is convex set and for all x1, x2 ∈
dom(f) and α ∈ (0, 1), the following relation holds

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

When the inequality in the preceding definition is strict for x1 6= x2, the function f is
strictly convex.
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Figure 2.8: A convex function values at a point xα = αx1 + (1 − α)x2 do not exceed the
value αf(x1) + (1− α)f(x2) for any α ∈ (0, 1) and any x1, x2.

Definition 3 A convex function f is strictly convex if for all x1, x2 ∈ dom(f) with x1 6= x2,
and any α ∈ (0, 1), the following strict inequality holds

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2).

Closely related to convex functions are concave functions.

Definition 4 A function f is concave if −f is convex.

Since f and −f have the same domain, from Definitions 2 and 4, we see that a function
f is concave when its domain dom(f) is convex and, for all x1, x2 ∈ dom(f) and α ∈ (0, 1),
the following inequality holds

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2).

Similarly, a function f is strictly concave if −f is strictly convex. Thus, a concave function
f is strictly concave when the preceding inequality is strict whenever x1 6= x2.

By using the definitions of a convex and concave function, one can verify that the
following scalar functions are convex:

(a) Affine function f(x) = ax + b for any a, b ∈ R.

(b) Exponential function f(x) = eax for any a ∈ R.

(c) Power f(x) = xp for x ∈ (0, +∞) and p ≥ 1 or p ≤ 0.

(d) Power of absolute value |x|p for p ≥ 1.



2.2. CONVEX FUNCTIONS 35

(e) Negative entropy f(x) = x ln x for x ∈ (0, +∞).

The following are some examples of concave scalar functions:

(a) Affine function f(x) = ax + b for any a, b ∈ R.

(b) Power f(x) = xp for x ∈ (0, +∞) and 0 ≤ p ≤ 1.

(c) Logarithm f(x) = ln x for x ∈ (0, +∞).

Note that the affine functions are both convex and concave, and there are no other
functions that are both convex and concave.

Any norm in Rn is convex. In particular, a general the norm ‖ · ‖p for p ≥ 1,

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

is convex.

There are some well-known functions of matrices that are also convex. For example, the
trace of a square matrix X is convex, where the trace is viewed as a function of X. More
specifically, the trace is a linear function: for any two n×n square matrices X and Y , and
any two scalars a and b, we have

Tr(aX + bY ) =
n∑

i=1

(a[X]ii + b[Y ]ii) = aTrX + bTrY.

Some additional examples of convex functions of matrices are provided in Examples 1
and 2.

Example 1 An affine function on the space of m× n matrices is given by

f(X) = Tr(AT X) + b =
m∑

i=1

n∑
j=1

aijxij + b,

where A is a given (fixed) m× n matrix and b is a scalar. Affine functions on the space of
m× n matrices are convex (in X).

Example 2 Spectral norm of a matrix is given by

f(X) = ‖X‖ =
√

λmax(XT X),

where λmax(A) denotes the maximum eigenvalue of a matrix A (see Section 1.1.10). Spectral
norm is convex function.
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A convex function f satisfies general convex inequality

f(α1x1 + . . . + αmxm) ≤ α1f(x1) + . . . + αmf(xm)

for any integer m ≥ 2, and for all vectorsx1, . . . , xm ∈ domf and scalars α1, . . . , am such
that αi > 0 for all i and

∑m
i=1 αi = 1.

Convex functions have a special continuity property. In particular, a continuity over
some subset of domf follows immediately from convexity. We state one such result without
proof. A more general result (with the proof) can be found, for example, in Bertsekas, Nedić
and Ozdaglar [9], Proposition 1.4.6. This result uses a notion of relative interior of a set,
which is the intersection of the interior of the set and the smallest (in the sense of inclusion)
affine set containing the given set.

Theorem 10 A convex function is continuous over the relative interior of its domain.

As an immediate consequence of Theorem 10, any function f with domain domf = Rn

is continuous (over Rn). Furthermore, if the interior of the domain domf is nonempty,
by Theorem 10, it follows that f is continuous over int(domf). For example, consider the
logarithmic function f(x) = ln x whose domain is domf = (0, +∞). The interior of its
domain is the domain itself [since (0, +∞) is open in R]. Hence, f(x) = ln x is continuous
over (0, +∞).

Now, we consider the level sets of a convex function. Recall that for a function f and
a scalar γ, the (lower) level set Lγ(f) is given by

Lγ(f) = {x | f(x) ≤ γ}.

From Definition 2 of a convex function it is straightforward to verify that every (lower) level
set of a convex function f is convex. (recall that, by convention, the empty set is convex).
However, the reverse statement is false, i.e., if every (lower) level set of f is convex, the
function f need not be convex. Consider, for example, the function f(x) = −ex for x ∈ R.
For a concave function g, every (upper) level set {x | g(x) ≥ γ} is convex.

We can verify that a given function is convex by

• Using the definition

• Considering reduction to a scalar function

• Applying some special criteria, such as the second-order or the first order conditions

• Showing that the function is obtained from some other (easily recognizable) convex
functions through operations preserving convexity.

We next discuss the reduction to a scalar function. The convexity criteria applicable to
differentiable functions are discussed in Section 2.2.1, while the operations preserving the
convexity of functions are discussed in Section 2.2.2.

The following lemma provides a convexity test for functions based on the convexity
along lines. We state the result without a proof (the result follows straightforward from
the definition of a convex function).
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Lemma 11 A function f is convex if and only if domf is convex, and for each x ∈ domf
and v ∈ Rn, the function gx,v : R 7→ R given by

gx,v(t) = f(x + tv) with domgx,v = {t ∈ R | x + tv ∈ domf}

is convex (in t).

In view of Lemma 11, checking convexity of multivariable functions can be done by
checking convexity of a family of scalar functions.

The following example demonstrates an application of Lemma 11.

Example 3 Let Sn be the space of all n× n symmetric matrices, and let f : Sn → R be a
function defined by

f(X) = − ln detX.

The domain of f is domf = Sn
++, where Sn

++ is the space of all n × n positive definite
(symmetric) matrices. Let X ∈ Sn

++ and V ∈ Sn, and let

g(t) = − ln det(X + tV ).

By writing X + tV = X1/2X1/2 + X1/2(X−1/2tV X−1/2)X1/2, we have

X + tV = X1/2 (I + tX−1/2V X−1/2)X1/2.

Therefore

g(t) = − ln detX − ln det(I + tX−1/2V X−1/2)

= − ln detX −
n∑

i=1

ln(1 + tλi),

where λi are the eigenvalues of X−1/2V X−1/2. The last equality in the preceding relation
follows from the fact that the determinant of a (square) matrix is equal to the sum of the
eigenvalues of a matrix (see Section 1.1.9), and the fact that the eigenvalues of I + A are
1 + λi, where λi are eigenvalues of A [see Section 1.1.9, Lemma 2(d)]. Since g is convex
in t (for any X ∈ domf and V ∈ Sn), by Lemma 11, f is convex in X over Sn.

2.2.1 Differentiable Convex Functions

Let f be twice differentiable at a vector x. Recall that the Hessian ∇2f(x) is a symmetric
n× n matrix whose entries are the second-order partial derivatives of f at x,

[
∇2f(x)

]
ij

=
∂2f(x)

∂xi∂xj

for i, j = 1, . . . , n

(see Section 1.2.5). The following theorem provides a necessary and sufficient second-order
condition for convexity of a function.
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Theorem 11 Let f be a twice differentiable function with convex domain domf . Then:

(a) f is convex over domf if and only if ∇2f(x) ≥ 0 for all x ∈ domf .

(b) f is strictly convex over domf if ∇2f(x) > 0 for all x ∈ domf .

The following are some examples of the use of Theorem 11.

Example 4 (Quadratic function)
Let f(x) = x′Px + q′x + r for an n× n matrix P . Then,

∇f(x) = (P + P T )x + q, ∇2f(x) = P + P T .

Thus, by Theorem 11, f is convex if and only if P + P T is positive semidefinite. When in
addition P is symmetric, f is convex if and only if P is positive semidefinite.

Example 5 (Least-squares)
Let f(x) = ‖Ax− b‖2 for an m× n matrix A. Then,

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2AT A.

Since AT A is positive semidefinite for any A, by Theorem 11, the function f(x) = ‖Ax−b‖2

is always convex.

Example 6 (Quadratic-over-linear, see [13], page73.)
Let f(x, y) = x2/y with x, y ∈ R. Then,

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]T

.

The Hessian ∇2f(x, y) is positive semidefinite if and only if y > 0. Thus, f(x, y) = x2/y
is convex over the set {(x, y) ∈ R2 | x ∈ R, y > 0}.

The following theorem provides the first-order condition.

Theorem 12 Let f be differentiable function over its domain. Then, f is convex if and
only if its domain is convex and

f(x) +∇f(x)T (z − x) ≤ f(z) for all x, z ∈ domf.

The result of Theorem 12 has far reaching consequences. In particular, it implies that
for a convex function, a first order approximation provides a global underestimate of f . This
is a very important property frequently used in the development of optimization algorithms
for convex problems as well as in the performance analysis of these algorithms.
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2.2.2 Operations Preserving Convexity of Functions

Here, we discuss some operations with convex functions that preserve the convexity. In
particular, we consider scaling, sum, pointwise maximum/supremum, partial minimization,
and special compositions.

Theorem 13 We have:

(a) Let f be a convex function and let λ > 0 be a scalar. Then, λf is convex.

(b) Let f1 and f2 be convex functions over their respective domains domf1 and domf2,
and such that domf1 ∩ domf2 6= ∅. Then, f1 + f2 is convex over domf1 ∩ domf2.

(c) Let A ⊆ Rp and f : Rn × Rp → R. Let f(x, z) be convex in x for each z ∈ A. Then,
the supremum function over the set A is convex, i.e., the function

g(x) = sup
z∈A

f(x, z)

is convex.

(d) Let C ⊆ Rn × Rp be a nonempty convex set, and let f : Rn × Rp → R be a con-
vex function [in (x, z) ∈ Rn × Rp]. Then, the function g(x) obtained by the partial
minimization is convex, i.e., the function

g(x) = inf
z∈C

f(x, z)

is convex.

Proof. (a) Let λ > 0, and note that f and λf have the same domain domf , which is
convex since f is convex. Let x1, x2 ∈ domf and α ∈ (0, 1). Evidently, by convexity of f ,
we have λf(αx1 + (1− α)x2) ≤ αλf(x1) + (1− α)λf(x2), showing that λf is convex.

(b) Note that domf1 ∩ domf2 is convex since it is the intersection of two convex sets [see
Theorem 8(c)]. Let x1, x2 ∈ domf1 ∩ domf2 and α ∈ (0, 1). Then,

(f1 + f2)(αx1 + (1− α)x2) = f1(αx1 + (1− α)x2) + f2(αx1 + (1− α)x2)
≤ αf1(x1) + (1− α)f1(x2) + αf2(x1) + (1− α)f2(x2)
= α(f1 + f2)(x1) + (1− α)(f1 + f2)(x2),

where the inequality follows from convexity of f1 and f2. The preceding relation shows
that f1 + f2 is convex over domf1 ∩ domf2.

(c) Let x1, x2 ∈ Rn and α ∈ (0, 1). Consider the point αx + (1 − α)x2 and the function
value

g(αx1 + (1− α)x2) = sup
z∈A

f(αx1 + (1− α)x2, z). (2.1)

Let ε > 0 be arbitrary. By definition of the supremum, for ε > 0, there exists zε such that

sup
z∈A

f(αx1 + (1− α)x2, z)− ε ≤ f(αx1 + (1− α)x2, zε). (2.2)
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For the vector zε, the function f(x, zε) is convex in x, so that

f(αx1 + (1− α)x2, zε) ≤ αf(x1, zε) + (1− α)f(x2, zε).

Since f(x1, zε) ≤ supz∈A f(x1, z) and f(x2, zε) ≤ supz∈A f(x2, z), from the preceding rela-
tion and the definition of g(x), it follows

f(αx1 + (1− α)x2, zε) ≤ αg(x1) + (1− α)g(x2). (2.3)

By combining Eqs. (2.1)–(2.3), we obtain

g(αx1 + (1− α)x2)− ε ≤ αg(x1) + (1− α)g(x2).

Letting ε → 0, we see that

g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2),

thus establishing the convexity of g.

(d) Let x1, x2 ∈ Rn and α ∈ (0, 1) be arbitrary. Let ε > 0 be arbitrarily small. Then,
there exist z1, z2 ∈ C such that f(x1, z1) ≤ g(x1) + ε and f(x2, z2) ≤ g(x2) + ε. Consider
f(αx1 + (1−α)x2, αz1 + (1−α)z2). Since C is convex, the vector αz1 + (1−α)z2) belongs
to the set C. Therefore,

g(αx1 +(1−α)x2) = inf
z∈C

f(αx1 +(1−α)x2, z) ≤ f(αx1 +(1−α)x2, αz1 +(1−α)z2). (2.4)

Note that we can write

(αx1 + (1− α)x2, αz1 + (1− α)z2) = α(x1, z1) + (1− α)(x2, z2),

so that by convexity of f , we obtain

f(αx1 + (1− α)x2, αz1 + (1− α)z2) = f (α(x1, z1) + (1− α)(x2, z2))
≤ αf(x1, z1) + (1− α)f(x2, z2).

By the choice of z1, z2 ∈ C, we further have

f(αx1 + (1− α)x2, αz1 + (1− α)z2) ≤ αg(x1) + (1− α)g(x2) + ε,

which when combined with Eq. (2.4) yields

g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2) + ε.

Letting ε → 0, we see that g satisfies the convexity relation and therefore, g is convex.

As a special case of Theorem 13(c), when A is a finite set, say A = {1, . . . ,m}, we see
that the pointwise maximum of a finite collection of convex functions is a convex function,
i.e., the function

f(x) = max{f1(x), . . . , fm(x)}
is convex when each fi is convex. Its domain is the intersection of domains of fi, i.e.,
domf = ∩m

i=1domfi. For example, a polyhedral function f given by

f(x) = max{aT
1 x + b1, . . . , a

T
mx + bm}

is convex. Another example is the sum of r largest components of a vector x ∈ Rn, as
discussed next.
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Example 7 (Example 3.6 of [13], page 80.) The function defined as the sum of r largest
components of a vector x ∈ Rn is convex. In particular, this sum is given by

f(x) = max
(i1,...,ir)∈Ir

{xi1 + . . . + xir},

where Ir is the set of ordered r-tuples with components from {1, . . . , n}, defined as follows:

Ir = {(i1, . . . , ir) | i1 < . . . < ir, ij ∈ {1, . . . , n} for j = 1, . . . , r} .

By applying Theorem 13(c), with A = Ir, we see that f is convex.

We next discuss some applications of Theorem 13(c), where A is infinite. Given a
nonempty set C ⊆ Rn, the set support function fC(x) = supz∈C zT x is convex. Note that,
for each fixed z, the function x 7→ zT x is convex (in fact, it is linear). Thus, fC is convex
by Theorem 13(c), where A = C. In addition, set farthest-distance is also convex, i.e., the
function

f(x) = sup
z∈C

‖x− z‖ for x ∈ Rn

is convex. This follows from Theorem 13(c), by noting that for each fixed z, the function
x 7→ ‖x− z‖ is convex.

Maximum-eigenvalue function over symmetric matrices is convex. In particular, let Sn

be the set of all n× n symmetric matrices. The maximum-eigenvalue function λmax(X) of
a matrix X ∈ Sn is

λmax(X) = sup
‖z‖=1

zT Xz.

For a fixed z ∈ Rn, the function X 7→ zT Xz is convex (in fact, linear). Hence, by Theorem
13(c) where C = {z ∈ Rn | ‖z‖ = 1}, it follows that λmax(X) is convex.

In the following theorems, we provide some special compositions involving convex func-
tions that preserve convexity. The theorems are given without proofs. One can verify the
results of the theorems directly by using the definition of a convex function [Definition 2].

Theorem 14 Let f : Rn → R be convex, and let A be an n×m matrix and b ∈ Rn. Then,

g(x) = f(Ax + b) for x ∈ Rn

is a convex function.

As a direct consequence of Theorem 14, the following two functions are convex

g(x) = ‖Ax + b‖ for x ∈ Rn,

f(x) = −
m∑

i=1

ln(bi − aT
i x) Log-barrier function,

where the domain of the log-barrier function is domf = {x ∈ Rn | aT
i x < bi, i = 1, . . . ,m}.
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Theorem 15 Let f : Rn → R and h : R → R. Consider

g(x) = h(f(x)) for all x ∈ Rn.

The function g is convex if either of the following two conditions is satisfied:

(1) f is convex, h is nondecreasing and convex.

(2) f is concave, h is nonincreasing and convex.

By applying Theorem 15, we can see that:

ef(x) is convex if f is convex,

1

f(x)
is convex if f is concave and f(x) > 0 for all x.

2.3 Convex Constrained Optimization Problems

In this section, we consider a generic convex constrained optimization problem. We in-
troduce the basic terminology, and study the existence of solutions and the optimality
conditions. We conclude this section with the projection problem and projection theorem.
which is important for the subsequent algorithmic development

2.3.1 Constrained Problem

Consider the following constrained optimization problem

minimize f(x)
subject to g1(x) ≤ 0, . . . , gm(x) ≤ 0

Bx = d
x ∈ X. (2.5)

where f : Rn → R is an objective function, X ⊆ Rn is a given set, gi : Rn → R, i = 1, . . . ,m
are constraint functions, B is a p× n matrix, and d ∈ Rp. Let g(x) ≤ 0 compactly denote
the inequalities g1(x) ≤ 0, . . . , gm(x) ≤ 0. Define

C = {x ∈ Rn | g(x) ≤ 0, Bx = d, x ∈ X}. (2.6)

We refer to the set C as constraint set or feasible set. The problem is feasible when C is
nonempty. We refer to the value infx∈C f(x) as the optimal value and denote it by f ∗, i.e.,

f ∗ = inf
x∈C

f(x),

where C is given by Eq. (2.6). A vector x∗ is optimal (solution) when x∗ is feasible and
attains the optimal value f ∗, i.e.,

g(x∗) ≤ 0, Bx∗ = d, x∗ ∈ X, f(x∗) = f ∗.

Before attempting to solve problem (2.5), there are some important questions to be
answered, such as:
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• Is the problem infeasible, i.e., is C empty?

• Is f ∗ = +∞?1.

• Is f ∗ = −∞?

If the answer is “yes” to any of the preceding questions, then it does not make sense to
consider the problem in (2.5) any further. The problem is of interest only when f ∗ is finite.
In this case, the particular instances when the problem has a solution are of interest in
many applications.

A feasibility problem is the problem of determining whether the constraint set C in
Eq. (2.6) is empty or not. In many applications, the feasibility problem can be a hard
problem on its own. It can be posed as an optimization problem with the objective function
f(x) = 0 for all x ∈ Rn. In particular, a feasibility problem can be reduced to the following
minimization problem:

minimize 0 (2.7)

subject to g(x) ≤ 0, Bx = d, x ∈ X. (2.8)

From now on, we assume that the problem in Eq. (2.5) is feasible, and we focus on the
issues of finiteness of the optimal value f ∗ and the existence of optimal solutions x∗. In
particular, for problem (2.5), we use the following assumption.

Assumption 1 The functions f and gi, i = 1, . . . ,m are convex over Rn. The set X is non-
empty closed and convex. The set C = {x ∈ Rn | g(x) ≤ 0, Bx = d, x ∈ X} is nonempty.

Under Assumption 1, the functions f and gi, i = 1, . . . ,m are continuous over Rn (see
Theorem 10).

In what follows,we denote the set of optimal solutions of problem (2.5) by X∗.

2.3.2 Existence of Solutions

Here, we provide some results on the existence of solutions. Under Assumption 1, these
results are consequences of Theorems 3 and 4 of Section 1.2.4.

Theorem 16 Let Assumption 1 hold. In addition, let X ⊆ Rn be bounded. Then, the
optimal set X∗ of problem (2.5) is nonempty, compact, and convex.

Proof. At first, we show that the constraint set C is compact. The set C is the intersection
of the level sets of continuous functions gi and hyperplanes (for j = 1, . . . , p, each set
{x ∈ Rn | bT

j x = dj} is a hyperplane), which are all closed sets. Therefore, C is closed.
Since C ⊆ X and X is bounded (because it is compact), the set C is also bounded. Hence,
by Lemma 8 of Section 1.2.2, the set C is compact. The function f is continuous (by
convexity over Rn). Hence, by Weierstrass Theorem (Theorem 3), the optimal value f ∗ of
problem (2.5) is finite and its optimal set X∗ is nonempty.

1This happens in general only when domf ∩ C = ∅.
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The set X∗ is closed since it can be represented as the intersection of closed sets:

X∗ = C ∩ {x ∈ Rn | f(x) ≤ f ∗}.

Furthermore, X∗ is bounded since X∗ ⊆ C and C is bounded. Hence, X∗ is compact.
We now show that X∗ is convex. Note that C is convex as it is given as the intersection

of convex sets. Furthermore, the level set {x ∈ Rn | f(x) ≤ f ∗} is convex by convexity of
f . Hence, X∗ is the intersection of two convex sets and, thus, X∗ is convex.

As seen in the proof of Theorem 16, the set C is closed and convex under Assumption 1.
Also, under this assumption, the set X∗ is closed and convex but possibly empty. The
boundedness of X is the key assumption ensuring nonemptiness and boundedness of X∗.

The following theorem is based on Theorem 4. We provide it without a proof. (The
proof can be constructed similar to that of Theorem 16. The only new detail is in part (i),
where using the coercivity of f , we show that the level sets of f are bounded.)

Theorem 17 Let Assumption 1 hold. Furthermore, let any of the following conditions be
satisfied:

(i) The function f is coercive over C.

(ii) For some γ ∈ R, the set {x ∈ C | f(x) ≤ γ} is nonempty and compact.

(iii) The set C is compact.

Then, the optimal set X∗ of problem (2.5) is nonempty, compact, and convex.

For a quadratic convex objective and a linear constraint set, the existence of solutions is
equivalent to finiteness of the optimal value. Furthermore, the issue of existence of solutions
can be resolved by checking a “linear condition”, as seen in the following theorem.

Theorem 18 Consider the problem

minimize f(x) = xT Px + cT x
subject to Ax ≤ b,

where P is an n × n positive semidefinite matrix, c ∈ Rn, A is an m × n matrix, and
b ∈ Rm. The following statements are equivalent:

(1) The optimal value f ∗ is finite.

(2) The optimal set X∗ is nonempty.

(3) If Ay ≤ 0 and Py = 0 for some y ∈ Rn, then cT y ≥ 0.

The proof of Theorem 18 requires the notion of recession directions of convex closed sets,
which is beyond the scope of these notes. The interested reader can find more discussion
on this in Bertsekas, Nedić and Ozdaglar [9] (see there Proposition 2.3.5), or in Auslender
and Teboulle [2].

As an immediate consequence of Theorem 18, we can derive the conditions for existence
of solutions of linear programming problems.
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Corollary 1 Consider a linear programming problem

minimize f(x) = cT x
subject to Ax ≤ b.

The following conditions are equivalent for the LP problem:

(1) The optimal value f ∗ is finite.

(2) The optimal set X∗ is nonempty.

(3) If Ay ≤ 0 for some y ∈ Rn, then cT y ≥ 0.

A linear programming (LP) problem that has a solution, it always has a solution of a
specific structure. This specific solution is due to the geometry of the polyhedral constraint
set. We describe this specific solution for an LP problem in a standard form:

minimize cT x
subject to Ax = b

x ≥ 0, (2.9)

where A is an m× n matrix and b ∈ Rm. The feasible set for the preceding LP problem is
the polyhedral set {x ∈ Rn | Ax = b, x ≥ 0}.

Definition 5 We say that x is a basic feasible solution for the LP in Eq. (2.9), when x
is feasible and there are n linearly independent constraints among the constraints that x
satisfies as equalities.

The preceding definition actually applies to an LP problem in any form and not neces-
sarily in the standard form. Furthermore, a basic solution of an LP is a vertex (or extreme
point) of the (polyhedral) constraint set of the given LP, which are out of the scope of these
lecture notes. The interested readers may find more on this, for example, in the textbook
on linear optimization by Bertsimas and Tsitsiklis [11].

Note that for a given polyhedral set, there can be only finitely many basic solutions.
However, the number of such solutions may be very large. For example, the cube {x ∈ Rn |
0 ≤ xi ≤ 1, i = 1, . . . , n} is given by 2n inequalities, and it has 2n basic solutions.

We say that a vector x is a basic solution if it satisfies Definition 5 apart from being
feasible. Specifically, x is a basic solution for (2.9) if there are n linearly independent
constraints among the constraints that x satisfies as equalities. A basic solution x is
degenerate if more than n constraints are satisfied as equalities at x (active at x). Otherwise,
it is nondegenerate.

Example 8 Consider the polyhedral set given by

minimize x1 + x2 + x3 ≤ 2
subject to x2 + 2x3 ≤ 2

x1 ≤ 1
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x3 ≤ 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The vector x̃ = (1, 1, 0) is a nondegenerate basic feasible solution since there are exactly
three linearly independent constraints that are active at x̃, specifically,

x1 + x2 + x3 ≤ 2, x1 ≤ 1, x3 ≥ 0.

The vector x̂ = (1, 0, 1) is a degenerate feasible solution since there are five constraints
active at x̂, namely

x1 + x2 + x3 ≤ 2, x2 + 2x3 ≤ 2, x1 ≤ 1, x3 ≤ 1, x2 ≥ 0.

Out of these, for example, the last three are linearly independent.

We are now ready to state a fundamental result for linear programming solutions.

Theorem 19 Consider an LP problem. Assume that its constraint set has at least one
basic feasible solution and that the LP has an optimal solution. Then, there exists an
optimal solution which is also a basic feasible solution.

2.3.3 Optimality Conditions

In this section, we deal with a differentiable convex function. We have the following.

Theorem 20 Let f : Rn → R be a differentiable convex function, and let C ⊆ Rn be a
nonempty closed convex set. Consider the problem

minimize f(x)
subject to x ∈ C.

A vector x∗ is optimal for this problem if and only if x∗ ∈ C and

∇f(x∗)T (z − x∗) ≥ 0 for all z ∈ C.

Proof. For the sake of simplicity, we prove the result assuming that f is continuously
differentiable.

Let x∗ be optimal. Suppose that for some ẑ ∈ C we have

∇f(x∗)T (ẑ − x∗) < 0.

Since f is continuously differentiable, by the first-order Taylor expansion [Theorem 6(a)],
we have for all sufficiently small α > 0,

f(x∗ + α(ẑ − x∗)) = f(x∗) + α∇f(x∗)T (ẑ − x∗) + o(α) < f(x∗),

with x∗ ∈ C and ẑ ∈ C. By the convexity of C, we have x∗ + α(ẑ − x∗) ∈ C. Thus, this
vector is feasible and has a smaller objective value than the optimal point x∗, which is a
contradiction. Hence, we must have ∇f(x∗)T (z − x∗) ≥ 0 for all z ∈ C.
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Suppose now that x∗ ∈ C and

∇f(x∗)T (z − x∗) ≥ 0 for all z ∈ C. (2.10)

By convexity of f [see Theorem 12], we have

f(x∗) +∇f(x∗)T (z − x∗) ≤ f(z) for all z ∈ C,

implying that
∇f(x∗)T (z − x∗) ≤ f(z)− f(x∗).

This and Eq. (2.10) further imply that

0 ≤ f(z)− f(x∗) for all z ∈ C.

Since x∗ ∈ C, it follows that x∗ is optimal.

We next discuss several implications of Theorem 20, by considering some special choices
for the set C. Let C be the entire space, i.e., C = Rn. The condition

∇f(x∗)T (z − x∗) ≥ 0 for all z ∈ C

reduces to
∇f(x∗)T d ≥ 0 for all d ∈ Rn. (2.11)

In turn, this is equivalent to
∇f(x∗) = 0.

Thus, by Theorem 20, a vector x∗ is a minimum of f over Rn if and only if ∇f(x∗) = 0.
Let the set C be affine, i.e., the problem of interest is

minimize f(x)
subject to Ax = b, (2.12)

where A is an m×n matrix and b ∈ Rm. In this case, the condition of Theorem 20 reduces
to

∇f(x∗)T y ≥ 0 for all y ∈ NA,

where NA is the null space of the matrix A. Thus, the gradient ∇f(x∗) is orthogonal to
the null space NA. Since the range of AT is orthogonal to NA [see Eq. (1.2)], it follows that
∇f(x∗) belongs to the range of AT , implying that

∇f(x∗) + AT λ∗ = 0 for some λ∗ ∈ Rm.

Hence, by Theorem 20, a vector x∗ solves problem (2.12) if and only if Ax∗ = b and there
exists λ∗ ∈ Rm such that ∇f(x∗) + AT λ∗ = 0. The relation ∇f(x∗) + AT λ∗ = 0 is known
as primal optimality condition. It is related to Lagrangian duality, which is the focus of
Section 2.5.

Let C be the nonnegative orthant in Rn, i.e., the problem of interest is

minimize f(x)
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subject to x ≥ 0. (2.13)

For this problem, the condition of Theorem 20 is equivalent to

∇f(x∗)T x∗ = 0.

Therefore, a vector x∗ solves problem (2.13) if and only if x∗ ≥ 0 and ∇f(x∗)T x∗ = 0.
The relation ∇f(x∗)T x∗ = 0 is known as complementarity condition, and the terminology
comes again from the Lagrangian duality theory.

Let C be a simplex in Rn, i.e., the problem of interest is

minimize f(x)

subject to x ≥ 0,
n∑

i=1

xi = a, (2.14)

where a > 0 is a scalar. By Theorem 20, x∗ is optimal if and only if

n∑
i=1

∂f(x∗)

xi

(xi − x∗i ) ≥ 0 for all xi ≥ 0 with
∑n

i=1 xi = a.

Consider an index i with x∗i > 0. Let j 6= i and consider a feasible vector x with xi = 0,
xj = x∗j + x∗i and all the other coordinates the same as those of x∗. By using this vector in
the preceding relation, we obtain(

∂f(x∗)

xj

− ∂f(x∗)

xi

)
x∗i ≥ 0 for all i such that x∗i > 0,

or equivalently
∂f(x∗)

xi

≤ ∂f(x∗)

xj

for all i such that x∗i > 0. (2.15)

Hence, x∗ is an optimal solution to problem (2.14) if and only if x∗ satisfies relation (2.15).
Let us illustrate the optimality conditions for a simplical constraint set on the problem

of optimal routing in a communication network (see [5] and [17]).

Example 9 (Optimal Routing) Consider a directed graph modeling a data communica-
tion network. Let S be a set of origin-destination pairs, i.e., each s ∈ S is an ordered pair
(is, js) of nodes is and js in the network, with is being the origin and js being the destina-
tion of s. Let ys be the traffic flow of s (data units/second) i.e., the arrival rate of traffic
entering the network at the origin of s and exiting the network at the destination of s. The
traffic flow of s is routed through different paths in the network. There is a cost associated
with using the links L of the network, namely, the cost of sending a flow zij on the link
(i, j) ∈ L is fij(zij), where fij is convex and continuously differentiable. The problem is to
decide on paths along which the flow ys should be routed, so as to minimize the total cost.

To formalize the problem, we introduce the following notation:

- Ps is the set of all directed paths from the origin of s to the destination of s.
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- xs is the part of the flow ys routed through the path p with p ∈ Ps.

Let x denote a vector of path-flow variables, i.e.,

x = {xp | p ∈ Ps, s ∈ S}.

Then, the routing problem can be casted as the following convex minimization:

minimize f(x) =
∑

(i,j)∈L

fij

 ∑
{p | (i,j)∈p}

xp


subject to

∑
p∈Ps

xp = ys for all s ∈ S

xp ≥ 0 for all p ∈ Ps and all s ∈ S.

The cost on link (i, j) depends on the total flow through that link, i.e., the sum of all
flows xp along paths p that contain the link (i, j). The problem is convex in variable x,
with differentiable objective function and a constraint set given by a Cartesian product of
simplices (one simplex per s).

We now consider the optimality conditions for the routing problem. Note that

∂f(x)

xp

=
∑

(i,j)∈p

f ′ij(zij),

with zij being the total flow on the link (i, j). When f ′ij(zij) is viewed as the length of the

link (i, j) evaluated at zij, the partial derivative ∂f(x)
xp

is the length of the path p. By the

necessary and sufficient conditions for a simplex [cf. Eq. 2.14], for all s ∈ S, we have
x∗p > 0 when

∂f(x∗)

xp

≤ ∂f(x∗)

xp̃

for all p̃ ∈ Ps.

This relation means that a set of path-flows is optimal if and only if the flow is positive
only on the shortest paths (where link length is measured by the first derivative). It also
means that at an optimum x∗, for an s ∈ S, all the paths p ∈ Ps carrying a positive flow
x∗p > 0 have the same length (i.e., the traffic ys is routed through the paths of equal length).

In the absence of convexity, the point x∗ ∈ C satisfying the condition

f(x∗)T (z − x∗) ≥ 0 for all z ∈ C

is referred to as a stationary point. Such a point may be a local or global minimum of f
over C. A global minimum of f over C is any solution to the problem of minimizing f over
C. A local minimum of f over C is a point x̃ ∈ C for which there exists a ball B(x̃, r) such
that there is no “better” point among the points that belong to the ball B(x̃, r) and the
set C, i.e., a ball B(x̃, r) such that

f(x) ≥ f(x̃) for all x ∈ C ∩B(x̃, r).
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For convex problems (i.e., convex f and C), there is no distinction between local and global
minima: every local minimum is also global in convex problems. This makes solving convex
minimization problems “easier” than solving a more general “nonconvex” problems.

Let us note that for a strictly convex function, the optimal solution to the problem of
minimizing f over C is unique (of course, when a solution exists). We state this result in
the following theorem, whose proof follows from the definition of strict convexity.

Theorem 21 Let C ⊆ Rn be a nonempty closed convex set and let f be a strictly convex
function over C. If the problem of minimizing f over C has a solution, then the solution
is unique.

Proof. To arrive at a contradiction, assume that the optimal set X∗ has more than one
point. Let x∗1 and x∗2 be two distinct solutions, i.e., f(x∗1) = f(x∗2) = f ∗ and x∗1 6= x∗2. Also,
let α ∈ (0, 1). Since f is convex, the set X∗ is also convex implying that αx∗1 + (1−α)x∗2 ∈
X∗. Hence,

f(αx∗1 + (1− α)x∗2) = f ∗. (2.16)

At the same time, by strict convexity of f over C and the relation X∗ ⊆ C, we have that
f is strictly convex over X∗, so that

f(αx∗1 + (1− α)x∗2) < αf(x∗1) + (1− α)f(x∗2) = f ∗,

which contradicts relation (2.16). Therefore, the solution must be unique.

