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Chapter 0O

Introduction

The main topics of Numerical Linear Algebra are the solution of different classes of eigenvalue
problems and linear systems.
For the eigenvalue problem we discuss different classes.

(a) The standard eigenvalue problem: For a real or complex matrix A € C™", determine
x € C", )\ € C, such that

Az = \z.

The standard eigenvalue problem is a special case of the generalized eigenvalue problem:
For real or complex matrices A, E € C™", determine x € C™, A € C, such that

Axr = \Ex,

In many applications the coefficient matrices have extra properties such as being real and
symmetric or complex Hermitian.
For linear systems:

Axr =b,x e C",beC™

with A € C™"™ we again may extra properties for the coefficient matrices.

We will concentrate in this course on the numerical solution of standard and generalized
eigenvalue problems and the solution of linear systems. We will briefly review some of the
standard techniques for small scale problems and put an emphasis on large scale problems.
Applications: Eigenvalue problems arise in

e the vibrational analysis of structures and vehicles (classical mechanics);

e the analysis of the spectra and energy levels of atoms and molecules (quantum mechan-
ics);

e model reduction techniques, where a large scale model is reduced to a small scale model
by leaving out weakly important parts;

e many other applications.

Linear systems arise in almost any area of science and engineering such as



(a) frequency response analysis for excited structures and vehicles;

(b) finite element methods or finite difference methods for ordinary and partial differential
equations;

(c¢) data mining, information retrieval;

(d) and many others.

We will distinguish between small and medium class problems where the full matrices fit into
main memory, these are of today sizes n = 10> — 10° and large sparse problems, where the
coefficient matrices are stored in sparse formats, and have sizes n = 10° and larger. We will
mainly discuss the case of complex matrices. Many results hold equally well in the real case,
but often the presentation becomes more clumsy. We will point out when the real case is
substantially different.

We will discuss the following algorithms.

A small A large
EVP | QR-Algorithm, QZ-Algorithm Lanczos, Arnoldi, Jacobi-Davidson
LS CG, GMRES




Chapter 1

Matrix theory

1.1 Basics

1.1.1 Eigenvalues and Eigenvectors
Let A, E € C™", then v € C" \ {0} and X € C that satisfy
Av = AEv

are called eigenvector and eigenvalue of the pair (E, A). In the special case that E is the
n x n identity matrix I,(I) we have eigenvalues and eigenvectors of the standard eigenvalue
problem.
The sets

o(A) = {XeC| X\ eigenvalue of A}
o(E,A) = {XeC| X eigenvalue of (E, A)}

are called spectrum of A (the pair (E, A)), respectively.

1.1.2 Matrix norms

Let A € C™", then

A
1A]] = sup 1Al
S el

is the matriz p-norm, p € NU {oo} and for invertible matrices A
kp (A) = [|Allp - |A7 Y],

is called the p-norm condition number of A.

Special cases:

(a) p =1~ the column-sum norm:

m
1Al = max ) " |ag|
J -
=1



(b) p = 00 ~» the row-sum norm:

14llse = [1AT]]1

(¢) p =2~ the spectral norm

||A||2 = square root of the largest eigenvalue of A% A
with A7 = AT,
Convention:

Al = [[A]l2, & (A) = k2 (A)

Frobenius norm:

n m
22 laif?

j=1 i=1

AllF =

1.1.3 Isometric and unitary matrices

Definition 1 Let U € C"™", m > n.
(a) U is called isometric if UHU = I,;
(b) U is called unitary if U is isometric and n = k.
Theorem 2 Let U € C"** k < n. Then the following are equivalent.
(a) U is isometric;
(b) the columns of U are orthonormal;
(c) (Uz,Uy) = (x,y) for all z,y € CF ({-,-): standard real or complex scalar product );
(d) ||Uz|| = ||z|| for all z € C¥;
For k =n, (a)-(d) are equivalent to
(e) UUH = I;
) U=
(g) the rows of U are orthonormal.

In this case, furthermore,

[Ull=1= U~ =&(U).



1.1.4 Subspaces

Definition 3 A space U C C" is called subspace, if for all x,y € U, € C we have
r+yeld, ax eU.

Theorem 4 Let U C C" be a subspace with basis (z1,...,Ty) and X = [z1,...,Ty], i.e.
Rank(X) = m.

(a) ThenUd = R (X) :={Xy| y € C"} (Range or column space of X ).
(b) Let Y € C™™ with Rank(Y') = m, then

R(X)=R(Y)e X =YB, BeC™™,

In particular then B is tnvertible and

XB™' =Y.
(¢) The Gram-Schmidt method for (x1,...,xy) delivers an orthonormal basis (qi1, - .., Gm)
of U with
Span{qi,...,q;} = Span{z1,...,x;}
for j=1,...,m. This condition is equivalent to:

There exists an upper triangular matriz R € C™™ with X = QR where Q = [q1, ..., qm)]-
(QR-decomposition)
1.1.5 Invariant subspaces

Definition 5 Let A € C*"™ and U C C". Then U is called A-invariant, if

reU= Az el forallxz € C".
Theorem 6 Let A€ C™" X € C™" and U = R (X). Then the following are equivalent:
(a) U is A-invariant;

(b) There exists B € C** | such that:

AX = XB.

Furthermore, in this case for A\ € C and v € CF:

Bv=Xv= AXv=AXv,

i.e., every eigenvalue von B is also an eigenvalue von A.

Remark 7 If A, X, B satisfy AX = XB and if X has only one column x, then B is a scalar
A and we obtain the eigenvalue equation

Ax =z,

i.e., X can be viewed as a generalization of the concept of eigenvector.



1.2 Matrix decompositions

1.2.1 Schur decomposition

Theorem 8 (Schur, 1909)
Let A € C™™. Then there exists U € C™" unitary such that

T:=U"AU

is upper triangular.

Proof: By induction: n =1 is trivial.
“n—1=n": Let v € C™ be an eigenvector of A to the eigenvalue A € C. Let ¢; := ”z—” and
complete g1 to an orthonormal basis (q1,...,q,) of C". Then Q = [q1,. .., ¢n] is unitary and

o taa=[Gi5e]

By the inductive assumption there exists Uso unitary, such that Tsy := UgAggUgg is upper

triangular. Setting
110
v=2 |5l

then T = U AU is upper triangular. O

Remark 9 In the Schur decomposition U can be chosen such that the eigenvalues of A appear
i arbitrary order on the diagonal.

Definition 10 A matriz T € R™" is called quasi-upper triangular matrix, if T is a block-
upper triangular matrixz and the diagonal blocks have size mazimal 2 X 2.

Theorem 11 (Murnaghan, Wintner, 1931)
Let A € R™". Then there exists a real orthogonal matriz Q, (i.e., QT'Q = I) such that

T =QTAQ
1S quasi-upper triangular.

Proof: The proof is similar to that of the Theorem of Schur: If A has a real eigenvector
then we can proceed the induction as in the complex case. Otherwise for a complex
eigenvector v = v1 + tvg to the complex eigenvalue A = A\ 4 iAo, with v1,v9 € R™ and
A1, A2 € R, Ao # 0 we have from

A (’Ul + ivg) = ()\1 + Z)\Q) (Ul + ivg)
that

Avy = v — Aavg

Al Ag
Avg = Ao+ Aoy ’

} = Alvy vg] = [v1 v9] [ EVY

8



Hence Span {v1,va} is an A-invariant subspace. Let (¢1,¢2) be an orthonormal basis of
Span {v1,v2} and let @ = [¢q1, 42,43, - - -, qn] be orthogonal, then

Al A2

A
QUAQ=| X M "2
0 | Az
The remaining steps of the induction are as in the complex case. O

Definition 12 A € C™" is called normal if AA" = AT A,

Example 13 Hermitian matrices, skew-Hermitian matrices and unitary matrices are nor-
mal.

Theorem 14 Let A € C™" be normal and U € C™™ unitary such that

Ay A
H _ 11 12
U AU — [ o ] ,
then Ao = 0.

Proof: Exercise. O

Corollary 15 If A € C™" is normal, then there exists U € C™" unitary, such that U AU
is diagonal.

Proof: Exercise. O

Theorem 16 (Generalized Schur form) Let A, E € C™" be such that the pair (E,A) is
regular, i.e., det A\ — A # 0 for all A € C. Then there exist U,V € C™" unitary such that

S=U"EV, T.=U0"AV
are upper triangular.

Proof: Let (Ej) be a sequence of nonsingular matrices that converges to E. For every let
QIAE Q) = Ty,

be a Schur decomposition of AEk_1 and let Z,f(Ek_le = Sk_l be a QR decomposition. Then
both QkHAZ/r€ = Ry Si and Qk,HEka = S; are upper triangular.

Using the Bolzano-Weierstraf} it follows that the bounded sequence (Qy, Z) has a
converging subsequence with a limit (Q, Z), where Q, Z are unitary. Then Q¥ AZ = T and
Q" EZ = S are upper triangular. O



1.2.2 The singular value decomposition (SVD)

Theorem 17 (Singular value decomposition, SVD)
Let A € C™"™ with Rank (A) = r. Then there exist unitary matrices U € C"™™ and V € C™"
such that

01
A=UxVH ¥ = : e C™",
Oy
0 0
Furthermore, o1 = ||Al|2 and o1,...,0, are uniquely determined.
Proof: Exercise. O

Definition 18 Let A,U = [u1,...,up],V = [v1,...,0,],2 be as in the SVD and o}, := 0 for
kE=r+1,...,min{m,n}. Then

(a) 01, ... Ominm,ny are called singular values of A.
(b) ui,...,up are called left singular vectors of A.
(¢) vi,...,vy, are called right singular vectors of A.

Remark 19 (a) From the SVD one obtains
ATAa=vstulusyt = ety = 2y

and
AAR =UusvHy sl = uysfut = ux?u”,
i.e. 0%,...,02 are the nonzero eigenvalues of AA™ and A™ A, respectively.

(b) Since AV = UY one has Kernel (A) = Span{vy+1,...,v,} and Image (A) = R (A) =
Span{ui,. .., ur}.

(¢) The SVD allows optimal low-rank approximation of A, since

A = UxVH
o1 0

= U , +ot vH

T
— E: o
= ojUV;
J=1

Here ujvJH is a rank one matrix of size m X n. For 0 <v <r the matric
14
o H
A, = g TiU;V;
i=1

10



(d)

1.3

18 the best rank v approximation to A in the sense that

[A-AJl= inf  [JA-B|l=o0,
BeCm™,n
Rank (B)<v

where oy41 = 0.

If A is real, then also U and V' can be chosen real.

Perturbation theory

In the analysis of numerical methods, we will have to study the eigenvalues, eigenvectors
invariant subspaces under small perturbations ?

1.3.1 Canonical angles and vectors

Question: let U,V C C" be subspaces of dimension k. How ’near’ are U and V7?7
Strategy: Compute successively the angles between U and V beginning with the smallest.
Choose normalized vectors x € U and y € V, such that

!
| (#,9) | = max.

W.lo.g. we can choose x and y such that their scalar product is real and nonnegative.
Otherwise we can take z € C with |z| = 1, so that (zz,y) = z (z,y) is real and nonnegative.
Then |(z,y) | = | (zz,y) |

(a)

Choose 1 € Y and y; € V with ||z1]| = ||y1]| = 1 such that
(r1,41) = max{Re (z,y) [z U,y eV, [zl = [yl = 1}

Then (z1,y1) is real, ©¥; = arccos (x1,ys2) is called first canonical angle and xy,y; are
called first canonical vectors.

Suppose that we have determined j — 1 canonical angles and vectors, i.e.,
Tly.o.,Tj—1 eEU, Yi,---,Yj—1 € V

are determined with (x1,...,2;-1) and (y1,...,yj—1) orthonormal.

Choose z; € U and y; € V with z; L x1,...,2z;-1 and y; L,y1,...,y;—1 and ||z;|| =
34/l = 1, 50 that
(z,95)

has maximal real part. Then (x;,y;) is real,
¥ := arccos (x}, y;)

is the j-th canonical angle, and z;, y; are j-th canonical vectors. Proceeding inductively
we obtain k canonical angles 0 < 1 < ... <} < 7 and orthonormal bases (T1y...,xk)
and (y1,...,yx) of U, V, respectively.

11



Lemma 20 Fori,j=1,...,k and i # j the canonical vectors satisfy (x;,y;) = 0.

Proof: Exercise. O

Corollary 21 Let X = [x1,...,2x] and Y = [y1,...,yx]. Then

cos 0
XY = (i, y;)) =
0 cos Yy,
with costy > ... > cosdy > 0 and this is SVD.

Practical computation of canonical angles and vectors
(a) Determine orthonormal bases of U and V, i.e., isometric matrices P, Q € C™* with

R(P)=U, R(Q)=V.

(b) Compute the SVD of P7Q

P =UxVH
with the diagonal matrix
»=UfpH Qv
S—
XH Y

(¢) Set U = [u1,...,ug] and V = [v,...,vg]. Then

(a) ¥j = arccosoj,j =1,...,k are the canonical angles and

(b) Puj,Quj,j=1,...,k are the canonical vectors.

1.3.2 Distance between subspaces

Definition 22 Let U,V € C" be subspaces of dimension k.

(a) For x € U we call
d(z,V) := min ||z —
(z,V) yGIV |z =yl

the distance from z to V and

(b)
aUu,V) = max d(z,V)
[o]|=1

the distance of & and V.

Theorem 23 LetlU,V C C™ be subspaces of dimension k with canonical angles 91 < ... < Uy,
then

d(U,V) = sin 9y,

12



Proof: See Stewart/Sun. Matriz perturbation theory. Boston, 1990. O

Lemma 24 Let

n([f]) e uen([])

with X e C—m)xm bg m-dimensional subspaces of C" and let 01,...,0, be the canonical
angles between U and U. Then

tanfy,...,tané,
are the singular values of X, in particular then || X|| = tan 0,,.
Proof: See Stewart/Sun. Matriz perturbation theory. Boston, 1990. O

13



Chapter 2

Eigenvalue problems with full
matrices

Situation: A € C™"  where n is small enough so that the matrix A can be fully stored and
that we can manipulate the whole matrix by similarity transformations.
2.1 The power method

Idea: Take an arbitrary ¢ € C™\ {0} and form the sequence q, Aq, A%q, . ... What will happen?

Assumption: A is diagonalizable. Let Aj,..., A\, with [A{| > ... > |\,| be the eigenvalues
of A and let (v1,...,v,) be a basis of eigenvectors. Then there exist ¢y, ..., ¢, with

qg=cCv1+ ...+ cpvy.
Further assumption: ¢; # 0 (this happens with probability 1 if ¢ is random). Then,

Aqg = ciAvrH...F e g,
Akq = cl)\’fvl +...+ anvan.

For [\1| > 1 the powers |\}| will grow, so we scale as

1, Ao\ F An )"
)\—IfA q201’l)1+62<)\1> vg+...+cn(/\1) Up-

Third assumption: |A1| > |[A2] > ... > |A,|. Then,

1, Ay |F k
n
]]AkAq—clvl < leal | 32] Mgl .+ el [32]
1
A2kk—>oo
< (leallloall + -+ leallloall) |52 =50,

and hence limy_, /\ikAkq = c1v1 and the convergence is linear with convergence rate r < ]i—f\
1

14



Definition 25 A sequence (x) converges linearly to x, if there exists r with 0 < r < 1 such
that

I | k|

k—oo ||xp — x|

Then r is called the convergence rate of the sequence.
We say that the convergence (xy) — x is of order m > 2 if

i =2l g
k—oo ||z — z||™

If m = 2 then we speak of quadratic convergence and if m = 3 of cubic convergence.

In practice we do not know 1/ )\]f , thus we normalize differently and divide by the largest (in
modulus) component of Akq.

Algorithm: (Power method)
Computes the dominant eigenvalue \; and the associated eigenvector v.

(a) Choose gy € C™\ {0}

(b) Iterate, for k =1,2,... to convergence

1
Q= —Ag—1,
f
where oy, is the largest (in modulus) component of Agy_1.

The power method can also be used for large scale problem where only matrix vector mul-
tiplication is available. It computes only one eigenvalue and eigenvector and is for example
used in the Google page rank method. By the presented analysis we have proved the following
theorem.

Theorem 26 Suppose that A € C™" has the eigenvalues A1, ..., Ay with [A\1| > |Ae| > ... >
|Anl- If go € C*"\{0} has a component in the invariant subspace associated to \1, (i.e., ¢c1 #0),
then the sequence (qi) defined in the power method converges to an eigenvector associated with
A1. The convergence is linear with rate r < |f\‘—f\ Furthermore, the sequence (ay) converges
to the eigenvalue Ap.

Remark 27 (a) This theorem also holds for non-diagonalizable matrices.

(b) Forming the full products Aqy costs 2n® flops and the scaling O(n) flops. Hence m
iterations will cost 2n*m flops.

(c) If (as is very common) ]ﬁ—f\ ~ 1 then the convergence is very slow.

15



2.2 Shift-and-Invert and Rayleigh-Quotient-Iteration

Observations: Let A € C™™ and (\,v) € C x C" with Av = Av. Then
(a) A~y = A~1v for A invertible, and
(b) (A—ol)v=(\— p)v for all p € C.
If A\1,..., A\, are again the eigenvalues of A with |A\;| > ... > |\,|, then we can perform the

following iterations.

Inverse Iteration This is the power method applied to A=1. If [A\,| < |A\,_1|, then the
inverse iteration converges to an eigenvector to A\, with convergence rate < |)\’\—’_11| (which is

small if |\,| < [Ap—1]).

Shift and Invert Power Method This is the power method applied to (A — of)~!. Let
Aj, A, be the eigenvalues that are closest to o, and suppose that [A; — o] < |[A\y — o|. Then the
power method for (A — oI)~! converges to an eigenvector associated with Aj with rate

e
A — 0
This is small if |A\; — o| < |A\; — ¢| and \j = p would be optimal, but where do we get such

good shifts? To answer this question we need some results on residuals and backward errors.

Definition 28 Let A € C™" and (u,w) € C x C". Then Aw — pw is called the eigenvalue
residual of (u, w) with respect to A.

Theorem 29 Let p € C,e >0, A € C"", and w € C" with ||w|| = 1. If ||[Aw — pwl|| = ¢,
then there exists a matriz (the backward error matrix) E € C™" with ||E|| < & such that

(A+ E)w = pw.
Proof: Let r := Aw — pw and E = —rw?. Then

(A+ E)w = Aw — rww = pw
=1

H H
and  [|E| = [[rw™ || < ||r[[[[w™]| = [[r]| = e.

Small residual implies small backward error in eigenvalue/eigenvector pair.

The idea to determine a good eigenvalue approximation (shift) from a given eigenvector
approximation is to minimize the residual ||[Aw — pw||. Consider the over-determined linear
system

wp = Aw
with the n x 1-Matrix w, the unknown vector ;1 and the right hand side Aw. We can use the
normal equations to solve ||Aw — pw|| = min!, i.e., we use
H
w™ Aw
whwp = wf Aw respect. p=
whw

16



Definition 30 Let A € C"" and w € C"\ {0}. Then

w Aw

wHw

r(w) =

is called the Rayleigh-quotient of w with respect to A.

The following theorem gives an estimate for the distance of the Rayleigh-quotient from an
eigenvalue.

Theorem 31 Let A € C™" and (\,v) € C x C" be an eigenvalue/eigenvector pair of A with
|lv]| = 1. Then for w € C™ with ||w|| = 1 the following estimate holds

A = r(w)] <2[A[| - v — wl].

This gives an the idea for an iteration to iterate computing an approximate eigenvector and
from this a Rayleigh-quotient, i.e., the following algorithm:

Algorithm: Rayleigh-Quotient-Iteration (RQI)
This algorithm computes an eigenvalue/eigenvector pair (A,v) € C x C" of the matrix A €

cmn

(a)
(b)

Start: Choose go € C" with ||go|| = 1 and set Ao := ¢} Aqo.
Iterate for £ = 1,2, ... to convergence

(a) Solve the linear system (A — A\g_11)x = g1 for .
x
(b) -

Il

(c) A =gl Agy

Remark 32 (a) It is difficult to analyze the convergence of this algorithm but one observes

(b)

(c)

(d)

practically that it almost always converges. The convergence rate is typically quadratic.
For Hermitian matrices A = A" there is more analysis and one can even show cubic
convergence.

The Rayleigh-quotient iteration can also be applied to very large matrices provided that
a linear system solver is available (we get back to this later).

Costs: O(n3) flops per step if the linear system is solved with full Gaussian elimination.
The costs are O(n?) for Hessenberg matrices (see Chapter 2.4.2) and they can be even
smaller for banded or other sparse matrices.

A—Xg_11 is ’almost singular’, i.e., if \p_1 is close to an eigenvalue, then linear systems
with A — A\g_11 are generally ill-conditioned. But if we use a backward stable method
then we get a small backward error, i.e.,

(A + AA— )\kflf)i' = Qk—1

with ||AA|| small. Thus we can expect good results only if the eigenvalue/eigenvector
computation is well conditioned.

17



Conditioning of eigenvalues: if )\ is a simple eigenvalue of A, i.e., the algebraic multiplicity
is 1 and if v, w are normalized right and left eigenvectors, i.e.,

Av = v, w?A=x ", |v|=1=]w|,

then for small perturbations A A we have in first approximation that A+AA has an eigenvalue

A+ AN with .

AN < ——
[AAl = lwH v

[AA].

We then have that 1/|wf v| is a condition number for simple eigenvalues. For normal matrices
we have v = w and thus |wv| = 1. Normal matrices thus have well-conditioned eigenvalues.

2.3 Subspace iteration

To compute several eigenvalues and the associated invariant subspace, we can generalize the
power method to the subspace iteration. Consider A € C™" with eigenvalues A1, ..., Ap,
where [\1| > ... > |\,

Idea: Instead of gy € C", consider a set of linearly independent vectors {wi, ..., w,} C C".
Set
Wo = [wy, ..., wy,] € CP™,

and form the sequence Wy, AWy, AW, ... via
Wy, = A"Wy = |AFwe, ..., AP |, k> 1.

In general, we expect R(W}) to converge to the invariant subspace U associated with the m
eigenvalues A1, ..., Ap,. This iteration is called subspace iteration.

Theorem 33 Let A € C™" with eigenvalues Ay, ..., A, satisfy

Let U,V be the invariant subspaces associated with A1, ..., Ay, and Ap41, .. ., An TESPEctively.
Furthermore, let W € C"™ with Rank (W) = m and R(W) NV = {0}. Then for the

iteration Wy := W, Wi = AWy, for k > 0 and for every o with "\;\”—;1 < o < 1, there exists
a constant ¢ such that

AdRW),U) <c-o%, k>1.

Proof: We prove the theorem for the case that A is diagonalizable. We perform a similarity
transformation

_ A O
Anew — S leldS - |: ! :| 5

0 A

with Ay = diag (A1,...,\p) and As = diag (Apy41, .., An). Then Ay is nonsingular, since
A1 > ... > |Am| > 0. Set

_ I
()

18



and

_ 0
VneW:S IVOIdZR([ :|>

In—m
Furthermore, let
_ Z
Wnew = 8™ Woq = [ Z ]
for some Z; € C"™™ and Zy € C*~ ™", Then

(a) d(R(Wnew),Unew) < Kk(S)d(R(Wy1q),Ugq)  (Exercise)

(Here x(S) = [|S]|||S~!| is the condition number of S with respect to inversion.)
(b) R(Wnew) N Vnew = {0} < Z; is nonsingular  (Exercise)

In the following we drop the index 'new’. Then
| 24| I, | T
AR P P

with Xy = Zngl, and hence

as well as

and thus,

It remains to show that
d(R(Wy),U) — 0.

Let @ﬁ,’f) be the largest canonical angle between R(W},) and U. Then

dR(Wi),U) = sin®f) < tan©F) = ||| < [|A5][]|Xollll A"
= Pl XollIAG,

which implies that
d(R(Wy),U) < ¢

Undoing the similarity transformation we obtain the desired result. For the diagonalizable
case we do not need the bound p. This will be only needed in the non-diagonalizable case. O

19



Remark 34 For Wy = [wy, ..., wy,] we have
AW,y = [Akwl, N .,Akwm] :

i.e., we perform the iteration not only for Wy but simultaneously also for all Wo(j) = [w,...,wj],
since

AW = [Arwy, . APy
Under appropriate assumptions, we then have convergence of
Span {Akwl, e ,Akwj}

to the invariant subspace associated with A1,...,\; for all j =1,...,m. For this reason one
often speaks of ‘simultaneous subspace iteration’.