2.3.4 Projection Theorem

One special consequence of Theorems 4 and 20 is the Projection Theorem. The theorem
guarantees the existence and uniqueness of the projection of a vector on a closed convex
set. This result has a wide range of applications.

For a given nonempty set C ⊆ Rn and a vector x̂, the projection problem is the problem
of determining the point x∗ ∈ C that is the closest to x̂ among all x ∈ C (with respect to
the Euclidean distance). Formally, the problem is given by

minimize ‖x− x̂‖2

subject to x ∈ C.
(2.17)

In general, such a problem may not have an optimal solution and the solution need not be
unique (when it exists). However, when the set C is closed and convex set, the solution
exists and it is unique, as seen in the following theorem.

Theorem 22 (Projection Theorem) Let C ⊆ Rn be a nonempty closed convex set and
x̂ ∈ Rn be a given arbitrary vector.

(a) The projection problem in Eq. (2.17) has a unique solution.

(b) A vector x∗ ∈ C is the solution to the projection problem if and only if

(x∗ − x̂)T (x− x∗) ≥ 0 for all x ∈ C.
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Figure 2.9: The projection of a vector x̂ on the closed convex set C is the vector PC [x̂] ∈ C
that is the closest to x̂ among all x ∈ C, with respect to the Euclidean distance.

Proof. (a) The function f(x) = ‖x− x̂‖ is coercive over Rn, and therefore coercive over
C (i.e., lim‖x‖→∞, x∈C f(x) = ∞). The set C is closed, and therefore by Theorem 4, the
optimal set X∗ for projection problem (2.17) is nonempty.

Furthermore, the Hessian of f is given by ∇2f(x) = 2I, which is positively definite
everywhere. Therefore, by Theorem 11(b), the function f is strictly convex and the optimal
solution is unique [cf. Theorem 21].

(b) By the first-order optimality condition of Theorem 20), we have x∗ ∈ C is a solution
to the projection problem if and only if

∇f(x∗)T (x− x∗) ≥ 0 for all x ∈ C.

Since ∇f(x) = 2(x− x̂), the result follows.

The projection of a vector x̂ to a closed convex set C is illustrated in Figure 2.9. The
unique solution x∗ to the projection problem is referred to as the projection of x̂ on C, and
it is denoted by PC [x̂]. The projection PC [x̂] has some special properties, as given in the
following theorem.

Theorem 23 Let C ⊆ Rn be a nonempty closed convex set.

(a) The projection mapping PC : Rn → C is nonexpansive, i.e.,

‖PC [x]− PC [y]‖ ≤ ‖x− y‖ for all x, y ∈ Rn.

(b) The set distance function d : Rn → R given by

dist(x, C) = ‖PC [x]− x‖

is convex.
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Figure 2.10: The projection mapping x 7→ PC [x] is nonexpansive, ‖PC [x]−PC [y]‖ ≤ ‖x−y‖
for all x, y.

Proof. (a) The relation evidently holds for any x and y with PC [x] = PC [y]. Consider
now arbitrary x, y ∈ Rn with PC [x] 6= PC [y]. By Projection Theorem (b), we have

(PC [x]− x)T (z − PC [x]) ≥ 0 for all z ∈ C, (2.18)

(PC [y]− y)T (z − PC [y]) ≥ 0 for all z ∈ C. (2.19)

Using z = PC [y] in Eq. (2.18) and z = PC [x] in Eq. (2.19), and by summing the resulting
inequalities, we obtain,

(PC [y]− y + x− PC [x])T (PC [x]− PC [y]) ≥ 0.

Consequently,
(x− y)T (PC [x]− PC [y]) ≥ ‖PC [x]− PC [y]‖2.

Since PC [x] 6= PC [y], it follows that ‖y − x‖ ≥ ‖PC [x]− PC [y]‖.

(b) The distance function is equivalently given by

dist(x, C) = min
z∈C

‖x− z‖ for all x ∈ Rn.

The function h(x, z) = ‖x − z‖ is convex in (x, z) over Rn × Rn, and the set C is convex.
Hence, by Theorem 13(d), the function dist(x, C) is convex.

2.4 Problem Reformulation

Often, a convex minimization problem can be re-formulated in an equivalent form that may
have certain advantages from the point of solution approaches. In this section, we provide
several examples illustrating some of the useful problem re-formulations.
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Consider the problem with a polyhedral objective, given as follows:

minimize max{cT
1 x + d1, . . . , c

T
mx + dm}

subject to Ax ≤ b,

where cj ∈ Rn, A is an m×n matrix, and b ∈ Rm. The problem is convex, but the objective
function is not differentiable. However, the problem can be casted as a linear program by
augmenting the space of variables. In particular, it is equivalent to the following linear
programming problem

minimize w
subject to cT

j x + dj ≤ w, j = 1, . . . ,m
Ax ≤ b,

where the minimization is taken over the variable (x, w) with x ∈ Rn and w ∈ R. The
preceding problem is linear in (x, w).

The following problem is a linear-fractional programming problem

minimize
cT x + d

gT x + h
subject to Ax ≤ a, Bx = b.

There is another (implicit) constraint in this problem imposed by the domain of the objec-
tive f :

domf = {x ∈ Rn | gT x + h > 0}.

By introducing the change of variables x = y
z

with y ∈ Rn, z ∈ R and z ≥ 0, the problem
can be re-formulated as a linear problem

minimize cT y + dz

subject to Ay ≤ za, By = zb

gT y + hz = 1, z ≥ 0.

Note that, the preceding problem is linear in variable (y, z) where y ∈ Rn and z ∈ R.

Example 10 (Example 4.7 of [13], page 152.) Von Neumann Model of a growing economy
is the following:

maximize f(x, x+) = min
1≤i≤n

x+
i

xi

subject to x+ ≥ 0, x > 0, Bx+ ≤ Ax,

where

- xi and x+
i represent the activity levels of sector i, in the current and next period

respectively.

- [Ax]j and [Bx+]j are respectively the produced and consumed amounts of good j.
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- x+
i /xi is the growth rate of sector i.

The problem is to allocate activity levels x and x+ so as to maximize the growth rate of the
slowest growing sector. This problem is a linear-fractional programming problem.

A semidefinite programming problem (SDP) is a convex problem of the following form:

minimize cT x
subject to x1F1 + x2F2 + · · ·+ xnFn + G ≤ 0

Ax = b,
(2.20)

with x ∈ Rn, symmetric m×m matrices Fi and G, a p× n matrix A, and a vector b ∈ Rp.
The inequality constraint is referred to as a linear matrix inequality (LMI). An SDP problem
with multiple LMI constraints can be re-written as an SDP with a single LMI constraint
by enlarging the matrices. For example, the system with two LMIs

x1F̂1 + · · ·+ xnF̂n + Ĝ ≤ 0, x1F̃1 + · · ·+ xnF̃n + G̃ ≤ 0

is equivalent to the following single LMI

x1

[
F̂1 0

0 F̃1

]
+ x2

[
F̂2 0

0 F̃2

]
+ · · ·+ xn

[
F̂n 0

0 F̃n

]
+

[
Ĝ 0

0 G̃

]
≤ 0.

The SDP problem in Eq. (2.20) reduces to an LP problem when all matrices Fi and G are
diagonal. An LP problem is equivalent to an SDP problem. In particular, consider the
following LP problem:

minimize cT x
subject to Ax ≤ b.

Its equivalent SDP problem is:

minimize cT x
subject to diag(Ax− b) ≤ 0,

where

diag(Ax− b) =

 [Ax− b]1 · · · 0
...

...
...

0 · · · [Ax− b]m

 .

The following is an example of an SDP problem.

Example 11 (Matrix Norm Minimization example of [13], Section 4.6.3, page 169.)
Consider the problem

minimize ‖A(x)‖
subject to x ∈ Rn,

where
A(x) = A0 + x1A1 + · · ·+ xnAn
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with each Ai being an p × q matrix. The matrix norm ‖A‖ is the norm induced by the
Euclidean vector norm, i.e.,

‖A‖ =
√

λmax (AT A),

and λmax(A
T A) is the maximum eigenvalue of AT A.

The preceding matrix norm minimization problem is equivalent to the following problem:

minimize t
subject to ‖A(x)‖ ≤ t

x ∈ Rn.

Since the relation ‖A‖ ≤ t is equivalent to AT A ≤ t2I, and this in turn is equivalent to[
tI A
AT tI

]
≥ 0,

the matrix norm minimization is equivalent to the following SDP problem

minimize t

subject to

[
tI A(x)

A(x)T tI

]
≥ 0

x ∈ Rn, t ∈ R.

2.5 Lagrangian Duality

Lagrangian duality is an important concept in convex optimization, and in optimization
theory in general. Its implications are far reaching both in theory and practice. Lagrangian
duality is a powerful tool providing:

• A basis for the development and analysis of a rich class of optimization algorithms.

• A general systematic way for generating bounding strategies (both in continuous and
discrete optimization).

• A basis for sensitivity analysis.

The main idea in Lagrangian duality is to associate, with a given constrained “primal
problem”, an “equivalent dual problem”, which may be easier to solve than the original
problem. This methodology is applicable to general constrained optimization problems,
but here, we will dominantly focus on constrained convex problems. The questions that
are investigated in the duality theory include:

(1) Is there a general relation between the primal and its associated dual problem?

(2) Do the primal and the dual problems have the same optimal values?

(3) When do the primal and dual optimal solutions exist?

(4) What are the relations between primal and dual optimal solutions?
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(5) What kind of information (if any) does a dual optimal solution provide about the
primal problem?

In this section, we provide the basic duality framework, and address some of the ques-
tions listed above. We start with an abstract geometric primal problem and its dual, and
then we show that a constrained optimization problem and its dual can be embedded in
the geometric primal-dual setting.

We then consider some important duality results including linear programming and
quadratic programming duality. We discuss the well-known Slater condition guaranteeing
the strong duality relation as well as the existence of a dual optimal solution. We consider
the Karush-Kuhn-Tucker conditions characterizing a primal-dual optimal pair. We also
provide several examples illustrating the use of duality and, in particular, the Karush-
Kuhn-Tucker conditions.

2.5.1 Geometric Primal and Dual Problems

We illustrate duality using an abstract “geometric framework”, which provides a “visual-
ization of duality” and the insights into the weak duality relation for optimal primal and
optimal dual values, and the strong duality relation (equality between the optimal primal
and dual values).

We start by introducing some terminology. Consider a hyperplane H ⊆ Rn given by

H = {x ∈ Rn | aT x = b} for some nonzero a ∈ Rn.

We say that the hyperplane H passes through a vector x0 when x0 ∈ H, or equivalently

aT x0 = b.

Given a nonempty set C, we say that the hyperplane H supports the set C when atz ≤ b
for all z ∈ C, or equivalently

sup
x∈C

aT x ≤ b.

In this case, we also say that H is a supporting hyperplane for the set C. If there is a point
x0 ∈ C attaining the supremum supx∈C aT x and aT x0 = b, then we say that H supports C
at the point x0 ∈ C. A supporting hyperplane is illustrated in Figure 2.11.

We now define a “geometric primal problem” using an abstract set V ⊆ Rm × R and
its corresponding “geometric dual problem” using the hyperplanes supporting the set V .

Consider an abstract (nonempty) set V of vectors (u, w) ∈ Rm × R, which intersects
the w-axis, i.e.,

(0, w) ∈ V for some w ∈ R.

Let the set V extend “north” and “east”, i.e.,

(a) North: For any (u, w) ∈ V and u ∈ Rm with u ≤ ũ, we have (ũ, w) ∈ V .

(b) East: For any (u, w) ∈ V and w ∈ R with w ≤ w̃, we have (u, w̃) ∈ V .
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Figure 2.11: A hyperplane supporting the set C at the point x0.

Geometric Primal Problem: Determine the minimum intercept of the set V and the w-
axis:

minimize w

subject to (0, w) ∈ V.

The minimum intercept value is denoted by f ∗, i.e., f ∗ = inf(0,w)∈V w.

Consider the hyperplane H = {(u, w) ∈ Rm × R | µT u + µ0w = ξ} where µ ∈ Rm,
µ0, ξ ∈ R, and (µ, µ0) 6= (0, 0). We say that the hyperplane H is nonvertical when µ0 6= 0.
Let Hµ,ξ denote a nonvertical hyperplane in Rm × R, i.e.,

Hµ,ξ = {(u, w) ∈ Rm × R | µT u + w = ξ},

with µ ∈ Rm and ξ ∈ R. Let q(µ) be the minimum value of µT u + w for (u, w) ∈ V , i.e.,

q(µ) = inf
(u,w)∈V

{µT u + w}.

A nonvertical hyperplane Hµ,ξ̂ supports a set V when ξ̂ = q(µ), as illustrated in Figure 2.12.
A hyperplane supporting the set V intersects the w-axis at (0, q(µ)) (see Figure 2.12).

Geometric Dual Problem: Determine the maximum intercept with the w-axis for the non-
vertical hyperplanes that support the set V :

maximize q(µ)

subject to µ ∈ Rm.

Note that q(µ) = inf(u,w)∈V {µT u + w} takes value −∞ for µ 6≥ 0. The geometric optimal
dual value is denoted by q∗. An illustration of the geometric dual problem and its optimal
value is given in Figure 2.13.

Figure 2.13 also illustrates a geometric primal optimal value and its relation to the
geometric dual value. In particular, one can observe the following:

- Dual values q(µ) are always below f ∗ and below any w with (0, w) ∈ V ,

q(µ) ≤ f ∗ ≤ w for any µ ≥ 0 and any w such that (0, w) ∈ V .
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Figure 2.12: A nonvertical hyperplane supporting the shaded set and intersecting the w-axis
at the point (0, q(µ)).

Figure 2.13: Geometric dual problem and its optimal value q∗.



2.5. LAGRANGIAN DUALITY 59

Figure 2.14: A duality gap for a nonconvex set V .

- Dual optimal value q∗ never exceeds the primal optimal value f ∗, which is known as
weak duality relation, i.e.,

q∗ ≤ f ∗ weak duality.

This relation always holds regardless of the structure of the primal problem (i.e.,
regardless of the structure of the set V ).

The weak duality relation may be strict i.e., q∗ < f ∗, in which case we say that there is
a duality gap. Some illustrations of duality gaps are provided in Figures 2.14 and 2.15. As
seen from Figure 2.15, a duality gap may exist even for a convex set V .

When the primal optimal and dual optimal values are equal, we say that strong duality
holds,

q∗ = f ∗ strong duality.

In this case, however, a nonvertical hyperplane achieving the maximum intercept may not
exist. In other words, the optimal dual µ∗ achieving the dual optimal value q∗ may not
exist, as shown in Figure 2.16.

2.5.2 Constrained Optimization Duality

In this section, we consider a general constrained optimization problem and derive its dual,
by embedding the problem in the geometric setting. Also, we provide some examples of
primal-dual problem pairs, problems with duality gaps, and strong duality examples.
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Figure 2.15: A duality gap for a convex set V .

Figure 2.16: A situation where f ∗ = q∗ but a dual optimal solution does not exist.
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Consider the following (not necessarily convex) optimization problem:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r
x ∈ X,

(2.21)

where X ⊆ Rn is a given set, and f : X → R, gi : X → R and hj : X → R are given
functions. We refer to the preceding problem as primal problem, and we let f ∗ denote its
optimal value.

We make no assumptions on the set X (may even be discrete) or the functions f, gi, hj

(may even be discontinuous). We write the inequality constraints gi(x) ≤ 0, i = 1, . . . ,m
compactly as g(x) ≤ 0. Also, write the equality constraints hj(x) ≤ 0, j = 1, . . . , r com-
pactly as h(x) = 0. We embed primal problem (2.21) in the geometric setting by defining
the set V as follows:

V = {(u, v, w) ∈ Rm × Rr × R | there is x ∈ X such that g(x) ≤ u, h(x) = v, f(x) ≤ w}.

The dual function q is given by

q(µ, λ) = inf
(u,v,w)∈V

{w + µT u + λT v} = inf
x∈X

{f(x) + µT g(x) + λT h(x)} for µ ≥ 0, λ ∈ Rr.

The function appearing under the minimization is Lagrangian function, denoted by L :
Rn × Rm × Rr → R and given by

L(x, µ, λ) = f(x) + µT g(x) + λT h(x)

= f(x) +
m∑

j=1

µjgj(x) +
r∑

j=1

λjhj(x).

The infimum above has an implicit constraint on the primal problem domain.
Note that the Lagrangian function is the weighted sum of the objective and the con-

straint functions. The weights µ and λ of the constraint functions can be viewed as penalties
associated respectively with violations of inequality and equality constraints. The vector
µ ∈ Rm, with µ ≥ 0, is a Lagrange multiplier associated with constraints g(x) ≤ 0, where
g = (g1, . . . , gm). The vector λ ∈ Rr is a Lagrange multiplier associated with h(x) = 0,
where h = (h1, . . . , hr). Often, the variable x in the primal problem is referred to as primal
variable, while the variables µ and λ in the dual problem are referred to as dual variables
or prices.

The problem given by
maximize q(µ, λ)
subject to µ ≥ 0, λ ∈ Rr (2.22)

is it the dual problem of the problem in Eq. (2.21). We denote its optimal value by q∗.
The dual problem has some important properties that hold without any assumptions

on the primal problem, as shown in the next theorem
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Theorem 24 For the primal-dual problem pair of Eqs. (2.21)–(2.22), we have:

(a) The dual constraint set {µ, λ) ∈ Rm × Rr | µ ≥ 0} is convex, and the dual function
q(µ, λ) is concave.

(b) For any µ ≥ 0 and λ ∈ Rr, we have

q(µ, λ) ≤ f ∗.

(c) Weak duality holds, i.e., q∗ ≤ f ∗.

Proof. (a) The dual constraint set is the Cartesian product of two convex sets, the
nonnegative orthant in Rm and Rr. Hence, it is convex by Theorem 8(d). The concavity
of q follows by viewing the dual function as the infimum over x ∈ X of the affine functions
(µ, λ) 7→ f(x) + µT g(x) + λT h(x) [see Theorem 13(c)].

(b) Note that
q(µ, λ) ≤ inf

g(x)≤0, h(x)=0
x∈X

{
f(x) + µT g(x) + λT h(x)

}
.

Furthermore, for a µ ≥ 0 and a primal feasible x, i.e., g(x) ≤ 0, h(x) = 0, x ∈ X, we have
µT g(x) + λT h(x) ≤ 0. Thus, for any µ ≥ 0 and λ ∈ Rr,

q(µ, λ) ≤ inf
g(x)≤0, h(x)=0

x∈X

f(x) = f ∗.

(c) The weak duality relation follows by taking the supremum over µ ≥ 0 and λ ∈ Rr in
the preceding relation.

The following are some examples of primal-dual optimization problems.

Example 12 (Least-Norm Solution of Linear Equations) Consider the problem of mini-
mizing the Euclidean norm subject to linear equation constraints, i.e.,

minimize xT x
subject to Bx = d,

for an r × n matrix B and a vector d ∈ Rr. The associated Lagrangian function is

L(x, λ) = xT x + λT (Bx− d).

For a fixed λ, to minimize L over x ∈ Rn, we set the gradient ∇xL(x, λ) equal to zero [cf.
Eq (2.11)] and obtain

∇xL(x, λ) = 2x + BT λ = 0,

implying that

xλ = −1

2
BT λ.

By substituting xλ in L, we obtain the dual function value q(λ),

q(λ) = L(xλ, λ) = −1

4
λT BBT λ− dT λ,
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which is a concave function of λ. Furthermore, we have

−1

4
λT BBT λ− dT λ ≤ f ∗ for all λ ∈ Rr,

where f ∗ is the optimal value of the minimum norm (primal) problem, i.e., f ∗ = infBx=d xT x.

Example 13 Consider the following norm minimization problem:

minimize ‖Ax− b‖ over x ∈ Rn.

This is an unconstrained problem, which can be reformulated as follows:

minimize ‖y‖
subject to y = Ax− b.

The dual function of the preceding problem is:

q(λ) = inf
x,y∈Rn

{‖y‖+ λT y− λT Ax + bT λ} =

{
bT λ + infy∈Rn

{
‖y‖+ λT y

}
for AT λ = 0

−∞ otherwise.

Note that
inf

y∈Rn
{‖y‖+ λT y} = inf

y
{‖y‖ − λT y}.

q(λ) =

{
bT λ for AT λ = 0, ‖λ‖ ≤ 1
−∞ otherwise.

The dual of the norm minimization problem is

maximize bT λ
subject to AT λ = 0, ‖λ‖ ≤ 1.

Example 14 (Standard Form LP) Consider an LP in a standard form

minimize cT x
subject to Ax = b

x ≥ 0,

for an r × n matrix A and a vector b ∈ Rr. Its Lagrangian is given by

L(x, µ, λ) = cT x + λT (Ax− b)− µT x

= −bT λ + (c + AT λ− µ)T x.

The Lagrangian L(x, µ, λ) is linear in x for a fixed µ and λ. Hence,

q(µ, λ) = inf
x
L(x, µ, λ) =

{
−bT λ when AT λ− µ + c = 0,
−∞ otherwise.

Therefore, the domain of q is the affine set {(µ, λ) ∈ Rn × Rr | AT λ− µ + c = 0, µ ≥ 0}.
The dual function q(µ, λ) is linear on its domain and hence, concave. Moreover, we have

−bT λ ≤ f ∗ for λ and µ ≥ 0 such that AT λ + c− µ = 0,

where f ∗ = infAx=b, x≥0 cT x. Note that the preceding relation is equivalent to

−bT λ ≤ f ∗ for λ such that AT λ + c ≥ 0.
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We discuss the LP duality in greater detail later on in Section 2.5.3.

Example 15 (Two-Way Partitioning Problem in [13], pages 219–221.)
Consider the following problem

minimize xT Wx
subject to x2

i = 1, i = 1, . . . , n,

where W is an n × n matrix. This is a nonconvex optimization problem. In particular, it
is a discrete optimization problem since the feasible set contains 2n discrete points. The
problem can be interpreted as the partitioning of the index set {1, . . . , n} in two sets, in the
presence of a cost Wij associated with assigning i and j to the same set and the cost −Wij

when assigning i and j to different sets. The dual function is

q(λ) = inf
x

{
xT Wx +

n∑
i=1

λi(x
2
i − 1)

}
= inf

x
xT [W + diag(λ)]x− eT λ

=

{
−eT λ when W + diag(λ) ≥ 0,
−∞ otherwise,

where diag(λ) is the diagonal matrix with diagonal entries λi. Given any λ ∈ Rn, we have

−eT λ ≤ f ∗ if W + diag(λ) ≥ 0,

where f ∗ = infx2
i =1, i=1,...,n xT Wx. For example, λ = −λmin(W )e gives the following lower

bound
nλmin(W ) ≤ f ∗.

As shown earlier [Theorem 24(c)], the weak duality relation q∗ ≤ f ∗ always holds. It
can be used to compute nontrivial lower bounds for difficult problems. For example, a lower
bound for the two-way partitioning problem of Example 15 can be obtained by solving the
following SDP:

maximize −eT λ
subject to W + diag(λ) ≥ 0.

The following are some examples of problems with a duality gap (q∗ < f ∗).

Example 16 Consider a discrete optimization problem of the form:

minimize −x
subject to x ≤ 1, x ∈ {0, 2}.

The primal optimal value is f ∗ = 0. the dual function is

q(µ) = inf
x∈{0,2}

−x + µ(x− 1) = (µ− 1)x− µ =

{
µ− 2 if 0 ≤ µ ≤ 1,
−µ if µ ≥ 1.

The dual optimal value is q∗ = −1, and we have a duality gap.
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Example 17 Consider a convex optimization problem of the form:

minimize e−
√

x1x2

subject to x2
1 ≤ 0, x1 ≥ 0, x2 ≥ 0.

Here, it can be seen the primal optimal value is f ∗ = 1, while the dual optimal value is
q∗ = 0. Thus, there is a duality gap. Note that the problem is convex.

As indicated with the preceding example, the duality gap may exist even for convex
problems. In general, some additional conditions of the objective function f and the con-
straint set are needed for strong duality to hold.

The following are some examples of problems for which strong duality holds. These
examples show that, in general, the strong duality relation q∗ = f ∗ provides no information
about the existence of dual optimal solutions.

Example 18 (Unique Dual Optimal Solution) Consider the following primal problem

minimize 1
2
(x2

1 + x2
2)

subject to x1 ≤ 1.

Its optimal value is f ∗ = 0, which is attained at (0, 0). The dual function is

q(µ1) = inf
x∈R2

{
1

2

(
x2

1 + x2
2

)
+ µ1(x1 − 1)

}
.

To determine the infimum in the dual function, we set the gradient of the Lagrangian
function to zero, and obtain

x1 + µ1 = 0, x2 = 0.

For a fixed µ1 ≥ 1, the infimum is attained at (−µ1, 0), implying that

q(µ1) = −1

2
µ2

1 − µ1.

The dual optimal value over µ1 ≥ 0 is q∗ = 0, which is attained at µ1 = 0.

Example 19 (Multiple Dual Optimal Solutions) Consider the following primal problem

minimize |x|
subject to x ≤ 0.

Its optimal value is f ∗ = 0, attained at x = 0. The dual problem is

q(µ1) = inf
x∈R

{|x|+ µ1x} = inf
x∈R

(µ1 + sgn(x)) x =

{
0 if 0 ≤ µ1 ≤ 1
−∞ otherwise.

Thus, the dual optimal value is q∗ = 0 and the dual optimal set is the interval [0, 1].
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Example 20 (No Dual Optimal Solution)

minimize x
subject to x2 ≤ 0.

The primal optimal value is f ∗ = 0, which is attained at x = 0. The dual function is

q(µ1) = inf
x∈R

{x + µ1x
2}.

The Lagrangian function x 7→ x + µ1x
2 attains its minimum at x = − 1

2µ1
for µ1 > 0.

Hence, the dual function is

q(µ1) =

{
− 1

4µ2
1

for µ1 > 0,

−∞ otherwise,

whose supremum over µ1 ≥ 0 is q∗ = 0, but there is no µ1 > 0 achieving the optimal value.

Similar to the preceding, we can construct examples when q∗ = f ∗ and there is no
information about the existence of the primal optimal solutions.

2.5.3 Linear Programming Duality

In this section, we study the LP duality, which is special due to the linear structure of LP
problems. The LP duality provides insights leading to many applications and algorithm
designs, such as the dual simplex algorithm.

The linear problem of the form

minimize cT x
subject to Ax = b

x ≥ 0 (2.23)

is the LP in the standard form. The linear program given in any other from can be
transformed into the standard form. For example, let the LP be given as maximization
problem

maximize cT x
subject to Ax = b

x ≥ 0.

Then, it is equivalent to

minimize −cT x
subject to Ax = b

x ≥ 0.

Let the LP be given by

minimize cT x
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subject to Ax ≤ b, (2.24)

for an m × n matrix A and a vector b ∈ Rm. It can be transformed to the standard form
by introducing the slack variables and some additional variables. In particular, define the
slack variables s ∈ Rm, s ≥ 0 such that

Ax + s = b.

Then, LP problem (2.24) reduces to

minimize cT x + 0T s
subject to Ax + s = b

x ∈ Rn, s ≥ 0. (2.25)

Further, we can write the vector x ∈ Rn as x = x+ + x−, with x+ ≥ 0 and x− ≤ 0. Then,
by introducing the variable y+ = −x− ≥ 0, we can write

x = x+ − y+ with x+ ≥ 0 and y+ ≥ 0.

Thus, the LP of Eq. (2.25) is equivalent to the following LP

minimize cT x+ − cT y+ + 0T s
subject to Ax+ − Ay+ + s = b

x+ ≥ 0, y+ ≥ 0, s ≥ 0. (2.26)

Hence, the original LP of Eq. (2.24) is equivalent to an LP in a standard form but with a
larger size (the number of variables is 2n + m, as opposed to n in the original LP).

The dual of an LP problem is also an LP problem. To illustrate this, we consider an
LP in a standard form

minimize cT x
subject to Ax = b

x ≥ 0. (2.27)

By assigning prices λ ∈ Rm (a price λi per equality constraint), we obtain the Lagrangian
function

q(λ) = inf
x≥0

{cT x + λT (Ax− b)} = −bT λ + inf
x≥0

(c + AT λ)T x.

Note that the infimum in the right hand side of the preceding relation is −∞ if ci+[AT λ]i <
0 for some i, and otherwise it is 0. Hence,

q(λ) =

{
−bT λ when AT λ + c ≥ 0,
−∞ otherwise.

When maximizing q(λ), the values −∞ need not be considered, so the dual problem is the
following

maximize −bT λ
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subject to AT λ ≥ −c. (2.28)

This is also an LP problem in the dual variables (prices) λ ∈ Rm. Furthermore, note that
we could have considered another dual of problem (2.27) by assigning additional prices µ to
the inequality constraints x ≥ 0. This has been considered in Example 14. As seen there,
the alternative dual is equivalent to the dual considered here.

To summarize, a dual of given LP is not always of the same form. The form of the
dual problem depends on which constraints are selected to be “priced”. However, all dual
problems corresponding to the same primal problem are equivalent.

If replace λ by −p in the dual problem of Eq. (2.28), we obtain an equivalent LP problem

maximize bT p
subject to AT p ≤ c. (2.29)

When compared to the primal LP of Eq. (2.27), we see that the primal problem is a
minimization problem with the objective cT x, while its dual (2.29) is a maximization problem
with objective bT p. The primal problem (2.27) has equality constraints Ax = b, while the
dual (2.29) has inequality constraints AT p ≤ c. The primal (2.27) has the sign constraint
x ≥ 0 on the primal variable x, while the dual (2.29) has no constraints on the dual variable
p (the dual variable is free).

The weak duality relation [cf. Theorem 24(c)] for the primal-dual LP problems, yields

bT p ≤ cT x

for all primal feasible x and dual feasible p, i.e., for all x ≥ 0 with Ax = b and all p with
AT p ≤ c.

The LP duality has a property that “the dual of the dual is the primal”, meaning that
if we form the dual of the dual of a given (primal) LP, we obtain the original (primal) LP.
This is formally stated in the following theorem.

Theorem 25 By taking the dual of the transformed dual in a minimization problem, we
obtain the primal problem.

Proof. We prove this theorem by using the primal-dual LP problems of Eqs. (2.27) and
(2.29). The dual problem in Eq. (2.29) is equivalent to the following

minimize −bT p
subject to AT p ≤ c.

By assigning prices y, y ≥ 0, to the inequality constraints AT p ≤ c, we have the following
dual function

q̃(y) = inf
y∈Rn

{−bT p + yT (AT p− c)} = −cT p + inf
y∈Rn

(Ay − b)T p.

Since

inf
y∈Rn

(Ay − b)T p =

{
0 when Ay − b = 0,
−∞ otherwise,
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it follows

q̃(y) =

{
−cT y when Ay = b,
−∞ otherwise.

Hence, the dual of the dual problem is

maximize −cT y
subject to Ay = b

y ≥ 0,

or equivalently

minimize cT y
subject to Ay = b

y ≥ 0,

which is the same as the primal problem of Eq. (2.27).

We have the following results for the LP feasibility. These results are a consequence of
the weak duality and the LP duality symmetry of Theorem 25.

Theorem 26 The following hold:

(a) If a primal LP has optimal value f ∗ = −∞, then the dual LP problem is infeasible.

(b) If a dual LP has optimal value q∗ = +∞, then the primal LP problem is infeasible.

Proof. Let the primal optimal value be f ∗ = −∞, and assume that the dual problem is
feasible. Then, there exists a dual feasible p̂ such q(p̂) > −∞. On the other hand, by weak
duality, for all dual feasible p, we have q(p) ≤ −∞, implying that q(p) = −∞ for all feasible
p, which contradicts the feasibility of the dual at p̂ [i.e., the relation q(p̂) > −∞]. Hence,
the dual must be infeasible. To show the statement in part (b), we use a symmetrical
argument.

It is possible that both the primal and the dual LP are infeasible, as seen in the following
example.

Example 21 Consider the following primal LP problem

minimize x1 + 2x2

subject to x1 + x2 = 1
x1 + x2 = 2.

Its dual is
maximize p1 + 2p2

subject to p1 + p2 = 1
p1 + p2 = 2.

Clearly, both problems are infeasible.
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In general for an LP problem, there are three possible situations:

(1) The problem is infeasible (f ∗ = +∞).

(2) The problem is unbounded (f ∗ = −∞).

(3) The problem has an optimal solution (f ∗ is finite).

Note that the case (3) follows from Corollary 1. In particular, by Corollary 1, we have that
an LP problem is feasible if and only if it has an optimal solution.

The weak duality implies a further characterization of a primal-dual optimal pair, as
seen in the following theorem.

Theorem 27 Let x be a primal feasible and p be a dual feasible for an LP problem. If the
following relation is satisfied

cT x = bT p,

then x is primal optimal and p is dual optimal.

Proof. Since (x, p) is a primal-dual feasible pair, by weak duality we have bT p ≤ cT x. If
cT x = bT p, it follows that x must be primal optimal and p must be dual optimal.

The reverse statement to that of Theorem 27 also holds. It actually holds for a more
general class of convex problems than the class of LP problems, as we will see later on in
Section 2.5.7.

In the following theorem, we provide the strong duality result for LP problems.

Theorem 28 Let an LP problem have a finite optimal value f ∗. Then:

(a) A primal optimal solution exists.

(b) A dual optimal solution exists.

(c) The primal and the dual optimal values are equal.

Another relation characterizes an LP primal-dual optimal pair (x∗, p∗), a relation known
as complementarity slackness condition. We will prove this relation later for a more general
class in Section 2.5.7.

Theorem 29 (Complementarity Slackness) Let x∗ be a primal feasible and p∗ be a dual
feasible for an LP problem. The vectors x∗ and p∗ are respectively primal and dual optimal
if and only if the following relations are satisfied

p∗i ([A]ix
∗ − bi) = 0 for all i = 1, . . . ,m,(

cj − (p∗)T [A]j
)
xj = 0 for all j = 1, . . . , n.
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The complementarity slackness condition for the problem

minimize cT x
subject to Ax ≤ b,

implies that for the optimal primal solution x∗ and the optimal dual price p∗, we have:

• If the constraint [A]ix ≤ bi is not active at x∗, i,e., [A]ix
∗ < bi, then the price p∗i must

be zero.

• If the constraint [A]ix ≤ bi is active at x∗, i,e., [A]ix
∗ = bi, then the price p∗i may be

nonzero.