Problems with subspace iteration in finite precision arithmetic:
Theory: A*W, = [A*wy, ..., AFw,,] in general has Rank m (for generic starting values).

Practice: Unfortunately, in finite precision arithmetic rounding errors lead to linear depen-
dence in R(W}) already after few iterations.

The basic idea to cope with this problem is to orthonormalize the columns in every step.

Step 1: Factor Wy = [wy, ..., wy] = QoRo with Qp € C™™ isometric and Ry € C™™ upper
triangular. Then R(Wy) = R(Qo) and furthermore,

Span {w1, ..., w;} :Span{qgo),...,qj(-o)},j: 1,...,m,

where Qo = {qgo) el q,(,g)]. (This follows form the triangular form of Ry.)

Situation after step k — 1: R(Wy_1) = R(Qk—_1) with
Qk:—l = |:Q§k_1)> cee 7Q7(7]z€_1):| eCcH™
isometric and

Span {Akilwl, e ,Akile} = Span {qgk_l), e ,q](-k_l)} , j=1,...,m.

Step k: Let AQi_1 = QrRr be a QR decomposition with @ € C™™ isometric and Ry €
C™™ upper triangular. Then

R(Wi) = R(AWk_1) = R(AQk-1) = R(Qx),
and moreover
Span {Akwl, .. .,Akwj} = Span {qgk), e ,q§k)}, j=1,...,m.

Algorithm: Unitary Subspace Iteration
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(a) Start: Choose Qo € C™™ isometric.
(b) Iterate. For k =1,2,... to convergence:
(a) Compute Z = AQx—1
(b) Compute QR-decomposition Zy = QyRy.

Remark 35 Theoretically the convergence behavior of the unitary subspace iteration is as for
the subspace iteration but the described problems in finite precision arithmetic do not arise.

2.4 The Francis QR Algorithm

2.4.1 Simple QR Algorithm Without Shifts
Let A € C™"™ have the eigenvalues Aj, ..., A\, where [A1| > ... > |A\,].

Idea: Use the n-dimensional unitary subspace iteration, i.e., choose m = n and Q¢ = I,. If
Qr = [q%k), - ,q&k)}, then for every 1 <m <n

Span {qik), . ,qgf)}

. . . . . A
converges to the invariant subspace associated with Aqi,...,\,, with a rate ’ -
m

provided

that |Am+1| < [Am| and one does not run into an exceptional situation.

To observe the convergence, we form Ay = Q,;lAQk. If Spaurl{qgk)7 e ,qgf)} converges to an
invariant subspace, then we expect that in the matrix

_m All A12
Ak_n—m |:A21 A22

the block As; converges to 0 for k — oco. Since this happens for all m simultaneously, it
follows that Ay converges to block-upper triangular matrix.
Another question is whether we can directly move from Aj_; to A7 To see this, observe that

A = Qi1 AQk
Ay = QptAQy

and hence
Ap = Q' Qr14k-1 Q.1 Q1 = Uy P Ay U
U,
—U,

Thus we can reformulate the k-th step of the unitary subspace iteration

AQp—1 = Qi Ry,

as
Ay = Q1 AQk—1 = Q. Q Ry, = Ui Ry,
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This is a QR decomposition of Ax_1 and we have

Ap = U A1 Uy, = U UL R Uy = Ry U

Algorithm: (QR Algorithm)(Francis and Kublanovskaya 1961)
For a given matrix A € C™" this algorithm constructs a sequence (Ay) of similar matrices
that converges to block upper-triangular form.

(a) Start with Ag = A
(b) Tterate for k =1,2,... to convergence.

(a) Compute a QR-decomposition of Ax_1: Ag_1 = UpRk
(b) Compute Ay via Ay = RiUy.
Theorem 36 (Convergence of the QR algorithm)
Let A € C™" have eigenvalues A1, ..., \p, where |A1| > ... > [Ap| > |[Ama1]| > ... > |\, Let

YV C C" be the invariant subspace associated with A1, ..., An, and let (Ay) be the sequence
generated by the QR Algorithm. If

Span{e1,...,em} NV = {0}

and
k k
= |
n-m | Ay Ayy

then for every o with ))‘;’\177:1 < o < 1 there exists a constant ¢ such that

k -
145]] < ao".
Proof: (Sketch) Let U be the invariant subspace associated with Ay, ..., A, and

U, = Span {qgk),...,qqgf)},

where

Qi = [CJW - ,qff“)]

is the unitary matrix with Q,;lAQk = A}, from the unitary subspace iteration. One first
shows that "
145711 < 22| AlldU, Uy,)

Then using the convergence results for the subspace iteration there exists a constant ¢ > 0
with
AU, Uy) < co”.

Then choose ¢ := 2v/2||A|c. O

In the special case that A is Hermitian, the sequence Ay converges to a diagonal matrix.
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Remark 37 In the presented form the algorithm has two major disadvantages:

(a) It is expensive, since it costs O(n3) flops per iteration step.

(b) The convergence is slow (only linear).

A way to address the two problems is the Hessenberg reduction and the use of shifts.

2.4.2 Hessenberg reduction

Definition 38 A matrizx A = [ai;] is called Hessenberg matrix or in Hessenberg form, if
a;j = 0 fori > j+ 1. A Hessenberg matriz A is called unreduced if a;y1; # 0 for all
i=1,...,n—1.

Householder transformations

The QR decomposition and other unitary transformations can be realized via Householder
transformations

2 H
P:I_E’UU

for v € C™ \ {0}. Householder Transformations are Hermitian and unitary. (Exercise) Mul-

tiplication with Householder transformations is geometrically a reflection of a vector x € C”
at the hyperplane Span {’U}J'. (Exercise.)

A typical task: Reflect x € C" \ {0} to a multiple of the first unit vector, i.e., determine v
and from this P such that

Pz = +||z||e;.
To determine such a v we make an ansatz v = = + ae; and obtain
v=ux=||z|ler and Pz = F||z||e1. (Exercise)

For numerical reasons we take

_ l‘+‘|l‘||€1, 1‘120,
x —|lz|ler, x1 <O.

Advantage: The multiplication with Householder transformations is cheap. For B € C™™
the computation of PB only needs ~ 4mn flops (instead of ~ 2n?m flops for classical ma-
trix/matrix multiplication).

Givens rotations
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Another tool for unitary operations are Givens rotations

1

Gi’j (C, 8) =

1

where |c|?+4|s|? = 1 and where the matrix differs from an identity only in positions (4,1), (4, §), (4, 1), (4, 7).
Multiplication of a matrix with a Givens rotation allows to zero an element in any position.
E.g. choose

A c s

Grales) = | 5, 7]

-5

with |c|? + |s|? = 1 such —3aq; + cag; = 0, then we have

ool 22]-[; 2]

a21 Qa2 *

(a) For a Hessenberg matrix H € C™" the QR decomposition can be performed in O(n?)
flops using Givens rotations.

(b) Hessenberg matrices are invariant under QR iterations.

Theorem 39 (Implicit Q Theorem) Let A € C"" andletQ = [q1,.-.,qn|, U = [u1, ..., up]
be unitary matrices such that

H=Q 'AQ = (hij) and G =UTAU = [g;;]
are Hessenberg matrices. If g1 = w1 and H is unreduced, then
qi = CiU;

for ¢; € C with |¢;| =1 and |hii—1| = |gii—1| for i =2,...,n, i.e., Q is determined already
essentially uniquely by q:.

Proof: Exercise. O
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2.4.3 The Francis QR Algorithm with Shifts

Deflation: Let H € C™" be in Hessenberg form. If H is not unreduced, i.e., if Ay, q1m =0
for some m, then

m n—m
_m Hy1i Hypo
H_n—m |: 0 H22:|

i.e., we can split our problem into two subproblems Hi{, Hao.
Algorithm (QR Algorithm with Hessenberg reduction and shifts)
Given: A € C™™:

(a) Compute Up unitary such that
Hy := U AU,

is in Hessenberg form. We may assume that Hy is unreduced, otherwise we can deflate
right away.
(b) Iterate for kK =1,2,... until deflation happens, i.e.,

k
| 0 = O(eps)(|Bag| + [Batiar1])

for some m and the machine precision eps.
(i) Choose shift u € C.
(ii) Compute a QR decomposition Hy_1 — uxl = QxRy of Hy—1 — pgl.
(iii) Form Hy = RpQy + pxl.
Remark 40 (a) Steps (ii) and (iii) of this algorithm correspond to a QR iteration step for
Hy — pgl.

)\m+1 — Mk

p—n to 0.

(b) The sub-diagonal entry hgjll,m i Hj, converges with rate
(c) If hfﬁllm =0 or h®

ma1m = O(eps), then we have deflation and we can continue with
smaller problems.

(d) If py is an eigenvalue then deflation happens immediately after one step.

Shift strategies:

(a) Rayleigh-quotient shift: For the special case that A is Hermitian, the sequence Ay
(k)

converges to a diagonal matrix. Then ¢, is a good approximation to an eigenvector
and a good approximation to the eigenvalue is the Rayleigh-quotient

r(g) = ()" AgP

which is just the n-th diagonal entry agf,)l of Q,Ij AQy.

Heuristic: We expect in general agf,)l to be a good approximation to an eigenvalue and
therefore may choose

_ (K
HEk = an,zz

With this choice h(k)

n,n—1

typically converges quadratically to 0.
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(b) Wilkinson-shift: Problems with the Rayleigh-quotient shift arise when the matrix is
real and has nonreal eigenvalues, e.g., for

0 1
=[]
A QR iteration for Ag = A yields Qg = Ag, Ro = I and hence,

RyQo = I Ay = Ao,

i.e., the algorithm stagnates. To avoid such situations, for A € C™" in the k-th step,
one considers the submatrix B in

(k)

and chooses the ;. as shift that is nearest to any.
(¢) Another strategy, the double-shift will be discussed below.

(d) On the average 2-3 iterations are needed until a 1 x 1 or 2 x 2 block deflates.

2.4.4 Implicit Shifts and ’Bulge-Chasing’

Let H € C™™ be a Hessenberg matrix and pi,...,u; € C. Carry out [ steps of the QR
Algorithm with shifts w1, ..., y.

H—wl = Q1R
Hy = RiQ1+ml

H_1—wl = QR
H = RQ;+ml.

Then
H = Q"QuRiQu + mQ' Q1 = QI (QuR + I)Qr = Q' Hi_1Q,

and thus per induction
H =0 . Q'HQ...Q =Q"HQ.
=Q

This opens the question whether we can compute @ directly without carrying out | QR-
iterations.

Lemma 41 M := (H_,UZI)(H_HII):QIQZRZRIZQR

Proof: By induction we show that

(H—,ujf)...(H—/Lll):Ql...QjRj...Rl, ]:1,,l

26



j = 1: This is just the first step of the QR algorithm.

j—1- g

Qi...Q;R;... Ry

Q1...Qj_1(Hj_1 — ;D)R;_1 ... Ry
Q1...Qj_1<Q§{1...QfIHQl...Qj_l —ujI)Rj_l...Rl
(H—1;D)Q1...Qj1Rj_1... Ry

(H = uyI)(H = 1) .. (H — D).

~
I

This leads to the idea to compute M and then the Householder QR decomposition of M, i.e.,

M =

QR, and to set 3
H=Q"RQ = H,.

This means that one just needs one QR decomposition instead of I QR decompositions in
each QR step. On the other hand we would have to compute M, i.e., [ — 1 matrix-matrix
multiplications. But this can be avoided by computing H directly from H using the implicit
Q@ Theorem.

Implicit shift-strategy:

(a)

Compute
Mey = (H —wl)...(H—pil)ey,

the first column of M. Then the first [ 4+ 1 entries are in general nonzero. If [ is not too
large, then this costs only O(1) flops.