Thus, the dual optimal price p∗i is zero unless the constraint [A]ix
∗ ≤ bi is active. Intuitively,

this means that a constraint that is not active at an optimal solution may be removed from
the problem (or slightly perturbed) without affecting the optimal value.

In the following example, we illustrate how the complementarity slackness condition
can be used to determine a dual optimal solution.

Example 22 Consider the following problem and its dual

minimize 3x1 + 10x2 + 3x3

subject to x1 + x2 + 3x3 = 4
x1 + x2 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

maximize 4p1 + p2

subject to p1 + p2 ≤ 3
p1 + p2 ≤ 10
3p1 ≤ 3.

Consider the vector x∗ = (1, 0, 1). We will use the complementarity slackness to show that
x∗ is a primal optimal and to construct a dual optimal p∗i . The relation pi ([A]ix

∗ − bi) = 0 is
satisfied for all i, since the primal is in the standard form. The relation

(
cj − (p∗)T [A]j

)
xj =

0 is satisfied for j = 2, since x∗2 = 0. Since x∗1 = x∗3 = 1, the relations
(
cj − (p∗)T [A]j

)
xj =

0 for j = 1 and j = 3 imply

p∗1 + p∗2 = 3, 3p∗1 = 3.

Hence, p∗1 = 1 and p∗2 = 2. The vector x∗ = (1, 0, 1) is primal feasible, and p∗ = (1, 0, 2)
is dual feasible. Thus, by Theorem 29, the vectors x∗ and p∗ are primal and dual optimal,
respectively.

We note that, here, the dual optimal p∗ has been uniquely determined from complemen-
tarity slackness. However, in general, this may not be the case.
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2.5.4 Slater Condition

Here, we consider convex constrained optimization problem of the following form:

minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . ,m

x ∈ X.
(2.30)

Throughout this section, we assume that the problem is feasible and convex. In partic-
ular, we use the following assumption.

Assumption 2 The following hold:

(a) The optimal value f ∗ of the problem (2.30) is finite.

(b) The objective function f and all constraint functions gj are convex.

(c) The set X ⊆ Rn is nonempty and convex.

The Slater condition is a condition imposed on the constraint set {x ∈ Rn | gj(x) ≤
0, j = 1, . . . ,m, x ∈ X}.

Assumption 3 There is a vector x̄ ∈ X ∩ domf such that

gj(x) < 0 for all j = 1, . . . ,m.

We often refer to a vector satisfying the Slater condition as a Slater vector.
For the problem of Eq. (2.30), consider the set V ⊂ Rm × R given by

V = {(u, w) | g(x) ≤ u, f(x) ≤ w, x ∈ X}.

The set V is convex by the convexity of f , g′js, and X. The Slater condition for this set is
illustrated in Figure 2.17.

For example, let X be a polyhedral set given by

X = {x ∈ Rn | Ax ≤ b, Bx = d},

where A is an m×n matrix, b ∈ Rm, B is a p×n matrix, and d ∈ Rp. Also let f be defined
over Rn, then the Slater condition becomes: there is a vector x̄ such that Ax̄ ≤ b, Bx̄ = d,
and

gj(x) < 0 for all j = 1, . . . ,m.

We next provide an example of a problem satisfying the Slater condition.

Example 23 Consider the following ‖ · ‖∞ minimization problem:

minimize ‖Ax− b‖∞.
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Figure 2.17: The plot to the left illustrates the set V with a Slater vector, while the plot
to the left illustrates a set V without a Slater vector.

The problem is equivalent to the following LP problem.

minimize t
subject to aT

j x− bj − t ≤ 0, j = 1, . . . ,m
bj − aT

j x− t ≤ 0, j = 1, . . . ,m.

The LP minimization is with respect to (x, t) ∈ Rn×R. Consider the vector (x̄, t̄ ) given by

x̄ = 0 and t̄ = ε + max
1≤j≤m

|bj| for some ε > 0.

The vector (x̄, t̄) satisfies the Slater condition.

Under the Slater condition, we have the following well-known strong duality result.

Theorem 30 Let Assumption 2 and the Slater condition hold [Assumption 3]. Then for
the problem of Eq. (2.30), we have:

(a) There is no duality gap, i.e., q∗ = f ∗.

(b) The set of dual optimal solutions is nonempty and bounded.

The following is an example of application of Theorem 30.

Example 24 Consider the canonical utility-based network resource allocation model pro-
posed in the seminal work of Kelly et. al [19]. We are given a network that consists of a set
S = {1, . . . , S} of sources and a set L = {1, . . . , L} of undirected links, where a link l has
capacity cl. Let L(i) ⊂ L denote the set of links used by source i. The application require-
ments of source i is represented by a concave increasing utility function ui : [0,∞) → [0,∞),
i.e., each source i gains a utility ui(xi) when it sends data at a rate xi. We further assume
that rate xi is constrained to lie in the interval Ii = [0, Mi] for all i ∈ S, where the scalar
Mi denotes the maximum allowed rate for source i. Let S(l) = {i ∈ S | l ∈ L(i)} denote
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the set of sources that use link l. The goal of the network utility maximization problem is
to allocate the source rates as the optimal solution of the problem

maximize
∑
i∈S

ui(xi)

subject to
∑

i∈S(l)

xi ≤ cl for all l ∈ L

xi ∈ Ii for all i ∈ S.

We let x be the vector with components xi for i ∈ S. Note that the preceding problem
can be equivalently casted as a minimization of a convex function f(x) = −

∑
i∈S ui(xi).

Also, we let
X = {x | xi ∈ Ii for all i ∈ S},

and
gl(x) =

∑
i∈S(l)

xi − cl for all l ∈ L.

In this form, we see that the zero vector is such that 0 ∈ domf , and 0 ∈ X. Furthermore

gl(0) = −cl < 0 for all l ∈ L.

Hence, for the network utility maximization problem, the zero vector satisfies the Slater
condition. Thus, according to Theorem 30, there is no duality gap and the dual of the
network utility problem has nonempty and bounded set of optimal prices.

2.5.5 Linear Constraint Condition

Here, we consider a strong duality result for a special convex minimization problem. In
particular, we consider minimization of a convex function subject to linear constraints. In
this case, as we will see the strong duality also holds under another condition different from
the Slater condition.

Consider the following primal problem with linear constraints

minimize f(x)
subject to Ax ≤ b, Bx = d

x ∈ X.
(2.31)

We have the following strong duality result.

Theorem 31 Let the optimal value f ∗ of problem (2.31) be finite. Assume that there exists
a feasible vector for the problem that belongs to the relative interior of the set X and the
domain of f , i.e., a vector x̃ ∈ Rn such that

Ax̃ ≤ b, Bx̃ = d and x̃ ∈ relint(X) ∩ relint(domf).

Then, there is no duality gap and a dual optimal solution exists.



2.5. LAGRANGIAN DUALITY 75

Recall that the relative interior of a given set C is the interior of the set relative to the
smallest affine set that contains C. In particular, when the dimensions of X and domf
are equal to n, then the relative interior condition of Theorem 31 reduces to the interior
condition as follows:

Ax̃ ≤ b, Bx̃ = d and x̃ ∈ int(X) ∩ int(domf).

This condition becomes redundant in Theorem 31 when X = Rn and f is defined over Rn

(i.e., domf = Rn). In particular, in this case, it reduces to

Ax̃ ≤ b, Bx̃ = d for some x̃ ∈ Rn,

which is just the feasibility of the problem (2.31). However, the feasibility is already satisfied
in view of the assumption of Theorem 31 that the optimal value f ∗ is finite. A particular
direct consequence of this is the LP duality, studied in Section 2.5.3.

Observe that, similar to Theorem 30 (the Slater condition), the relative interior condi-
tion of Theorem 31 is imposed only on the constraint set, and it guarantees the nonempti-
ness of the dual optimal set. However, unlike Theorem 30, the relative interior condition
of Theorem 31 does not guarantee the boundedness of the dual optimal set.

The following is an example of a problem not satisfying the relative interior condition
of Theorem 31. In particular, consider the problem given by

minimize e−
√

x1x2

subject to x1 ≤ 0, x ∈ R2.

Here, X = R2 and hence relint(X) = R2. The feasible set is

C = {x ∈ R2 | x1 = 0, x2 ∈ R}.

The domain of f is the set {x ∈ R2 | x1 ≥ 0, x2 ≥ 0}, whose relative interior coincides
with the interior, i.e.,

relint(X) = int(X) = {x | x1 > 0, x2 > 0}.

Hence,

relint(X) ∩ relint(domf) = R2 ∩ {x | x1 > 0, x2 > 0} = {x | x1 > 0, x2 > 0}.

However, none of the feasible vectors lies in relint(X) ∩ relint(domf), i.e.,

C ∩ relint(X) ∩ relint(domf) = C ∩ {x | x1 > 0, x2 > 0} = ∅.

Hence, the relative interior condition fails. Note that f ∗ = 1 and q∗ = 0, and there is a
duality gap.

Consider the same constraint set with an objective f(x) = −√x1. Again, the relative
interior condition is not satisfied. In this case, it can be seen that f ∗ = q∗ = 0. Thus, the
strong duality holds, but a dual optimal solution does not exist.
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2.5.6 Quadratic Convex Problem

Another special problem is minimization of a convex quadratic objective over a quadratic
constraint set:

minimize xT Q0x + aT
0 x + b0

subject to xT Qjx + aT
j x + bj ≤ 0, j = 1, . . . ,m

x ∈ Rn,
(2.32)

where each Qi is an n×n symmetric positive semidefinite matrix, each aj ∈ Rn and bj ∈ R.
For such a problem, there is no duality gap whenever the optimal value f ∗ is finite, as seen
in the next theorem.

Theorem 32 Let each Qj in problem (2.32) be a symmetric positive semidefinite matrix.
Also, let the optimal value f ∗ of the problem be finite. Then, there is no duality gap and
the primal optimal set is nonempty.

Note that Theorem 32 says nothing about the existence of dual optimal solutions. This
is opposed to the Slater and the relative interior condition of Theorems 30 and 31, which
say nothing about the existence of the primal optimal solutions.

Also note that an LP problem can be viewed as a special case of problem (2.32), where
b0 = 0 and Qj = 0 for all j.

An example of a problem that can be reduced to the form (2.32) is the following:

minimize ‖x‖
subject to Ax = b

x ∈ Rn.

In particular, note that the preceding is equivalent to the minimization of xT Ix subject to
linear constraints [A]i x ≤ bi, i = 1, . . . m, −[A]i x ≤ −bi, i = 1, . . . m.

2.5.7 Karush-Kuhn-Tucker Conditions

In this section, we consider the primal-dual optimality condition for a general convex prob-
lem. As a special case of this condition, we obtain the Karush-Kuhn-Tucker conditions
characterizing primal-dual optimal pairs.

We consider the following primal problem:

minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

x ∈ X.

(2.33)

Its Lagrangian function is given by

L(x, µ, λ) = f(x) + µT g(x) + λT (Ax− b), µ ∈ Rm, µ ≥ 0, λ ∈ Rp,

where g = (g1, . . . , gm)T and A is a matrix with rows aT
i , i = 1, . . . , p. The dual function is

q(µ, λ) = inf
x∈X

L(x, µ, λ) = inf
x∈X

{
f(x) + µT g(x) + λT (Ax− b)

}
.
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Note that the infimum in the dual function is actually taken over X ∩domf ∩domg1∩ . . .∩
domgm. Thus, the dual problem is

max
µ≥0, λ∈Rp

q(µ, λ).

The following theorem provides necessary and sufficient conditions for optimality of
primal-dual pairs. These conditions apply for as long as the primal optimal value f ∗ is
finite and the strong duality holds, i.e., f ∗ = q∗.

Theorem 33 (Optimality Condition for Primal-Dual Pairs)
Consider the problem of Eq. (2.33). Assume that the problem is convex [Assumption 2]
and that the optimal value f ∗ is finite. Furthermore, assume that the strong duality holds,
i.e., q∗ = f ∗. Then x∗ is a primal optimal and (µ∗, λ∗) is a dual optimal if and only if the
following conditions are satisfied:

(1) Primal Feasibility: x∗ is primal feasible i.e.,

g(x∗) ≤ 0, Ax∗ = b, x∗ ∈ X ∩ domf.

(2) Dual Feasibility: (µ∗, λ∗) is dual feasible i.e., µ∗ ≥ 0.

(3) Lagrangian Optimality in x: x∗ attains the minimum in infx∈X L(x, µ∗, λ∗).

(4) Complementarity Slackness: The multiplier µ∗ is such that

µ∗jgj(x
∗) = 0 for all j = 1, . . . ,m.

The condition in part (4) of Theorem 33 is also known as Lagrangian Optimality in
(µ, λ), since it is equivalent to the following statement:

(µ∗, λ∗) attains the maximum in sup
µ≥0, λ∈Rp

L(x∗, µ, λ).

We now discuss some implications of the optimality conditions of Theorem 33. Suppose
there is no duality gap and we have an optimal dual multiplier (µ∗, λ∗) for problem 2.33).
We may consider minimizing the Lagrangian L(x, µ∗, λ∗) over x ∈ X, i.e.,

minimize f(x) + (µ∗)T g(x) + (λ∗)T (Ax− b) over x ∈ X.

The possibilities for this problem are:

(i) There is a unique minimizer x∗ and this minimizer is feasible. Then, according to
Theorem 33, the solution x∗ is primal optimal. For example, a minimizer is unique
when L(x, µ∗, λ∗) is strictly convex in x.

(ii) A unique minimizer exists but it is not feasible. Then, the primal problem has no
optimal solution (no primal feasible x achieving f ∗).
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(iii) There are multiple minimizers. Then, only those that are primal feasible are actually
primal optimal.

We illustrate an application of Theorem 33 in the following example.

Example 25 (Entropy Maximization, see [13] page 228.)
Consider the entropy maximization problem

minimize
∑n

i=1 xi ln xi

subject to Ax ≤ b,
∑n

i=1 xi = 1,

with domain x ≥ 0. Its dual is given by

maximize −bT µ− λ− e−λ−1
∑n

i=1 e−aT
i µ

subject to µ ≥ 0.

Suppose that the Slater condition holds, i.e., there is a vector x̄ such that

Ax̄ ≤ b,

n∑
i=1

x̄i = 1, x̄ ≥ 0.

Thus, there is no gap and a dual optimal solution (µ∗, λ∗) exists.
The Lagrangian L(x, µ, λ) at (µ∗, λ∗) is given by

L(x, µ∗, λ∗) =
n∑

i=1

xi ln xi + (µ∗)T (Ax− b) + (λ∗)T
(
eT x− 1

)
,

which is strictly convex in x over the domain and has a unique minimizer x∗, with compo-
nents x∗i given by

x∗i = e−(aT
i µ∗+λ∗+1) for all i = 1, . . . , n.

If x∗ is primal feasible, then x∗ is a primal optimal solution. If x∗ is not primal feasible,
then the primal problem has no solution.

As a special case of Theorem 33 when X = Rn and the functions f and gj are differen-
tiable, we obtain a well-known Karush-Kuhn-Tucker (KKT) conditions.

Theorem 34 Consider the primal problem

minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . ,m

Ax = b,

where f and all gj are differentiable. Assume that the problem is convex [Assumption 2]
and that the optimal value f ∗ is finite. Furthermore, assume that the strong duality holds,
i.e., q∗ = f ∗. Then x∗ is a primal optimal and (µ∗, λ∗) is a dual optimal if and only if the
following conditions are satisfied:
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(1) Primal Feasibility: gj(x
∗) ≤ 0, j = 1, . . . ,m, Ax∗ = b.

(2) Dual Feasibility: µ∗ ≥ 0.

(3) Lagrangian Optimality in x: The gradient of L(x, µ∗, λ∗) with respect to x vanishes,

∇f(x∗) +
m∑

j=1

µ∗j∇gj(x
∗) +

p∑
i=1

λiai = 0,

where ai is the i-th row of the matrix A.

(4) Complementary Slackness: µ∗j gj(x
∗) = 0 for all j = 1, . . . ,m.

As seen from Theorem 34 for convex problems with no duality gap and finite optimal
value f ∗, the KKT conditions are necessary and sufficient for optimality. However, for a
general nonconvex problem with no duality gap and finite f ∗, the KKT conditions are only
necessary.

The KKT conditions are important since they provide a certificate of optimality for
primal-dual pairs. This is often exploited in the design of optimization algorithms and
their performance analysis. These conditions are also used for verifying optimality. They
are also used as a design principle, i.e., some algorithms are designed for solving KKT
equations, thus producing both primal and dual optimal solutions.

We now provide some examples.

Example 26 (Power Allocation to Communication Channels)
The problem of power allocation among n communication channels can be formulated as a
minimization problem of the following form:

minimize −
∑n

i=1 ln(αi + xi)
subject to x ≥ 0,

∑n
i=1 xi = 1,

where each αi is a scalar such that αi > 0. The problem arises in information theory
when allocating power among n channels. The decision variable xi represents the power
allocated to the i-th channel. The total power is normalized, so that xi actually represents
a fraction of the total power allocated to channel i. The function ln(αi + xi) gives the
capacity (communication rate) of the i-th channel. Thus, the problem consists of allocating
a total power of one unit to the channels so as to maximize the total communication rate,
or equivalently minimize −

∑n
i=1 ln(αi + xi).

The domain of the objective function is domf = {x | x + α ≥ 0}, and the objective
function is continuous over its domain. The constraint set is compact and contained in
the domain domf . Hence, the objective function is bounded over the constraint set, and
therefore the optimal value f ∗ is finite. Furthermore, the Slater condition is satisfied for
x̄ = (1/n, . . . , 1/n). Hence, there is no duality gap.

The KKT conditions for the power allocation problem are:

x∗ ≥ 0,
n∑

i=1

x∗i = 1, µ∗ ≥ 0,
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µ∗i x
∗
i = 0, λ∗ − 1

αi + x∗i
− µ∗i = 0 for all i.

By eliminating µ∗i from the last relation, we obtain the following:

x∗ ≥ 0,
n∑

i=1

x∗i = 1, λ∗ ≥ 1

αi + x∗i
, x∗i

(
λ∗ − 1

αi + x∗i

)
= 0 for all i.

If λ∗ < 1/αi, by the third relation, we obtain x∗i > 0. By Complementarity Slackness (the
last relation), it follows that λ∗ = 1/(αi + x∗i ), so that x∗i = 1/λ∗ − αi. If λ∗ ≥ 1/αi, by
Complementarity Slackness, we have x∗i = 0. Hence,

x∗i =

{ 1
αi+x∗i

if λ∗ < 1
αi

0 otherwise
for all i = 1, . . . , n,

or equivalently

x∗i = max

{
0,

1

λ∗
− αi

}
for all i = 1, . . . , n,

where λ∗ is determined from the relation
∑n

i=1 x∗i = 1, i.e.,
∑n

i=1 max{0, 1/λ∗ − αi} = 1.
Note that

∑n
i=1 max{0, 1/λ∗−αi} is a piece-wise linear function increasing in 1/λ∗, and it

has a unique solution.

Example 27 (Separable Objective with Equality Constraint, Example 5.4 of [13] page 248.)
Consider the problem

minimize
∑n

i=1 fi(xi)
subject to aT x = b,

where a ∈ Rn and b ∈ R. Each function fi : R → R is differentiable and strictly convex.
The objective function

∑n
i=1 fi(xi) is referred to as separable, since it is a sum of functions of

the individual components xi of the vector x. Assume that an optimal solution exist. Then,
in view of the strict convexity of the objective function, the optimal solution is unique.
Furthermore, note that by Theorem 31, there is no duality gap.

The Lagrangian function is

L(x, λ) =
n∑

i=1

fi(xi) + λ(aT x− b) = −λb +
n∑

i=1

(fi(xi) + λ aixi) ,

where λ ∈ R. Note that the Lagrangian is also separable in x. The dual function is given
by

q(λ) = −λb + inf
x∈Rn

n∑
i=1

(fi(xi) + λ aixi) = −λb +
n∑

i=1

inf
xi∈R

(fi(xi) + λ aixi) .

Since fi is differentiable, for a given λ, the infimum infxi∈R (fi(xi) + λ aixi) is attained at
xi(λ) such that

f ′i(xi(λ)) = −λai.

Let λ∗ be an optimal dual solution, and let x∗ = (x∗1, . . . , x
∗
n) be such that

f ′i(x
∗
i ) = −λ∗ai.

Since the original problem has a unique solution, this solution is x∗.
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2.5.8 Representation and Constraint Relaxation Issues

The presence of duality gap is due to the “problem representation”. To illustrate this
consider the following problem:

minimize −x2

subject to ‖x‖ ≤ x1

x ∈ X, X = {(x1, x2) | x2 ≥ 0}.

Note that its optimal value is f ∗ = 0.
Consider relaxing (assigning a price) to the inequality constraint ‖x‖ ≤ x1. As a result,

it can be seen that the corresponding dual problem is such that the dual value q(µ) is −∞
for any µ ≥ 0. Thus, q∗ = −∞, while f ∗ = 0. Hence, there is a duality gap.

However, by taking a closer look into the constraint set

C = {x ∈ R2 | ‖x‖ ≤ x1, x ∈ X},

we can see that
C = {x ∈ R2 | x1 ≥ 0, x2 = 0}.

Thus the problem is equivalent to

minimize −x2

subject to x1 ≥ 0, x2 = 0,

which is an LP problem. According to the LP strong duality, there is no duality gap for
this problem.

As seen from the preceding example, the duality gap issue is closely related to the “repre-
sentation” of the constraints. Thus, often it is advantageous to reformulate a given problem
into an equivalent form (if possible) for which some strong duality result is applicable.

Another issue that often arises when dealing with constraint problems is the existence
of multiple choices for a dual problem. For example, consider the problem

minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . ,m

Ax ≤ b, Bx = d
x ∈ X.

For this problem, there are multiple choices for the relaxation of the constraints (assigning
the prices to them). There is no general rule prescribing how to choose the “right one”.
For example, it is often convenient to keep (not to relax):

(1) Box constraints, i.e., interval constraints on the vector components (ai ≤ xi ≤ bi).

(2) Sign constraints, such as x ≥ 0 or x ≤ 0.

(3) Constraints for which the dual function can be easily evaluated.

The choice in (3) requires familiarity with the structure of a given problem.
The following example illustrates choosing a “good dual”.
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Example 28 Consider an LP with box constraints:

minimize cT x
subject to Ax = b

−1 ≤ xi ≤ 1 i = 1, . . . , n,

where A is an m×n matrix and b ∈ Rm. If we relax all the constraints, we obtain the dual
problem of the form

maximize −bT λ− eT µ− eT ν
subject to c + AT λ + µ− ν = 0

µ ≥ 0, ν ≥ 0.

This dual problem is somewhat complicated. By keeping the box constraints (equivalent to
keeping the box constraints in the set X), we obtain the dual of the form:

q(λ) = inf
−1≤xi≤1, i=1...,n

{
cT x + λT (Ax− b)

}
= −bT λ− ‖AT λ + c‖1.

The dual problem is:

maximize −bT λ− ‖AT λ + c‖1 over λ ∈ Rm.

There is another useful result, which we refer to “relax-all rule.” This rule says that if
the strong duality holds for the dual problem resulting from the relaxation of all constraints,
then the strong duality holds for a dual problem resulting from any partial relaxation of
the constraints. This rule is formalized in the following theorem

Theorem 35 Consider the following problem

minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . ,m.

Let the optimal value f ∗ of the problem be finite. Consider a dual corresponding to the
relaxation of all the constraints, and assume that the strong duality holds. Then, there is
no duality gap when partially relaxing the constraints.

Note that Theorem 35 applies to the problems that include linear equality constraints.
In this case, each linear equality is represented by two linear inequalities.



Chapter 3

Vector Space Methods for Static
Optimization

In this chapter, we discuss the basic algorithms for solving convex optimization problems
in n-dimensional vector space. The optimization problems we study here are static in the
sense that there is no underlying dynamic. In other words, we are given a single instance
of problem data that we need to solve optimally.

We start with a linear programming problem and simplex method. We then consider a
general convex optimization problem with constrains and study gradient projection meth-
ods. Both simplex and gradient projection method are viewed as primal problems. We
then focus on dual problems and consider dual methods.

3.1 Simplex Algorithm

We consider a linear programming problem in a standard form and introduce the notion
of a basic feasible solution. In Section 2.3.2 of Chapter 2, we have seen that, when LP
problem has an optimal solution and the constraint set contains a basic feasible solution,
then the LP has an optimal solution which is also a basic feasible solution. Simplex method
exploits this fact by searching the basic feasible solutions until an optimal one is found.
The search is based on moving from one basic feasible solution to another in the direction
of a cost decrease. Here, we discuss precisely how the method operates.

In what follows, we consider an LP problem in the standard form

minimize cT x
subject to Ax = b

x ≥ 0,

where A is an m× n matrix and b ∈ Rm. Throughout this section, we assume that m ≤ n
and that the rows of A are linearly independent. Recall our notation of [A]i being the i-th
row of the matrix A and [A]j being the j-th column of A.

83
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3.1.1 Optimal Basic Feasible Solutions

Here, we introduce and characterize feasible directions of an LP problem, and provide a
characterization of basic feasible solutions.

In particular, we have the following characterization of basic feasible solutions for the
standard LP problem.

Theorem 36 A vector x is a basic feasible solution for the standard LP problem if and only
if Ax = b and there exist indices B(1), . . . , B(m) such that the columns [A]B(1), . . . , [A]B(m)

are linearly independent and xi = 0 for i /∈ {B(1), . . . , B(m)}.

Based on Theorem 36, we can come up with a simple procedure for generating a basic
solution. In particular we can do this as follows:

(1) Select m linearly independent columns of A, say [A]B(1), . . . , [A]B(m).

(2) Set xi = 0 for all i /∈ {B(1), . . . , B(m)}.

(3) Determine the remaining m components xB(1), . . . , xB(m), by solving the system of m
equations Ax = b.

If the basic solution that is produced by the preceding procedure has nonnegative com-
ponents, then its is a basic feasible solution. A basic solution with more than n − m
components equal to zero is degenerate; otherwise, it is nondegenerate.

For a basic solution, the variables xB(1), . . . , xB(m) are basic, and the remaining variables
are nonbasic. The columns [A]B(1), . . . , [A]B(m) are basic columns. Note that these columns
form a basis in Rm, since they are linearly independent. The index set {B(1), . . . , B(m)} is
the set of basic indices. Two basis are distinct if they involve different sets of basic indices
(the order of the indices does not matter).

By forming a matrix from m basic columns, we obtain an m ×m matrix B, which we
refer to as a basis matrix. Every basis matrix is invertible, since its columns are linearly
independent. Similarly, we define a vector xB whose components are the basic variables.
Specifically, we have

B =
[

[A]B(1) [A]B(2) · · · [A]B(m)
]
, xB =


xB(1)

xB(2)
...

xB(m)

 .

Example 29 Let the equations AX = b be given by
2 1 0 0 0
3 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


2
2
1
1

 .

Choosing basic index set {2, 3, 4, 5}, we obtain a basic matrix B to be the 4 × 4 identity
matrix, and the corresponding basic solution is x = [0 2 2 1 1]T . Note that this solution is
also basic feasible.
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Figure 3.1: Feasible directions at different feasible points.

Choose now the basic index set {1, 3, 4, 5}. The corresponding basic matrix B is

B =


2 0 0 0
3 1 0 0
0 0 1 0
0 0 0 1

 ,

and its corresponding basic solution is x = [1 0 − 1 1 1]T . This solution is basic but not
feasible since x3 = −1 < 0.

Given a feasible vector x for an LP problem, we say that a vector d is a feasible direction
at x when there exists a scalar λ with λ > 0 such that x+λd is also feasible for the problem.
Feasible directions are illustrated in Figure 3.1

Suppose now we are at some feasible vector x and we want to move from x along a
feasible direction d to another feasible vector of the form x + λd. In order for the vector
x + λd to be feasible, we must have Ax + λAd = b. Since x is feasible and λ > 0, it follows
that Ad = 0.

Suppose that x is a basic feasible solution to the standard form LP problem. Let B be
the corresponding basic matrix, and let xB be the corresponding vector of basic variables.
We then have

xB = B−1b,

while the nonbasic variables are all zero. Consider a direction d at x of the form dj = 1 for
some nonbasic index j and dl = for all other nonbasic indices l. For such d to be feasible
we must have Ad = 0, implying that

0 = Ad =
n∑

i=1

[A]i di =
m∑

i=1

[A]B(i) dB(i) + [A]j = BdB + [A]j.

Hence, since B is invertible, we have

dB = −B−1[A]j.
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Such direction d as just constructed is the j-th basic direction. The preceding construction
guarantees that the equality constraints Ax = b are satisfied as me move away from x
along the direction d. But how far we can move (if any at all) and maintain the feasibility
depends on the degeneracy of x. In particular, there are two possibilities:

(1) If x is nondegenerate, then xB > 0 and for some (possibly small) λ > 0, we can still
have xB + λdB ≥ 0. Hence, the feasibility can be maintained (d is feasible).

(2) If x is degenerate, then we may have for some basic variable xB(i) = 0 and the
corresponding component dB(i) < 0. In this case, all the vectors of the form x + λd
with λ > 0 will be infeasible, i.e., violate nonnegativity constraint for xB(i) (d is
infeasible).

We now describe how the cost cT x changes as we move along a basic direction d. Moving
from x to x + d corresponds to the cost change from cT x to cT x + cT d. Thus the rate of
cost change is cT d. Since

dB = −B−1[A]j, dj = 1 for a nonbasic index j, dl = 0 for other nonbasic indices l,

it follows that the rate of change along d is

cT d = cj − cT
BB−1[A]j.

This is the cost per unit increase in the variable xj. It plays an important role in the
simplex algorithm, so it has a special name.

Definition 6 Let x be a basic solution with the corresponding basis matrix B. Let cB be
the cost vector associated with the basis matrix B. For every j, the reduced cost c̄j of the
variable xj is given by

c̄j = cj − cT
BB−1[A]j.

It can be seen that for any basic variable xB(i), the reduced cost c̄B(i) is zero. This
follows from the fact B−1[A]B(i) = ei.

We next provide an example for a basic direction and reduced cost.

Example 30 (Based on Example 3.1 of [11]) Consider the following LP problem:

minimize x1 + x2 − 2x3 + x4

subject to x1 + x2 + x3 + x4 = 2
2x1 + +3x3 + 4x4 = 2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Let B be the matrix formed from the first two columns of A, i.e.,

B =

[
1 1
2 0

]
.

We let x3 = 0 and x4 = 0, and obtain x1 and x2 from the relation xB = B−1b, implying that
x1 = 1 and x2 = 1. The resulting vector x is a basic feasible solution and nondegenerate.
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Consider the nonbasic variable x3 and the corresponding basic direction d. We have
d3 = 1 and d4 = 0, while d1 and d2 are obtained from the relation dB = −B−1[A]3, yielding
d1 = −3/2 and d2 = 1/2. The reduced cost of the variable x3 is

c̄3 = c3 − cT
BB−1[A]3 = −3

2
+

1

2
− 2 = −3.

In line with the optimality conditions of Section 2.3.3, we have the following result.

Theorem 37 Let x be a basic feasible solution with the corresponding basis matrix B, and
let c̄ be the corresponding vector of reduced costs. We then have:

(a) If c̄ ≥ 0, then x is optimal solution.

(b) If x is optimal and nondegenerate, then c̄ ≥ 0.

In light of Theorem 37, a basic solution is optimal if it is feasible and its corresponding
reduced cost is nonnegative. We use this to define an optimal basis, as follows.

Definition 7 A basis matrix B is optimal when B−1b ≥ 0 and c̄T = cT − cT
B B−1A ≥ 0.

Clearly, a basic solution corresponding to an optimal basis is an optimal solution.

3.1.2 Algorithm

Here, we complete the details needed for the development of the simplex method, and
present the method in a basic form. We have discussed basic feasible directions, and now
we need to see how we choose a good direction and specifically, how we generate a new basic
feasible solution from the current one. We first consider a nondegenerate LP problem and
then, comment on issues and discuss some modifications when the problem is degenerate.

Nondegenerate Linear Problem

Assume that all feasible solutions of the problem are nondegenerate. Let x be the current
basic feasible solution. Also, assume that we have evaluated the reduced cost c̄j for each of
the nonbasic variables. If they are all nonnegative, then by Theorem 37, the solution x is
optimal. Otherwise, there is some nonbasic variable xj with the reduced cost c̄j < 0. For
this nonbasic variable, we compute the corresponding (j-th) basic feasible direction,

dB = −B−1[A]j, dj = 1 for the nonbasic index j,
dl = 0 for all other nonbasic indices l. (3.1)

We have xj = 0. Moving from x along d, we generate the vectors x + λd with λ increasing
(starting from λ = 0). When increasing λ, the nonbasic variable xj increases and becomes
positive, while the other nonbasic variables remain unchanged (stay at 0). In this case, we
say that xj enters the basis.

The cost of a vector x + λd with λ ≥ 0 is cT x + λcT d. The cost change resulting from
moving from x to some x + λd is equal to λcT d. This is the same as the cost λ c̄j, which
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is negative for λ > 0. Hence, the cost decreases along d and to find the best feasible
vector along d, we should move as far as possible and stay feasible. This corresponds to
determining largest λ∗ > 0 such that x + λ∗d is feasible.

By the construction of d in Eq. (3.1), we have that Ad = 0, and therefore, the vectors
x+λd satisfy AX = b for any λ ≥ 0. A vector x+λd may be infeasible only when some of
its components are negative. Recall that the nonbasic variables other than xj will stay at
0, while xj becomes positive as λ increases from zero. Thus, the only components of x+λd
that may become negative as λ increases are the basic variables, which are affected by dB.
There are two possibilities:

Case dB ≥ 0. Then, xB + λdB ≥ 0 for all λ > 0, and the vector x + λd is always
feasible for λ ≥ 0. Hence, λ∗ = ∞.

Case dB 6≥ 0. Then, there exists a basic index B(i) such that dB(i) < 0. The
constraint xB(i) +λdB(i) ≥ 0 implies that λ ≤ −xB(i)/dB(i). This inequality should be
satisfied for all basic indices B(i) for which dB(i) < 0. Therefore,

λ∗ = min
{i | dB(i)<0}

{
−

xB(i)

dB(i)

}
.

Observe that λ∗ > 0, since xB(i) > 0 (nondegenerate x) and the minimum is taken
over the basic indices i corresponding to dB(i) < 0.

Suppose we have computed λ∗, and let λ∗ be finite. We then move to a new vector
x̃ = x + λ∗d. Note that x̃j = λ∗, since xj = 0 and dj = 1. Let p be the index achieving the
minimum in λ∗, i.e.

−
xB(p)

dB(p)

min
{i | dB(i)<0}

{
−

xB(i)

dB(i)

}
= λ∗.

Then, we have

xB(p) + λ∗dB(p) = 0,

and by the definition of λ∗, we have

xB(i) + λ∗dB(i) > 0 for all i 6= p, i = 1, . . . ,m, (3.2)

where the strict inequality holds by nondegeneracy. Thus, the new vector x̃ = x + λ∗d is
feasible. Let B̃ be the matrix obtained from the basis matrix B by replacing p-th column
of B (which is [A]B(p)) with j-th column of A (i.e., [A]j). Equivalently, we replace the basic
index set {B(1), . . . , B(m)} with the basic index set corresponding to x̃, which is given by

{B(1), . . . , B(p− 1), j, B(p + 1), . . . , B(m)}.

It can be seen that the new matrix B̃ also has linearly independent columns and thus, the
new vector x̃ is a basic feasible solution.

In the preceding procedure, we say that the nonbasic variable xj enters the basis, while
the basic variable xB(p) leaves the basis. Furthermore, the new basic feasible solution x̃ is
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distinct from x and the cost is reduced, i.e., the cost of x̃ is strictly smaller than the cost
of x.

The preceding construction is a typical iteration of a simplex method, by which the
method moves from one feasible basic solution to another. We next summarize the steps
involved in a typical simplex iteration:

1. Given a basic feasible solution x and its basis matrix B, compute the reduced costs

c̄j = cj − cT
B B[A]j for all nonbasic indices j.

2. If these reduced costs are nonnegative, then stop. The current solution x is optimal.
Otherwise choose some j for which c̄j < 0.

3. Compute dB = −B−1[A]j. If dB ≥ 0, then λ∗ = +∞ and the optimal cost is
f ∗ = −∞; terminate. Otherwise, go to step 4.

4. Compute

λ∗ = min
{i | dB(i)<0}

{
−

xB(i)

dB(i)

}
.

5. Select p such that λ∗ = −xB(p)/dB(p). Form a new basis matrix by replacing [A]B(p)

with [A]j. The new feasible solution x̃ has basic variables

x̃j = λ∗ and x̃B(i) = xB(i) + λ∗dB(i) for i 6= p.

There are few remaining issues to be discussed, namely, how to initially choose a basic
feasible solution, and how to select the variable xj entering the basis and the variable xB(p)

leaving the basis when there are multiple choices.
In general, finding an initial basic solution is not easy. It requires solving an auxiliary

linear problem, which is beyond the scope of these notes. The interested reader can find in
depth discussion on this issue, for example, in textbook [11], Section 3.5.

In a typical simplex iteration, at Step 2, there may exist several basic indices j for which
c̄j < 0. Similarly at step 5, there may be more than one index p for which the minimum in
the expression for λ∗ is attained. Thus, there may be multiple options for selecting j and
p, and there are some rules guiding these selections. The rules are known as pivoting rules.

We discuss pivoting rules regarding the choices of the nonbasic variable entering the
bases. Some possible choices are:

• Choose a nonbasic variable xj for which the reduced cost c̄j < 0 is the smallest. This
rule chooses the direction d along which the cost decreases at the fastest rate, but
this not necessarily yields the largest cost decrease, since the cost decrease depends
on how far we move along the chosen direction d.

• Choose a nonbasic variable xj with c̄j < 0, for which λ∗c̄j is the smallest. This rule
chooses the direction d corresponding to the largest cost decrease. However, note
that the computational load at each iteration can be high, since we need to compute
λ∗ for each nonbasic variable xj with c̄j < 0.
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In the nondegenerate case, the simplex method method finds an optimal basic solution
in a finite number of iterations, as stated in the following theorem.

Theorem 38 Assume that every basic feasible solution is nondegenerate, and that the
problem is feasible. Then, in finitely many iterations,the simplex method terminates at one
of the following possible cases:

(1) The basis B is optimal and the associated basic feasible solution is optimal.

(2) The direction d is such that Ad = 0, d ≥ 0, and cT d < 0.

Proof. If the algorithm terminates at step 2, then by Theorem 37, the basis B is optimal
and its corresponding basic feasible solution is optimal.

If the algorithm terminates at step 3, we then have a direction d with the reduced cost
c̄j < 0, and Ad = 0 and dB ≥ 0. But then, by construction of d [cf. Eq. (3.1)], we have d ≥ 0.
Furthermore, we have c̄j = cT d < 0. By letting λ → ∞, we obtain cT (x + λd) → −∞,
while the vectors x + λd stay feasible. Hence f ∗ = −∞.

Note that the algorithm reduces the cost at each iteration. Thus it moves from one
feasible basic solution to another, without ever revisiting the same basic feasible solution.
Since there are finitely many basic feasible solutions, the algorithm must terminate in a
finite number of iterations.

Degenerate Linear Problem

The simplex algorithm, as described, can be applied to a linear problem with degenerate
basic feasible solutions. However, we may face some new possibilities, such as:

• When the current basic feasible solution x is degenerate, λ∗ may be zero, and the
new basic feasible solution is the same as x. This can happen, when for some basic
variable xB(i) = 0 and the corresponding dB(i) < 0. However, we can still find a new
basis and proceed with the iteration. Theorem 38 still applies.

• When λ∗ is positive, it may happen that more than one of the original basic variables
becomes 0 [i.e., the inequality in Eq. (3.2) need not be strict anymore]. Among these
basic variables, one of them leaves the basis, but the others stay in the basis (at the
zero value). Thus, the new basic feasible solution is degenerate.

Changing the basis while still staying at the same basic feasible solution is still worth
doing. This is because, eventually, through a sequence of such changes, we may find a
feasible direction along which the cost decreases. However, a sequence of such changes may
also result in reaching the same basic feasible solution that we have started with. Thus, is
known as cycling, which can happen in the presence of degenerate basic feasible solutions.
There are some bookkeeping rules that track the variables entering the basis and prevent
cycling. For more on this, see for example [11], Section 3.4.
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Other Versions of the Simplex Algorithm

There are versions of the simplex method that exploit the dual LP. In particular, as seen
in Section 2.5.3 the dual of the standard LP is given by

maximize bT p
subject to AT p ≤ c. (3.3)

The primal optimality condition cT − cT
B B−1A ≥ 0, can be written in terms of the

dual variable p, by letting pT = cT
B B−1. Then, the primal optimality condition reduces to

pT A ≤ cT , which is the feasibility condition for the dual problem (3.3). Thus, the simplex
method that generates basic feasible solutions, maintains the primal feasibility and strives
for dual feasibility which is attained at the termination of the algorithm when f ∗ is finite
[cf. Theorem 38]. This method is also known as primal simplex method.

Alternatively, the simplex method can start at a dual feasible solution and strive to
achieve primal feasibility. Such a simplex algorithm is known as dual simplex method.
More on the dual simplex algorithm can be found in [11], Section 4.5.

3.2 Gradient Projection Method

In this section, we consider a standard gradient projection method as applied to a convex
optimization problem subject to a simple set of constraints. In particular, we focus on the
following problem:

minimize f(x)
subject to x ∈ X, (3.4)

where X ⊆ Rn and f : X → R. Throughout this section, we use the following assumption
for the set X and the function f .

Assumption 4 The set X is convex and closed. The function f is convex and differen-
tiable over the set X. The optimal value f ∗ of the problem (3.4) is finite.

The gradient projection method is an iterative method that starts with some initial
feasible vector x0 ∈ X, and generates the next iterate by taking a step along the negative
gradient direction −∇f(xk) of f at xk and then, by projecting on the set X to maintain
feasibility. Formally, a typical iteration of the gradient projection method is given by

xk+1 = PX [xk − αk∇f(xk)] , (3.5)

where the scalar αk > 0 is a stepsize and xk is the current iterate, and PX [y] is the projection
of a vector y on the set X. By the Projection Theorem [see Theorem 22 of Section 2.3.4],
the projection exists and it is unique since X is closed and convex. A typical iteration of
the gradient projection method is illustrated in Figure 3.2.

We assume that the set X is simple so that the projection on X is easy. Examples of such
sets X include a nonnegative orthant, a box, and a ball. When X is the nonnegative orthant
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Figure 3.2: An iteration of the gradient projection method.

Rn
+, then the projection on X decomposes into projections per coordinate. In particular, in

this case, the projection PX [x] is the vector x+ with components x+
i = max{xi, 0}. When

X is the box,
X = {x ∈ Rn | ai ≤ xi ≤ bi for all i},

again the projection on X decomposes into projections per coordinate, and the components
of the projection PX [x] vector are given by

[PX [x]]i =


ai if xi < ai

xi if ai ≤ xi ≤ bi

bi if bi < xi.

We consider the gradient projection method with several stepsize rules:

• Constant stepsize, where for some α > 0, we have αk = α for all k.

• Diminishing stepsize, where αk → 0 and
∑

k αk = ∞.

• Polyak’s stepsize, where αk = f(xk)−f∗

‖∇f(xk)‖2 .

• Modified Polyak’s stepsize, where αk = f(xk)−f̂k

‖∇f(xk)‖2 and f̂k = min0≤j≤k f(xj)−δ for some
scalar δ > 0.

The constant stepsize rule is suitable when we are interested in finding an approximate
solution to the problem (3.4). Diminishing stepsize rule is an off-line rule and is typically
used with αk = c

k+1
or c√

k+1
for some c > 0. The constant and the diminishing stepsize are

also well suited for some distributed implementations of the method.
Let us mention that Polyak’s stepsize in general form involves a parameter γk. In

particular, the stepsize is given by

αk = γk
f(xk)− f ∗

‖∇f(xk)‖2
,
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where γk is bounded away from zero and away from 2, i.e., 0 < γ ≤ γk ≤ γ < 2 for all k.
Here, however, we simply use γk = 1 for all k, since in general it is not clear what should
guide the choice for γk at each iteration k. Furthermore, all the results that we establish
here, also hold for the Polyak’s rule in general form.

Polyak’s stepsize is suitable when the optimal function value f ∗ is known and the
evaluation of the function f is possible and “easy”. There are some optimization problems
for which f ∗ is known and the algorithm is applied to generate an optimal solution. This
is the case, for example, in the feasibility problem (2.8) of Section 2.3.1, where f ∗ = 0.

The modified Polyak’s stepsize is a simple adaptation of the Polyak’s stepsize to accom-
modate the situations when f ∗ is not known. Note that the modified Polyak’s stepsize is
using a fixed positive parameter δ and, as we will see, the method with this stepsize exhibits
behavior similar to that of the method with the constant stepsize, thus only generating an
approximate solution. There exist other more complex modifications of the Polyak’s rule
for which the method generates optimal solutions. Some of these adaptations can be found
in [22] and [9] [and the references therein] although for the subgradient method and the
incremental implementation. However, the results shown there still hold by replacing the
subgradient with a gradient, and by setting m = 1 in the incremental implementation.

There are some other stepsize rules that use a line search. These have been developed
for the gradient method when X = Rn, but can be adjusted for the gradient projection
method [when X 6= Rn]. We comment on these in Section 3.2.4.

In what follows, we study the convergence properties of the method under the stepsize
rules described above. We note that the gradient projection method does not necessarily
generate iterates with decreasing cost. What makes the method work is the property that
at each new iteration, the method either decreases the function value or decreases the
distance to the optimal set. This property is captured in the following lemma, providing a
basis for the analysis of the method.

Lemma 12 Let Assumption 4 hold. Let y ∈ X be arbitrary but fixed. Then, for the
gradient projection method with any stepsize rule, we have for all k,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk(f(xk)− f(y)) + α2
k‖∇f(xk)‖2.

Proof. Since y ∈ X and the projection is a nonexpansive mapping [see Theorem 23 of
Section 2.3.4], it follows that for any k,

‖xk+1 − y‖2 ≤ ‖xk − αk∇f(xk)− y‖2 = ‖xk − y‖2 − 2αk∇f(xk)
T (xk − y) + α2

k‖∇f(xk)‖2.

By the convexity of f , we have [see Theorem 12 of Section 2.2.1] for any k and any y ∈ X,

f(xk)− f(y) ≤ ∇f(xk)
T (xk − y).

The desired relation follows by combining the preceding two inequalities.

3.2.1 Convergence for Constant and Diminishing Rule

In our analysis in this section, we use an additional assumption on gradients of f , namely,
we assume that the gradients are bounded uniformly over X.
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Assumption 5 There exists a constant L > 0 such that

‖∇f(xk)‖ ≤ L for all x ∈ X.

This assumption is satisfied for example, when X is a compact set and f is continuously
differentiable over X. Under this assumption, for the method with the constant stepsize,
we have the following result.

Theorem 39 Let Assumptions 4 and 5 hold. Then, for the gradient projection method
with the constant stepsize α, we have

lim inf
k→∞

f(xk) ≤ f ∗ +
αL2

2
.

Proof. To arrive at a contradiction, assume that the given relation does not hold, i.e.,
assume that

lim inf
k→∞

f(xk) > f ∗ +
αL2

2
.

Then, for some sufficiently small ε > 0, we have

f(xk) ≥ f ∗ +
αL2

2
+ 2ε for all k.

The function f is continuous over X, so that there exists ŷ ∈ X such that f(ŷ) = f ∗ + ε,
implying that

f(xk)− f(ŷ) ≥ αL2

2
+ ε for all k.

By using the relation of Lemma 12 with αk = α and y = ŷ, we obtain for all k,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2α(f(xk)− f(ŷ)) + α2‖∇f(xk)‖2

≤ ‖xk − ŷ‖2 − 2α

(
αL2

2
+ ε

)
+ α2L2,

where in the last inequality we use the uniform boundedness of the gradients. Hence

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αε for all k,

and by summing the preceding inequalities over k, we obtain

‖xk − ŷ‖2 ≤ ‖x0 − ŷ‖2 − 2kαε. (3.6)

However, the preceding relation fails to hold for sufficiently large k. Therefore, we must
have

lim inf
k→∞

f(xk) ≤ f ∗ +
αL2

2
.

When the set X is compact, and we know the maximal distance d of the set X, i.e.,
d = maxx,y∈X ‖x−y‖, we can use relation (3.6) to compute an upper bound of the minimal
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number of iterations N needed to guarantee that the error level αL2 is achieved, i.e., to
guarantee that

min
0≤k≤N

f(xk) ≤ f ∗ + αL2.

In particular, by choosing ε = αL2

2
and using relation (3.6), we can see that the number N

is given by

N =

⌊
d2

α2L2

⌋
.

Theorem 40 Let Assumptions 4 and 5 hold. Then, for the gradient projection method
with the diminishing stepsize αk, we have

lim inf
k→∞

f(xk) = f ∗.

Proof. To obtain a contradiction, assume that the given relation does not hold, i.e., assume
that for some sufficiently small ε > 0,

lim inf
k→∞

f(xk) > f ∗ + 2ε.

The function f is continuous over X, so there exists ŷ ∈ X such that f(ŷ) = f ∗ + ε,
implying that

f(xk)− f(ŷ) ≥ ε for all k.

By using the relation of Lemma 12 with y = ŷ, we obtain for all k,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αk(f(xk)− f(ŷ)) + α2
k‖∇f(xk)‖2

≤ ‖xk − ŷ‖2 − 2αkε + α2
kL

2,

where in the last inequality we also use the uniform boundedness of the gradients. Hence

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − α
(
2ε− αkL

2
)

for all k.

Since αk → 0, there exists k̂ such that ε ≥ αkL
2, implying that

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − αε for all k ≥ k̂.

By summing the preceding inequalities over k = k̂, . . . , K, we obtain

‖xK − ŷ‖2 ≤ ‖xk̂ − ŷ‖2 − ε
K−1∑
i=k̂

αi. (3.7)

By letting K → ∞ and using the fact
∑

k αk = +∞, we see that the left hand side of
relation (3.7) tends to −∞, while its right hand side is nonnegative - a contradiction.
Therefore, we must have lim infk→∞ f(xk) = f ∗.

When the optimal set X∗ of the problem in Eq. (3.4) is nonempty and we impose a
stronger condition on the diminishing stepsize, namely

∑
k α2

k < ∞, we can show that
the whole sequence {xk} generated by the gradient projection method converges to some
optimal solution x∗. This result is formally given in the following theorem.



96 CHAPTER 3. VECTOR SPACE METHODS FOR STATIC OPTIMIZATION

Theorem 41 Let Assumptions 4 and 5 hold. Also, assume that the optimal set X∗ of
the problem (3.4) is nonempty. Suppose that the stepsize is such that

∑
k αk = ∞ and∑

k α2
k < ∞. Then, for the iterate sequence {xk} generated by the gradient projection

method with such a stepsize αk, we have

lim
k→∞

‖xk − x∗‖ = 0 for some x∗ ∈ X∗.

Proof. By using the relation of Lemma 12 with y = x∗, we obtain for all k,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk(f(xk)− f ∗) + α2
k‖∇f(xk)‖2

≤ ‖xk − x∗‖2 + α2
kL

2,

where in the last inequality we use f(xk) ≥ f ∗ and the uniform boundedness of the gradi-
ents. By summing the preceding inequalities over k = k̂, . . . , K for some arbitrary k̂ and
K with k̂ < K, we obtain

‖xK − x∗‖2 ≤ ‖xk̂ − x∗‖2 + L2

K−1∑
k=k̂

α2
k.

Therefore,

lim sup
K→∞

‖xK − x∗‖2 ≤ ‖xk̂ − x∗‖2 + L2

∞∑
k=k̂

α2
k. (3.8)

By letting k̂ = 0, we see that the sequence {‖xk‖} is bounded and hence, it has at least
one accumulation point. Since

∑
k α2

k < ∞, it follows that αk → 0. By Theorem 40 we
have lim infk→∞ f(xk) = f ∗. Thus, one of the accumulation points of {xk} must belong to
the optimal set X∗. Let {xki

} be a subsequence such that xki
→ x̂∗ with x̂∗ ∈ X∗.

By setting x∗ = x̂∗ and k̂ = ki in Eq. (3.8), and by letting i →∞, we obtain

lim sup
K→∞

‖xK − x̂∗‖2 ≤ lim
i→∞

‖xki
− x̂∗‖2 + lim

i→∞

∞∑
k=ki

α2
k = 0,

where we have used limi→∞ ‖xki
− x̂∗‖ = 0 and

lim
i→∞

∞∑
k=ki

α2
k = 0,

which follows from
∑

k α2
k < ∞ . Hence, the whole sequence {xk} converges to x̂∗ ∈ X∗.

3.2.2 Convergence for Polyak’s Stepsize and its Modification

For the case when the optimal value f ∗ is known Polyak in [24] had suggested the stepsize
rule of the form

αk =
f(xk)− f ∗

‖∇f(xk)‖2
.
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This stepsize rule has also been studied by Shor in [29, 30] and Bränlund [14].
For the convergence analysis of the Polyak’s stepsize, we do not need the assumption

on uniform boundedness of the gradients. This is because, the stepsize “normalizes” the
directions that the method is using. In particular, the direction that the method is using
for the Polyak’s stepsize is given by

−αk∇f(xk) =
f(xk)− f ∗

‖∇f(xk)‖
∇f(xk)

‖∇f(xk)‖
.

We have the following convergence result.

Theorem 42 Let Assumption 4 hold. Also, assume that the optimal set X∗ of the problem
(3.4) is nonempty. Then, for the iterate sequence {xk} generated by the gradient projection
method with Polyak’s stepsize αk, we have

lim
k→∞

‖xk − x∗‖ = 0 for some x∗ ∈ X∗.

Proof. By using the relation of Lemma 12 with y = x∗, we obtain for all k and any
x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk(f(xk)− f ∗) + α2
k‖∇f(xk)‖2

= ‖xk − x∗‖2 − (f(xk)− f ∗)2

‖∇f(xk)‖2
,

where in the last inequality we use the stepsize expression αk = f(xk)−f∗

‖∇f(xk)‖2 . Therefore, it
follows that for any x∗ ∈ X∗, and any k and s with k > s,

‖xk+1 − x∗‖2 ≤ ‖xs − x∗‖2 −
k∑

i=s

(f(xi)− f ∗)2

‖∇f(xi)‖2
. (3.9)

By letting s = 0, we see that the iterate sequence {xk} is bounded and therefore, it has an
accumulation point. Furthermore, note that Eq. (3.9) implies that

∞∑
i=0

(f(xi)− f ∗)2

‖∇f(xi)‖2
≤ ‖x0 − x∗‖2 < ∞. (3.10)

Suppose that none of the accumulation points of {xk} belongs to the optimal set X∗.
Then, for some small scalar ε > 0, we have

f(xk) > f ∗ for all k.

Since {xk} is bounded, so is the gradient sequence {∇f(xk)}, i.e., there is a scalar c > 0
such that

‖∇f(xk)‖ ≤ c for all k.

Therefore,
(f(xi)− f ∗)2

‖∇f(xi)‖2
≥ ε2

c2
for all k.
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By summing the preceding relations over k, we obtain

∞∑
i=0

(f(xi)− f ∗)2

‖∇f(xi)‖2
≥

∞∑
i=0

ε2

c2
= ∞,

thus contradicting the relation in Eq. (3.10). Hence, every accumulation point of {xk} must
belong to the set X∗.

Let x̂∗ be an accumulation point of the sequence {xk}, and let {xkj
} be a subsequence

of {xk}. By letting x∗ = x̂∗ and s = kj in Eq. (3.9), we obtain for all k > kj.

‖xk+1 − x̂∗‖2 ≤ ‖xkj
− x̂∗‖2 −

k∑
i=kj

(f(xi)− f ∗)2

‖∇f(xi)‖2
.

Therefore,

lim sup
k→∞

‖xk+1 − x̂∗‖2 ≤ ‖xkj
− x̂∗‖2 −

∞∑
i=kj

(f(xi)− f ∗)2

‖∇f(xi)‖2
.

By letting j →∞, and by using the relation ‖xkj
− x̂∗‖ → 0 and Eq. (3.10), we obtain

lim sup
k→∞

‖xk+1 − x̂∗‖2 ≤ lim
j→∞

‖xkj
− x̂∗‖2 −

∞∑
i=kj

(f(xi)− f ∗)2

‖∇f(xi)‖2

 = 0,

thus showing that the entire sequence converges to x̂∗ ∈ X∗.

The relation shown at the beginning of the proof of Theorem 42, namely,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (f(xk)− f ∗)2

‖∇f(xk)‖2
for all k and any x∗ ∈ X∗ (3.11)

will be important in our assessment of the convergence rate of the gradient projection
method in Section 3.2.3.

We now provide a convergence result for the modified Polyak’s stepsize. Note that for
this stepsize, we have

αk =
f(xk)− f̂k

‖∇f(xk)‖2
=

f(xk)−min0≤j≤k f(xj) + δ

‖∇f(xk)‖2
≥ δ

‖∇f(xk)‖2
.

As we will see, this stepsize remains bounded away from zero, so the convergence result is
similar to that of Theorem 39.

Theorem 43 Let Assumption 4 hold. Then, for the iterate sequence {xk} generated by the
gradient projection method with modified Polyak’s stepsize αk, we have

lim inf
k→∞

f(xk) ≤ f ∗ + δ.



3.2. GRADIENT PROJECTION METHOD 99

Proof. To obtain a contradiction, assume that the given relation does not hold, i.e., assume
that for some sufficiently small ε > 0,

lim inf
k→∞

f(xk) > f ∗ + δ + ε.

The function f is continuous over X, so there exists ŷ ∈ X such that f(ŷ) = f ∗ + ε,
implying that

f(xk) ≥ f(ŷ) + δ for all k.

Therefore
f̂k = min

0≤j≤k
f(xj)− δ ≥ f(ŷ) for all k,

implying that
f(xk)− f(ŷ) ≥ f(xk)− f̂k for all k. (3.12)

By using the relation of Lemma 12 with y = ŷ, we obtain for all k,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αk(f(xk)− f(ŷ)) + α2
k‖∇f(xk)‖2

≤ ‖xk − ŷ‖2 − 2αk(f(xk)− f̂k) + α2
k‖∇f(xk)‖2,

where the last inequality is obtained by using the relation (3.12). Using the stepsize ex-

pression αk = f(xk)−f̂k

‖∇f(xk)‖2 , we see that for all k,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − (f(xk)− f̂k)
2

‖∇f(xk)‖2
. (3.13)

By summing the preceding inequalities, we obtain for all k,

‖xk+1 − x∗‖2 ≤ ‖x0 − x∗‖2 −
k∑

i=0

(f(xi)− f̂k)
2

‖∇f(xi)‖2
. (3.14)

In particular, from the relation (3.14) it follows that the iterate sequence {xk} is bounded
and that

∞∑
i=0

(f(xi)− f̂k)
2

‖∇f(xi)‖2
≤ ‖x0 − x∗‖2 < ∞. (3.15)

Since {xk} is bounded, so is the gradient sequence {∇f(xk)}, i.e., there is a scalar c > 0
such that

‖∇f(xk)‖ ≤ c for all k.

Therefore,
(f(xi)− f̂k)

2

‖∇f(xi)‖2
≥ δ2

c2
for all k,

implying that
∞∑
i=0

(f(xi)− f ∗)2

‖∇f(xi)‖2
≥

∞∑
i=0

δ2

c2
= ∞,
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contradicting the relation in Eq. (3.15). Hence, we must have lim infk→∞ f(xk) ≤ f ∗+ δ.
When the set X is compact, and we know the maximal distance d of the set X, i.e.,

d = maxx,y∈X ‖x − y‖, we can use relation (3.13) to compute an upper bound of the
minimal number of iterations N needed to guarantee that the error level δ is achieved, i.e.,
to guarantee that

min
0≤k≤N

f(xk) ≤ f ∗ + δ.

In particular, by using relation (3.6), we can see that the number N is given by

N =

⌊
d2L2

δ2

⌋
,

where L is an upper bound on the gradient norms ‖∇f(xk)‖.

3.2.3 Convergence Rate

The convergence rate of the projection gradient method is at best linear. The linear con-
vergence is attained with Polyak’s stepsize and for an objective function with a sharp set
of minima. In particular, we say that f has a sharp set of minima over X when for some
scalar µ > 0,

f(x)− f ∗ ≥ µ dist(x, X∗) for all x ∈ X, (3.16)

where dist(x, Y ) is the distance from the vector x to the set Y . It can be seen that a
(polyhedral) function has a sharp set of minima. Let f be a polyhedral function, i.e., a
function of the form

f(x) = max
1≤i≤m

{aT
i x + b},

where bi ∈ R and ai ∈ Rn with ai 6= 0 for all i. Then, it can be seen that f satisfies the
relation for a sharp set of minima with µ = min1≤i≤m ‖ai‖, provided that X∗ is not empty.

In following theorem, we establish a linear convergence rate for the gradient projection
method. In the proof of the theorem, we use relation (3.11) mentioned after the proof of
Theorem 42.

Theorem 44 Let Assumption 4 hold and let the optimal set X∗ be nonempty. Also, assume
that f has a sharp set of minima over X [cf. Eq. (3.16)]. Then, the gradient projection
method with Polyak’s stepsize αk converges linearly, i.e., we have

dist(xk, X
∗)2 ≤

(
1− µ2

L2

)k

dist(x0, X
∗)2 for all k,

where L is the gradient norm bound uniform over X [‖∇f(x)‖ ≤ L for all x ∈ X].

Proof. We start with the relation (3.11), i.e.,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (f(xk)− f ∗)2

‖∇f(xk)‖2
for all k and any x∗ ∈ X∗.
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Figure 3.3: A zig-zagging behavior of the gradient method when the level sets of the
function f are prolonged.

It follows that the sequence {xk} is bounded, so that the gradient sequence {∇f(xk)} is
also bounded. Let L be an upper bound on the gradient norms. By taking the minimum
with respect to x∗ ∈ X∗ in both sides of the preceding relation, and also using the gradient
boundedness, we obtain

dist(xk+1, X
∗)2 ≤ dist(xk, X

∗)2 − (f(xk)− f ∗)2

L2
for all k.

Using the sharp minima relation (3.16), we obtain

dist(xk+1, X
∗)2 ≤ dist(xk, X

∗)2 − µ2

L2
dist(xk, X

∗)2 =

(
1− µ2

L2

)
dist(xk, X

∗)2 for all k,

which implies the desired result.

Linear convergence rate is not the best known rate. There are methods with super-
linear (quadratic) rate such as Newton method and the interior point method, which uses
Newton’s directions. These methods, however, require f to be twice differentiable among
other conditions.

The potential drawback of the projection gradient method is that it can be very slow
when the gradient directions are almost perpendicular to the directions pointing toward
the optimal set X∗, corresponding to

∇f(xk)
T (xk − x∗) ≈ 0.

In this case, the method may exhibit zig-zag behavior, depending on the initial iterate x0.
This may happen in particular when the level sets of the function f are prolonged in certain
directions (known as ill-posedness), as illustrated in Figure 3.3 [for X = Rn].

3.2.4 Non-Projected Gradient

When the problem (3.4) is unconstrained i.e., X = Rn, the gradient projection method
reduces to unconstrained gradient method, where

xk+1 = xk − αk∇f(xk) for all k,
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which is also known as steepest descent method. In this method, we can use stepsizes based
on line search, such as the exact line search stepsize, where

αk = Argmin
α>0

f(xk − α∇f(xk)),

or backtracking line search [also known as Armijo stepsize]. What is more surprising, we
can use a carefully selected constant step and still have the convergence of the method, as
seen from the following theorem.

Theorem 45 Let Assumption 4 hold with X = Rn. Let the gradient mapping of the
function f be Lipschitz continuous, i.e.,

‖∇f(x)−∇f(y) ≤ L‖x− y‖ for all x, y ∈ Rn.

Let the stepsize αk be such that for some α > 0,

α ≤ αk <
2

L
for all k.

Then, every accumulation point of the iterate sequence {xk} generated by the unconstrained
gradient method with this stepsize is an optimal solution.

In practical implementations, in order to use the constant stepsize with guaranteed
convergence, we need to have the Lipschitz constant L available, or some upper bound
for L. The analogous result to that of Theorem 45 holds for the gradient projection method,
under Assumption 4 and assuming that the gradient is Lipschitz continuous over X, i.e.,

‖∇f(x)−∇f(y) ≤ L‖x− y‖ for all x, y ∈ X.

This result for a more general nonconvex function f can be found in [5], Proposition 2.3.2.
The backtracking line search determines the stepsize αk by searching for a point on the

line segment connecting xk and xk − ∇f(xk) that has a sufficient decrease. The search
is performed by successive halving of the intermediate segments. Specifically, the stepsize
αk is determined through the following procedure: Parameters σ ∈ (0, 1] and β ∈ (0, 1)
are selected when the algorithm is initiated. At the current iterate xk, we perform the
following:

Backtracking Line Search

1. Set i = 1 and ti = 1.

2. Sufficient Descent Test If

f(xk − ti∇f(xk)) ≤ f(xk)− σti‖∇f(xk)‖2,

then stop. Set the stepsize αk = ti. Otherwise, go to step 3.

2. Increase i by 1 and set ti+1 = βti. Go to step 2.
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When function f is continuously differentiable, by the first-order Taylor expansion at
any x, we have

f(x− α∇f(x)) = f(x)− α‖∇f(x)‖2 + o(α) = f(x)− α

(
‖∇f(x)‖2 − o(α)

α

)
.

Since limα→0
o(α)

α
= 0, it follows that for sufficiently small α > 0, we have

‖∇f(x)‖2 − o(α)

α
> 0.

This guarantees that the backtracking line search finds αk in a finite number of trials i.

At every iteration of the unconstrained gradient method with the backtracking rule, we
have

xk+1 = xk − αk∇f(xk), (3.17)

with αk such that the sufficient descent is guaranteed, i.e.,

f(xk+1) ≤ f(xk)− σαk‖∇f(xk)‖2, (3.18)

with ak = βik for some integer ik ≥ 0

For the gradient method with backtracking line search, we have the following result. Its
proof for a more general nonconvex function [using σ ∈ (0, 2)1] can be found for example
in [5], Section 1.2.2.

Theorem 46 Let Assumption 4 hold with X = Rn. Then, every accumulation point of
the iterate sequence {xk} generated by the unconstrained gradient method with backtracking
line search stepsize is an optimal solution.

The backtracking line search can be modified to be used for the constrained minimiza-
tion problem [X 6= Rn]. In this case, the line search is replaced with the “arc” search, as
follows: at the current iterate xk, we determine the stepsize by:

Backtracking Arc Search

1. Set i = 1 and ti = 1.

2. Sufficient Descent Test If

f (PX [xk − ti∇f(xk)]) ≤ f(xk)− σti‖∇f(xk)‖2,

then stop. Set the stepsize αk = ti. Otherwise, go to step 3.

2. Increase i by 1 and set ti+1 = βti. Go to step 2.

1When f is convex, we cannot use σ > 1. This follows from linearization property for a convex function
f(xk) +∇f(xk)T (xk+1 − xk) ≤ f(xk+1), and the relations (3.17)–(3.18).
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In this case, the result of Theorem 46 holds for the gradient projection method and the
backtracking arc search, as seen for example, in Proposition 2.3.3 of [5] for a general non-
convex function.

The backtracking line search can be efficiently used when the function evaluation f(xk)
are “easy”. However, if these evaluations are expensive or impossible such as in some
distributed systems2, then one should consider an alternative stepsize.

Finally, note that the results of Theorems 46 and 45 do not guarantee the existence of the
accumulation points of {xk}. These results merely say that: if accumulation points exist,
then they are optimal. Let us also note that the results of Theorems 46 and 45, as well as
the results of their extensions to the gradient projection method, hold only for differentiable
functions3. This is in contrast with the results of Theorems 39–43, which hold when f is
convex but not necessarily nondifferentiable. Basically, when f is not differentiable due
to multiple directions that may “play role of the gradient”, the backtracking line search
procedure may never exit the loop of trials, and thus, cannot be used.

3.2.5 Gradient Scaling

To overcome a possibly slow convergence of the gradient projection method mentioned in
Section 3.2.3, the gradient is often scaled. In this case, the method takes the form

xk+1 = PX [xk − αkΛk∇f(xk)], (3.19)

where Λk is a diagonal matrix with positive entries on its diagonal, i.e., [Λk]ii > 0 for all
i = 1, . . . , n and all k.

When the function f is twice differentiable, one possibility is to use Λk based on Hessian
information of f at xk. This choice is motivated by the Newton method which uses the
direction [∇2f(xk)]

−1∇f(xk) instead of the gradient. Since the inverse of the Hessian
∇2f(xk) may be computationally very expensive a simpler scaling can be used instead that
takes the inverse values of the diagonal elements of the Hessian ∇2f(xk), i.e., the scaling
matrix Λk is given by

[Λk]ii =

(
∂2f(xk)

∂x2
i

)−1

for all i and k,

where ∂2f(xk)

∂x2
i

is the (i, i)th entry of the Hessian ∇2f(xk).