Determine a Householder matrix Py such that Py(Me;) is a multiple of e;. Transform
H with B, as

[+1 n—I01-1
[+1 [ 0 |
Bo= 0 0 I |
[+2 n—1-2
I+2 [« x|
hER = n—1-21 0 H
Py changes only rows and columns 1,...,l + 1 of H. This gives a Hessenberg matrix
with a bulge.
Determine Householder matrices P, ..., P,_o to restore the Hessenberg form. This is

called bulge chasing, since we chase the bulge the down the diagonal. This yields
H:=P, 5...PPyHP,...P,_»

that is again in Hessenberg form and Pye; = e for k=1,...,n— 2.
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(d) Py has the same first column as Q). As in the first step for Py we have Pye; = ey, then
also
PPy ... P, 5

has the same first column as Fy and @, respectively. With the implicit Q Theorem then
also Q and Fy ..., P, and therefore also H and QY HQ are essentially equal, thus we
have computed H and H; directly from H.

Algorithm (Francis QR algorithm with implicit double-shift strategy): (Francis
1961)
Given A € C™™:

(a) Determine Uy unitary so that Hy := UdT AU is in Hessenberg form.

(b) Iterate for k =1,2,... to convergence (deflation):

(a) Compute the eigenvalues pu1, po of the lower right 2 x 2 submatrix of Hy_;.
(b) Compute (with the implicit shift strategy) for [ = 2 the matrix Q, that one obtains
with 2 steps of the QR Algorithm with shifts 1, uo.

(c) ) N
Hy, = Qf Hy_1Qy

Remark 42 (a) The empirical costs for the computation of all eigenvalues of A are approzx.
10n3 flops, If also the transformation matriz Q is needed then this leads to approzimately
25n3 flops.

(b) The convergence analysis is difficult, no global convergence proof is known.

(¢) The method works also for real problems in real arithmetic, since the double shift can
be chosen as complex conjugate pairs.

2.5 The QZ algorithm

For the solution of the generalized eigenvalue problem AEx = Ax with regular (F, A), E, A €
C™™ we can extend the ideas of the QR algorithm. The basic idea is to apply the QR algorithm
implicitly to E~1 A, without really computing the inverse and the product.
The first step is a transformation to Hessenberg-triangular form, i.e., one computes unitary
matrices Uy, Vp such that

Uy EV = So, Ut AVp = T,

with Sp upper triangular and T upper Hessenberg. If So was invertible, then S 17y would
be of upper Hessenberg form.

Algorithm. Hessenberg-triangular reduction

For a given regular pair (E, A) with £, A € C™" the algorithm computes unitary matrices
Uy, Vi such that
Ul EVy = Sy, UL AV, =Ty,

with Sy upper triangular and Ty upper Hessenberg.
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Use the QR dqcomposition to compute U such that UHE is upper triangular and set A=
UHA = [aij]’ E = UHE = [eij].

Forj=1,...,n—2

fori=n,n—1,...,7+2

Determine a 2 x 2 Householder or Givens matrix P such that

~ ai_Lj - *
Pl =16

and set A := PA = [a;], E = PE = [e;;], where P = diag (I;_a, P, I,_;).
Determine a 2 x 2 Householder or Givens matrix Q such that

[ eii1 au |Q=1[0]

and set A := AQ, F = EQ, where Q = diag (I;_2, Q,In_i).

end
end

This algorithm costs about 5n> flops plus extra 23/6n3 if U , V are desired.
If A is not unreduced then we can again deflate the problem into subproblems, i.e., as

B En Epp A A
AE—A—A[O Em]_[o An]

and continue with the subproblems.

Every 0 element in the diagonal of E corresponds to an infinite eigenvalue, i.e. a zero eigen-
value of AA — E. If an element on the diagonal of F is zero then we can introduce a 0 in the
position (n,n — 1) of A and move the 0 to the bottom of the diagonal of E (Exercise). This
can be repeated until all zero elements are in the bottom part of the diagonal of F and the
corresponding part of A is triangular. Then we have deflated all the infinite eigenvalues and
have obtained

E11 Ero

[ R

0 A22

with FEos strictly upper triangular and Ass is nonsingular upper triangular by the regularity
of (E,A).

In the top pair (F11, A11) then Ej; is invertible and in principle we can imply the implicit
QR algorithm to El_llAH. This leads to the QZ algorithm of Moler and Stewart from 1973
(Exercise).
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Chapter 3

Eigenvalue problems with large
sparse matrices

Situation: Given a matrix A € C*" with n very large (e.g., n =~ 10%,107,...) and A sparse,
i.e., A has only very few nonzero elements. A sparse matrix A € C"™" is described by 6
parameters.

(a) m: no. of rows;
(b) n: no. of columns;
(c) nnz: no. of nonzero elements;
(d) a: list of nonzero elements;
(e) irow: list of row indices;
(f) jeol: list of column indices.
The programming environment MATLAB for example has the data structure sparse.

(a) For z € C™ we can compute the product Az, this often works with O(n) flops instead
of O(n?).

e cannot apply standard similarity transformations, since the transformed matrix in
b) W t apply standard similarity transf ti ince the transf d matrix i
general is not sparse any more.

Often even A is not given but just a subroutine, that computes the product Az for a given

xeC” ie.,
xz — | black box | — Ax.

This is then the only possibility to obtain information about the matrix A.

Example 43 (a) Discretized Laplace operator on a uniform grid.

30



For a given function u(x,y), we get on a two-dimensional grid in each grid point (i,7)
approximations wi; = u(x;,y;) fori=1,...,m and j =1,...,n. Here the approzima-
tion to v = Au in the grid point (i,j) obtained via the 5-point difference star satisfies

|
— — Vij = AUij — Wi 41 — Wij—1 = Uitl,j — Ui—1,j,
|

together with further boundary conditions. This we can write as matriz equation.

v o= [UH,...,vln,vgl,...,vgn,...,vml,...,vmn]:Au
u = [Ull,--->U1n,U21,--->U2n,---,um1>---7umn]

Instead of explicitly storing A we can write a subroutine that computes v = Au from u
Via

for i=1,...,m
for j=1,...,n
v[i,jl=4*uli,jl-uli,j+1]-uli,j-11-uli+1,jl-uli-1,j]
end
end

(b) Toeplitz matrices:

apyg a-1 ... QA_p
a

A=| ™
Qp, aj a

A is uniquely determined by the row vector

[CLn, <05 01,00,0-1, - .- 7a*n]
and 1is suffices to store this vector and to write a subroutine to compute the product Ax.

Then the question arises, how to compute some eigenvalues and eigenvectors of A? In general
we are only interested in a few eigenvalues, e.g., the ones that are largest or smallest in
modulus. (We would certainly not be able to store all eigenvectors because that would need
O(n3) storage.)

1. Idea: Unitary subspace iteration

(a) Start with m < n orthonormal vectors q%o), - ,qﬁg) and set Qg = [q§0)7 el qﬁg)].

(b) Compute AQy_1 = Qp, hence m-matrix vector products. For sparse matrices this costs
O(mn) flops instead of O(mn?) for general matrices.
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(c) Compute a QR decomposition:
Qr = Qr Rk,

where @ € C™™ is isometric and R € C™™ is upper triangular.

In general this method does not work very well.

2. Idea: Petrov-Galerkin projection methods: Make use of the fact that for (A, v) € Cx C™\
{0} we have

(A\,v) is an eigenvalue/eigenvector pair < Av—X =0, & Av—Av L C"
(a) Thus we may construct K C C", the search space.
(b) Choose a second subspace £ C C", the test space. Then determine (A7) € C x K with
Ab— Mo L L.
Often one uses £ = IC, this is called Galerkin projection. Hope: Some of the (5\, 0) are
good approximations to eigenvalue/eigenvectors pairs of A.
3.1 Krylov Spaces

Question: How do we find a subspace K that contains good approximation to eigenvectors
of A?

As motivation we consider the special case that A € R™" is symmetric with eigenvalues
A1 > ... > A Then

Al =m () and A, =min r(x) her ()—xTﬁ (Exercise)
1—m£(>)<ra: a n—x;éorx, where r(x) = —7— xercise
Let R(Qg) be given via Qi = [q1,. .., qx] € R™ and let
y QL AQry

max 7 () =max == ;
2€R(Qk)\{0} v#0 y' Q) Qry

and analogously

my = i ()

min r
T€R(Qr)\{0}

Then clearly \; > My > my > A\, and, in particular, M is an approximation to A\; and my
to A,. It is then our goal to construct the vectors gi,¢qo,...,qk,... such that My and my
quickly approximate A; and \,, i.e., we want

Mp~X and mg~N\, forsmall k.
Let qi,...,q; be already constructed and choose uy, wy € Span {qi,...,qr} such that

My =r(ug) and my=r(wg).
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It is clear that r (z) grows fastest in the direction of the gradient

2
T

Vr(x) (Ax - r(x)x) (Exercise).
Then My > My if Vr (ug) # 0 and

Vr (ug) € Span{qi, ..., qk, Gr+1} -
Analogously my1 < my if Vr (wg) # 0 and

Vr (wg) € Span{qi, ..., qk, qx+1} -

Since Vr (x) € Span {z, Az}, the conditions 3.1 and 3.2 are satisfied if

Span {q1,q2} = Span{q,Aq},
Span{qi,q2,q3} = Span{q,Aq,A%q},

Spa'n {Q17 cee 7Qk+1} Span {Qh AQ17 A2q17 o 7AkQ1} .

Definition 44 Let A € C™"™, x € C" and [ € N.

(a) K (A, x) = [x,Ax,AQx, . .,Alilx] is called Krylov matrix for A and x.

(b)
Ki (A x) :=R(K; (A, z)) = Span {:1:, Az, A%z, ... ,Al_laj}

1s called Krylov space for A and x.

(3.2)

We have just observed that for symmetric matrices A € R™" already after few matrix vector
multiplications, Krylov spaces yield good approximations to eigenvalues A\; and A, i.e., eigen-
values at the exterior of the spectrum. We expect that a similar property holds for general

matrices A € C™". Heuristic: Krylov spaces are ’good’ search spaces!

In the following we present a few properties of Krylov spaces. In particular, we construct the

relationship to minimal polynomials and Hessenberg matrices.

Reminder: Let A € C™", x € C", then there exists a unique normalized polynomial p of

smallest degree such that
0=p(A)x=ATz+ A1 A" e+ .+ g Az + ap.
Then p is called minimal polynomial of x with respect to A.
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Lemma 45 Let A € C™", x € C" and let v be the degree of the minimal polynomial of x
with respect to A. Then

(a) dim Ky, (A, 2) =m <= m <.
(b) K, (A, x) ist A-invariant.

(c) K (A,2) =K, (A, z) fiirm>v

Proof: Exercise.

LA™ g, are linearly inde-
, gn) is nonsingular and let

Lemma 46 Let A € C*" and g1 € C" be such that g1, Ag1,. ..
pendent. Suppose that ga,...,gn are such that G = [g1,92,. ..
B = G YAG = [b;j]. Then the following are equivalent

(a) bjp =0 fork=1,....m—1and j=k+2,...,n, ie.,

bii .. e aee . bin
ba1 :
0
B = brnm—1  bmm bynn
0
0 ... 0 bn}n - |

(b) Span{g,....,qt =Ki(A,q1) forl=1,....m

If one of the conditions is satisfied and if m = n, then B is an unreduced Hessenberg matriz.

Proof: Exercise. d

3.2 The Arnoldi algorithm

Let A € C™™ be given. We already know the decompositions

QR decomposition | Hessenberg reduction

A=QR

A=QHQT

Householder

Householder

Gram-Schmidt

new: Arnoldi
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In the transformation with Householder matrices we construct the structure (triangular /Hessenberg)
by applying orthogonal transformations to the whole matrix, in the Gram-Schmidt/Arnoldi
method we construct the structure (triangular/Hessenberg) column by column without ever
transforming the matrix itself.

Ansatz: Let Q = [q1,..., ¢, be unitary and H a Hessenberg matrix. We want Q7 AQ = H
or

h11 - - hln
h :
A[QI,---,Qn]:[q17---aQH] 2 . . ’
0 hn,nfl hnn

respectively. Comparing the k-th columns we obtain

Aqr = hipqr + ...+ hgrqr + hk—i-l,kCIk-&-l'

Thus,

K
(A% -3 hik‘]i) :

=1

dk+1 =
Pky1 k

Due to the orthonormality of the g; we get
Thus we can determine g1 from q1,..., g if hpq1x 7# 0, which holds if H is unreduced.