The analysis of such methods uses the successive transformation of space variables xk

based on the scaling matrix Λk. Namely, new variables are defined by

yk = Λ
1
2
k xk,

where Λ
1
2
k is the square root of the matrix Λk.

2 In some multi agent systems, agents have access to partial information about f , and no agent knows
the entire function f .

3This can be seen from the the proofs for these results.
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More generally, one may consider a non-diagonal scaling matrices Λk. However, these
matrices have to be positively definite. In fact, one can establish the convergence of the
scaled gradient projection method (3.19) when the maximum and the minimum of all
eigenvalues of Λk are uniformly bounded over k.

We next provide a result showing a convergence of the scaled gradient projection method
with the backtracking arc search rule (see a more general result for nonconvex objective
function in [5], Proposition 2.3.4).

Theorem 47 Let Assumption 4 hold. Let {xk} be a sequence generated by the scaled gra-
dient projection method (3.19) with backtracking arc search stepsize. Also, let the matrices
Λk be all positive definite and assume that for some scalars ν1 > 0 and ν2 > 0 the following
relation is satisfied

ν1‖x‖2 ≤ xT Λkx ≤ ν2‖x‖2 for all ∈ Rn and all k.

Then, every accumulation point of the iterate sequence {xk} is an optimal solution.

More discussion on the scaled gradient projection algorithm can be found, for example, in
[5] Section 2.3.

3.2.6 Feasible Descent Method

This is a general scheme for minimizing differentiable function over a constraint set. In
particular, the idea is to generate an iterate sequence using “gradient related” directions
dk as opposed to gradient directions. The method takes the form

xk+1 = xk + αkdk for all k,

with dk being a feasible direction of the set X at the iterate xk, i.e.,

xk + αkdk ∈ X for all k.

For convergence of such a method to a solution of the problem, the directions {dk} need to
be related to the gradient directions. This is ensured for example when for some η > 0,

dT
k∇f(xk) ≤ −η‖dk‖ ‖∇f(xk)‖ for all k.

In other words, this condition ensures that the angle formed by the direction dk and the
gradient ∇f(xk) is bounded away from 90 degrees uniformly over k.

Frank-Wolfe Method

One idea of generating a feasible direction dk is based on the use of the linear approximation
of f at the current iterate xk. In particular, by writing dk = x̂k−xk, where x̂k is a solution
to the following problem

minimize ∇f(xk)
T (x− xk)
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subject to x ∈ X. (3.20)

This method is known as Frank-Wolfe method and also as conditional gradient method.
Note that the preceding problem may not have solution when X is unbounded. To ensure
the existence of a solution, an additional assumption that X is bounded is typically used.

A typical iteration of the Frank-Wolfe method has the following steps: at the current
iterate xk, solve the minimization problem (3.20) to obtain x̂k, i.e.,

x̂k ∈ Argmin
x∈X

∇f(xk)
T (x− xk).

Select the stepsize αk, and define

x+1 = xk + αk(x̂k − xk).

Typically, the backtracking line search is used to determine the stepsize αk.
The convergence results for the Frank-Wolfe method, as well as for more general feasible

direction methods, can be found in [5] Section 2.2.

3.3 Dual Method

In this section, we consider a constrained problem where, in addition to the constraint set
X, there are also inequality and linear equality constraints. Specifically the minimization
problem of interest has the following form

minimize f(x)
subject to g1(x) ≤ 0, . . . , gm(x) ≤ 0

aT
1 x = b1, . . . , a

T
r x = br

x ∈ X,

where X ⊂ Rn, gj : X → R for all j, and ai ∈ Rn and bi ∈ R for all i. We will also use a
more compact formulation of the preceding problem:

minimize f(x)
subject to g(x) ≤ 0

Ax = b
x ∈ X, (3.21)

where g = [g1, . . . , gm]T : X → Rm, A is an r × n matrix with rows aT
i , and b ∈ Rr is a

vector with components bi. Throughout this section, we use the following assumption.

Assumption 6 The set X is convex and closed. The objective f and the constraint func-
tions g1, . . . , gm are convex over the set X. The optimal value f ∗ of problem (3.21) is finite.

A silent assumption is that the set X has a simple structure for projection operation.
Solving the problem of the form (3.21) can be very complex due to the presence of (possibly
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nonlinear) inequality constraints g(x) ≤ 0. Here, we consider the algorithms for solving
the problem (3.21) through the use dual methods as applied to solve the dual problem.

Consider the dual problem obtained by relaxing all the inequality and equality con-
straints (assigning prices to them). In this case, the dual problem is

maximize q(µ, λ)
subject to µ ≥ 0, (3.22)

where the dual function q(µ, λ) is given by

q(µ, λ) = inf
x∈X

{f(x)+µT g(x)+λT (Ax−b)} for µ ∈ Rm with µ ≥ 0 and λ ∈ Rr. (3.23)

Note that the constraint (µ, λ) ∈ dom q is an implicit constraint of the dual problem
(silently assumed). In the dual problem, the multiplier µ is constrained to the nonnegative
orthant, while the multiplier λ is a free variable. Furthermore, the dual function q(µ, λ)
is concave, so that the dual is a constrained concave maximization problem, which is
equivalent to a constrained convex minimization problem (through a sign change in the
objective). Hence, if the dual function is differentiable we could apply gradient projection
methods (for maximization) and solve the dual.

In some situations, a partial dual problem is considered and is still referred to as the
dual. In particular, consider relaxing only the inequality constraints of the problem (3.21),
yielding a dual problem of the form

maximize q̃(µ)
subject to µ ≥ 0, (3.24)

where the dual function q̃(µ) is given by

q̃(µ) = inf
Ax=b, x∈X

{f(x) + µT g(x)} for µ ∈ Rm with µ ≥ 0. (3.25)

In this dual problem, the multiplier µ is constrained to the nonnegative orthant, while the
dual function q̃(µ) is concave. To distinguish between these two different formulations of
the dual problem, we will refer to problem (3.22)–(3.23) as the dual problem and to problem
(3.24)–(3.25) as the partial dual problem.

The main difficulty in dealing with dual problems is the evaluation of the dual function,
since it involves solving a constrained minimization problem per each value of the dual
variables. The use of dual problems is the most advantageous in the situations when the
dual function evaluation is “easy”, i.e., when a dual solution is explicitly given. Fortunately,
this is the case in many problems arising in various applications. We discuss some of them
in Chapter 4.

In what follows, we focus on the dual problems where the minimization problem involved
in the dual function evaluation has solutions. Under this assumption, for the dual function
q(µ, λ) of Eq. (3.23), we have for any µ ≥ 0 and any λ,

q(µ, λ) = f(xµλ) + µT g(xµλ) + λT (Axµλ − b),
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where xµλ is an optimal solution for the following problem

minimize f(x) + µT g(x) + λT (Ax− b)
subject to x ∈ X. (3.26)

Similarly, under the assumption that the minimization problem defining the dual func-
tion q̃(µ) of Eq. (3.25) has optimal solutions, we have for any µ ≥ 0,

q̃(µ) = f(xµ) + µT g(xµ),

where xµ is an optimal solution for the following problem

minimize f(x) + µT g(x)
subject to Ax = b, x ∈ X. (3.27)

Let us now consider the relations that characterize the minimizers xµλ and xµ of the
problems (3.26) and (3.27) respectively, when f and all gj are convex, and X is closed
and convex. These relations require differentiability of f and all gj. The gradient of the
Lagrangian function of Eq. (3.26) is

∇f(x) +
m∑

j=1

µj∇gj(x) + λT A.

Thus, by the first-order optimality conditions, xµλ is an optimal solution for problem (3.26)
if and only if(

∇f(xµλ) +
m∑

j=1

µj∇gj(xµλ) + λT A

)T

(x− xµλ) ≥ 0 for all x ∈ X.

Similarly, the gradient of the Lagrangian function of Eq. (3.27) is

∇f(x) +
m∑

j=1

µj∇gj(x).

By the first-order optimality conditions, xµ is an optimal solution for problem (3.27) if and
only if (

∇f(xµλ) +
m∑

j=1

µj∇gj(xµλ)

)T

(x− xµλ) ≥ 0 for all x ∈ X, Ax = b.

To this end, we discussed both the dual and the partial dual problem, since both have
been traditionally used, depending on which one is more suitable for a given problem at
hand. For the rest of this section, we will focus only on the dual problem (3.22). Analogous
results hold for the partial dual.

With respect to the existence of optimal solutions for the problem (3.26), we consider
two cases:

(1) The minimizer xµλ is unique for each µ ≥ 0 and λ ∈ Rr.

(2) The minimizer xµλ is not unique.

The uniqueness of the minimizers ties closely with the differentiability of the dual function
q(µ, λ), which we discuss next.
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3.3.1 Differentiable Dual Function

In this section, we discuss the dual methods for the case when the dual function is differ-
entiable. As we will see the differentiability of the dual function is guaranteed when the
minimizer of the problem (3.26) is unique. We focally impose this condition, as follows.

Assumption 7 For every µ ≥ 0 and λ ∈ Rr, the minimizer xµλ in the problem (3.26)
exists and it is unique.

Under convexity assumption and Assumption 7, we have the following result.

Lemma 13 Let Assumptions 6 and 7 hold. Then, for every µ ≥ 0 and λ ∈ Rr, the
inequality and equality constraints of the problem (3.21) evaluated at the minimizer xµλ

constitute the gradient of q at (µ, λ), i.e.,

∇q(µ, λ) =



g1(xµλ)
...

gm(xµλ)
aT

1 xµλ − b1
...

aT
r xµλ − br


.

Note that, in view of Lemma 13, the differentiability of the dual function has nothing to
do with the differentiability of the objective f or constraint functions gj. The differentiability
of q is strongly related to the uniqueness of the optimizer in the problem defining the dual
function value.

According to Lemma 13, for the partial gradients ∇µq(µ, λ) and ∇λq(µ, λ), we have

∇µq(µ, λ) =

 g1(xµλ)
...

gm(xµλ)

 = g(xµλ),

∇λq(µ, λ) =

 aT
1 xµλ − b1

...
aT

r xµλ − br

 = Axµλ − b.

To solve the dual problem, under Assumptions 6 and 7, we can now apply the projection
gradient method, which is adapted to handle maximization. The projected gradient method
for the dual problem has the form:

µk+1 = [µk + αk∇µq(µ, λ)]+ ,

λk+1 = λk + αk∇λq(µ, λ),

where [·]+ denotes the projection on the nonnegative orthant Rm
+ , αk > 0 is the stepsize,

and µ0 ≥ 0 and λ0 are initial multipliers. Note that, since the dual problem involves
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maximization, the gradient method takes steps along the gradients of q. We refer to this
gradient method as the dual gradient projection method.

By using Lemma 13, we see that the method is equivalently given by

µk+1 = [µk + αk g(xµλ)]
+ , (3.28)

λk+1 = λk + αk (Axµλ − b). (3.29)

The dual gradient method can be used with all the stepsizes discussed in Section 3.2,
including the backtracking line search. However, the Polyak’s stepsize and its modification,
and the backtracking line search have to be suitably adjusted to account for the maximiza-
tion aspect. In particular, for the dual gradient projection method the Polyak’s stepsize is
given by:

αk =
q∗ − q(µk, λk)

‖∇q(µk, λk)‖2
,

where q∗ is the optimal value of the dual problem (of course, q∗ should be finite in order
to use this stepsize).

Denote by xk the minimizer xµλ when (µ, λ) = (µk, λk). Note that ‖∇q(µk, λk)‖2 =
‖g(xk)‖2 + ‖Axk − b‖2, or equivalently

‖∇q(µk, λk)‖2 =
m∑

j=1

g2
j (xk) +

r∑
i=1

(aT
i xk − bi)

2.

For the dual gradient projection method, the modified Polyak’s stepsize has the following
form

αk =
q̂k − q(µk, λk)

‖∇q(µk, λk)‖2
with q̂k = δ + max

0≤κ≤k
q(µκ, λκ).

Finally, in the backtracking arc search procedure of Section 3.2.4, the relation at step 2
should be Sufficient Ascent Test and the inequality in the test should be

q(vi) ≥ q(µk, λk) + σti‖∇q(µk, λk)‖2,

where

vi =

[
[µk + ti∇µq(µk, λk)]

+

λk + ti∇λq(µk, λk)

]
=

[
[µk + tig(xk)]

+

λk + tip(Axk − b)

]
.

Note that, when appropriately interpreted, all the results for the gradient projection
method that we established in Section 3.2 apply to the dual maximization problem.

We next provide an example demonstrating computation of the gradient of the dual
function. In particular, we revisit the Kelly’s canonical utility-based network resource
allocation problem (see [19]).

Example 31 Consider a network consisting of a set S = {1, . . . , S} of sources and a set
L = {1, . . . , L} of undirected links, where a link l has capacity cl. Let L(i) ⊂ L denote the
set of links used by source i. The application requirements of source i is represented by a
differentiable concave increasing utility function ui : [0,∞) → [0,∞), i.e., each source i
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gains a utility ui(xi) when it sends data at a rate xi. Let S(l) = {i ∈ S | l ∈ L(i)} denote
the set of sources that use link l. The goal of the network utility maximization problem is
to allocate the source rates as the optimal solution of the problem

maximize
∑
i∈S

ui(xi)

subject to
∑

i∈S(l)

xi ≤ cl for all l ∈ L

xi ≥ 0 for all i ∈ S.

Alternatively, we may view the problem as the minimization of differentiable convex and
decreasing function f(x) = −

∑
i∈S ui(xi) subject to the above constraints. Note that the

constraint set of the problem is compact [since 0 ≤ xl ≤ cl for all links l ∈ L]. Since f is
continuous over the constraint set, the optimal value f ∗ is finite [in fact, a unique optimal
solution x∗ exists]. Assumption 6 is satisfied.

By relaxing the link capacity constraints, the dual function takes the form

q(µ) = min
xi≥0, i∈S

∑
i∈S

= ui(xi) +
∑
l∈L

µl

∑
i∈S(l)

xi − cl


= min

xi≥0, i∈S

∑
i∈S

−ui(xi) + xi

∑
l∈L(i)

µl

−
∑
l∈L

µlcl.

Since the optimization problem on the right-hand side of the preceding relation is separable
in the variables xi, the problem decomposes into subproblems for each source i. Letting
µi =

∑
l∈L(i) µl for each i (i.e., µi is the sum of the multipliers corresponding to the links

used by source i), we can write the dual function as

q(µ) =
∑
i∈S

min
xi≥0

{xiµi − ui(xi)} −
∑
l∈L

µlcl.

Hence, to evaluate the dual function, each source i needs to solve the one-dimensional
optimization problem minxi≥0{xiµi − ui(xi)}. Note that µi = 0 is not in the domain of the
dual function [since each ui is increasing, it follows that minxi≥0{−ui(xi)} = −∞]. Thus,
we must have µi > 0 for all i ∈ S for the dual function to be well defined.

For µi > 0, by the first-order optimality conditions [see Theorem 20 of Section 2.3.3],
the optimal solution xi(µi) for the one-dimensional problem satisfies the following relation

u′i(xi(µi)) = µi,

where u′i(xi) denotes the derivative of ui(xi). Thus,

xi(µi) = u′i
−1

(µi),

where u′i
−1 is the inverse function of u′i, which exists since ui is differentiable and increasing.

Hence, for each dual variable µ > 0, the minimizer x(µ) = {µi, i ∈ S} in the problem of
dual function evaluation exists and it is unique.
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The following implication of the KKT conditions [cf. Theorem 34 of Section 2.5.7] is
often useful when a dual optimal solution is available.

Lemma 14 Let Assumption 6 hold, and let strong duality hold [f ∗ = q∗]. Let (µ∗, λ∗) be
an optimal multiplier pair. Then, x∗ is a solution of the primal problem 3.21 if and only if

• x∗ is primal feasible, i.e., g(x∗) ≤ 0, Ax∗ = 0, x∗ ∈ X.

• x∗ is a minimizer of the problem (3.26) with (µ, λ) = (µ∗, λ∗).

• x∗ and µ∗ satisfy the complementarity slackness, i.e., (µ∗)T g(x∗) = 0.



Chapter 4

Network Applications

In this chapter, we consider a classic network flow problem and the use of this model in
routing and congestion control in communication networks.

The network flow problem is just a special case of linear programming. We discuss
the simplex method as applied to the network flow problems, and we also consider some
special cases of the network flow problem, such as the shortest path and the maximum flow
problem. Some of these problems have a special structure that can be exploited to simplify
the simplex method, as well as to design new special algorithms. In depth treatment of
network flow problems can be found in the textbooks by Bertsekas [4], Bertsimas and
Tsitsiklis [11], and Ahuja, Magnanti, and Orlin [1].

A more general network flow model, with convex objective, is discussed as a flow model
for routing and congestion control in communication networks. In particular, we present a
classic routing problem for data networks and a more recent utility-based model for joint
routing and congestion control. The material is focused on the use of convex optimization
highlighting the role of optimality conditions and the duality theory in the development
of the algorithms for the routing, congestion control, and general resource allocation in
networks. More on flow algorithms for data routing can be found in [8]. The utility-based
flow model for network resource allocation, of particular interest for joint routing and
congestion control, has been proposed by Kelly et. al in [19], and further studied by Low
and Lapsley [21]. An in depth coverage of the state-of-art algorithms for joint routing and
congestion control can be found in the book by Srikant [31], and in the article by Shakkottai
and Srikant [28]. The analytical tools for the design and analysis of communication networks
are covered in the lecture notes by Hajek [17].

4.1 Graphs

A network is modeled by a graph. We distinguish two types of graphs, namely, undirected
and directed.

113
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Figure 4.1: The graph to the left is connected, while the graph to the right is not connected.

Figure 4.2: This graph is a tree with leaves 2, 6, and 7.

Undirected Graph

An undirected graph G = (N , E) with a set N of nodes and a set E of edges. An edge is an
unordered pair i, j of two distinct nodes i, j ∈ N . In our setting here, the self-edges {i, i}
are not permitted. The number of nodes is denoted by |N | or n, while the number of edges
is denoted by |E| or m.

We say that the edge {i, j} is incident to nodes i and j. The degree of a node in an
undirected graph is the number of edges incident to the node. The degree of an undirected
graph is the maximum of the degrees of the nodes in that graph.

Awalk in undirected graph from node i1 to node is is a finite (ordered) sequence of nodes
i1, . . . , is such that {ik, ik+1} ∈ E for k = 1, . . . , s− 1. A path in undirected graph is a walk
with no repeated nodes (i.e., the nodes i1, . . . , is are distinct). A walk i1, . . . , is is a cycle
if i1 = is and all the other nodes i2, . . . , is−1 are distinct, and there are at least 3 distinct
nodes. This is because we want to exclude a cycle of the form i, j, i where the edge {i, j}
is traversed twice (back and forth). An undirected graph is connected when for every two
distinct nodes i and j, there is a path from i to j. Figure 4.1 shows an undirected graph
that is connected and an undirected graph that is not connected.
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Figure 4.3: An undirected graph is to the left. A spanning tree of the graph is to the right.

An undirected graph G = (N , E) is a tree, if it is connected and has no cycles. A node
in a tree with degree 1 is a leaf. Figure 4.2 illustrates a tree and its leaves. A tree has some
special properties summarized in the following.

Theorem 48 We have:

(a) Every tree with more than two nodes has a leaf.

(b) An undirected graph is a tree if and only if it is connected and has |N | − 1 edges.

(c) For every pair of distinct nodes i and j in a tree, there is a unique path from i to j.

(d) Given a tree, if we add a new edge, the resulting graph has exactly one cycle.

Let G = (N , E) be a undirected graph. Let E1 ⊆ E be a subset of edges such that the
subgraph T = (N , E1) is a tree. Such a tree is a spanning tree. A graph and its spanning
tree are illustrated in Figure 4.3. Every connected undirected graph contains a spanning
tree. This follows from the following theorem.

Theorem 49 Let G = (N , E) be a connected undirected graph. Let E0 ⊆ E be a set of
edges that cannot form a cycle. Then, the set E0 can be augmented to a set E1 such that
the graph (N , E1) is a spanning tree.

Directed Graph

A directed graph G = (N ,L) with a set N of nodes and a set L of directed links. A directed
link is an ordered pair (i, j) of two distinct nodes i, j ∈ N . A directed graph is shown in
Figure 4.4. In our setting, the self-links (i, i) are not permitted. The number of nodes is
denoted by |N | or n, while the number of links is denoted by |L| or m.
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Figure 4.4: A directed graph.

We say that the link (i, j) is from i to j, or outgoing from i and incoming to j. The
set of all nodes with links incoming to i is denoted by I(i), while the set of links outgoing
from node i is denoted by O(i),

I(i) = {j ∈ N | (j, i) ∈ L},

O(i) = {j ∈ N | (i, j) ∈ L}.

Awalk in a directed graph from node i1 to node is is a finite (ordered) sequence of nodes
i1, . . . , is and links l1, . . . , ls−1 such that for all k = 1, . . . s− 1,

either lk = (ik, ik+1) ∈ N (forward link)

or lk = (ik+1, ik) ∈ N (backward link).

A path in undirected network is a walk with no repeated nodes (i.e., the nodes i1, . . . , is
are distinct). A walk i1, . . . , is is a cycle if i1 = is and all the other nodes i2, . . . , is−1 are
distinct. A walk, a path, or a cycle is directed when it only contains forward links.

A directed graph is connected when the undirected graph obtained by ignoring the direc-
tions and deleting the repeated edges is connected. A directed graph is strongly connected
when for every two distinct nodes i, j ∈ N , there is a directed path from i to j. The
directed graph shown in Figure 4.4 is connected but not strongly connected.

4.2 Minimum Cost Network Flow Problem

A network is a directed [or undirected] graph G = (N , cL) [or G = (N , E)] with some
additional information such as

• Link capacity uij > 0 for (i, j) ∈ L, which is the maximum possible flow on the link.

• Link cost cij for (i, j) ∈ L, representing the cost per unit flow on the link.
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• External supply bi for each node i ∈ N , representing the amount of flow that enters
the network at node i.

A node i with a positive supply [bi > 0] is a source node, while a node with a negative
supply [bi < 0] is a destination node or a sink. A node with no supply [bi = 0] is a transient
node.

In a general network problem, we want to send a flow from source nodes to destination
nodes at the minimal cost, subject to capacity constraints and the network balance relations
enforcing the law of flow conservation. This law states that, at every node, the amount of
flow into a node must be equal to the amount of flow out of that node.

Formally, the general minimum cost network problem is a linear problem of the following
form:

minimize
∑

(i,j)∈L

cij xij

subject to
∑

j∈O(i)

xij −
∑

j∈I(i)

xij = bi for all nodes i ∈ N

0 ≤ xij ≤ uij for all links (i, j) ∈ L. (4.1)

The equality constraints∑
j∈O(i)

xij −
∑

j∈I(i)

xij = bi for all nodes i ∈ N (4.2)

model the network balance. Note that by summing these equations, we have∑
i∈N

bi = 0,

which models the law of network flow conservation.
The inequalities

0 ≤ xij ≤ uij for all links (i, j) ∈ L (4.3)

model the capacity constraints for the links. When the network links are uncapacitated
[uij = +∞], the network problem is a linear problem in the standard form.

We rewrite the network problem of Eq. (4.1) in a more convenient form, as follows. Let
|N | = n and |L| = m. We put the links (i, j) ∈ L in an order, and we order the flow
variables xij accordingly. define the node-link incidence matrix A as an n ×m matrix (a
row per node and a column per link) with entries aik given by

aik =


1 if i is the start node of the kth link
−1 if i is the end node of the kth link
0 otherwise.

As an example, consider the directed graph of Figure 4.4. Take the links in the following
order (1, 2), (1,3), (2,4), (4,2), and (3, 4). The matrix A associated with this order of the
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links is

A =


1 1 0 0 0

−1 0 1 −1 0
0 −1 0 0 1
0 0 −1 1 −1

 . (4.4)

The matrix A has two nonzero entries in each column, namely 1 and −1 indicating the
start and the end node of the corresponding link.

Letting Ai denote the ith row of A, we have

Ai x =
∑

j∈O(i)

xij −
∑

j∈I(i)

xij,

which in view of the network balance equations (4.2) implies

Ai x = bi for all i ∈ N .

Equivalently, as a matrix equation, we have

Ax = b,

where b ∈ Rn is a vector with entries bi, i = 1, . . . , n.
The sum of rows of A is 0, implying that the rows of A are linearly dependent. This

violates the assumption used in the development of the simplex method in Section 3.1.
However, we can eliminate some of the equalities and obtain a subset of linearly independent
rows, without affecting the feasible set of the problem. In particular, let Ã be the matrix
obtained from the node-link incidence matrix A by taking the first n − 1 rows of A. The
matrix Ã is the truncated node-link incidence matrix. It can be seen that the matrix Ã has
linearly independent rows. Let b̃ be the correspondingly truncated supply vector b, i.e., b̃
consists of the first n − 1 components of b. We can replace the original balance equation
Ax = b with Ãx = b̃.

As an example, consider the node incidence matrix A of Eq. (4.4) corresponding to the
directed graph of Figure 4.4. By removing the last row of A, we obtain the reduced matrix
Ã given by

Ã =

 1 1 0 0 0
−1 0 1 −1 0

0 −1 0 0 1

 .

This matrix has linearly independent rows.
We now discuss some concepts used in many network flow algorithms. A vector x is a

circulation if
Ax = 0.

Note that such a flow need not be feasible.
Let C be a cycle, and let F and B be respectively the set of forward and backward links

in the cycle C. The flow yC defined by

yC
ij =


1 if (i, j) ∈ F
−1 if (i, j) ∈ B
0 otherwise
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is the circulation associated with the cycle C. We have

AyC = 0.

The cost of the cycle C is given by

cT yC =
∑

(i,j)∈F

cij −
∑

(i,j)∈B

cij.

Given a flow x a cycle C, and a scalar θ > 0, the flow vector x + θyC is obtained from
x by pushing θ units of flow around the cycle C. The cost change associated with the flow
push around the cycle C is cT yC .

4.2.1 Simplex Algorithm for Uncapacitated Min-Cost Flow

Consider the uncapacitated network flow problem

minimize cT x
subject to Ax = b

x ≥ 0,

where A is the node-link incidence matrix of a directed graph G = (N ,L). We assume
that

∑
i∈N bi = 0 and that the graph G = (N ,L) is connected. A flow vector x is a tree

solution if it can be obtained as follows:

(1) Select a set T of n− 1 links in L, and form a tree (ignoring the link directions).

(2) Set xij = 0 for (i, j) 6∈ T .

(3) Use the (reduced) flow conservation equation Ãx = b̃ to determine the variables xij

for (i, j) ∈ T .

A tree solution such that x ≥ 0 is a feasible tree solution.
With respect to the terminology developed for the simplex method in Section 3.1, we

have that a flow vector x is a basic solution if and only if x is a tree solution.
Change of basis in the simplex method, corresponds to generating a new feasible tree

solution from the current one. In particular, let T be the current basic tree solution.
Selecting a nonbasic variable in the simplex method corresponds to selecting a link (i, j) 6∈
T . Then, the link (i, j) and some other links in T form a a cycle C. Choose the orientation
of the cycle C so that (i, j) is forward link in the cycle. If we can increase the flow on the
link (i, j) to some value θ > 0, then we have to adjust the old basic variables to maintain the
flow balance. This corresponds to pushing θ units of flow around the cycle C. Furthermore,
we want to push the maximal possible amount of θ∗ units. Thus, we move from a feasible
tree solution x to another feasible tree solution x̃, whose components are given by

x̃kj =


xkj + θ∗ if (k, j) ∈ F
xkj − θ∗ if (k, j) ∈ B
xkj otherwise,
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If B 6= ∅, then
θ∗ = min

(k,j)∈B
xkj,

and otherwise θ∗ = +∞.
The cost associated with this change is equal to

θ∗

 ∑
(k,j)∈F

ckj −
∑

(k,j)∈B

ckj

 .

The variable xij enters the basis only if this cost is negative. The reduced cost of the
nonbasic variable xij is given by

c̄ij =
∑

(k,j)∈F

ckj −
∑

(k,j)∈B

ckj.

This is exactly the cost of the cycle C around which the flow is being pushed.
An alternative, a more efficient, formula for computing the reduced cost is given in

terms of the dual variables p. Recall that the general formula for the reduced cost c̄ is

c̄T = cT − pT Ã with pT = cT
B B−1,

with B being the current basis matrix. For the network problem, the dimension of p is the
same as the number of rows of the reduced node-link incident matrix Ã, which is n − 1.
Using the structure of Ã, it can be seen that

c̄kj =


ckj − (pk − pj) if (i, j) 6= n
ckj − pk if j = n
ckj + pj if k = n.

By defining pn = 0, we can compactly write the preceding relation as

c̄kj = ckj − (pk − pj) for all (k, j) ∈ L.

To compute the dual vector p for the feasible tree solution T , we use the fact that the
reduced cost associated with the basic variables xkj with (k, j) ∈ T is zero. Thus, we have

pk − pj = ckj for all (k, j) ∈ T ,
pn = 0 .

(4.5)

The uncapacitated min-cost flow problem has important integrality properties. Specif-
ically, when the network is connected, the matrix B−1 has integer entries for any basis
matrix B. This is the consequence of the structure of the node-link incidence matrix A. In
addition, we have

• When the supplies bi are integer, every basic solution has integer components.

• When the link costs cij are integer, every dual basic solution has integer components.
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The simplex method can be adapted to apply to the capacitated network flow problem
(4.1). However, a potential disadvantage is coming from degeneracy of basic solutions, in
which case a change of basis may not decrease the cost. There is an alternative algorithm
that, similar to simplex method, improves the cost by identifying a negative cost cycle,
but unlike the simplex method, the cost improvement is nonzero at every iteration. This
method is known as negative cost cycle algorithm. The interested reader can find more on
this method, for example, in [11] Section 7.4.

4.3 Shortest Path Problem

There are several shortest path problems that one may consider, such as single origin-
multiple destinations, or single origin-single destination. Here, we consider an all origin-
single destination shortest path problem in the graph G = (N ,L). Without loss of gen-
erality, assume that N = {1, . . . , n} and that we are interested in paths from any node i
to node n. We assume that there is a directed path from each node i to node n, and that
node n has no outgoing links. This shortest path problem can be formulated as a min-cost
flow problem, where each node i other than node n has one unit supply [bi = 1], while
node n has demand of n − 1 units [bn = −(n − 1)]. Thus, the shortest path problem can
be modeled as:

minimize
∑

(ij)∈L

cijxij

subject to
∑

j∈O(i)

xij −
∑

j∈I(i)

xij =

{
1 if i 6= n,

−(n− 1) if i = n,
for all i ∈ N

xij ≥ 0 for all (i, j) ∈ L,

which is a min-cost network flow problem [cf. Eq. (4.1)]. Using the node-link incidence
matrix, the problem can be written as a standard LP problem:

minimize cT x
subject to Ax = b

x ≥ 0,

where the vector b ∈ Rn has a special structure,

b =


1
...
1

−(n− 1)

 .

Since the supply vector b has integer components, every basic solution also has integer
components. Any forward path Pi from node i to node n, can be represented by a flow x
with components

xkj =

{
1 if (k, j) ∈ Pi

0 otherwise .
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Thus, each node i other than node n should send one unit of flow to node n, and the flow
should be pushed along the shortest path from i to n.

If the graph G = (N ,L) contains a cycle with negative cost, then the optimal cost of
the min-cost flow problem is f ∗ = −∞. If the graph does not contain negative cycles, then
the optimal cost is finite and the simplex algorithm can be applied to obtain a tree optimal
solution. Such an optimal solution consists of paths P∗i , i = 1, . . . , n− 1, where each P∗i is
a shortest path from node i to node n.

Furthermore, there is a dual optimal solution with a special structure. In particular,
recall that the dual of the standard form LP is

maximize bT p
subject to AT p ≤ c.

Suppose that T ∗ is an optimal tree solution for the min-cost flow problem modeling the
shortest path problem. Let p∗ be the dual variables associated with the tree solution T ∗,
i.e., p∗ and T ∗ satisfy relations in Eq. (4.5). Then, for each link (k, j) ∈ T ∗, we have

ckj = p∗k − p∗j .

Hence, for the optimal path P∗i ⊂ T ∗ from node i to n, we have

ckj = p∗k − p∗j = ckj for all (k, j) ∈ P∗i .

By adding the costs of the links in the path P∗i , we obtain∑
(k,j)∈P∗i

ckj = p∗i − p∗n = p∗i ,

where we use the fact p∗n = 0 [cf. Eq. (4.5)]. Thus, the dual variable associated with the
tree optimal solution is unique [when the last component pn is fixed to zero]. Note that the
tree solution is nondegenerate, since x∗kj = 1 for all (k, j) ∈ T ∗ (none of the basic variables
is zero). Hence, by Theorem 37, we have that the reduced cost of T ∗ is zero. Since the
reduced cost of T ∗ is c̄T = cT − (p∗)T A, it follows that

cT − (p∗)T A ≥ 0,

implying that p∗ is dual feasible, and hence (by KKT conditions), p∗ is dual optimal.
Aside from simplex method, there are other special methods for solving the shortest

path problems, such as Dijkstra’s algorithm discussed later on in Chapter 5.

4.4 Maximum Flow Problem

Maximum flow problem is defined for a capacitated directed graph G = (N ,L) with link
capacities uij > 0 for (i, j) ∈ L. There is a source node s and a terminal node t, and we
want to send the largest possible amount of flow from node s to node t while obeying the
link capacities.
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Figure 4.5: Augmentation of the original graph with the new link to accommodate the
max-flow formulation as a min-cost problem.

The maximum flow problem can be formulated as follows:

maximize bs

subject to Ax = b
bt = −bs

bi = 0 for all i 6= s, t
0 ≤ xij ≤ uij for all (i, j) ∈ L. (4.6)

This problem can be modeled as a min-cost network problem, as follows: we introduce a
new link (t, s) with the infinite capacity, uts = +∞. The augmented network is illustrated
in Figure 4.5. We define the cost of each link (i, j) ∈ L to be zero, and the cost of the new
link to be -1, i.e.

cts = −1 and cij = 0 for all (i, j) ∈ L.

Thus minimizing the cost
∑

(i,j) cijxij in the the new network is the same as maximizing
xts on the new link. This flow is the returned flow of what comes from node s to node t,
thus maximizing xts is the same as solving the original problem.

Again, a simplex method can be applied to solve the min-cost network flow formulation.
However, there is another method that applies to the max-flow problem directly and exploits
the special structure of the problem. The method is an adaptation of the negative cost
cycle algorithm, and it is known as the Ford-Fulkerson algorithm.

The Ford-Fulkerson algorithm starts with a feasible flow x, which is a flow that satisfies
the constraints in the max-flow problem (4.6). Then, the algorithm searches for possibility
to increase the flow along some additional path. A path along which a positive flow can
be pushed from the source node s to the terminal node t is an augmenting path, formally
defined as follows.

Definition 8 Let x be a feasible flow for the max-flow problem. An augmenting path P is
a path from s to t such that

xij < uij for all (i, j) ∈ F (forward links in the path P),
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xij > 0 for all (i, j) ∈ B (backward links in the path P).

As seen from the definition, an augmenting path is a path along which an additional
positive flow can be sent. This is because none of the links in such a path are utilized to the
full capacity: for each forward link (i, j) in the path, the flow xij is not at the maximum
capacity uij, while for each backward link (i, j) in the path, the flow xij is not zero. Hence,
we can push an additional amount of flow δ > 0 along the path P . This is referred to
as flow augmentation. The maximum amount of flow that can be pushed along P is δ(P)
given by

δ(P) = min

{
min

(i,j)∈F
(uij − xij) , max

(i,j)∈B
xij

}
. (4.7)

If the path P has no backward links [B = ∅] and all the capacities of the (forward) links
are infinity [uij = +∞ for all (i, j) ∈ P ], then

δ(P) = +∞.

In this case, the maximal flow from s to t is unbounded [f ∗ = +∞].
If all the forward links in the path P have finite capacities, then after pushing δ(P)

units of flow along P , at least one of the links in the path P will be used to its maximum
capacity. Such a link is referred to as a saturated link.

The typical iteration of the Ford-Fulkerson algorithm for the max-flow problem is as
follows:

1. Start with a feasible flow x.

2. Find an augmenting path. If such a path does not exist, terminate.

3. Determine the maximum possible amount of flow δ(P). If δ(P) = +∞, terminate.

4. Push the amount δ(P) along the path P and obtain a new feasible solution. Go to
step 2.

We have the following result for the algorithm.

Theorem 50 Suppose that the capacity uij of each link (i, j) ∈ L is integer. Also, assume
that the Ford-Fulkerson algorithm is initiated with a feasible integral flow. Then, the link
flows remain integer during the execution of the algorithm. Furthermore, the algorithm
terminates in a finite number of iterations.

Proof. Since all link capacities are integer, they are finite, so the maximum flow from
s to t is finite. When the initial feasible flow is integer, then according to Eq. (4.7), the
flow amount δ(P) is integer for any augmenting path P . Hence, the integrality of the
flows is maintained throughout the algorithm. At every iteration, the algorithm sends an
additional positive flow δ(P), which is at least 1 [since δ(P) is integer]. Since the maximal
possible flow from s to t is finite, the algorithm must terminate in a finite number of steps.

The maximum flow is related to the minimum cut. To show this relation, we define a
specific cut in a graph G = (N ,L) corresponding to two special nodes s and t.
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Definition 9 Let G = (N ,L) be a given directed graph, and let s and t be two given nodes
in the graph. A subset S ⊂ N is an s-t cut if s ∈ S and t 6∈ S.

We refer to the set S as a cut. We define the capacity C(S) of the cut S as follows:

C(S) =
∑

{(i,j)∈L|i∈S, j 6∈S}

uij.

Any path from s to t must cross the cut S, i.e., must contain a link (i, j) ∈ L with i ∈ S
and j 6∈ S. Thus, any feasible flow x from s to t cannot exceed the capacity of the cut S,

x ≤ C(S).

In particular, the maximum flow f ∗ cannot exceed the capacity of the cut,

f ∗ ≤ C(S). (4.8)

Hence, the capacity of any cut S is an upper bound on the maximum flow. In particular,
the cut with the minimum capacity provides the tightest upper bound, which is equal to
the maximum flow f ∗. This can be seen by considering a suitable primal-dual pair of linear
problems, and then applying the linear duality theorem. Here, we provide a different proof,
using Ford-Fulkerson algorithm.

Theorem 51 (Max-Flow Min-Cut) The value of the maximum flow is equal to the min-
imum cut capacity.

Proof. If the max flow is infinite, then from inequality (4.8), it follows that the minimum
cut capacity is infinite.

Suppose now that the maximum flow is finite. Let x∗ be the network flow obtained at
the end of the Ford-Fulkerson algorithm. Note that this flow is optimal, and let the optimal
flow value from s to t be f ∗. Define the cut S, as follows

S = {s} ∪ {i ∈ N | there is a path from s to i with unsaturated links}.

Note that t 6∈ S, for otherwise there is an augmenting path from s to t, in which case the
Ford-Fulkerson algorithm would increase the flow - a contradiction. Each link (i, j) ∈ L
with i ∈ S and j 6∈ S must be saturated, i.e., the flow is x∗ij = uij; otherwise, the node j
would also be in the set S. Hence, for the cut S capacity, we have

C(S) =
∑

{(i,j)∈L|i∈S, j 6∈S}

uij =
∑

{(i,j)∈L|i∈S, j 6∈S}

x∗ij = f ∗.

Hence, S is the minimum capacity cut, and its capacity is equal to the max flow.
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4.5 Routing in Communication Network

Here, we discuss the problem of routing in the presence of congestion. In this problem,
the rates at which the users generate the traffic are fixed, and the routes (or paths) of
the user flow should be sent through the network optimally, given the costs of the links in
the network. We have considered this problem in Example 9 of Section 2.3.3. We slightly
modify the notation used there.

Given a network, let S be a set of users (origin-destination pairs). Let xs be the traffic
flow generated by user s. The traffic flow of user s is to be routed through the network
along directed paths. If the traffic of user s is routed along a path p, we write p ∈ s. Define
a user-path incidence matrix D with entries

Dsp = 1 if p ∈ s and Dsp = 0 otherwise.

Let L be the set of links in the network, and P be the set of paths. If a link l is traversed
by a path p, we write l ∈ p. Let A be the link-path incidence matrix, with entries given by

Alp = 1 if l ∈ s and Alp = 0 otherwise.

Let vp denote the flow along a path p. The corresponding flow on link l is denoted by
zl, and we have

zl =
∑

{p | l∈p}

vp for all l ∈ L,

or compactly z = Av.
There is a cost associated with using the links L of the network, namely, the cost of

sending a flow zl on the link l is fl(zl). The problem is to decide on paths along which
the user flows xs should be routed, so as to minimize the total cost. More formally, the
problem is to determine the variables vp that minimize the cost, while supporting the given
flow rate xs for each user s. The routing problem is given by

minimize f(v) =
∑
l∈L

fl

 ∑
{p | l∈p}

vp


subject to Dv = x

v ≥ 0,

where v = [vp, p ∈ P] is a variable vector of path flows and x = [xs, s ∈ S] is a given
vector of user rates.

This mathematical model can represent a general resource allocation problem, where
some resource l other than links is considered. However, here we focus on routing and view
the links as the resource to be allocated.

Assume that the link costs fl are continuously differentiable convex functions. In this
case, as seen in Example 9 of Section 2.3.3, the optimality condition for the routing problem
is: for p ∈ s with v∗p > 0 we have∑

l∈p

f ′l (z
∗
l ) ≤

∑
j∈p̃

f ′j(z
∗
j ) for all p̃ ∈ s,



4.5. ROUTING IN COMMUNICATION NETWORK 127

with z∗l =
∑

{p | l∈p} v∗p. The vector v∗ must be feasible i.e., Hv∗ = x and v∗ ≥ 0.
We summarize this in the following lemma.

Lemma 15 A feasible flow vector v, supporting the given rate demand x, is an optimal
solution to the routing problem if and only if there exists a vector d = [ds, s ∈ S] such that

ds ≤
∑
j∈p

f ′j(zj) for all p ∈ s

with equality holding only when vp > 0. Here, zj represents the total flow on link j resulting
from the flow vector v, i.e., zl =

∑
{p̃ | j∈p̃} vp̃.

To interpret the result, let the length of a path p be
∑

l∈p f ′l ([Av]l) when a flow is x
(recall z = Av). Let ds represents the length of the shortest path for user s. The lemma
says that a feasible vector v is a solution, when for each user s, the flows vp on paths p ∈ s
are positive only on the shortest paths for that user.

We now describe the flow deviation algorithm for solving the routing problem. This
method is a version of the Frank-Wolfe method exploiting the special structure of the
problem. Let vk be the current flow. We formulate the auxiliary minimization problem

minimize ∇f(vk)(v − vk)
subject to Dv = x

v ≥ 0,

where vk = [vk
p , p ∈ P] is the current flow route. This a standard LP problem with a

compact constraint set. Thus, an optimal solution exists v̂k and satisfies the following
(necessary and sufficient) optimality conditions:

∇f(vk)(v − v̂k) ≥ 0 for all v such that Dv = x and v ≥ 0.

The optimality condition suggests that, for each user s, the flow v̂k
p should be positive

only on the shortest paths for that user with respect to the link prices f ′j(z
k
j ) (where

zk
j is the flow induced by the current flow route vk). Once the shortest-path route v̂k is

determined, we select the stepsize α by the exact search, i.e., find αk ∈ (0, 1] that minimizes
f(vk + α(v̂k − vk)) (the smallest cost achievable on the segment [vk, v̂k]),

f(vk + αk(v̂
k − vk)) = min

0≤α≤1
f(vk + α(v̂k − vk)).

Define the new flow vk+1 as
vk+1 = vk + αk(v̂

k − vk).

Note that the flow vk +α(v̂k− vk) corresponds to, for each user s, removing αvk
p -amount of

flow from the flow vk
p for p ∈ s if p is not the shortest path for user s (shortest with respect

to the prices induced by ∇f(vk), and then re-allocating these amounts on the shortest path
of user s.

The preceding describes a typical iteration of the flow deviation algorithm. We sum-
marize it formally as follows.
Flow Deviation Iteration. Given the current flow vk, perform the following:
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1. Compute the link prices f ′j(z
k
j ), where zk

j is the flow induced by the current flow vk,
i.e., z∗j =

∑
{p | j∈p} vk

p .

2. For each user s, determine the shortest path ps with respect to the prices f ′j(z
k
j ).

3. Choose α ∈ (0, 1]. For each user s and each path p that is not the shortest path for
user s, reallocate an α-fraction of the flow vk

p to the shortest path, i.e., generate a
deviation flow ṽ as follows: for each user s,

ṽp =

{
(1− α)vp if p ∈ S and p 6= ps

vp + α
∑

{p̃ | p̃6=p, p̃∈s} vp̃ if p = ps,

4. Determine α ∈ [0, 1] minimizing the cost f(ṽ). The resulting flow defines vk+1.

An application of a scaled projection gradient method [using the second order informa-
tion ∇2f(v)] to the routing problem can be found in [8] Section 5.7.

4.6 Joint Routing and Congestion Control

Here, we are interested in the network problem when the user rates are not fixed. The
congestion control adjusts the traffic rates so that the network resources are fairly shared
among the users, and the network is at a reasonable operating point balancing the through-
put with the delay. The model for joint routing and congestion control presented in this
section is based on utility maximization framework (this is the model developed in [19]).

The utility functions have been used in economic market models to quantify prefer-
ences of users (consumers) for certain resources (commodities). A utility function u(x)
“measures” the value of a resource amount x to a user. Typically, it is assumed that a
utility function is concave, nondecreasing, and continuously differentiable (scalar) function,
defined on the interval [0, +∞). Some of the common examples include

- Log-function: u(x) = w ln x for some scalar w > 0.

- Power-function: u(x) = w x1−α

1−α
for some scalars w > 0 and α > 0.

The derivative of u is referred to as the marginal utility per unit resource, since u(x + δ) =
u(x) + δu′(x) + o(δ) for a small δ > 0. Due to the assumed concavity of u, the marginal
utility u′(x) is nonincreasing.

Congestion control is a mechanism for adjusting the user rates x = [xs, s ∈ S] fairly
with respect to user utility functions us, s ∈ S]. The network performance is quantified
in terms of the user utilities and the cost of routing the traffic. The joint routing and
congestion control problem is to determine both the user rates x = [xs, s ∈ S] and the
paths v = [vp, p ∈ P ] so as to maximize the network performance. Formally, the problem
is given by

maximize U(x) =
∑
s∈S

us(xs)−
∑
l∈L

fl

 ∑
{p | l∈p}

vp
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subject to Dv = x
x ≥ 0, v ≥ 0. (4.9)

This is a concave maximization problem with a convex (in fact, polyhedral) constraint set.
For this problem, the optimality condition of Theorem 20 reduces to the following: the
feasible vectors x and v are solution to problem (4.9) if and only if x and v are feasible
[i.e., Dv = x, x ≥ 0, v ≥ 0] and for each s ∈ S,

u′s(xs) ≤
∑
l∈p

f ′l

 ∑
{p | l∈p}

vp

 for all p ∈ s, (4.10)

with equality holding when vp > 0.

We interpret the length f ′l

(∑
{p | l∈p} vp

)
of link l as the cost of using the link l. In view

of this, the preceding relation means that, at optimal x and v, for the paths p carrying the
flow of user s, the cost of any path p with vp > 0 is equal to the user’s marginal utility,
while the cost of any path p with vp = 0 is no less than the user marginal utility.

In some applications, there are explicit constraints on the link capacities, and the prob-
lem of joint routing and congestion control is given by

maximize U(x) =
∑
s∈S

us(xs)

subject to Dv = x, Av ≤ c
x ≥ 0, v ≥ 0, (4.11)

where c = [cl, l ∈ L] is the vector with entries cl representing the capacity of link l.
Consider the dual of problem (4.11) obtained by assigning the prices to the link con-

straints Av ≤ c. The dual function is given by

q(µ) = max
Dv=x, x≥0, v≥0

{∑
s∈S

us(xs)− µT Ax

}
+ µT c for µ ≥ 0.

By the KKT conditions of Theorem 34, we have that x∗ and v∗ are primal optimal (and
µ∗ dual optimal) if and only if: x∗ and v∗ are feasible, µ∗ ≥ 0, and such that they satisfy
the complementarity slackness and (x∗, v∗) attains the maximum in q(µ∗). Formally, the
complementarity slackness is given by

µ∗l = 0 only if
∑

{p | l∈p} v∗p < cl. (4.12)

Furthermore, (x∗, v∗) attains the maximum in q(µ∗) if and only if for each s,

u′s(x
∗
s) ≤

∑
l∈p

µ∗l for all p ∈ s. (4.13)

with equality only when v∗p > 0. This relation is similar to the relation in Eq. (4.10), where
the cost f ′l “plays the role of” the multiplier µ∗l .
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Note that when v∗p > 0, the values
∑

l∈p µ∗l for p ∈ s are the same. Denote this value
by µ∗s. By interpreting µ∗s as the price per unit rate for user s, from (4.13), we have

u′s(x
∗
s) = µ∗s when µ∗s > 0 and u′s(x

∗
s) ≤ µ∗s when µ∗s = 0.

The preceding is the optimality condition for the following problem for user s,

maximize u(xs)− µ∗s xs

subject to xs ≥ 0.

By introducing a new variable ws = µ∗s xs, we can rewrite the preceding problem as follows:

maximize u

(
ws

µ∗s

)
− ws

subject to ws ≥ 0. (4.14)

The relation ws = µ∗s xs implies that ws/xs = µ∗s can be interpreted as optimality
condition at x∗, as follows

w∗
s

x∗s
= µ∗s when µ∗s > 0,

which corresponds to maximizing w∗
s ln xs − µ∗x xs over xs ≥ 0. This together with the

feasibility of x∗ and v∗, and the complementarity slackness of Eq. (4.12), imply by KKT
conditions that w∗, x∗ and v∗ constitute an optimal solution to the problem

maximize
∑
s∈S

ws ln xs

subject to Dv = x, Av ≤ c
x ≥ 0, v ≥ 0, (4.15)

Thus, by introducing a new variable ws = µ∗s xs and through the use of KKT conditions,
we have found that the original joint routing and congestion control problem (4.11) is
equivalent to the set of users problems of Eq. (4.14) and a network problem of Eq. (4.15).

A similar transformation can be considered for joint routing and congestion control
problem without the link capacity constraints [cf. problem (4.11)]. This is discussed in
detail in lecture notes [17].

The approach discussed above is precisely the approach proposed by Kelly et. al in [19].
The key idea in the approach is to introduce a price ws that user s is willing to pay for his
rate xs. The price per unit rate is ws/xs for user s. The network receives xs and ws from
each user s ∈ S, and interprets the ratio ws/xs as “marginal utility” per unit of flow for
user s. Thus, the network generates “surrogate utility functions”

ũs(xs) = ws ln xs for each s ∈ S.

With these utility functions, the network problem of Eq.̃(4.11) becomes

maximize
∑
s∈S

ws ln xs
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subject to Dv = x, Av ≤ c
x ≥ 0, v ≥ 0. (4.16)

The network chooses the link prices µl as as optimal multipliers (link prices) for this prob-
lem. For each user s, the resulting price µs per unit of flow is given to user s, where
µs =

∑
l∈p µp for any p ∈ s (these are the same for any p ∈ s with xp > 0). The user

problem is to maximize us(xs) minus the pay wr = s, subject to ws ≥ 0. Since xs = ws/µs,
a user problem is

maximize u

(
ws

µs

)
− ws

subject to ws ≥ 0. (4.17)

The importance of the preceding formulations is the decomposition of the problem.
The original problem of joint routing and congestion control formulated in Eq. (4.11)
is a large optimization problem involving both user and network information. Through
the use of “willingness to pay” variable and the KKT conditions, the problem is suitably
decomposed into: a network problem (4.16) that does not require the information about
user utility functions, and a set of user problems (4.17) that does not require any knowledge
about the network (topology). Evidently, the users and the network have to exchange some
information.

4.7 Rate Allocation in Communication Network

The rate allocation problem is a special case of problem (4.11), where the routing is fixed
(i.e., v is now given, and Dv = x is satisfied) and the problem is to allocate rates xs for
users s ∈ S optimally. The resulting rate allocation problem is

maximize
∑
s∈S

us(xs)

subject to
∑

s∈S(l)

xs ≤ cl for all l ∈ L

x ≥ 0,

where for each s, the set S(l) is the set of all users s whose traffic uses link l. We consider
this problem with additional constraints, namely, the rate of user s is constrained within
an interval xs ∈ [ms, Ms], where ms ≥ 0 is the minimum and Ms < ∞ is the maximum
rate for user s.

With these additional rate constraints, the rate allocation problem is given by

maximize
∑
s∈S

us(xs)

subject to
∑

s∈S(l)

xs ≤ cl for all l ∈ L

xs ∈ Is, Is = [ms, Ms] for all s ∈ S. (4.18)
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In what follows, we discussed a dual algorithm given by Low and Lapsley [21] for solving
problem (4.18). It is assumed that each utility us is strictly concave and increasing. Under
this assumption, the problem has an optimal solution [the constraint set is compact], and
the optimal solution is unique by strict concavity of the utility functions.

The objective function of problem (4.18) is separable in the variables xs, and these
variables are coupled only through the link capacity constraints. Thus, by assigning prices
to the link capacities, we obtain a dual problem of the form

minimize q(µ)
subject to µ ≥ 0, (4.19)

where the dual function is

q(µ) = max
xs∈Is

∑
s∈S

us(xs)−
∑
l∈L

µl

∑
s∈S(l)

xs − cl


= max

xs∈Is

∑
s∈S

us(xs)− xs

∑
l∈L(s)

µl

+
∑
l∈L

µlcl,

where L(s) is the set of all links l carrying the flow of user s. Defining the variables
ps =

∑
l∈L(s) µl and the functions

Qs(ps) = max
xs∈Is

{us(xs)− xsps}, (4.20)

the dual function can be expressed as

q(µ) =
∑
s∈S

Qs(ps) +
∑
l∈L

µlcl. (4.21)

Given the link prices µl, l ∈ L and the resulting prices ps =
∑

l∈L(s) µl as seeing by

the users s ∈ S, for each s, the rate attaining the dual function value Qs(ps) is denoted by
xs(ps). Note that the maximizer xs(ps) in the problem of (4.20) is unique and given by

xs(ps) = PIs [u
′
s(ps)

−1
], (4.22)

where u′s
−1 is the inverse function of the derivative u′s, and PIs [z] denotes the projection on

the (closed convex) interval Is, which is in particular given by PIs [z] = min{max{ms, z}, Ms}.
We now consider a dual algorithm for rate allocation problem (4.18). In what follows,

we assume that the problem is feasible and that each utility function us is strictly concave,
twice differentiable and increasing on the interval Is. Furthermore, for each s, the curvature
of us is bounded away from zero on the interval Is, i.e.,

−u′′s(z) ≥ 1

as

> 0 for all z ∈ Is and some as > 0.

Under this condition, the rate problem has a unique optimal solution. Furthermore, note
that the strong duality holds for the primal problem (4.18) and the dual problem (4.19)–
(4.21) (recall the strong duality result of Theorem 31 of Section 2.5.5 for convex objective
and linear constraints).
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As noted earlier, under the preceding assumptions, the maximizer xs(ps) in problem
(4.20) exists and it is unique, implying that the dual function q(µ) is differentiable with
the partial derivatives given by

∂q(µ)

∂µl

= cl −
∑

s∈S(l)

xs(ps).

As a matter of fact, the dual function q(µ) is continuously differentiable (see Bertsekas and
Tsitsiklis [10], page 669).

Let µl(k) be the link prices at a given time k, and µ(k) be the vector of these prices. Let
xs(k) be the maximizer given by Eq. (4.22) for ps =

∑
l∈L(s) µl(k). Consider the following

gradient projection method for minimizing q(µ):

µl(k + 1) =

[
µl(k)− αk

∂q(µ(k))

∂µl

]+

for all l ∈ L,

where αk > 0 is a stepsize. Equivalently, the method is given by

µl(k + 1) =

µl(k) + αk

∑
s∈S(l)

xs(k)− cl

+

for all l ∈ L. (4.23)

Note that, given the aggregate rate
∑

s∈S(l) xs(k) of the traffic through link l, the iterations

of algorithm (4.23) are completely distributed over the links, and can be implemented by
individual links using local information only.

By interpreting the set L of links and the set S of users as processors in a distributed
system, the dual problem can be solved. In particular, given the link prices µl(k), the
aggregate link price

∑
l∈L(s) µl(k) is communicated to user s. Each user s evaluates its cor-

responding dual function Qs(ps) of Eq. (4.20) [i.e., user s computes the maximizer xs(ps)].
Each user s communicates its rate xs(ps) to links l ∈ L(s) [the links carrying the flow of
user s]. Every link l updates its price µl(k) according to the gradient projection algorithm
[cf. Eq. (4.23)]. The updated aggregate link prices

∑
l∈L(s) µl(k + 1) are communicated to

users, and the process is repeated. We formally summarize these steps in the following
algorithm.
Dual Gradient Projection Algorithm. At times k = 1, . . ., each link l ∈ L performs
the following steps:

1. Receives the rates xs(k) from users s ∈ S(l) using the link.

2. Updates its price

µl(k + 1) =

µl(k) + αk

∑
s∈S(l)

xs(k)− cl

+

.

3. Communicates the new price µl(k + 1) to all users s ∈ S(l) using the link l.
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At times k = 1, . . ., each user s ∈ S performs the following steps:

1. Receives the aggregate price ps(k) =
∑

l∈L(s) µl(k) [sum of link prices over the links

carrying its flow].

2. Computes its new rate by xs(k + 1) = xs(ps(k) [i.e., determines the maximizer in
Qs(ps(k))].

3. Communicates the new rate xs(k + 1) to all links l ∈ L(s) [the links in its flow path].

In the preceding, we have not specified the stepsize αk. Under the assumption that the
second derivative of each utility us is bounded away from zero by 1/as, it can be seen that
the gradient of the dual function is Lipschitz continuous, i.e.,

‖∇q(µ)−∇q(µ̃)‖ ≤ L ‖µ− µ̃‖ for all µ, µ̃ ≥ 0.

with constant L given by

L = max
s∈S

as max
s∈S

|L(s)| max
l∈L

|S(l)|. (4.24)

We next discuss a convergence result for the method. We use x to denote the vector
of user rates [xs, s ∈ S] and µ to denote the vector of link prices [µl, l ∈ L]. We assume
that the method is started with initial rates xs(0) ∈ Is for all s and initial prices µl(0) ≥ 0
for all l. The constant stepsize can be used, as seen from the following theorem, which is
established in [21].

Theorem 52 Assume that each utility function us is strictly concave, twice differentiable
and increasing on the interval Is. Furthermore, assume that for each s, the curvature of
us is bounded away from zero on the interval Is [i.e., −u′′s(z) ≥ 1/as > 0 for all z ∈ Is].
Also, assume that the constant stepsize αk = α is used in the dual gradient projection
method, where 0 < α < 2

L
and L as given in Eq. (4.24). Then, every accumulation point

(x∗, µ∗) of the sequence {(x(k), µ(k))} generated by the dual gradient projection algorithm
is primal-dual optimal.



Chapter 5

Dynamic Programming

In this chapter, we study the dynamic programming approach to for sequential decision
making in the presence of uncertainties. In particular, the decisions are made in stages and,
at each stage, the decision is influencing the future outcomes. The overall goal is to find
decisions that optimize the long term cost in the presence of dynamics and uncertainties.

We discuss the basic ingredients of a dynamic programming problem and the basic
underlying optimality principle, summarized in Bellman’s equation. Our focus is on infinite
horizon problems, and in particular, stochastic shortest path problems, discounted cost
problems, and average cost problems. An in depth treatment of dynamic programming is
given in the two-volume textbook by Bertsekas [6] and [7].

5.1 Fundamental Concepts and Problem Formulation

A dynamic programming (DP) problem is the problem of determining the optimal decisions
over a horizon of time. The time is discrete, and we use the subscript k to denote the time
index. Any DP problem has the following basic components:

1. Dynamics. An underlying dynamic system whose state at time k is denoted by xk.
The system dynamics is described by an evolution equation specifying the state at
time k + 1 as a function of the current state xk, a decision (control) uk made at time
k and an uncertainty ξk in the decision outcome. Formally, we have

xk+1 = Fk(xk, uk, ξk),

where Fk is some function. The set of possible states xk at time k is denoted by Sk.

2. Decisions. At each time k, the possible decisions at a given state xk are specified by
a set Uk(xk). Formally, the decisions are constrained

uk ∈ Uk(xk) for all k.

Note that the decisions can be time dependent and state dependent.

135
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3. Uncertainties. At each time k, the uncertainty ξk has a probability distribution
Pk(· ; xk, uk) that depends on the current state xk and the decision uk, but does not
depend on the past uncertainties ξ0, . . . , ξk−1.

4. Cost. At time k, the cost gk(xk, uk, ξk) is associated when at state xk, the decision uk

is made with uncertainty ξk in the outcome. The overall cost incurred over the time
horizon is additive.

When the time horizon is finite, the total expected cost accumulated starting from an
initial state x0 is given by

E

{
N−1∑
k=0

gk(xk, uk, ξk) + gN(xN)
∣∣∣ x0

}
,

where N is the last time period with terminal cost gN . The conditional expectation is taken
with respect to the random variables xk and ξk.

Example 32 (Inventory Control, see Example 1.1.1 of [6])
Consider a problem of ordering a stock quantity at each of N periods of time to minimize
the expected cost. We introduce the following notation:

- xk stock quantity at time k.

- uk stock quantity ordered (and available) at time k.

- ξk uncertain demand at time k.

The stock quantity evolves in time according to the following relation

xk+1 = xk + uk − ξk,

where negative stock represents the back-logged demand.
The cost at time k is given by

gk(xk, uk, ξk) = cuk + r(xk + uk − ξk),

where c is the cost per unit of the stock, and r(xk +uk− ξk) is the penalty for positive stock
(holding cost for excess inventory) or penalty for negative stock (shortage cost for unfulfilled
demand).

The total expected cost incurred over N stages is

E

{
N−1∑
k=0

cuk + r(xk + uk − ξk)

}
.

The problem is to minimize this cost subject to u0 ≥ 0, . . . , uN−1 ≥ 0 (i.e., Uk = [0, +∞)
for all k).



5.1. FUNDAMENTAL CONCEPTS AND PROBLEM FORMULATION 137

A policy π is an ordered set of functions

π = (µ0, . . . , µN−1) ,

where each µk : xk 7→ uk such that uk ∈ Uk(xk) for all xk ∈ Sk. The expected cost of policy
π starting from state x0 is

Vπ(x0) = E

{
N−1∑
k=0

gk(xk, µk(xk), ξk) + gN(xN)
∣∣∣ x0

}
,

An optimal policy π∗ is the policy that minimizes the expected cost i.e., π∗ such that

Vπ∗(x0) = min
π∈Π

Vπ(x0),

where Π is the set of all policies. The (finite horizon) DP problem is to determine the
optimal policy π∗ =

(
µ∗0, . . . , µ

∗
N−1

)
. The optimal cost of starting at x0 is defined by

V ∗(x0) = min
π∈Π

Vπ(x0).

It is often convenient to view the optimal cost as a function that to each state x0 assigns
the optimal cost value V ∗(x0), i.e., as function V ∗ : x0 7→ minπ∈Π Vπ(x0). We will often
refer to this function as the optimal value function.

The dynamic programming technique is based on a simple optimality principle, which
can be stated as: for an optimal policy π∗ =

(
µ∗0, . . . , µ

∗
N−1

)
, every truncated policy

(µ∗i , . . . , µN−1) is optimal for the subproblem starting at state xi and minimizing the “cost-
to-go” from time i to time N ,

E

{
N−1∑
k=i

gk(xk, µk(xk), ξk) + gN(xN)
∣∣∣ xi

}
.

Intuitively, if the truncated policy (µ∗i , . . . , µN−1) were not optimal for the subproblem, we
could replace it by a subproblem optimal policy, and construct a new policy that at state
xi switches to the subproblem optimal policy. This new policy would have a smaller cost,
thus violating the optimality of π∗. Another interpretation of the optimality principle is:
given any point C on “the shortest path from point A to point B, the truncated path from
C to B is the shortest path from C to B.

The optimality principle suggests that the optimal policy can be constructed by going
backward in time, i.e., by solving the subproblems

E

{
N−1∑
k=i

gk(xk, µk(xk), ξk) + gN(xN)
∣∣∣ xi

}

going from i = N − 1 down to i = 0.
Our interest is the problems with “a stationary” description:
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1. The system dynamic is given by a function F that does not vary with time, i.e,

xk+1 = F (xk, uk, ξk) for all k.

The set S of possible states xk does not depend on time.

2. The set U(xk) of possible decisions at a given state xk does not depend on time.

3. The probability distribution P (· ; x, u) of the uncertainty ξ does not depend on time.

4. The cost g(x, u, ξ) does not depend on time.

The problems with stationary description are more tractable. Note that the inventory
problem in Example 32 has stationary description. Here is another example of a problem
with such a description.

Example 33 (M/M/1 Queue Control, see [17] Chapter 9)
Consider a system with one server and one queue. Both server and the customer arrival
are of exponential type, i.e., the server is characterized by its service rate µ > 0 and the
customers arrival rate is λ. Let xk be the state of the queue (number of the customers)
at time k. The customers arrival rate in the queue is λuk, where uk ∈ [0, 1] is a control
variable at time k.

The state of the system can go up by 1 or down by 1 depending whether the departure
or an arrival occurred. The evolution of the system can be modeled by a Markov chain with
states S = {0, 1, . . .} with transition probabilities

pij(u) = Prob {xk+1 = j | xk = i, uk = u}.

The probability matrix P (u) = [pij(u)] is given by

P (u) =


µ+λ(1−u)

λ+µ
λu

λ+µ
0 · · ·

µ
λ+µ

λ(1−u)
λ+µ

λu
λ+µ

· · ·
0 µ

λ+µ
λ(1−u)

λ+µ
· · ·

...
...

...
. . .

 .

There is a cost associated with the size of the queue

g(x) = cx + µ Ix=0,

where cx represents the holding cost of customers in the queue, Ix=0 is the indicator function
of the event x = 0 (i.e., Ix=0 = 1 if x = 0, and otherwise it is zero). The cost g(0) = µ is
the cost associated with lost departure opportunities when the queue is empty.

The goal is to select the controls u0, . . . , uN so that the total expected cost accumulated
over N periods of time is minimized, i.e., the goal is to minimize

E

{
N−1∑
k=0

αkg(xk)
∣∣∣ x0 = x

}
.

The cost here is discounted by a factor α ∈ (0, 1) at each stage.
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5.1.1 DP Algorithm for Finite Horizon Problem

Here, we describe the DP algorithm for finite horizon problem with a stationary description.
When the time horizon is finite but large, often a discounted cost model is used, where
the cost g(x, u, ξ) is discounted by a factor α(0, 1) at each stage. To accommodate both
situations, we will use a discounted model and allow α to take value 1.

The DP algorithm is based on the optimality principle, which under the stationary
problem description can be written as: for all x ∈ S and k = 0, . . . , N − 1,

Vk+1(x) = min
u∈U(x)

E {g(x, u, ξ) + αVk(F (x, u, ξ))} , (5.1)

with initial condition V0 = 0 and discount factor α ∈ (0, 1). The value Vk(x) is the minimum
expected cost accumulated over k stages to go, starting from state x. This basically gives
the DP algorithm with backward recursion.

Note that we can compute all the optimal finite horizon cost functions using the DP
recursion. This is possible because of the stationary problem description. Note however
that the DP recursion has to be solved for all possible states x ∈ S. This may not be
efficient especially when the set of states S is large.

The optimal control uk for k + 1 stages to go starting from state x is the control that
minimizes E {g(x, u, ξ) + Vk(F (x, u, ξ))} over all u ∈ U(x). Consider the mapping µ∗k(x)
such that

µ∗k(x) ∈ Argmin
u∈U(x)

E {g(x, u, ξ) + αVk(F (x, u, ξ))} for all x ∈ S.

Then, the policy π∗ = (µ∗0, . . . , µ
∗
N−1) is optimal.

Again, due to number of the states x ∈ S, it may be computationally inefficient to
determine the optimal policy. Often some approximations are used for cost functions or for
the policy space (i.e., the search is restricted to a smaller class of policies).

To illustrate the DP algorithm, we revisit Example 33.

Example 34 The DP algorithm applied to the queue control problem of Example 33 reduces
to: for x ≥ 1,

Vk+1(x) = min
u∈[0,1]

{
cx + µ Ix=0 + α

{
µ

λ + µ
Vk(x− 1) +

λ(1− u)

λ + µ
Vk(x) +

λu

λ + µ
Vk(x + 1)

}}
,

and for x = 0,

Vk+1(x) = min
u∈[0,1]

{
cx + µ Ix=0 + α

{
µ + λ(1− u)

λ + µ
Vk(x) +

λu

λ + µ
Vk(x + 1)

}}
.