Algorithm (Arnoldi, 1951):
Determines for x € C" \ {0} and A € C™" a unitary matrix Q = [q1,...,¢n], such that
Q 'AQ = H is in Hessenberg form.

1) Start: q1 = 15y

(Il

2) Fork=1,2....,.n—1

k

() Grsr = Age — Y hingi, hir, = ¢f Agy..
i=1

(b) Prg1k = |lGrs1l-

1
(€) Qry1 = h Qk+1-
k+1,k

Remark 47 (a) The algorithm stops if hypi1,m = 0 for some m (good breakdown). Then

k+1
Agy, = Z hjkg;

j=1
fork=1,... . m—1 and
m
Agm =Y hjma;.

j=1
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Thus,

hi1 Pim-1  him |
hai :
A[Qla-'WQm}:[QIM'WQm] 0 5
L 0 hm,m—l hmm |
i.e., the subspace Span{qi,...,qm} is A-invariant.
(b) If hyns1,m # O then
h1 him
4 )
A[QL--'an]:[QL'-me-H] 21
0
0 hm+1,m

In other words we have

AQm = QmHm + gma1 [07 cee 70’ hm—i—l,m}
= QmHm + hm-i—l,QO—i-leTTn .

This is called the Arnoldi relation. Due to the orthonormality of the ¢; we also have Q2 AQ,,, =

H,,.

Consequence: Due to the relation between Hessenberg matrices and Krylov spaces it follows

that

Span{qi,...,q} =K; (A, x)
for I = 1,...,m + 1. Thus the Arnoldi algorithm computes orthonormal bases of Krylov
spaces.

Application: The Arnoldi algorithm as projection method for A € C™", n large.

1) For a given start vector x # 0 compute the vectors g1, g, . .

2) Stop after m < n steps

(a) either due a good breakdown in step m;

. with the Arnoldi method.

(b) or because we cannot store more vectors or because we have convergence. Note

that the computation of

k
Qi1 = Age — Y hjrg;

=1

is more and more expensive in each further step (concerning flops and storage).
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This yields an orthonormal basis of the Krylov spaces:
Ki(A,z) =Span{qi,...,q} =R (Q;), l=1,...,m
3) If hppg1,m = 0, then R (Qr,) = K1 (A, z) is invariant.

4) If hypy1,m # 0, then choose ICp, (A, ) = R (@) as search and test space for a projection
method, i.e., determine p € C and v € R (Qy,) \ {0} with

Av —pv L R (Qm) -

Hope: Since R(Q.,) is a Krylov space, some of the (u,v) are good approximations to eigen-
value/eigenvector pairs of A.

Definition 48 Let A € C™"™ and C" D K # {0} be a subspace. Then (u,v) € C,C" is called
a Ritz pair of A with respect to IC, i is called Ritz value and v Ritz vector if

ve K\{0} wund Av—pv LK.

The Ritz pairs are obtained from the eigenvalues of H,, = QX AQ,, € C™™. This follows
form the following lemma.

Lemma 49 Let A € C™", let Q. € C™™ be isometric, u € C, z € C™ and v = Qmz. Then
QEAQuz=pz <<= Av—pw LR(Qn).
Proof:

QmAQmz = pz = pQpQmz <= Qn(Av—pw) =0 <=  Av—pv L R(Qm).

Remark 50 We can compute the eigenvalues of Hy, by the Francis QR algorithm and here
we can exploit that H,, is already in Hessenberg form. To compute the eigenvectors, we carry
out one step of inverse iteration with a computed eigenvalue i of H,, as shift, i.e., we choose
a start vector wg € C™, ||lwo|| =1, solve

(Hm - /jLIm) w1 = Wy

for w1 and set wy = %II Since [i is already a good eigenvalue approximation, i.e., a good
shift, one step is usuagly enough.

To check whether a Ritz pair is a good approximation, we can compute the residual. A
small residual means a small backward error, i.e., if Av — pv is small and the eigenvalue is
well-conditioned, then (u,v) is a good approximation to an eigenvalue/eigenvector pair of A.

Theorem 51 Let A,Qum, Hp, hint1,m be the results of m steps of the Arnoldi algorithm.
Furthermore, let z = [z1,.. .,zm]T € C™ be an eigenvector of H,, associated with p € C.
Then (p,v), with v = Qmz, is a Ritz pair of A with respect to R (Q.,) and

|Av = pol| = [P 1,m [ 2m]
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Proof: Using the Arnoldi relation, it follows that

Av—pv = AQmz — pQmz
= (QmHm + hmi1mms160) 2 — 1Qmz
= Qm(Hnz— MZ) +hm+1,mZmdm+1
=0
= |[Av = pol| = [hmi1,ml|zm].

Remark 52 (a) For the computation of the residual Av — pv we do not need to determine
the Ritz vector v explicitly.

(b) After some iterations in finite precision arithmetic the orthonormality of the q; dete-
riorates. This happens in particular when |hpmi1m| is small. Then the Ritz values
deteriorate as well. This can be fized by re-orthonormalization using the modified Gram-
Schmidt method for qi,...,qm-

(¢) We know how to detect good approximations but we are not sure that they occur.

3.3 The Symmetric Lanczos Algorithm

Special case: A = A € C™" is Hermitian.
Let H = QY AQ be in Hessenberg form, then T' := H is tridiagonal. Suppose we have
computed T with the Arnoldi algorithm. Then

[0y B O e 0
B . . :
Lo e
i 0 ... 0 Bp1 ap
is even real, since the diagonal of an Hermitian matrix is real and, furthermore ,we have
Bm = hmt1,m = ||Gm41]|| for m=1,...,n—1. With Q = [¢1, ..., ¢n], comparing the columns
in AQ = QT, we obtain that
A = aiq + Bige
Age = Br—1ak—1 + ok + BeQr+1, k=2,...,n—1
Agn = Bno1Gn-1+ angy
This is called a 3-term recursion. Since q1, ..., ¢, are orthonormal we have, furthermore, that
ay = qi Ag.

Algorithm (Lanczos, 1950)
Given A" = A e C™".
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1) Start: Choose x # 0. Then set gy :=0,q; := ﬁ and [y := 0.
x
2) Fork=1,2,....m

(a) oy == qff Aqy,
(b) rr = Agr — Br—19k—1 — G,

1
(¢) If rp, = 0 STOP. Otherwise set Sy := ||rx|| and ggi1 := B—rk.
k

Remark 53 (a) The Lanczos algorithm is essentially the Arnoldi algorithm for A= AH.
(b) As in the Arnoldi algorithm, after m steps we have (due to Lemma 46) that
Span{qi,...,q} =K (A,z), 1=1,...,m

The eigenvalue/eigenvector pairs of the matriz

ar fr 0
T, — B1 o
Bm—l
0 /Bm—l Qmy

yield Ritz pairs for A with respect to R (Qm)-

(c) Asin the Arnoldi method, in finite precision arithmetic the orthonormality of q1, ..., qm
deteriorates and re-orthonormalization is necessary. Otherwise one obtains spurious
etgenvalues.

(d) Due to the 3-term recursion we do no need to store more than three vectors q;, thus
we can choose m much bigger than in the Arnoldi algorithms. However, if we do not
store the q; then we cannot re-orthonormalize. The it is necessary to detect the spurious
eigenvalues and remove them. (Cullum-Willoughby method 1979.)

3.4 The Nonsymmetric Lanczos Algorithm

A disadvantage of Arnoldi algorithm is that the recursion becomes more and more expensive
the more steps we perform. So we might ask whether there also exists a 3-term recursion for
A# AH?

Idea: Transform A to tridiagonal form and allow the transformation matrix to become non-

unitary, i.e., we want to determine
X 1AX =T

with T tridiagonal, or equivalently
ar m 0

Ax=x | P @
Yn—1
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If we write X as
X =[z1,..., 2],

then we obtain
Azg = Yp—1Tk—1 + Tk + BrTri1
for k=1,...,n—1 and with vy := 0, 2p := 0. Furthermore,
TH = xHAR X =y~ 1AfY
with Y := X, Then clearly Y7 X =1, i.e., yijZ = 0;; with

Y =1[y1,.-.,yn-
Such families of vectors (x1,...,zy) and (y1,...,y,) are called bi-orthogonal. We again com-
pare columns in A#Y = YT, This means that
Ay = Br1ye—1 + Gryr + Telrr
fork=1,...,n—1and By := 0,y := 0. Since YH# X = I, it follows that
o = y,?Axk.

Moreover,

BrTr1 = AT — Yo 1Tp—1 — QgTp =: Tk,
and

Ykt = ATy — Be_1yr—1 — Qryr =: sk

Furthermore, we have
1
H H
L= yp1Trt1 = Sk Tk
Brvk

for all £ > 1. But there is still freedom in the computation of S, vx. We could in principle
use one of the variants

Br = lIrklls v = lIskll, B = ks - - -

Algorithm (Nonsymmetric Lanczos algorithm, with choice 8y = ||7x||)
Given: A € C™", z1,1y1 € C" with yfla; = 1.

1) Start: By := 0,70 := 0,29 :=0,y9 :=0

2) For k=1,2,...
Q= y,?Amk,
rp = ATp — Yp—1Tp—1 — Tk,
sio= Afyp — Br_1yr—1 — aryr,

If SkHrk = 0, then STOP. Otherwise

B = |lrell;
I y
Ye = S5 Sk Tk
Bk
1
Tk+1 = 5Tk,
* B
1
Y+1 = —Sk-
* Vi
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Remark 54 1) After m steps, if we do not have a breakdown (since we cannot divide by

2)

3)

4)

9)
6)

0), we have
o1 ™ 0 |
b1 '
Alxy, ..., zm] = [T1, -+, Ty Tinp1 ]
N—_—— Tm—1
=Am /Bm—l Om
L O B |

If we denote the submatrixz consisting of the first m rows with T,,, then we have
AXm = XTIy + ﬁml'm—i—le?n

and analogously
ARY,, =Y, TH 4 4y, el

Due to the relationship with Krylov spaces and Hessenberg matrices, we have
Span{xi,...,x;} =K (A,z1), 1=1,...,m,

and
Span{yr, ...y} =K (A%, ), 1=1,....m.

For A = A" and 1 = y1, i.e., ||z1|| = 1, the algorithm is identical to the symmetric
Lanczos algorithm.

The nonsymmetric Lanczos algorithm breaks down with a serious breakdown if SkH r, =10
or is very small in modulus.
(a) If ri, = 0, then Span{xi,...,zk} is an A-invariant subspace (good breakdown).
(b) If s, = 0, then Span{yi,...,yx} is an AT -invariant subspace.

(c) If skHrk = 0, but sg,rr # 0, then the algorithm breaks down without delivering
information about invariant subspaces. There are tricks to fix this problem in some
but not all cases (look ahead Lanczos, see below), but in general this algorithm has
to be used with great care.

The nonsymmetric Lanczos algorithm is not numerically stable, whenever s,’?rk ~ 0.

The Lanczos algorithm as projection method. After m < n steps we have
AXy = XD + B (l‘m—l—le%) .

Since YTme = I,,, we have
T = YIAX,,.

Some of the eigenvalues of this matrix are typically good approximations to an eigenvalue
of A. Let p € C and z € C™, v = Xpz. If (u,2) is an eigenvalue/eigenvector pair of
T, then

YTI,L{Asz =Thz=puz = MYTI,L{sz
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and this is equivalent to
Y (AX,2 — pXpmz) =0,

We thus have Y,2 (Av — uv) =0 or
Av—pv LR (V).

Such a pair (p,v) is often called Petrov pair. Here we use R (X,,) = K, (4, 21) as
search space and R (Yi,) =K (AH, yl) as test space.

7) The Lanczos algorithm in practice

(a) In the look-ahead-variant one weakens the bi-orthonormality to avoid the serious

breakdowns (QMR algorithm).

(b) The bi-orthonormality deteriorates due to round-off errors in finite precision arith-
metic.

3.5 Convergence of Krylov Space Methods

For A € C™" and x € C" Krylov space methods construct X,,, = [z1,...,z,] € C™™ such
that
Span{zy,...,x;} =K (A,z1), (=1,...m

We stop the method after m < n steps and choose K = K,,, (A, z1) as search space together
with a test space £ C C" and then we compute pairs

peC, vek\{0},

such that
Av—pv L L.