By noting that certain terms in the above relations do not depend on the control value u,
we can write: for x ≥ 1,

Vk+1(x) = cx + µ Ix=0 +
αµ

λ + µ
Vk(x− 1) + α min

u∈[0,1]

{
λ(1− u)

λ + µ
Vk(x) +

λu

λ + µ
Vk(x + 1)

}
,
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and for x = 0,

Vk+1(x) = cx + µ Ix=0 + α min
u∈[0,1]

{
µ + λ(1− u)

λ + µ
Vk(x) +

λu

λ + µ
Vk(x + 1)

}
.

By introducing the notation (x − 1)+ (which is equal to 0 if x − 1 ≤ 0 and equal to x − 1
otherwise, we obtain

Vk+1(x) = cx + µ Ix=0 +
αµ

λ + µ
Vk((x− 1)+) + α min

u∈[0,1]

{
λ(1− u)
λ + µ

Vk(x) +
λu

λ + µ
Vk(x + 1)

}
= cx + µ Ix=0 +

αµ

λ + µ
Vk((x− 1)+) +

αλ

λ + µ

{
Vk(x) + min

u∈[0,1]
u (Vk(x + 1)− Vk(x))

}
.

Thus, the optimal control µ∗k is given by

µ∗k(x) =


0 if Vk(x + 1) > Vk(x)
1 if Vk(x + 1) < Vk(x)
any u ∈ [0, 1] if Vk(x + 1) = Vk(x).

Furthermore, since{
Vk(x) + min

u∈[0,1]
u (Vk(x + 1)− Vk(x))

}
= min{Vk(x), Vk+1(x)},

we have

Vk+1(x) = cx + µ Ix=0 +
αµ

λ + µ
Vk((x− 1)+) +

αλ

λ + µ
min{Vk(x), Vk+1(x)}.

The preceding relation and the expression for the optimal control µ∗k can be further analyzed
to determine the optimal policy. In particular, by induction on k, it can be seen that
Vk(x + 1)− Vk(x) is nondecreasing in x and Vk(1)− Vk(0) ≥ −λ+µ

α
(see [17] Section 9.3).

5.1.2 Infinite Horizon Problems

Infinite horizon problems with stationary description have some special properties. In
particular, optimal policies for an infinite horizon problems are typically stationary, i.e., an
optimal policy is specified by a function µ : xk 7→ uk, where uk ∈ U(xk), and the function
µ does not depend on time.

In the following sections, we study three types of infinite horizon problems:

(1) Discounted Cost Problems, which have a discount factor α per stage and uniformly
bounded absolute cost value g(x, u, ξ).

(2) Stochastic Shortest Path Problems, which have a special cost-free termination state.
In fact, these problems have a finite horizon but the length of the horizon is random
depending on the policy that is applied.

(3) Average Cost Problems, which cost is defined as the limit as N →∞ of the averaged
cost over N stages.
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For an infinite horizon problem, a policy π is an infinite sequence π = (µ0, µ1 . . .).
Furthermore, the optimality principle is captured by the Bellman’s equation

V ∗(x) = min
u∈U(x)

E
ξ
{g(x, u, ξ) + V ∗(F (x, u, ξ))} . (5.2)

This equation takes a special form for each of the above mentioned infinite horizon problems.

DP Mapping

We introduce the DP mapping T : V 7→ TJ that to each function V : S → R assigns
another function, denoted by TV , i.e., TV : S → R. The function TV is defined by

(TV )(x) = min
u∈U(x)

E
ξ
{g(x, u, ξ) + αV (F (x, u, ξ))} for all x ∈ S.

Any function satisfying
TV = V

is a fixed point of the mapping T. Note that the function TV is defined as the function
resulting from applying one DP iteration (5.1) to the function V . Furthermore, if V = V ∗,
then the preceding relation and Bellman’s equation (5.2) imply that TV ∗ = V ∗. We
establish these relations formally in the subsequent development.

A stationary policy (for an infinite horizon problem) is a policy π such that π =
(µ, µ, . . .). For this reason we will identify a stationary policy with the map µ defining
the policy.

Given a stationary policy µ, we define a mapping TµV that to each function V assigns
a function, denoted by TµV , given by

(TµV )(x) = E
ξ
{g(x, µ(x), ξ) + αV (F (x, µ(x), ξ))} for all x ∈ S.

The k successive applications of the mapping T is denoted by T k, i.e.,

T kV = T (T k−1V ), with T 0V = V.

Similarly, given a stationary policy µ, the k successive applications of the mapping Tµ is
denoted by T k

µ , i.e.,

T k
µV = Tµ(T k−1

µ )V, with T 0
µV = V.

The maps T and Tµ have some interesting property, namely, they preserve the “ordering
of functions” in a sense, as seen in the following lemma.

Lemma 16 Let functions V : S → R and Ṽ : S → R be such that

V (x) ≤ V̄ (x) for all x ∈ S.

Then, for any k ≥ 0, we have

(T kV )(x) ≤ (T kṼ )(x) for all x ∈ S,

(T k
µV )(x) ≤ (T k

µ Ṽ )(x) for all x ∈ S,

where µ is any stationary policy.

The proof of this lemma is straightforward from the definitions of the maps T and Tµ.
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5.2 Discounted Cost Problem

Here, we focus on the DP problem on infinite horizon with discounted cost [by a factor
α ∈ (0, 1)] i.e. determining the optimal cost function

V ∗(x) = min
π∈Π

Vπ(x), Vπ(x) = E

{
∞∑

k=0

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
and the optimal policy π∗ attaining the optimal cost. In order to have the infinite sum well
defined, we assume that the cost g(x, u, ξ) is bounded for all states x ∈ S, all controls u
and uncertainties ξ, i.e.,

|g(x, u, ξ)| ≤ G for all x, u, ξ.

This roundedness assumption is in force throughout this section.

5.2.1 Basic Results

We here establish some basic properties of the DP mapping T , leading to Bellman’s equation
and a characterization of the optimal stationary policies.

We first show that if the DP algorithm starts with some bounded function V and the
DP iterations are executed indefinitely (the size N of horizon goes to infinity), then the
algorithm converges to the optimal cost function V ∗. By representing each DP iteration
with a DP mapping T operation, we summarize the preceding statement in the following.

Theorem 53 Let V : S → R be any bounded function. Then,

lim
N→∞

(TNV )(x) = V ∗(x) for all x ∈ S.

Proof. Let π = (µ0, µ1, . . .) be any policy. The cost function of the policy is

Vπ(x) = E

{
∞∑

k=0

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
for all x ∈ S.

By truncating the horizon at an arbitrary time N , we can write

Vπ(x) = E

{
N−1∑
k=0

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
+ E

{
∞∑

k=N

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
,

implying that

E

{
N−1∑
k=0

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
= Vπ(x)− E

{
∞∑

k=N

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
.

Since the cost per stage is bounded, we have∣∣∣∣∣E
{

∞∑
k=N

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}∣∣∣∣∣ ≤ G
∞∑

k=N

αk =
GαN

1− α
.
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Combining the preceding two relations, we see that

Vπ(x)− GαN

1− α
≤ E

{
N−1∑
k=0

αkg(xk, µk(xk), ξk)
∣∣∣ x0 = x

}
≤ Vπ(x) +

GαN

1− α
.

By adding the value αNV (xN), and noting that by the boundedness of V we have V (xN) ≤
maxx∈S |V (x)|, we have

Vπ(x)− GαN

1− α
−αN max

x∈S
|V (x)| ≤ E

{
N−1∑
k=0

αkg(xk, µk(xk), ξk) + αNV (xN)
∣∣∣ x0 = x

}
, (5.3)

E

{
N−1∑
k=0

αkg(xk, µk(xk), ξk) + αNV (xN)
∣∣∣ x0 = x

}
≤ Vπ(x)+

GαN

1− α
+αN max

x∈S
|V (x)|. (5.4)

By taking the minimum over all policies, and noting that

min
π∈Π

E

{
N−1∑
k=0

αkg(xk, µk(xk), ξk) + αNV (xN)
∣∣∣ x0 = x

}
= (TNV )(x),

we obtain

V ∗(x)− GαN

1− α
− αN max

x∈S
|V (x)| ≤ (TNV )(x) ≤ V ∗(x) +

GαN

1− α
+ αN max

x∈S
|V (x)|. (5.5)

By letting N →∞, we see that

V ∗(x) ≤ lim inf
N→∞

(TNV )(x) ≤ lim sup
N→∞

(TNV )(x) ≤ V ∗(x),

thus showing that limN→∞(TNV )(x) = V ∗(x).
Observe that Theorem 53 indicates that the DP algorithm can be used to approximate

the optimal cost function V ∗(x), while the proof of the theorem indicates the error bounds.
We discuss this later in this section.

We have an analogous result to that of Theorem 53 for the stationary policy value
function Vµ(x).

Theorem 54 Let V : S → R be any bounded function and let µ be a stationary policy.
Then,

lim
N→∞

(TN
µ V )(x) = Vµ(x) for all x ∈ S.

Proof. Since the policy is stationary, we have µk(x) = µ(x) for all x ∈ S. By using this in
the relations (5.3) and (5.4), we obtain

Vπ(x)− GαN

1− α
− αN max

x∈S
|V (x)| ≤ E

{
N−1∑
k=0

αkg(xk, µ(xk), ξk) + αNV (xN)
∣∣∣ x0 = x

}
,
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E

{
N−1∑
k=0

αkg(xk, µ(xk), ξk) + αNV (xN)
∣∣∣ x0 = x

}
≤ Vπ(x) +

GαN

1− α
+ αN max

x∈S
|V (x)|.

Noting that

E

{
N−1∑
k=0

αkg(xk, µ(xk), ξk) + αNV (xN)
∣∣∣ x0 = x

}
= (TN

µ V )(x),

we obtain

Vµ(x)− GαN

1− α
− αN max

x∈S
|V (x)| ≤ (TN

µ V )(x) ≤ Vµ(x) +
GαN

1− α
+ αN max

x∈S
|V (x)|. (5.6)

By letting N →∞, we see that

Vµ(x) ≤ lim inf
N→∞

(TN
µ V )(x) ≤ lim sup

N→∞
(TN

µ V )(x) ≤ Vµ(x),

thus showing that limN→∞(TN
µ V )(x) = Vµ(x).

We next establish Bellman’s equation.

Theorem 55 The optimal cost function V ∗ satisfies Bellman’s equation

V ∗(x) = min
u∈U(x)

E
ξ
{g(x, u, ξ) + αV ∗(F (x, u, ξ))} for all x ∈ S,

or equivalently, the optimal cost function V ∗ is a fixed point of the DP mapping

V ∗ = TV ∗.

Furthermore, the optimal cost function V ∗ is the unique function that satisfies Bellman’s
equation (unique fixed point of T ) within the class of bounded functions.

Proof. We start from Eq. (5.5), i.e., for all x ∈ S,

V ∗(x)− GαN

1− α
− αN max

x∈S
|V (x)| ≤ (TNV )(x) ≤ V ∗(x) +

GαN

1− α
+ αN max

x∈S
|V (x)|.

By choosing V to be the zero function, i.e., V (x) = 0 for all x ∈ S, from the preceding
relation we obtain

V ∗(x)− GαN

1− α
≤ (TNV )(x) ≤ V ∗(x) +

GαN

1− α
.

By using the monotonicity property of the mapping T of Lemma 16, we obtain

T

(
V ∗(x)− GαN

1− α

)
≤ (TN+1V )(x) ≤ T

(
V ∗(x) +

GαN

1− α

)
.

Since

T

(
V ∗(x)− GαN

1− α

)
= TV ∗(x)− GαN+1

1− α
,
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T

(
V ∗(x) +

GαN

1− α

)
= TV ∗(x) +

GαN+1

1− α
,

we further obtain

TV ∗(x)− GαN+1

1− α
≤ (TN+1V )(x) ≤ TV ∗(x) +

GαN+1

1− α
.

By letting N →∞ and using Theorem 53, we have

TV ∗(x) ≤ V ∗(x) ≤ TV ∗(x),

thus showing that V ∗ = TV ∗.
To establish the uniqueness, suppose that V is a bounded function and satisfies V = TV .

Then, by Theorem 53 we have V ∗ = limN→∞ TNV , implying that V ∗ = V .
We next show that the policy value function Vµ is a fixed point of the mapping Tµ.

Theorem 56 Let µ be a stationary policy. The policy cost function Vµ satisfies the follow-
ing relation

Vµ(x) = E
ξ
{g(x, µ(x), ξ) + αVµ(F (x, µ(x), ξ))} for all x ∈ S,

or equivalently, the policy cost function Vµ is a fixed point of the mapping Tµ.

Vµ = TµVµ.

Furthermore, the policy cost function Vµ is the unique function that satisfies the given
relation within the class of bounded functions.

Proof. We use start from Eq. (5.6), i.e., for all x ∈ S,

Vµ(x)− GαN

1− α
− αN max

x∈S
|V (x)| ≤ (TN

µ V )(x) ≤ Vµ(x) +
GαN

1− α
+ αN max

x∈S
|V (x)|.

By choosing V to be the zero function, i.e., V (x) = 0 for all x ∈ S, from the preceding
relation we obtain

Vµ(x)− GαN

1− α
≤ (TN

µ V )(x) ≤ Vµ(x) +
GαN

1− α
.

By the monotonicity property of the mapping Tµ of Lemma 16, we have

Tµ

(
Vµ(x)− GαN

1− α

)
≤ (TN+1

µ V )(x) ≤ T

(
Vµ(x) +

GαN

1− α

)
.

Using the relations

Tµ

(
Vµ(x)− GαN

1− α

)
= TµVµ(x)− GαN+1

1− α
,

Tµ

(
Vµ(x) +

GαN

1− α

)
= TµVµ(x) +

GαN+1

1− α
,
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we obtain

TµVµ(x)− GαN+1

1− α
≤ (TN+1

µ V )(x) ≤ TµVµ(x) +
GαN+1

1− α
.

By letting N →∞ and using Theorem 54, we further obtain

TµVµ(x) ≤ Vµ(x) ≤ TµVµ(x),

thus showing that Vµ = TµVµ.
To show the uniqueness, suppose that V is a bounded function satisfying V = TµV . By

Theorem 54 we have Vµ = limN→∞ TN
µ V , implying that Vµ = V .

As a consequence of Theorems 55 and 56, we have the following characterization of an
optimal stationary policy.

Theorem 57 A stationary policy µ is optimal if and only if µ attains the minimum in
Bellman’s equation, i.e.,

µ(x) ∈ Argmin
u∈U(x)

E
ξ
{g(x, u, ξ) + αV ∗(F (x, u, ξ))} for all x ∈ S,

or equivalently
TV ∗ = TµV

∗.

The next two theorems show that the DP mapping T and any stationary policy mapping
Tµ are contractions with respect to the function sup-norm, i.e.,

‖V ‖ = sup
x∈S

|V (x)|.

Theorem 58 Let V : S → R and Ṽ : S → R be bounded functions. Then, the DP map is
a contraction with factor α, i.e.,

‖TV − T Ṽ ‖ ≤ α‖V − Ṽ ‖,

where ‖V ‖ is the function sup-norm. Furthermore, for any stationary policy µ, the policy
map Tµ is also a contraction with factor α, i.e.,

‖TµV − TµṼ ‖ ≤ α‖V − Ṽ ‖,

Proof. We have
V (x) = V (x)− Ṽ (x) + Ṽ (x),

implying that

V (x) ≤ |V (x)− Ṽ (x)|+ Ṽ (x), V (x) ≥ −|V (x)− Ṽ (x)|+ Ṽ (x).

By letting s = maxx∈S |V (x)− Ṽ (x)| = ‖V − Ṽ ‖, we can write

Ṽ (x)− s ≤ V (x) ≤ Ṽ (x) + s for all x ∈ S.
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By applying the DP mapping and using the monotonicity property of the DP mapping of
Lemma 16, we obtain

T
(
Ṽ (x)− s ≤ TV (x)

)
≤ T

(
Ṽ (x) + s

)
for all x ∈ S.

Since
T
(
Ṽ (x)± s

)
= T Ṽ (x)± αs,

it follows that

T Ṽ (x)− αs ≤ TV (x) ≤ T Ṽ (x) + αs for all x ∈ S.

The preceding relation implies

−αs ≤ T Ṽ (x)− TV (x) ≤ αs for all x ∈ S,

thus showing that

max
x∈S

|T Ṽ (x)− TV (x)| ≤ s = max
x∈S

|V (x)− Ṽ (x)|.

The same proof works with Tµ instead of T , showing that ‖TµV − TµṼ ‖ ≤ α‖V − Ṽ ‖.
As an immediate consequence of Theorem 58, we have for bounded functions V and Ṽ ,

and for any k ≥ 1,
‖T kV − T kṼ ‖ ≤ αk‖V − Ṽ ‖,
‖T k

µV − T k
µ Ṽ ‖ ≤ αk‖V − Ṽ ‖.

5.2.2 Value Iteration

Based on Theorem 55 we have value iteration algorithm, for which by Theorem 58 we also
have an error bound, i.e., the term |T kV (x)− V ∗(x)| is at most of the order of αk.

The value iteration algorithm starts with an arbitrary (bounded) function V , and gen-
erates a sequence of functions T kV by successive applications of the DP algorithm. The
function sequence T kV converges to the optimal cost V ∗ in the limit as k → ∞, as seen
from Theorem 55.

At each iteration k, an upper bound on the error of between T kV and V ∗ is available
from Theorem 58. The following theorem can also be used for computing the estimates of
the errors as the algorithm progresses.

Theorem 59 For any bounded V , any state x ∈ S, and any k ≥ 0 we have

T kV (x) + mk ≤ T k+1V (x) + mk+1 ≤ V ∗(x) ≤ T k+1V (x) + Mk+1 ≤ T kV (x) + Mk,

where
mk =

α

1− α
min
x∈S

{T kV (x)− T k−1V (x)},

Mk =
α

1− α
max
x∈S

{T kV (x)− T k−1V (x)}.
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The proof of the preceding theorem rests on the monotonicity property of the DP
mapping T and Bellman’s equation [cf. Lemma 16) and Theorem 55)]. The proof can be
found in [7] Section 1.3 (see there Proposition 1.3.1).

In practice, the value iteration algorithm is terminated when the difference Mk − mk

becomes small enough (lower than a prescribed error level). A “median” V̂k can be used as
the final estimate of V ∗, i.e.,

V̂k(x) = T kV (x) +
1

2
(mk + Mk) for all x ∈ S,

or the “average” V̄k when the set S of states is finite,

V̄k = T kV (x) +
α

|S|(1− α)

∑
y∈S

(
T kV (y)− T k−1V (y)

)
for all x ∈ S.

Given an approximation Vk of the optimal cost function, such as T kV , the “median”
V̂k, or the “average” V̄k, we can determine a suboptimal stationary policy and a bound on
its error. In particular, given an approximation Vk, we can compute TVk and determine the
policy µ that achieves the minimum in the expression TVk, i.e., TVk = TmVk, or explicitly

µ(x) ∈ Argmin
u∈U(x)

E
ξ
{g(x, u, ξ) + αVk(F (x, u, ξ))}.

We have the following bound on the suboptimality of the policy µ:

max
x∈S

|Vµ(x)− V ∗(x)| ≤ α

1− α

(
max
x∈S

{TVk(x)− Vk(x)} −min
x∈S

{TVk(x)− Vk(x)}
)

.

The value iteration algorithm can be slow. This can be related to the second eigenvalue
of a Markov transition matrix associated with an optimal solution being close to 1 (see the
discussion in [7] Section 1.3, page 28). Furthermore, when the number of states is large,
the method may become impractical due to high computational load.

5.2.3 Policy Iteration

While value iteration algorithm generates a sequence of functions approximating the op-
timal cost function V ∗, the policy iteration algorithm generates a sequence of stationary
policies approximating the optimal stationary policy.

The idea is rather simple: given a policy µ and its cost function Vµ, determine a policy
µ̃ achieving the minimum in TVµ, i.e., µ̃ such that Tµ̃Vµ = TVµ. The hope is that cost Vµ̃

of the new policy µ̃ is better than the cost Vµ of the policy we started with. In fact, this is
the case, as seen in the following theorem that justifies the policy iteration algorithm.

Theorem 60 Let µ be a stationary policy. Consider a policy µ̃ satisfying Tµ̃Vµ = TVµ,
i.e.,

µ̃(x) ∈ min
u∈U(x)

E
ξ
{g(x, u, ξ) + αVµ(F (x, u, ξ))} for all x ∈ S.
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Then, the policy cost Vµ̃ is dominated by the policy cost Vµ, i.e.,

Vµ̃(x) ≤ Vµ(x) for all x ∈ S.

In addition, if µ is not optimal stationary policy, then

Vµ̃(x) < Vµ(x) for at least one x ∈ S.

Proof. By the definition of the policy µ̃, we have for all x ∈ S,

Tµ̃Vµ(x) = E
ξ
{g(x, µ̃(x), ξ) + αVµ(F (x, µ̃(x), ξ))}

= min
u∈U(x)

E
ξ
{g(x, u, ξ) + αVµ(F (x, u, ξ))}

≤ E
ξ
{g(x, µ(x), ξ) + αVµ(F (x, µ(x), ξ))}

= Vµ(x),

where the last equality follows from the definition of the policy cost Vµ, i.e., TµVµ = Vµ.
By applying the mapping Tµ̃ and using the monotonicity property of Tµ̃, we obtain for

all x ∈ S,
T 2

µ̃Vµ(x) ≤ Tµ̃Vµ(x) ≤ Vµ(x).

By repeating this process indefinitely, we see that

TN
µ̃ Vµ(x) ≤ Vµ(x) for all x ∈ S and any N ≥ 1.

Taking the limit as N →∞ and using Theorem 54, we conclude that

Vµ̃(x) = lim
N→∞

TN
µ̃ Vµ(x) ≤ Vµ(x) for all x ∈ S,

thus showing that the policy cost Vµ̃ is dominated by the policy cost Vµ.
Assume that µ is not optimal. To arrive at a contradiction, suppose there is no state

x for which the inequality Vµ̃(x) < Vµ(x) holds. Then, we must have Vµ̃(x) = Vµ(x) for all
states x, or equivalently Vµ̃ = Vµ. Consider the function TVµ. By the definition of µ̃, we
have TVµ = Tµ̃Vµ, implying by Vµ = Vµ̃ that

TVµ = Tµ̃Vµ̃.

By Theorem 56, we have Tµ̃Vµ̃ = Vµ̃, and since Vµ̃ = Vµ, it follows that

TVµ = Vµ.

Hence Vµ is a fixed point of T . However, by Theorem 56, the optimal cost V ∗ is the unique
fixed point of the DP mapping T , implying that Vµ = V ∗. By Theorem 57 it follows that
µ is an optimal policy - a contradiction. Therefore, we must have

Vµ̃(x) < Vµ(x) for some x ∈ S.
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The preceding theorem justifies the policy iteration method that generates a sequence
{µk} of policies by the following rule:

Tµk+1Vµk = TVµk ,

starting with some initial policy µ0. In particular, the policy iteration method proceeds as
follows.
Policy Iteration Start with an initial policy µ0.

1. At iteration k, having the current policy µk, determine the policy value function Vµk .

2. Generate a new policy µk+1 satisfying Tµk+1Vµk = TVµk , or more explicitly

µk+1(x) ∈ Argmin
u∈U(x)

E
ξ
{g(x, u, ξ) + αVµk(F (x, u, ξ))} for all x ∈ S.

If Vµk = TVµk terminate, the policy µk is optimal. Otherwise, go to the policy
evaluation step 1.

First note that if the set of all policies is finite, the policy iteration method will terminate
with an optimal policy in a finite number of steps. However, note that both steps of
the algorithm can be computationally intensive when the number of states is large. In
particular, to evaluate a policy µk at step 1, we need to solve the functional equation
TµVµ = Vm, which is a system of linear equations with one equation per state x. Similarly,
in step 2, we have to evaluate the function TVµk and then find the optimal choice µk(x) for
each x ∈ S. In both steps, the size of the corresponding problem we need to solve is the
same as the size of the state set S (the cardinality of S). Thus, the applications of policy
iteration method are limited in the same way as the value iteration method, by the number
of the states. This is known as the curse of dimensionality, a term introduced by Richard
Bellman.

5.3 Stochastic Shortest Path Problem

In Section 4.3 of Chapter 4, we have considered a deterministic shortest path problem for
all origin-single destination case. Here, we consider a stochastic version of that problem
for a graph with nodes 1, . . . , n and a single terminal (destination) node t. At each node
i, we select a control u which influences the probability distribution pij(u) on moving from
node i to any other node j. The cost of each link is also random. The overall goal is to
find the shortest paths from each node to the terminal node, where the length of the path
is measured by the total expected cost incurred along the path.

We formulate the stochastic shortest path as a DP problem as follows:

1. The set S of system states is S = {1, . . . , n, t} with t being a special terminal state.

2. For each state i ∈ S, a set U(i) specifies the controls u available at that state. The
set U(i) is finite for all i.
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3. At each state i, every control u specifies a probability distribution pij(u) of moving
from state i to state j ∈ S, i.e.,

pij(u) = Prob {xk+1 = j | xk = i, uk = u} for all i ∈ S.

The terminal state t is absorbing,

ptt(u) = 1 for all u ∈ U(t).

4. A cost g(i, u, j) is incurred when moving from state i to state j under the control u.
The terminal state is cost free,

g(t, u, j) = 0 for all u ∈ U(t) and all j ∈ S.

5. The objective is to minimize the total expected policy cost Vπ(i) over all policies
π = (µ0, µ1, . . .), where the policy cost Vπ(i) starting from state i is given by:

Vπ(i) = lim sup
N→∞

E

{
N−1∑
k=0

g(xk, µk(xk), xk+1)
∣∣∣ x0 = i

}
.

Due to the special structure of the system evolution, we can associate a deterministic
cost ḡ(i, u) for choosing a control u at state i, by letting

ḡ(i, u) = E[g(i, u, j)|(i, u)] =
∑
j∈S

pij(u) g(i, u, j) for all i ∈ S and all u ∈ U(i).

Note that for the terminal state, we have

ḡ(t, u) = E[g(t, u, j)|(t, u)] =
∑
j∈S

ptj(u) g(i, u, j) = pttg(t, u, t) = 0 for all u ∈ U(t).

Since the terminal state is absorbing and cost-free, the cost of any policy starting from
state t is zero, i.e., Vπ(t) = 0 for any policy π. Thus, we can ignore the policy cost values
for state t. The problem is now to determine the policy π∗ such that for all i = 1, . . . , n,

Vπ∗(i) = min
π∈Π

Vπ(i),

where π = (µ0, µ1, . . .) and

Vπ(i) = lim sup
N→∞

{
N−1∑
k=0

∑
j∈S

pikj(µk(ik)) g(ik, µk(ik), j)
∣∣∣ i0 = i

}

= lim sup
N→∞

{
ḡ(i, µ0(i)) +

N−1∑
k=1

ḡ(ik, µk(ik))

}
.

Note that there is no discount factor (α = 1).
As an example of the use of stochastic shortest path model, consider the following.
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Example 35 (G/G/1 First come first serve queue, see [16], Example 2 in Chapter 4.)
Suppose that for an FCFS G/G/1 queue with maximum length n, we want to find the
expected sum of the times that all customers spend in the system, starting from some time
with i customers in the system and ending at the time when the system is empty.

We can model the system as a stochastic shortest path problem where a state i cor-
responds to i customers being in the queue. Thus, the states are 0 and 1, . . . , n, with 0
being the terminal state. The transition probabilities pij are given in terms of the customer
arrival rate and the service rate, with 0 modeled as an absorbing state. We assign reward
g(i) = i when the system is in state i. The expected sum of the times that all customers
spend in the system from some time with i customers in the system is equal to the expected
reward collected from state i.

We can view a function V : {1, . . . , n} → R as a vector in Rn. With this view, the DP
mapping T is from Rn to Rn, with TV defined by

TV (i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) V (j)

}
for all i = 1, . . . , n. (5.7)

Similarly, a (stationary) policy mapping Tµ is from Rn to Rn, with TµV defined by

TµV (i) = ḡ(i, µ(i)) +
n∑

j=1

pij(µ(i)) V (j) for all i = 1, . . . , n. (5.8)

From now on, we focus on the stationary policies. To further simplify the notation, we
introduce the transition matrix Pµ corresponding to a stationary policy µ,

Pµ =

 p11(µ(1)) · · · p1n(µ(1))
...

. . .
...

pn1(µ(n)) . . . pnn(µ(n))

 .

Note that the matrix Pµ is not stochastic, since for the states i with pit(µ(i)) > 0 we have

n∑
j=1

pij(µ(i)) = 1− pit(µ(i)) < 1.

Also, we introduce the cost vector ḡµ associated with a stationary policy µ,

gµ =

 ḡ(1, (µ(1))
...

ḡ(n, (µ(n))

 .

With this notation, the vector TµV resulting from the mapping Tµ is given by

TµV = ḡµ + PµV. (5.9)

In the absence of additional assumptions, the optimal cost value for the stochastic
shortest path problem may not be finite and/or an optimal stationary policy may not
exist. To see this, consider the following example.
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Example 36 (Blackmail Problem, see [34] Chapter 25 Section 5, or [7] Section 2.3.)
A blackmailer wants to optimize his policy. If he makes a demand of u millions of euros,
where 0 < u ≤ 1, he receives an immediate reward u and terminates with probability u2.

This situation can be modeled as a DP with a single non-termination state 1 with the
control u ∈ (0, 1]. There is no optimal stationary policy that maximizes the black-mailer’s
profit. To see this note that such a policy should satisfy

Vµ(1) = u + (1− u2)Vµ,

implying that

Vµ =
1

u
for u ∈ (0, 1].

By taking u → 0, we see that the optimal value at state 1 is V ∗(1) = +∞, but no stationary
policy can achieve this value.

It can be seen that the optimal policy π∗ = (µ∗0, µ
∗
1, . . .) is given by

µ∗k(1) =
c

k + 1
for all k ≥ 0,

where c is a scalar with 0 < c < 1
2
.

To avoid the problem of having the optimal cost infinite at some states, we introduce
the notion of proper policies. A stationary policy is proper when, under the policy, there
is a positive probability that the terminal state t will be reached after at most n stages for
any initial state. In other words, the probability that the state t will not be reached at
stage n is not 1 for any initial stage, or formally

max
1≤i≤n

Prob {xn 6= t | x0 = i, µ} < 1.

A stationary policy is improper when it is not proper.
Throughout the rest of this section, for the stochastic shortest path problem, we assume

that there is at least one proper stationary policy. We also assume that for any improper
stationary policy µ, there is a state i such that Vµ(i) = −∞.

For a deterministic shortest path problem, the former assumption simply states that
there is a directed path from each node i to the terminal node t. The later assumption
ensures that there are no negative cost cycles (see Section 4.3).

5.3.1 Basic Relations

Here, we provide basic insights into the properties of the DP mapping T and the stationary
policy mapping Tµ for the stochastic shortest path problem [cf. Eqs. (5.7) and (5.8)]. In
particular, we provide Bellman’s equation and optimality conditions amongst others. The
proofs of these results can be found, for example, in [7] Section 2.2.

Theorem 61 For the stochastic shortest path problem, we have
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(a) Let V ∈ Rn be arbitrary. For the DP mapping T of Eq. (5.7), we have

lim
N→∞

(TNV ) = V ∗,

where V ∗ ∈ Rn is the optimal cost vector with components V ∗(i) for i = 1, . . . , n.

(b) The optimal cost vector V ∗ satisfies Bellman’s equation

V ∗(i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) V ∗(j)

}
for all i = 1, . . . , n,

or equivalently
TV ∗ = V ∗.

Moreover, V ∗ is the unique fixed point of the DP mapping T .

We have an analogous result for the policy mapping Tµ.

Theorem 62 For the stochastic shortest path problem, we have

(a) Let V ∈ Rn be arbitrary and let µ be a proper stationary policy. For the policy
mapping Tµ of Eq. (5.8), we have

lim
N→∞

(TN
µ V ) = Vµ,

where Vµ ∈ Rn is the policy cost vector with components Vµ(i) for i = 1, . . . , n.

(b) The policy cost vector Vµ satisfies the following relation

Vµ(i) =

[
ḡ(i, µ(i)) +

n∑
j=1

pij(µ(i)) V ∗(j)

]
for all i = 1, . . . , n,

or equivalently
TµVµ = Vµ.

Moreover, Vµ is the unique fixed point of the policy mapping Tµ.

The following result provides a necessary and sufficient condition for optimality of a sta-
tionary policy for a stochastic shortest path problem. The result parallels that of Theorem
57 for the discounted cost problem.

Theorem 63 A proper stationary policy µ is optimal if and only if µ attains the minimum
in Bellman’s equation, i.e.,

µ(i) ∈ Argmin
u∈U(i)

{ḡ(i, u) +
n∑

j=1

pij(u)V ∗(j)} for all i = 1, . . . , n,

or equivalently
TV ∗ = TµV

∗.

The value and policy iteration algorithms discussed for discounted cost problems in
Sections 5.2.2 and 5.2.3 apply to stochastic shortest path problems with appropriate inter-
pretations of the DP mapping T and the policy mapping Tµ. We discuss these algorithms
in the following two sections.
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5.3.2 Value Iteration

Recall that for the stochastic shortest path problem the DP mapping T : Rn → Rn is

TV (i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u)V (j)

}
for all i = 1, . . . , n

[cf. Eq. (5.7)]. Note that this is a reduced mapping that always assumes V (t) = 0, since
V ∗(t) = 0. The value iteration algorithm for stochastic shortest path problem generates a
sequence of vectors

Vk = T kV,

starting with some initial vector V ∈ Rn. According to Theorem 61, we have

lim
k→∞

(T kV ) = V ∗,

where V ∗ ∈ Rn is the optimal cost vector. Thus, the value algorithm converges to the
optimal cost value.

In general, the value algorithm for the stochastic shortest path problem does not ter-
minate with the optimal cost in a finite number of steps. However, there are some special
conditions under which a finite termination may occur. One such case is when a (proper)
stationary policy exists for which the corresponding transition probability graph has no
directed cycle. In particular, the transition probability graph corresponding to a given sta-
tionary policy µ is the graph induced by the Markov chain with transition probabilities Pµ

and absorbing state t. Specifically, the transition probability graph of a given stationary
policy µ is the graph Gµ = (N ,Lµ) with nodes N = 1, . . . , n, t and the set Lµ of links
defined by

Lµ = {(i, j) | pij(µ(i)) > 0, i, j ∈ N} .

We now state the result for finite termination under acyclic optimal policy assumption.

Theorem 64 Assume that the stochastic shortest path problem has an optimal stationary
policy µ∗ whose corresponding transition probability graph does not have any directed cycle.
Then, the value iteration algorithm terminates in at most n iterations for an initial vector
V ∈ Rn with components V (i) large enough.

Proof. The formal proof uses

V (i) = ∞ for all i = 1, . . . , n

and recall that V (t) = 0 = V ∗(0). Define the sets Sk of states as follows

Sk+1 = {i | pij(µ(i)) = 0 when j 6∈ ∪k
r=0Sr},

with S0 = {t}. The set Sk+1 is the set of all nodes that have no ingoing links to the set
∪k

r=0Sr in the graph Gµ.
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By induction on the number k of iterations, we show that

V ∗(i) = T kV (i) for all i ∈ ∪k
r=0Sr. (5.10)

Note that for k = 0, we have T 0V = V , and the result holds. Suppose now that for some
k, equality (5.10) is valid, and consider the vector T k+1V obtained after the next iteration.
Since V ∗ is optimal, we have

V ∗(i) ≤ T k+1V (i) for all i = 1, . . . , n.

Hence, for all i = 1, . . . , n,

T k+1V (i) ≤ ḡ(i, µ∗(i) +
n∑

j=1

pij(µ
∗(i))T kV (i).

By the induction hypothesis, the relation (5.10) holds, implying that

T k+1V (i) ≤ ḡ(i, µ∗(i) +
n∑

j=1

pij(µ
∗(i))V ∗(j)

for all i ∈ ∪k
r=0Sr. Furthermore, note that the preceding relation also holds for all i ∈ Sk+1.

Hence, equation (5.10) holds for k + 1, thus completing the induction.
Since the graph Gµ is connected, the set sets Sk are nonempty and disjoint. Eventually,

their union must be equal to the set {1, . . . , n}. Hence, there could be at most n iterations.

As another special case consider the (deterministic) shortest path problem in graph
from all nodes i = 1, . . . , n − 1 to the destination node n of Section 4.3 of Chapter 4. We
assume that there are no negative cycles in the directed graph G = (N ,L) with the node
set N = {1, . . . , n}. Consider the dual of the shortest path problem

maximize
n−1∑
i=1

pi

subject to pi ≤ cij + pj for all (i, j) ∈ L,

where pi for i = 1, . . . , n and cij is the cost of the link (i, j) ∈ L.
If all components pj are fixed to some value, except for pi, then to optimize the objective,

we would set pi to take the largest possible value. This largest value is minj∈O(i) {cij + pj},
where O(i) is the set of all end-nodes j of the outgoing links (i, j) from node i. Thus, the
dual optimal variables p∗i satisfy such relations, i.e.,

p∗i = min
j∈O(i)

{
cij + p∗j

}
for all i = 1, . . . , n− 1, (5.11)

with p∗n.
We can view the deterministic shortest path problem as a stochastic problem with

U(i) = O(i), ḡ(i, j) = cij, and the probability pij(u) of moving from i to j equal to 1
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(when u = j) for each j ∈ O(i). Thus, that the relation (5.11) for optimal prices p∗ is
equivalent to saying that the optimal price vector p∗ is a fixed point of the DP mapping
T . Hence, the deterministic shortest path problem can be solved by applying the value
iteration algorithm. When all the link costs cij are nonnegative, the value algorithm can
be implemented very efficiently by generating the sets Sk similar to those in the proof of
Theorem 64. This implementation as known as Dijkstra’s algorithm, which we describe
next assuming that node n is the terminal node.

Dijkstra’s Algorithm
Let M = {n}, pi = +∞ for all i 6= n, and pn = 0.

1. At iteration k, we have available the set M (of permanently marked nodes) and the
price vector p. For each node i 6∈ M re-compute the values

pi = min
j∈O(i)

{cij + pj}.

2. Determine a node i∗ 6∈ M attaining the minimum of pi, i.e., a node i∗ such that

i∗ ∈ Argmin
i6∈M

pi.

Include this node i∗ in the set M, and set p∗i = mini6∈M pi. Go to step 1.

The values p obtained at the end of the algorithm are optimal dual values, with pi

representing the shortest path length from node i to the destination n. Note that the set
M represents the set of (marked) nodes whose dual optimal prices have been computed.

The Dijkstra’s algorithm is illustrated in the following example.

Example 37 Consider the network given in Figure 5.1. Initially, we have only the termi-
nal node 4 marked, i.e., M = {4} and p4 = 0, while pi = +∞ for i = 1, 2, 3.

In the first iteration, the values pi for i = 1, 2, 3 are updated, and we have

p1 = min{1 + p2, 3 + p3} = min{+∞,∞} = +∞,

p2 = min{1 + p3, 2 + p4} = min{+∞, 2} = 2,

p3 = 0 + p4 = 0.

The smallest value of pi is attained at node 3. This node is permanently marked, its label is
p3 = 0, and the node 3 enters the set M, i.e., M = {3, 4} at the end of the first iteration.

In the second iteration, we update pi for i = 1, 2 and obtain

p1 = min{1 + p2, 3 + p3} = min{1 + 2, 3 + 0} = 3,

p2 = min{1 + p3, 2 + p4} = min{1 + 0, 2 + 0} = 2 = 1.

Here, the smallest value of pi is attained at node 2, and this node is permanently marked
as it enters the set M, i.e., we have M = {2, 3, 4} at the end of this iteration with p2 = 1.

In the third iteration, we update only p1 and obtain

p1 = min{1 + p2, 3 + p3} = min{1 + 1, 3 + 0} = 2.

Hence, we have p1 = 2 and node 1 enters the set M. At this point all nodes are permanently
marked, and the algorithm terminates with p = [2,1,0,0]T, which is the vector with shortest
path length values for all nodes.
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Figure 5.1: A directed graph with nonnegative link costs. The shortest path path from
node 1 to node 4 is 1 → 2 → 3 → 4 with length 2. The shortest path from node 2 to 4 is
2 → 3 → 4 with length 2. The shortest path from 3 to 4 has length 0.

5.3.3 Policy Iteration

The policy iteration can also be used to solve the stochastic shortest path problem. We
here consider a policy iteration algorithm that uses an approximation Vk instead of the
exact value of the policy cost Vµk .

In particular, for the policy mapping Tµ,

TµV (i) = ḡ(i, µ(i)) +
n∑

j=1

pij(µ(i))V (i) for all i = 1, . . . , n

[cf. Eq. (5.8)] we consider an approximate policy iteration algorithm, where an approxi-
mation Vk of Vµk is used in the policy improvement step to determine a new policy µk+1.
Formally, the algorithm is described as follows.
Approximate Policy Iteration
Let δ be a given error tolerance level, and let µ0 be an initial (proper) policy.

1. At iteration k, having the current policy µk, determine a δ-approximation Vk of the
policy cost function Vµk , i.e., Vk such that

max
1≤i≤n

∣∣Vk(i)− Vµk(i)
∣∣ ≤ δ.

2. Generate a new policy µk+1 satisfying Tµk+1Vk = TVk, or explicitly

µk+1(i) ∈ Argmin
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u)Vk(j)

}
for all i = 1, . . . , n.

Furthermore, the new policy at step 2 need not be defined by exactly applying the DP
mapping T . In particular, when the number of state is large, we may use µk+1 such that

max
1≤i≤n

∣∣Tµk+1(i)− TVk(i)
∣∣ ≤ ε.
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When both the policy value Vµk and the DP map are approximated, we have the follow-
ing error bound for the approximate policy iteration algorithm (see for example [7], Section
2.4, Proposition 2.4.1).

Theorem 65 When all the policies µk in the (δ, ε)-approximate policy iteration algorithm
are proper, the following relation holds:

lim sup
k→∞

max
1≤i≤n

∣∣Vµk(i)− V ∗(i)
∣∣ ≤ n(ε + 2δ)

n + 1− ρ

(1− ρ)2
,

with 1−ρ being the smallest probability that the state t is reached in n steps from any state
i under any policy µ, or equivalently

ρ = max
1≤i≤n
proper µ

Prob {xn 6= t | x0 = i, µ}.

5.4 Average Cost Problem

Here, we study another DP model with stationary description. This model does not use a
discount factor α and does not have a termination state. We will consider the case where
the state space and control space is finite. In particular, the structure of the average cost
DP problem is as follows:

1. The set S of system states is S = {1, . . . , n}.

2. For each state i ∈ S, a set U(i) specifies the controls u available at that state. The
set U(i) is finite for all i.

3. At each state i, every control u specifies a probability distribution pij(u) of moving
from state i to state j ∈ S, i.e.,

pij(u) = Prob {xk+1 = j | xk = i, uk = u} for all i ∈ S.

4. A cost g(i, u, j) is incurred when moving from state i to state j under the control u.

5. The objective is to minimize the long-term average cost Vπ(i) over all policies π =
(µ0, µ1, . . .), where the average cost Vπ(i) starting from state i is given by:

Vπ(i) = lim sup
N→∞

1

N
E

{
N−1∑
k=0

g(xk, µk(xk), xk+1)
∣∣∣ x0 = i

}
.

Similarly as for the stochastic shortest path, we can associate a deterministic cost ḡ(i, u)
for choosing a control u at state i, by letting

ḡ(i, u) = E[g(i, u, j)|(i, u)] =
n∑

j=1

pij(u) g(i, u, j) for all i and all u ∈ U(i).
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The problem is now to determine the policy π∗ such that for all i = 1, . . . , n,

Vπ∗(i) = min
π∈Π

Vπ(i),

where π = (µ0, µ1, . . .) and

Vπ(i) = lim sup
N→∞

1

N

{
N−1∑
k=0

n∑
j=1

pikj(µk(ik)) g(ik, µk(ik), j)
∣∣∣ i0 = i

}
.

For a stationary policy π = (µ, µ . . .), we view the policy cost Vµ as a vector with
components Vµ(i), and similarly we view the optimal average cost V ∗ = Vπ∗ . Also, we
introduce the transition matrix Pµ corresponding to a stationary policy µ,

Pµ =

 p11(µ(1)) · · · p1n(µ(1))
...

. . .
...

pn1(µ(n)) . . . pnn(µ(n))

 .

Note that the matrix Pµ is stochastic. We introduce the cost vector ḡµ associated with a
stationary policy µ,

gµ =

 ḡ(1, (µ(1))
...

ḡ(n, (µ(n))

 .

Then, for the policy cost vector Vµ, we can write

Vµ = lim sup
N→∞

1

N

N−1∑
k=0

P k
µ ḡµ.

Some applications of the average cost DP model are illustrated in the following examples.

Example 38 (Transmission Scheduling [33])
Consider a communication network with a receiver and a transmitter. The network topology
state is S(t), which is assumed to evolve according to some irreducible Markov chain with
a finite set of states.

At time t, the transmission attempts are denoted by a scalar R(t) with R(t) = 1 if the
transmitter attempts a transmission at time t, and otherwise R(t) = 0. The transmissions
are not always successful. Specifically, at each time t, the transmission is successful with
probability P (t), which depends on the network state S(t) and the transmission attempt
R(t) at time t, i.e.,

P (t) = P (S(t), R(t)) for all t ≥ 1.

The transmission control policy is the collection of transmission scalars {R(t)}. Due to
the uncertainties in the transmissions, some of these transmissions are successful and some
are not. Let D(t) be the indicator variable of successful transmissions at time t, i.e., with
D(t) = 1 if the transmission is successful at time t, and otherwise D(t) = 0.
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The time average throughput of the system is

lim
T→∞

1

T

T∑
t=1

D(t).

The problem is to maximize the average throughput over all policies {R(t)} for which the
limiting value exists.

Example 39 (Multiclass Queueing Network [15]) Consider a queueing network system
with n queues and a single server with variable service rate. Each queue i has an arrival
rate λi and a service rate µi. The goal is to assign the jobs from the queues to the server
so as to minimize the long term average of the queue lengths.

The DP formulation is as follows: the time is slotted t = 0, 1, . . . .. It is assumed that,
at each time, either a new job arrives to a queue i, or a job from a queue i that is currently
being served is completed. Depending on the network system, a completed job from any
queue may exit the system or enter another queue.

The state of the system is the vector x(t) with components xi(t) representing the number
of jobs in queue i (queue length). At each time and state, the set of controls is U =
{e1, . . . , en}, where a decision u = ei corresponds to a job from queue i being selected to be
served. The evolution of the system is given by

xi(t + 1) = xi(t) + ai(t + 1)− di(t + 1) for all i,

where ai(t) is the arrival and di(t) is the departure indicator variable for queue i. The
objective is to select the jobs from queues to be served, i.e., decide on the sequence {uk}, so
as to minimize the average cost given by

lim sup
T→∞

1

T
E

[
T−1∑
t=0

n∑
i=1

xi(t)
∣∣∣ x0 = x

]
.

Example 40 (Power Allocation and Routing in Wireless Networks [23])
Consider a wireless network with n power constrained nodes. At each time t, multiple
random streams aj

i (t) of bits that enter the system at node i destined to node j. Data packets
are dynamically routed from node to node through the paths using wireless data links. The
link conditions are randomly changing in time, and the time is slotted t = 0, 1, . . ..

Nodes transmit data over multiple links depending on the power P (t) distribution at
time t, P (t) = [pab(t), a, b = 1 . . . , n], which satisfies the power constraint at each node. At
time t, transmission rates rab(t) over all links (a, b) depend on the power matrix P (t) and
the state of the network links S(t) = [sab(t), a, b = 1 . . . , n], i.e., rab(t) = rab(P (t), S(t)).
Each node has n− 1 queues for storing data according to its destination.

At each time t, a controller allocates the power P (t). Based on the power-rate curve,
the link rate matrix is determined R(t) = [rab(t), a, b = 1 . . . , n]. Each resulting link rate
rab(t) has to be split into rates rj

ab(t) for traffic destined to each node j, resulting into the
rate assignment matrix Rj(t) = [rj

ab(t) a, b = 1 . . . , n] for the traffic destined to every node
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j. The objective is to determine the power allocation matrices P (t) and rate allocations
Rj(t),j = 1, . . . , n, so as to maximize the network throughput while keeping the delay low.

The corresponding DP model is as follows: At time t, the system state consists of the
network state S(t) and the current system backlog W (t) = [wj

i (t), i, j = 1, . . . , n] where
wj

i (t) is the number of bits at node i destined for node j at time t.
At each state (S(t), W (t)), the set of controls depends only on S(t), and consists of the

set of all power allocation matrices P (t) satisfying the power constraints of the nodes and
the rate splitting decisions. In particular, the power allocation P (t) is selected so that∑

b6=i

pib(t) ≤ pcap
i for all i = 1, . . . , n.

Based on the power-rate curve and the system state, the link rates rab(t) = rab(S(t), P (t))
are determined corresponding to the chosen power P (t). Then, the rate splitting rj

ab(t) is
decided such that ∑

j

rab(t)
j ≤ rab(t) for all (a, b).

The network S(t) evolves according to an ergodic Markov chain with finite set of states.
The system backlog W (t) evolves as a function of the state S(t), the selected power allocation
P (t) and rate allocation R(t), as follows:

wj
i (t + 1) ≤ max

{
wj

i (t)−
∑

b

rj
ib(t), 0

}
+
∑

a

rj
ai(t) + Aj

i (t).

The objective is to minimize the following average cost

lim sup
T→∞

1

T

T−1∑
t=0

{∑
i,j

E
[
wj

i (t)
]}

.

5.4.1 Basic Relations

Here, we provide some basic relations and optimality criteria for the average cost problem.
We start by showing that this problem can be viewed as the limit of a sequence of related
discounted cost problems with discount factor α approaching value 1.

We note that given any stochastic matrix P , the limiting matrix

P̄ = lim
N→∞

1

N

N−1∑
k=0

P k

always exists. The (i, j)th entry of P̄ represents the long term frequency of visits to state
j given that the initial state is i. Intuitively, such frequencies are well defined. A sketch of
the formal proof is as follows: for a matrix P with eigenvalues on a unit circle (holds for
stochastic matrices) we have for any 0 < α < 1,

∞∑
k=0

αkP k = (I − αP )−1.
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Hence,

(1− α)(I − αP )−1 = lim
N→∞

∑N−1
k=0 αkP k∑N−1

k=0 αk
.

Letting α → 1 (and assuming we can exchange the limits), we have

P̄ = lim
α→1

(1− α)(I − αP )−1 = lim
N→∞

lim
α→1

∑N−1
k=0 αkP k∑N−1

k=0 αk
= lim

N→∞

∑N−1
k=0 P k

N
.

Hence, the limiting average transition matrix P̄µ = limN→∞

PN−1
k=0 P k

µ

N
of the policy µ can be

viewed as the limit of the corresponding transition matrix Pµ of the stationary policy µ for
the discounted problem as the discount factor α approaches 1, i.e.,

P̄µ = lim
α→1

(1− α)(I − αPµ)−1. (5.12)

In view of the preceding, the limsup in the stationary policy cost can be replaced with
the limit, so that

Vµ = lim
N→∞

1

N

N−1∑
k=0

P k
µ ḡµ = P̄µ ḡµ. (5.13)

By viewing P̄µ as the limiting (average) steady state frequency associated with the policy µ,
the vector Vµ is the steady state cost corresponding to the policy µ.

Consider now the cost that would be accumulated under a given policy µ, if the cost ḡµ

per stage were discounted by a factor α ∈ (0, 1). Let Vµ,α denote the expected discounted
cost for the policy µ, i.e.,

Vµ,α =
∞∑

k=0

αkP k
µ ḡµ.

By noting that
∑∞

k=0 αkP k
µ = (I − αPµ)−1, we have

Vµ,α = (I − αPµ)−1 ḡµ. (5.14)

By post-multiplying with ḡµ both sides in equation (5.12), and by using relations (5.13)
and (5.14), we obtain

Vµ = lim
α→1

(1− α)
∞∑

k=0

αkP k
µ ḡµ = lim

α→1
(1− α)Vµ,α, (5.15)

Thus, the (averaged) policy cost Vµ is related to the limiting discounted cost Vµ,α as the
discount factor approaches 1.

The formal proof of equations (5.12) and (5.15) can be found in [7] Section 4.1. Relation
(5.12) suggest that we can approximate the average transition matrix P̄µ with matrices
(1−α)−1(I−αPµ) by taking the discount factor α close to 1, where (I−αPm) is the matrix
associated with a corresponding discounted problem. Similarly, relation (5.15) indicates
that we can approximate the average cost Vµ of a stationary policy µ with the corresponding
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discounted cost Vµ,α by taking the discount factor α close to 1. Formally, using equations
(5.12) and (5.15), we can write for α close to 1,

(I − αPµ) = (1− α)−1P̄µ + Zµ + O(1− α),

Vµ,α = (1− α)−1Vµ + zµ + O(1− α),

where O(β) is a matrix in the first relation and it is a vector in the second relation, but in
each case we have

lim
β→0

O(β) = 0.

The preceding relations are formally stated in the following theorem (with precise forms
for the matrix Zµ and the vector zµ).

Theorem 66 Let µ be a stationary policy with the corresponding probability transition
matrix Pµ and per-stage cost gµ.

(a) Let P̄µ be the limiting average probability transition matrix, P̄µ = limN→∞
1
N

∑N−1
k=0 P k

µ .
Then, for any α ∈ (0, 1), we have

(I − αPµ) = (1− α)−1P̄µ + Zµ + O(1− α),

where O(β) is a matrix such that limβ→0 O(β) = 0 and Zµ is a matrix given by

Zµ = (I − Pµ + P̄µ)−1 − P̄µ.

Furthermore, the matrices P̄m and Zµ satisfy the following relations

Pµ P̄µ = P̄µ Pµ = P̄ 2
µ , P̄ 2

µ = P̄µ,

P̄µ Zµ = 0, Zµ P̄µ = 0, P̄µ + Zµ = I + Pµ Zµ.

(b) Let Vµ be the average cost for the policy µ, i.e., Vµ = P̄µ ḡµ. Let Vµ,α be the expected
discounted long term cost for the policy µ and the discount factor α ∈ (0, 1), i.e.,
Vµ,α = (I − αPµ)−1 ḡµ. Then, for any α ∈ (0, 1), we have

Vµ,α = (1− α)−1Vµ + zµ + O(1− α),

where O(β) is a vector such that limβ→0 O(β) = 0 and zµ is a vector given by

zµ = Zµ ḡµ.

The average cost Vµ is such that

Vµ = Pµ Vµ, Vµ + zµ = ḡµ + Pµ zµ.
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The vector zµ is referred to as the bias of the policy µ.
We next discuss a special stationary policies for the average cost problem, namely,

Blackwell optimal stationary policies. A stationary policy µ is Blackwell optimal for the
average cost problem if there is an interval (α̃, 1) such that the policy µ is (uniformly)
optimal for all corresponding discounted problems with the discount factor α ∈ (α̃, 1). The
finite state set and the finite control set assumptions in the average cost model ensure the
existence of a Blackwell optimal stationary policy.

Based on the uniformity property of a Blackwell optimal policy and the properties of
Vµ established in Theorem 66, it can be seen that all Blackwell optimal policies have the
same cost Vµ and the same bias zµ,

Vµ = Vµ̃, zµ = zµ̃ for all Blackwell optimal stationary policies µ and µ̃.

Denote the common cost vector and the common gain vector of all Blackwell optimal
policies by V ∗ and z∗ respectively, i.e.,

Vb = Vµ, z∗ = zµ for all Blackwell optimal stationary policies µ.

The vector V ∗ and the gain z∗ satisfy some special relations, which play role of Bellman’s
equation for the average cost problem and lead to the optimality conditions.

The following theorem provides the relations for the cost V ∗ and the gain z∗.

Theorem 67 The vector V ∗ corresponding to the cost of Blackwell optimal policies is such
that

V ∗(i) = min
u∈U(i)

n∑
j=1

pij(u) V ∗(j) for all i = 1, . . . , n.

For each i, let U∗(i) be the set of controls u attaining the minimum in the right hand side
of the preceding relation. The bias z∗ of Blackwell optimal policies is such that

V ∗(i) + z∗(i) = min
u∈U∗(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) z∗(j)

}
.

The relations of Theorem 67 play the role of Bellman’s equation for the average cost
problem. If a policy µ is Blackwell optimal, then its cost and the gain satisfy

V ∗(i) = min
u∈U(i)

n∑
j=1

pij(u) V ∗(j) for all i = 1, . . . , n, (5.16)

V ∗(i) + z∗(i) = min
u∈U∗(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) z∗(j)

}
. (5.17)

where U∗(i) is the set of controls u attaining the above minimum. The converse is also
true, as seen from the following.
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Theorem 68 Suppose that the vectors V ∗ and z∗ satisfy relations in Eqs. (5.16)–(5.17).
Then, V ∗ is the optimal cost vector for the average cost problem.

Let µ∗ be a policy such that µ∗(i) attains the minimum in Eq. (5.17). Then, the policy
µ∗ is an optimal stationary policy for the average cost problem.

In general, we cannot replace U∗(i) by U(i) in Eq. (5.17). However, a modification of
Eq. (5.17) holds for some policies, as seen in the following.

Theorem 69 Suppose that the vectors V ∗ and z∗ satisfy relations in Eqs. (5.16)–(5.17).
Then, there is a scalar δ̄ > 0 such that for all δ ≥ δ̄, the vector

zδ = z∗ + δV ∗

satisfies

V ∗(i) + zδ(i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) zδ(j)

}
for all i = 1, . . . , n. (5.18)

In addition, if a policy µ attains the minimum in the optimality relation (5.17), then it
also attains the minimum in the perturbed optimality relation (5.18).

The preceding theorem will be useful in the subsequent development of the algorithms for
average cost problems.

A special case when the optimality relations (5.16)–(5.17) take a particularly simplified
form is when the optimal average cost V ∗(i) is the same for all states i. This is the case for
example, when every stationary policy induces an ergodic1 Markov chain (with transition
probabilities Pµ). The reason for this is the fact that for an ergodic Markov chain, the long
term behavior is the same for any initial state of the chain.

From now on, we assume that every stationary policy induces an ergodic Markov chain.
Under this assumption, the optimality relations (5.16)–(5.17) are more tractable. Relation
(5.16) becomes redundant and implies U∗(i) = U(i) for all i. Relation (5.17) reduces to

θ + z∗(i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) z∗(j)

}
for all i = 1, . . . , n, (5.19)

where θ = V ∗(i) [the same value for all i]. We refer to this relation as Bellman’s equation
for average cost problem. We define the DP mapping T : Rn → Rn as: for all z ∈ Rn,

Tz(i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) z(j)

}
for all i = 1, . . . , n. (5.20)

Then, Bellman’s equation (5.19) can be written as

θe + z∗ = Tz∗.

1An aperiodic Markov chain with a single recurrent class.
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Note that, a stationary policy that attains the minimum in the right hand side of Bellman’s
equation (5.19) is optimal.

Given a stationary policy, under ergodicity assumption, the policy cost Vµ(i) has the
same values for all states i. Denoting this value by θµ, from Bellman equation we have

θµ + z(i) = ḡ(i, µ(i)) +
n∑

j=1

pij(µ(i)) z(j).

Define the policy mapping Tµ : Rn → Rn by: for all z ∈ Rn,

Tµz(i) = ḡ(i, µ(i)) +
n∑

j=1

pij(µ(i)) z(j) for all i = 1, . . . , n. (5.21)

Then, Bellman’s equation (5.19) for a policy µ can be written as

θµe + z = Tµz.

We next summarize the optimality conditions for the ergodic case. The following result
is an immediate consequence of Theorem 68.

Theorem 70 Suppose that the vectors θ and z are such that θe + z = Tz, or explicitly

θ + z(i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) z(j)

}
for all i = 1, . . . , n.

Then, θ is the optimal average cost for all states and a stationary policy µ attaining the
minimum in the preceding relation is optimal, i.e.,

θ = V ∗(i) for all i = 1, . . . , n,

Vµ(i) = θ for all i = 1, . . . , n.

We provide a similar result for the average cost Vµ of a stationary policy µ.

Theorem 71 Suppose that the vectors θ and z are such that θe + z = Tµz, or explicitly

θ + z(i) = ḡ(i, µ(i)) +
n∑

j=1

pij(µ(i)) z(j) for all i = 1, . . . , n.

Then, θ is the average cost of policy µ for all states, i.e.,

θ = Vµ(i) for all i = 1, . . . , n.
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5.4.2 Value Iteration

We consider a value iteration algorithm under ergodicity assumption on stationary policies.
Basically, the algorithm produces a vector sequence {T kz} starting with an arbitrary vector
z ∈ Rn, and the vector

Vk =
1

k
T kz,

is an approximation of the optimal cost V ∗.
The justification of the value iteration algorithm is provided by the following result.

Theorem 72 Let h ∈ Rn be arbitrary. We have

V ∗ = lim
k→∞

1

k
T kz,

where T is the DP mapping associated with the average cost problem [cf. Eq. (5.20)].

Proof. (Sketch) Consider the vector z∗ satisfying Bellman’s equation,

Tz∗ = V ∗ + z∗.

From this relation, it follows that

T 2z∗ = TV ∗ + Tz∗ = V ∗ + (V ∗ + z∗) = 2V ∗ + z∗.

Continuing in this manner, we see that

T kz∗ = kV ∗ + z∗ for all k ≥ 1.

Next step is to estimate the difference T kz − T kz∗. Consider Tz − Th for arbitrary
z, h ∈ Rn. We have for all i,

Tz(i)− Th(i) = min
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) z(j)

}
− min

u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u) h(j)

}
.

Let µz be a stationary policy attaining the minimum in minu∈U(i)

{
ḡ(i, u) +

∑n
j=1 pij(u) z(j)

}
,

and µh be a stationary policy attaining the minimum in minu∈U(i)

{
ḡ(i, u) +

∑n
j=1 pij(u) h(j)

}
.

By optimality of µh for the term involving h, we have for all i,

Tz(i)− Th(i) ≤ ḡ(i, µh(i)) +
n∑

j=1

pij(µh(i)) z(j)−

(
ḡ(i, µh(i)) +

n∑
j=1

pij(µh(i)) h(j)

)

=
n∑

j=1

pij(µh(i)) (z(j)− h(j))

≤ max
1≤j≤n

(z(j)− h(j))
n∑

j=1

pij(µh(i)).
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Hence, for all i,
Tz(i)− Th(i) ≤ max

1≤j≤n
(z(j)− h(j)) . (5.22)

Similarly, by optimality of µz for the term involving z, we have for all i,

Tz(i)− Th(i) ≥ ḡ(i, µz(i)) +
n∑

j=1

pij(µz(i)) z(j)−

(
ḡ(i, µz(i)) +

n∑
j=1

pij(µz(i)) h(j)

)

=
n∑

j=1

pij(µz(i)) (z(j)− h(j))

≥ min
1≤j≤n

(z(j)− h(j))
n∑

j=1

pij(µz(i)).

Therefore, for all i,
Tz(i)− Th(i) ≥ min

1≤j≤n
(z(j)− h(j)) . (5.23)

By combining relations (5.22) and (5.23), we have for all z, h ∈ Rn and all i = 1 . . . , n,

min
1≤j≤n

(z(j)− h(j)) ≤ min
1≤i≤n

(Tz(i)− Th(i)) ≤ Tz(i)− Th(i),

T z(i)− Th(i) ≤ max
1≤i≤n

(Tz(i)− Th(i)) ≤ max
1≤j≤n

(z(j)− h(j)) .

By repeated application of the preceding relations to T kz(i)− T kz∗(i), we can see that

min
1≤j≤n

(z(j)− z∗(j)) ≤ T kz(i)− T kz∗(i) ≤ max
1≤j≤n

(z(j)− z∗(j)) for all i.

Using the relation T kz∗ = kV ∗ + z∗ in the preceding relation, we see that

min
1≤j≤n

(z(j)− z∗(j)) + kV ∗ + z∗(i) ≤ T kz(i) ≤ max
1≤j≤n

(z(j)− z∗(j)) + kV ∗ + z∗(i).

Dividing by k, we obtain

V ∗ +
1
k

(
min

1≤j≤n
(z(j)− z∗(j)) + z∗(i)

)
≤ 1

k
T kz(i) ≤ V ∗ +

1
k

(
max

1≤j≤n
(z(j)− z∗(j)) + z∗(i)

)
,

and the result follows by letting k →∞.
We note that the result of Theorem 72 is valid even without the assumption of ergodicity

on stationary policies. The proof however has to be modified by using zδ instead of z∗,
where zδ is as in Theorem 69.

Theorem 72 shows that the value iteration algorithm can be used to compute the optimal
cost V ∗. But this does not say how we find the optimal bias z∗ and an optimal stationary
policy. Define

ρk = T kz − kV ∗.

Under ergodicity assumption, it turns out that

T kz − T kz∗ → 0 for any z ∈ Rn.
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Since
ρk = T kz − kV ∗ = T kz − T kz∗ + z∗,

where we use T kz∗ = kV ∗ + z∗, it follows that ρk converges to z∗. Then, from

T k+1z − T kz = ρk+1 − ρk + V ∗ for all k,

we obtain
lim
k→∞

(
T k+1z − T kz

)
= V ∗ for any z ∈ Rn.

Thus, under the ergodicity assumption, we have

T k+1z − T kz → V ∗ and ρk → z∗,

where V ∗ is optimal average cost and z∗ is the optimal bias satisfying Bellman’s equation
V ∗ + z∗ = Tz∗.

As one can observe, the analysis of the value iteration algorithm for the average cost
problem is much more complex than for the discounted cost and shortest path problems.
The complexity stems from the structure of the problem and the impact of Markov chains
associated with policies. The situation is the same for the policy iteration algorithm, which
is discussed next.

5.4.3 Policy Iteration

We consider a policy iteration algorithm generating a sequence of policies {µk} using the
policy mapping Tµ [cf. Eq. (5.21)],

Tµz(i) = ḡ(i, µ(i)) +
n∑

j=1

pij(µ(i))z(i) for all i = 1, . . . , n.

Policy Iteration
Let µ0 be an initial (ergodic) policy.

1. At iteration k, having the current policy µk, determine the average policy value Vk

and its bias zk, i.e., Vk and zk such that

Vk + zk(i) = ḡ(i, µk(i)) +
n∑

j=1

pij(µk(i)) zk(j) for all i = 1, . . . , n.

2. Generate a new policy µk+1 satisfying Tµk+1zk = Tzk, or explicitly

µk+1(i) ∈ Argmin
u∈U(i)

{
ḡ(i, u) +

n∑
j=1

pij(u)zk(j)

}
for all i = 1, . . . , n.

If µk+1 = µk, then stop; the policy µk is optimal. Otherwise, go to step 1.
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Under the ergodicity assumption on stationary policies, the system of equations at step
1 has n equations and n + 1 unknowns. Thus, the solution pair (Vk, zk) is not unique. To
ensure the uniqueness, typically, another equation is included

zk(r) = 0 for some arbitary reference state r.

At step 2, if the policy µk(i) attains the minimum, then the new policy µk+1 is set so
that µk+1(i) = µk(i), even when there are other controls u attaining the minimum aside
from µk(i). This is known as policy normalization.

The following result holds for the policy iteration algorithm.

Theorem 73 When all the policies µk generated by the algorithm are ergodic, the policy
iteration algorithm using policy normalization terminates with an optimal stationary policy
in a finite number of iterations.
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[9] D. P. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and Optimiza-
tion, Athena Scientific, Belmont, MA, 2003.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation,
Prentice-Hall, Englewood Cliffs, N. J., 1989.

[11] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena
Scientific, Belmont, MA, 1997.

[12] J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization,
Springer-Verlag, New York Inc., 2000.

[13] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University
Press, Cambridge, U. K., 2004.

[14] U. Bränlund, On Relaxation Methods for Nonsmooth Convex Optimization, Doctoral
Thesis, Royal Institute of Technology, Stockholm, Sweden, 1993.

173



174 BIBLIOGRAPHY

[15] R. R. Chen and S. Meyn, Value iteration and optimization of multiclass queueing
networks, Queueing Systems, 32 (1999), pp. 65–97.

[16] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers, Nor-
well, MA, 2nd ed., 1998.

[17] B. Hajek, Communication Network Analysis, Lecture Notes for ECE 467, University
of Illinois, Urbana-Champaign, 2006.

[18] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,
N. Y., 1985.

[19] F. P. Kelly, A. K. Maulloo, and D. K. Tan, Rate control for communication
networks: shadow prices, proportional fairness, and stability, Journal of the Opera-
tional Research Society, 49 (1998), pp. 237–252.

[20] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover Publica-
tions, Inc., N. Y., 1970.

[21] S. H. Low and D. E. Lapsley, Optimization flow control I: basic algorithm and
convergence, IEEE/ACM Transactions on Networking, 7 (1999), pp. 861–874.
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