In the Arnoldi and the symmetric Lanczos algorithm we choose £ = K, in the nonsymmetric
Lanczos method £ = IC,,, (AH, yl).

Then the obvious question is whether in the computed pairs (u,v) there are good approxi-
mations to eigenvalue/eigenvector pairs?

Lemma 55 Denoting by 11,,_1 the set of polynomials of degree less than or equal to m — 1,
then

Km (A, 2) = {p(A)z |p € In1}.
Proof: Let w € K,,, (4, ). Then there exist «ay,...,an—1 € C with
w=o0r + Az + ... +am 1 A" e =p (A) z,
where p (t) = ag + ot + ...+ a1 t™ L O
The convergence is typically very good for eigenvalue in the outer part of the spectrum and
very slow for the eigenvalues in the interior. Quantitative results using Lemma 55 are based

on optimal polynomial approximations, but a complete convergence analysis in all cases is an
open problem.

42



3.6

The Implicitely Restarted Arnoldi algorithm

The Arnoldi algorithm becomes more and more expensive the more iterations one performs,
and the alternative nonsymmetric Lanczos is unstable. Can we resolve the problem with
Arnoldi algorithm?

Ideas:

)

Use restarts: After m steps of the Arnoldi algorithm with startvector x choose p €
Hm,1 with
p ()| = { large for desired);,
¢ small for undesired);.

Then choose p(A)z as new start vector and restart the Arnoldi algorithm. Since the start
vector has been enlarged in the components of the direction of the desired eigenvectors,
we except that the Krylov spaces contain, in particular, good approximations to the
desired eigenvectors.

The disadvantage is that we start with a single new vector, we loose a lot of already
obtained information. It would be ideal if we choose the new start vector p (A) z opti-
mally in the sense that we keep as much information as possible, i.e., maximally many
approximation to desired eigenvalues. This is again an open problem.

To preserve more information, we proceed as follows. If k eigenvalues are desired then
we run the Arnoldi algorithm for m = k + 1 steps. Then keep k vectors and throw away
[ vectors. This leads to the

IRA (implicitly restarted Arnoldi method), Sorensen, 1992.

The strategy of the implicitly restarted Arnoldi algorithm is as follows:

1)

2)
3)

After m steps of the Arnoldi algorithm (without good breakdown) we have the Arnoldi
relation
AQm = QmHm + hm+1,QO+1€£.

Qm = [q1,--.,qm] is isometric and H,,, € C™™ is in Hessenberg form.
Choose [ Shifts vy, ..., € C. (Details will be described later!)
Carry out [ steps of the QR algorithm with shifts v4,...,1;.

HY = H,,

For j=1,...,1,
H(J:) —v;I =U;R; (QR decomposition)
HUT) = R;U; + v;1

end
H,, = HD
U =U;...U

Then FIm = UHH, U and furthermore every U; has the form U; = GgZQ) .. Ggi)_lvm with
Givens rotation matrices ngz) . ngé)—l,m' Every U; is a Hessenberg matrix, thus U is

a product of [ Hessenberg matrices and hence a band matrix with lower bandwidth .
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4) We have AQu = QuHy, + frnrrel, with fyq = hm+1,m@m+1. Hence,

AQumU = QU U H,, U + fri1 el U,
Q Q A fm+1 €,

=:OQm o, =l
where ul is the last column of U. Thus, we have
AQm = Qmﬁm + fm+1uzn

with

for some a € C. We then partition Q,, as

Qm=1[Qr Q ]=I[d,. . dm

and set Qj = [G1,...,¢;] for j =1,...,m. In the same way we partition H,,. Then
A[ }:[ } ; 0,00, 0,0, %, ... %]
Qr Qi Qr Qi Bere? Iy + frt1 [ ok, %]

We then delete the last [ columns and obtain

A~

AQy

QrHi + BQrere} + fms1[0,...,0,q]
= QpHy + (5@161 + afm+1> er

:?fk+1
= QHy + friret.

This is again an Arnoldi relation, since one easily see that QkH fk+1. In particular, this
Arnoldi relation is the same as that after k steps of the restarted Arnoldi algorithm
with the restart vector ¢;. This is the reason for the terminology “implicit restart’.

5) Then we perform [ further Arrnoldi steps and begin again with 1) until sufficiently many
eigenvalues are found.

This concept works very nicely but some questions remain.
1) How to choose the shifts vy, ..., 17
2) What is the relation between ¢; and ¢;7
3) What is the relation between the corresponding Krylov spaces?
Lemma 56 Let p(t) = (t —1v1)...(t —v;). Then, with the notation and assumptions above,
p(A) Qm = QmUR + Fp,

whereFm:[O F‘m ] and R =Ry, ... R;.

44



Proof: We have already shown that
p(Hpy) = (Hpy —vl)...(Hy—w1I)=UR.
Then we show via induction on [ that
p(A) Qm = Qup (Hm) + Fin.
‘Il = 1’: We have the Arnoldi relation AQ,, = QmHm + hmﬂ,mqmﬂefn. Then

(A - VII) Qm = Qm (Hm - ’/1[) + hm—l—l,QO—s—le% .
—_——
=:F

‘I —1=1: We have
p(A4) Qm
(A=) (A—wl)...(A—yl)Qn
(A— ) (Qm (Hy — v21) ... (Hy — 0i]) + Fm_l)
[Qm (Hm - Vll) + hm+1,QO+16£} (Hm - V2I) s (Hm - VZI) + (A - Vll) Fr1

Il<

Qmp(Hm)“‘herl,QOJrle%(Hm_VQI)---(Hm_VlI)‘{ m—1+1 1-1R O(Aiyll)pmfl}a

has band widthl—1

where F,,, = [ 0 Fm ] has the desired form. O

Theorem 57 With the notation and assumptions above
1) ¢t =ap(A)q for aaeC.
2) R(Q;) = p(AR(Q)) =R (p(A)Qy), for j =1,...,m.
Proof:
1) One has
P(A)Qm = @mUR+ Fn=QuR+ Fn
=Qm

11 ... T1m

Comparing the first columns yields

p(A)q1 = qir11-
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Therfore, choose aw = 1/r11. Here r1; # 0, otherwise we would have p (A) ¢ =0, i.e.,
the minimal polynomial of ¢; with respect to A would have degree < [. But then the
Krylov space K; (A, q1) is invariant, i.e., the Arnoldi would have had a good
breakdown after [ steps which is a contradiction to the fact that we have done m > [
steps without breakdown.

2) We could proceed as in 1) but we use the following approach: Since we know already
that

R(Q]):KJ(Aa(h), jzla"'vm
and

it follows that
R(Q;) = Span{p(A)q,Ap(A)q,..., A 'p(A) a1}
= Span{p(4) qi.p(A) Aq1,....p(A) AV q1}
= p(4)Span{q1, Aqi,...,. A q1}
= p(AR(Q;))

a

As a consequence we obtain that R(Q;) = (A—wnl)...(A—=y)R(Q;), j=1,...,m.

This correspond to [ steps of subspace iteration with shifts vq,...,1;. Then we can expect
that KCj (A, ¢1) contains better approximations to eigenvectors than K; (A, ¢1).

Choice of shifts: Suppose that A is diagonalizable and (v1, ..., v,) is a basis of eigenvectors
to eigenvalues A1, ..., A,. Then

q =cv1+...+cpv, with ¢ € C.
Since §1 = ap(A)q it follows that
G1 = acip(A)v1 + ... + acyp (M) vp.

But then [p ();) | is large (small) if A; if far from v; (respectively near to a) v;. The component
to eigenvalues from vy, ..., will be enlarged §;. Choose v1,...,y far away of the desired
eigenvalues.

Example 58 Search k eigenvalues p € C. Compute the m = k + 1 eigenvalues of Hy, and
choose the | eigenvalues of Hy, furthest away from p as shifts.

Remark 59 1) Locking and purging. If (\,v) is a converged Ritz pair, then we would like
to avoid that further Ritz pairs converge to this one. This can be done in different ways.

(a) If X is desired then v is locked by working in the orthogonal complement.

(b) If X is undesired then v is removed (purged).

Details can be found in Lehoucq/Sorensen 1996 ’Deflation techniques for an IRA iter-
ation’.

2) The function eigs in MATLAB is based on the ARPACK package that contains the best
implementation of the implicitly restarted Arnoldi method, see also the ARPACK wuser
guide.
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3.7 The Jacobi-Davidson Algorithm

If only a specific pair (A, u) of a large sparse matrix A € C™" is desired (e.g., the eigenvalue
largest in modulus or the one nearest to i € C, then alternative methods can be considered.

1. Idea. Apply the Arnoldi algorithm with shift-and-invert, i.e., apply the Arnoldi algorithm
to (A—vI )71. This has the disadvantage that per step we have to solve a linear system
with A — vI. In practice, this has to be done very accurately, otherwise the convergence
deteriorates. If a sparse LR decomposition of (A —vI )71 can be determined, then this is
acceptable otherwise this is problematic.

2. Idea. We use again a projection method. We choose an isometric matrix Q,, € C™™
with m < n and use R (@) as search and test space. Then we have again

QEAQuz=pz & Av—pv LR(Qn),

=V

i.e., we obtain Ritz pairs (i, v) from QX AQ,,.
The new idea is that R (@) does not have to be a Krylov space.

This leads to the following task: For ¢; € C", ||¢1|| = 1 construct an isometric matrix

Qm:[q17"‘7QM]7

such that (A, u) is quickly approximated by Ritz pairs of A with respect too R(Qy,). When
q1,-.-,qr are constructed, then we compute Ritz pairs of A with respect to R(Qy). Let
(ux, vi) be the Ritz pair with ||vg|| = 1 that approximates (A, u) best.

Ansatz:

u = v+, with z L vy,
A= et

Here the unknown w is scaled so that (u — vg) L vg. This can be achieved by determining an
approximation to z and computing gi+1 from x by orthonormalizing against q, ..., qx.
Computation of z. Consider

P=1I- vkvf .

This is the orthogonal projection to Span (vk)l. Furthermore, let
T 1= Avg — vk
be the residual of (g, vx) with respect to A. Then
Pv, =0, Pr=x, Pry=rg,

since (g, vi) is a Ritz pair, and hence 7, L R (Qk) D vy, i.e., rr L vg. Moreover,

Au = lu
<= A(’Uk—i-:E) = )\(Uk —i—x)
= (A-X)xz = —(A—=X)v
= —(A—ppd) v +nug = =1 + oy,
< PA-XN)z = —Prp=-—ry
< P(A-X)Pzx = —r; andzx Ll v
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Unfortunately we cannot solve the last equation, since we do not know A. Therefore, we
replace A by the Ritz value uy,

P(A—pil)Px=—rg, x L. (3.3)
This equation is called the Jacobi correction equation.
Remark 60 P (A — uxl) P is the orthogonal projection of A — uil on Span {vk}L.

Algorithm: (Jacobi-Davidson algorithm, Sleijpen/van der Vorst, 1996)
For a given matrix A € C™", this algorithm computes Q,, € C™™ isometric, such that
M, = QH AQ,, contains good approximations to a given pair (\,u).

1) Start: Choose g1 € C", ||q1|| = 1.

2) Iterate for kK =1,2,... to convergence

(a) Qr=la1,- .- ak], wp=Aqe, Wi =[wr,...,wp] = AQy and M, = QI W},
(b) Compute the Ritz pairs (i.e., the eigenvalue/eigenvector pairs of M) and choose
the Ritz pair (ug,vx), that approximates (A, u). Then vy = Qg2 for z € CF.

(¢) Compute ry = Wiz — upQrz. (This is the residual, since rp = Wiz — upQrz =
AQpz — 1k Qrz = Avg — pvy.)

(d) If ||rg|| is sufficiently small, then we stop the iteration since we have a converged
eigenvalue/eigenvector pair. Otherwise solve the Jacobi correction equation (3.3)
for x.

(e) Compute gx4+1 from x by orthonormalization against ¢i, ..., gk.
Interpretation: Since Pz = z it follows from the Jacobi correction equation (3.3) that
(A— )z = —r + aug
with o = v (A — pgl) z. Hence,

= —(A— D) e+ a(A—wd) oy
= —vk—i—a(A—,u,kI)_lvk

Since vy is already in the search space, we have extended R (Qj) by the scaled vector
(A — D)~ . Since
Uf Avg,

U’{:{ (AUk - Mkvk‘) = O’ M = UHUk- )
k

this corresponds to the vector that one obtains by applying one step of the Rayleigh quotient
iteration to vy, which converges cubically for A = AH and at least quadratically otherwise.

As a consequence in general, the Jacobi-Davidson method converges quadratically to an eigen-
value/eigenvector pair (A, u) if the Jacobi correction equation is solved exactly in every step.
The Jacobi-Davidson method can be interpreted as a Newton method.

Remark 61 1) In general, it is too expensive to solve the correction equation exactly,
instead one uses approximations such as
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2)

3)

(b)

(a) P(A—ppl)P ~ I, hence x = —ry. This is formally equivalent to the Arnoldi
algorithm (Ezercise).

(b) P(A— uil) P~ (D — pil) where D is the diagonal part of A.
(This is the Davidson method in quantum chemistry.) It works very well for diag-
onally dominant matrices.

(c) Solve the correction equation with iterative methods (see next chapter).

The algorithm is called ’Jacobi-Davidson’ since as in the Davidson algorithm it uses
a stepwise extension of the search space. For the approzimation P (A — uil) P =~
(D — pil) we get back the Davidson algorithm.

Otherwise the following ansatz is due to Jacobi.

=]

This is equivalent to

A = a+clz,
(F—=X)z = —b.
Jacobi suggested to solve (F — \I)z = —b iteratively and to compute an improved eigen-

value from A = o + ¢*' 2z approximation. The basic idea is the search for corrections in
the orthogonal complement, i.e., [0,27]T is orthogonal to the ansatz vector [1,0]7. In
the Jacobi-Davidson-algorithm we search orthogonal to the last approximation.

We can compare the Jacobi-Davidson method and the Arnoldi algorithm with shift-and-
Invert for the computation of a desired eigenvalue/eigenvector pair. Jacobi-Davidson
consists in the solution of the Jacobi correction equation P (A — ppl) Px = —ry, and the
computation of the new search direction. Then we must determine the new eigenvalue of
My, by applying the operator A in the step Wi = AQr. We can solve the Jacobi correc-
tion equation approximatively, since it is only used for the search direction. The spectral
information of the operator A will be injected in the step Wi = AQy where My and its
etgenvalues are computed. When we solve Jacobi correction equation approximatively
the convergence may be slowed down.

In the Arnoldi algorithm in both steps, the computation of the search direction and the
application of the operator are combined in the equation

K
Grr = (A=vD) gy =Y hags.
i=1

The solution of the linear system has to be done very accurately. If this is not done
accurately enough, then the information about the operator is not injected well enough.
Furthermore, restarts, locking and purging is easier in the Jacobi-Davidson method,
since we do not need to preserve an Arnoldi relation.

On the other hand the Jacobi-Davidson algorithm approximates only one pair at a time
while the Arnoldi method determines several eigenvalues at the same time.
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3.8 Large Scale Generalized Eigenvalue Problems

For large scale generalized eigenvalue problems AFx = Az with regular pairs (E, A) we
can apply all the methods from the previous sections whenever a solution of linear systems
(ME — A)x = b are feasible for chosen shifts Ag.

Set = (A4 Xo)~! and replace AEx = Az by pz = (ME — A)"'Ez =: Az and apply the
chosen algorithm to the matrix A. Whenever a matrix-vector multiplication with A is needed
we have to carry out a matrix-vector multiplication with E and solve a linear system with
(MNE —A).

If an eigenvalue/eigenvector pair (u,x) has been computed then it corresponds to an eigen-
value A = p~! — g with the same eigenvector, using the spectral transformation A — p =
(A+Xg)~!. Using this relation we can make any eigenvalue an exterior eigenvalue by choosing
an appropriate \g.

This spectral transformation can also be used in the case F = I to achieve fast convergence
near any chosen shift.
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Chapter 4

Iterative methods for Large Sparse
Linear Systems

Situation: A € C™" sparse, n large, b € C".

Goal: Determine z € C"™ with Az = b.

4.1 Splitting-Methods

The basic idea of splitting methods is to split the matrix A in two summands A = M — N
and to transfer the linear system to a fix-point equation

Mx = Nz +b.
This immediately leads to an iterative method via the recursion
Mz®+D) = Nz®) 4 p,
Remark 62 (a) If A, M are nonsingular and o (MﬁlN) < 1, where

B) := Al
o (B) Agﬂ;})é)l |

then the iteration converges for every start vector xo to A='b (Ezercise).

(b) The convergence is linear with convergence rate o (Mle). This is typically too slow
compared with other methods so that splitting methods are today used mostly only in the
context of preconditioning.

0 ... 0 * 0 0 = =
Example 63 We split Aas A= | , . |+ + 0 e
* 0 0 * 0 ... 0

=L =D —R

(a) Set M =D and N = —L — R. This is called Jacobi-method.
(b) Set M =L+ D and N = —R. This is called Gauf$-Seidel method.
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4.2 The Conjugate Gradient Method (CG)
Special case: A € R™" symmetric and positive definite, b € R"™.
Basic idea: Consider

1
p:R" =5 R, x»—)¢(m):§xTAx—be.

Then the gradient is Vo (z) = Ax — b the Hessian is Hess ¢ (z) = A, i.e., our linear system
corresponds to a minimization problem, since & = A~!b is the unique global minimum of ¢.

1
o (%) = —ibTA’lb.

Thus we may hope that a stepwise iterative minimization method for ¢ will converge to a
solution of the linear system.

4.2.1 Steepest Descent
Idea: ¢ decreases most in the direction of the negative gradient
Ve (z)=b— Ax.
Definition 64 Let A € C™"™ and x,b € C". Then
r=b— Ax
18 called residual of x with respect to A and b.

For r # 0 we have that ¢ (x + ar) < ¢ (z) for some o > 0. Thus we can decrease ¢ by
choosing the parameter o to minimize the residual.

Lemma 65 The minimum in o — ¢ (x + ar) is given for

T‘TT

o= —.
rT Ar

Proof: Exercise. O

Algorithm (’Steepest Descent’)
Determines for A € R™" symmetric positive definite and b € R” the solution x = A~'b of
Ax =0b.

1) Start: Choose zp € R".
2) Iterate for kK =1,2,... to convergence
(a) Tp—1 =b— Az
T%—ﬂ'kfl

b) If r;,_; = 0 then stop and use z;_; = A~'h. Otherwise set aj, = ———.
T
T Ark_1
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(€) xp = Tp—1 + QfTE—1.

Remark 66 One can show that

Lop,—1 1 Lr 1
- <(1- - :
o (py1) + 2b AT < < - (A)> (ga(atk)—i— 2b A 'b

We thus have global convergence for all start vectors. But the method has many disadvan-
tages.

(a) The convergence is very slow if kg (A) is large.

(b) Furthermore, even if ¢ becomes small very quickly, then this is not automatically true
for the residual.

The main reasons for these disadvantages are the following.

1) We minimize only in one search direction r, but we have many more directions than
one (namely 79, ...,7%).

2) The search directions are not different enough.

4.2.2 A-Conjugate Search Directions

To improve the convergence behavior of the descent method we add a little modification. The
basic idea is to choose in every step instead of the negative gradient a direction p € R™ with
p X r. Then we also find in this direction a decrease of ¢. Thus in every step instead of 7y
we choose a search direction p; with p;‘fnﬂ #0.

We require the following conditions for px1 and xgq.

R1) pi1,...,pr41 are linearly independent.

R2) ¢ (zp41) = xé%lgl P (z), where Ryy1 := w0 + Span {p1, ..., pkr1}-
+

R3) 41 is easily computed from zy.

The first two conditions R1) and R2) together guarantee convergence in at most n steps in
exact arithmetic, since we minimize ¢ over the whole space R™.

To compute pry1 and xg41, suppose that the search directions pq,...,pr € R and z; with
o (xg) = m%l ¢ (z) are already computed and then determine pg1 and zy1 with ¢ (zx41) =
rER
n%in ¢ (x), such that all three conditions R1)-R3) are satisfied.
TERE+1

In order to achieve this we set z = x¢ + Py with P, = [p1,...,px] and y, € R¥ and make
the ansatz

Tht1 = To + Pry + apr41
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for y € R¥, o € R. Then we determine the parameters y and o. We have

1
o (xpy1) = B (w0 + Pyy + apr1)” A (2o + Pry + aprr1) — (zo + Pey + apri1)’ b

1
= ¢ (w0 + Pry) + apiy A (w0 + Pry) — apfy b+ §a2pf+1f4pk+1

1
= ¢ (v0+ Py) +app APy + §a2p;‘§+1Apk+1 — appqmo.
—_————

nur y

~
nur «

If the mixed term was not there then we could minimize separately over the two variables.
Thus we choose pg1 so that

T
pk+1APk = 0
and obtain
1
. . . 2T T
min ) = min xo + Pry) + min [ —a“p Apri1 — api 7o | -
e ¢ (z) JoRk ( ) ner \ 2 k+1 + k41
Sol. y=yx pE T
Sol. Oczc+1:ka+o
k+17Pk+1

The first minimization problem is solved by y = y, since xp = xg + Py, satisfies

w(xk):xrg%cw(w)-

T
« e . . .. e . . p T0
The second minimization is just a scalar minimization and solved by a1 = —+*t-——. Thus

Phy 1 APkt
we have satisfied conditions R2) and R3).
As a consequence, we choose A-conjugate search directions pg, i.e., we choose
i
PE+1 € Spa‘n{Apl)"'JApk} 7k = ]-727“"

Then
prAp; =0, i#34, d,j=1,...k

i.e., p1,...,pr are orthogonal with respect to the scalar product
(x,y) 4 =y Az.
Then the question arises whether we can always find A-conjugate search directions.

Lemma 67 If r, = b — Az # 0, then there exists pry1 € Span{Apl,...,Apk}L with
pZ_HTk # 0.
Proof: For k = 0 this is clear (choose e.g. p1 = 1¢). For k > 1 then with 7 # 0 it follows

that
A1 & Ry = zo + Span{p1,...,px},

since A71b is the unique minimum, which however is not reached yet, since 7, # 0.
Therefore,
b¢ Axog+ Span {Ap1,..., Apr}
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or

ro=b— Axg & Span {Aps, ..., Apx}.

Thus there exists pxy1 € Span {Apy, ... ,Apk}L with pZ_Hro = 0. Since
xp € xo + Span {p1,...,px}, we have

ry =b— Axyp € ro + Span {Ap1, ..., Api}

and thus also
T T
Pkt1Tk = Ppy170 7# 0.

Remark 68 From the proof of the Lemma 67 we have the following observation. Since

plre = pTro for p € Span{Apy, ... ,Apk}T, we have, in particular, that pgﬂrk = pgﬂro, and
thus
pfﬂro pgﬂ”ﬂ
Qg1 = =

P APk PE APk
We then can finally show that also the first requirement R1) is satisfied.
Lemma 69 The search directions p1,...,pr are linearly independent.

Proof: The matrix P,;‘F AP, = diag (plTApl, cees p;{Apk) is invertible, since A is positive
definite. Thus Py has full rank, i.e., the columns p1,...,p; are linearly independent. a

Algorithm (A-conjugate search directions)
The algorithm computes for A € R™" symmetric positive definite and b € R™ the solution
z=A"1bof Az =1b.

1) Start: Choose xy € R™
2) Iterate for kK =1,2,... until convergence

(a) Tk = b— A.’I)k,

(b) If 7, = 0 then stop and use x;, = A~'b as solution. Otherwise choose pj;1 €
Span {Apy, ... ,Apk}J‘ with pgﬂrk # 0 and compute

T
Pr1Tk

Akl = 75 -
Pk+1APk+1

(€) Zpy1 = Tk + Qpp1Pk+1-

Note that we still have freedom in the choice of py11.
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4.2.3 The Conjugate Gradient Algorithm, CG

We have seen that the choice of A-conjugate search directions has many advantages (an easy
computation of zpy1 from z; and a guaranteed convergence in at most n steps in exact
arithmetic). On the other hand we would like to keep the advantage of steepest descent
that the function ¢ decreases maximally in the direction of the negative gradient, i.e., this is
heuristically a good search direction. The idea is then to use the freedom in pyx1q to choose
that pr11 which is nearest to ry, the direction of the negative gradient, i.e., to choose px11 so
that

pri-nll=  minllp—nll (41)
peSpan{Ap1,...,Apy }

At first sight this looks strange, since we wanted to choose directions that allow an easy
solution of the optimization problem and here we introduce another optimization problem.
We will see now that this optimization problem is easy to solve since it will turn out that
P41 is just a linear combination of pg and rg.

In the following, under the same assumptions as before, we choose the A-conjugate search
directions to minimize (4.1) for £ = 0,...,m. Let P, = [p1,...,px] and show then that

Pr+1 € Span {pg, 7y }.
Lemma 70 Let k € {1,...,m} and z, € R*, such that

|7k — APyz|| = min [[r, — APz||.
2€RF

Then pyy1 = ry — APz

Proof: Let p := APz, then by assumption p is the orthogonal projection of rg to
R (AP,)*. Hence

B-rill= min llp—rel
PER(APy)

and therefore p = pgy1. O

Theorem 71 If ri, # 0 for k = 0,...,m, then for k = 0,...,m the following statements
hold.

1) Trp1 =1k — 1 Aprya,
2) Span{pi,...,pp+1} = Span{re,...,rx} = Ki1 (A, r0),
3) rgy1 Ly forj=0,... k,
4) pr+1 € Span{pk,ri} for k > 1.
Proof:
1) Since zk11 = Tk + Qg1PK+1, it follows that
The1 =b— Axpy = b — Az —ap 1 Aprgr.

=Tk
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2)

Applying 1) inductively we obtain
Span {Ap1,..., Apr} C Span{ro,...,7x}, k=1,...,m.
We have already shown that for all £ =0,...,m we have
Pr+1 =Tk — APgz € Span{ro,...,rp}.

Thus, we have
Span{p1,...,pr+1} C Span{ro,..., %}
for k =0,...,m. Moreover, with 1) it follows that

rr+1 € Span {rg, Api+1} C Span {ry, Arg, ..., Arg}
for k =0,...,m. Therefore,

r1 € Span{rg, Aro},
ro € Span{rg, Arg, Ar1} C Span {ro,Am, AQT()} ,

By induction we then have finally
Span {p1,...,pr+1} C Span{rg,..., 7k} C Kr+1 (A,70) .
Equality follows by a dimension argument.

We show that Pgrk =0ie,pl,...,pr L7 forallk=1,...,m. By 2) we then also
have rg,...,rg—1 L ri desired. We have zp1 = 29 + Pryi, where y; minimizes the
function

1
plzo+ Pry) = 5o+ Pry)" A(zo + Pry) — (z0 + Pry) b
1
= plwo) +y" P (Azg —b) + 5" P APyy.
The gradient of y — ¢(xg + Pry) therefore vanishes for y = yx, i.e.,
PI APy, + PE(Azg — b) = 0.
This is equivalent to 0 = Pg(b — Axg — APyg) = PkT(b — Axy) = Pgrk.

If £ =1, then by 2), it follows that ps € Span{rg,r1}. Since p; = ro we then have
po € Span{py,r1}. For k > 1 we partition z; from Lemma 70 as

zk:[zj}, wGRkil,,ue]R.

with 7, = rx_1 — apApg. By 1) we then obtain from Lemma 70 that

P+l = Tk — APz
= rp— APy_yw — pApy

= T — APk_lw + O%(’I“k — Tk—l)

= <1+M) Tk + Sk,
o
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where

e — AP W

Qg
Span{ry_1, AP,_ 1w}
Span{rk—la Apl) s 7Apk:—1}

Span{rog,...,rp_1}.

Sk

N 1N m

(Observe that oy is nonzero by construction!) By 3) then r; and sj are orthogonal.
Then we can solve the optimization problem in Lemma 4.4 by determining w and p
such that

2
1
P2 = (1 T ak) rall? + llsil?

is minimal. Then, in particular, s; so that ||sk|| is minimal (for fixed p and variable
w). But ||rx—1 — APx_1z|| will be minimized (see Lemma 70) via z = z;_; and one
obtains py = rx_1 — AP,_1z1_1. Hence, s; is a multiple of pg, and therefore

Pk+1 € Span{ry, si} C Span{ry, px}.

Corollary 72 After scaling pi+1 we have
Pr+1 = Tk + Brpk-
Since p{ApkH = 0, we furthermore have

 pLAT
pF Apy,

Br =

Hence pr11 can be constructed directly from py, and ry without solving a minimization problem.

Algorithm: (CG, conjugate-gradient method - Hesteness/Stiefels, 1952)
For A € R™™ symmetric, positive definite and b € R” the algorithm computes the solution
x=A"1bof Az =b.

1) Start: xzg € R™, 1o = b — Axg, p1 = ro.
2) Iterate for kK =1,2,... until convergence

T
(a) ap = P Tt

plApy’
(b) ) = Tp—1 + Dk,
(C) Ty = b - Al’k,
T
Dy Ary,
d ﬁk 1= — )

(€) Prt1 =Tk + Brt1Dk-
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Remark 73 There are many theoretical results behind this simple algorithm, for example the
convergence after at most n steps in exact arithmetic, since the CG-algorithm is a special
case of the algorithm of A-conjugate search directions. The iterate xy satisfies

w(xk):;g;aw(w),

where p(x) = %ZL'TAIL‘ —27b and Ry, = wmo + Span{pi,...,pr}. But Span{pi,...,px} =
Ki (A,ro) by Theorem 71, i.e., we minimize ¢ over the affine Krylov space xo + Ky (A, ro).
Hence x, satisfies

TE) = min ).
SO( k) {L‘E(JC()+/C]Q(A,T0)S0( )

For this reason one calls the CG-algorithm o Krylov space method.

4.2.4 Convergence properties of the CG method

Using the relationship of the CG algorithm with Krylov spaces allows a detailed convergence
analysis. For this we introduce a special norm.

Definition 74 Let A € R™" be symmetric and positive definite. Then the norm defined by
lzlla == VaT Az
on R™ is called the A-Norm or energy norm.
We would like to estimate the error
ep =Ab—x, = A7 (b— Azy) = A7y,
where (xy) is the sequence generated by the CG algorithm.

Theorem 75 (Optimality of CG in the A-Norm) Let A € R™" be symmetric and
positive definite and let (vy) be the CG sequence generated from a starting vector xqg. If
rg_1 # 0, then

llewlla = 147" — zgla < |6 — ]|

for all x € xo + K (A, 19) with xp # x.

Proof: We know that zy € xo + Ky (A, 7). Let x € xg + Ky (A, 79) be arbitrary and
Az =z, — x, i.e., Az € K (A, rg), and moreover

e=A—z=A"10— (2, — Az) = e, + Az
Then

eTAe = (e + Ax)T A(ep + Ax)
= ef Aej, + 2ef AAx + AxT ANz

el

and
2et ADx = 2rF AT AAx = 2rf Ax =0

since Az € Ky (A, ro) = Span{ro,...,7,—1} and ry L r; for j =0,...,k —1 due to
Theorem 71. Thus we obtain

el = lewl% + [[Azll% > llexllh,  if Az #0.
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Corollary 76 Let I, := {p € II;|p (0) = 1}. With the notation and assumptions of Theo-
rem 75 (in particular rp_1 # 0), there exists a unique polynomial py € Iy, with

[Pk (A) eol|.4 = min [|p (A) o[-

pelly
Furthermore, e, = pr (A) ey and
A
llex[l.a = min lIp(4) eolla < inf max |p(A)| (4.2)
lleolla  peri,  Ileolla peli, \eo(A)

Proof: There exists xy, € xg + K (4, r0), i.e.,
T = 20 + Pr—1(A) 10
for some py_1 € Ilx_1. Furthermore,

Ty = b— Axk =b-— Aa?() —Aﬁk,1 (A) ro.
=7y

Thus, we have

e =A""ry = A7 g —pr1 (A)ro = eo — Pr_1 (A) Aeg = (I — pr_1 (A) A) eo.

~~

e =pi (A)€eTly,

Then the uniqueness of pg, and the first equality in (4.2) follows from Theorem 75. To prove

the inequality in (4.2), let (v1,...,v,) be an orthonormal basis of eigenvectors of A to the
eigenvalues A1, ..., \,. Furthermore let p € I and

eg=cClv1 + ...+ cpup with ¢1,...,¢, € R.
Then,

p(A)eg =c1p (A1) vi + ...+ cup (M) Un.

By the orthogonality of the v; we obtain
n
leoll% = € Aeo = > _ i
i=1

and

lp(A)eollh = 3 etp O0)° A < max () 3 b
i=1 i=1

But this implies that
I (4) eolly _
lleolls  ~ aeo(a)
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Remark 77 1) From Corollary 76 we conclude that the CG algorithm converges fast if A
has an appropriate spectrum, i.e., one for which there exist polynomials p with p (0) = 1
and small degree such that |p (X)| is small for all A € o (A). This is e.g. the case if

(a) the eigenvalues occur in clusters,

(b) all eigenvalues are far from the origin,
(then ko (A) = f\‘:ﬁ is not too large).

2) With the help of Chebysheff polynomials one can prove that

k
ol o (VE-1)
leolla =" \Vi+1)

eIz szﬁ(ﬁﬂ)k.

3) We can improve the convergence of the CG algorithm via preconditioning:

where k := ko (A) and

(a) For general linear systems Ax = b consider
M 'Az=M""b

where M1 A has an appropriate spectrum and Mz = c is easy to solve.

(b) For Ax = b with A symmetric and positive definite consider
(ctAc ) (CTz) =C'b

where C~YAC™T has an appropriate spectrum and CTz = d is easy to solve.
C—ACT is again symmetric and positive definite.

4.2.5 The C'G and the Lanczos Algorithm

In this section we use the same notation as in previous sections. Consider the matrices

1 =05 0
1 .
Rk:[ro,...,rk_l], Pk:[pl,...,pk], Bk:
_Bn
0 1

Using the equations p; = 79 and p; = r;—1 + Bipi—1 for i = 2,...,n (see Section 4.2.3) we
obtain
Ry = P, By.

Then the matrix RgARk is tridiagonal, since

pi Ap1 0
RIAR, = BI PL AP,B,, = B By,.
0 Pi Apk
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Furthermore, we know from Theorem 75, that the rg,...,rr_1 are orthogonal and span a
) ”:—8”, e H:iij\\ is an orthonormal basis of (A4, ).
This leads to an interesting conclusion. If ¢ := ﬁ and if q1, ..., g are the vectors generated

by the Lanczos algorithm, then by the implicit () Theorem

Krylov space, i.e.

g =+ =1,k
[l

Thus, the tridiagonal matrix generated by the Lanczos algorithm is (except for signs) the
matrix RfARk, ie.,

"CG ~ Lanczos’

Application: In the course of the CG algorithm we can generate the tridiagonal matrix
RZAR;C and obtain information about extremal eigenvalues of A and the condition number
rp(A) = Amaz

min

4.2.6 The GMRES algorithm

Situation: A € C™" general and invertible, n large, A sparse, b € C".
Goal: Determine x € C™ with Az = b.

In Section 4.2.4 we have noticed that certain affine Krylov spaces are good search spaces.
This suggests to use again a Krylov space method. In the C'G algorithm we have used that
the solution # = A~1b is the unique minimum of ¢ = %xTAx — 2Th. This, however, holds in
general only if A € R™" is symmetric positive definite.

Idea: For a given starting vector o € C" and rg := b — Axg, determine x via

b— Ax = min b— Axls. 4.3
b= Awila= _ min b= Acly (43)

A Hermitian ~» MINRES (mininmal residuals), Paige/Saunders 1975
A general ~» GMRES (generalized minimal residuals), Saad/Schultz 1986

This means that we have to solve in each step the least-squares problem

Ib — Azg|l2 = min |b — Az||2.
xEIQ+’Ck(A,T0)

In Section 4.2.5 we have seen that the C'G algorithm corresponds to the Lanczos algorithm.
We expect that in the general case

["GMRES ~ Arnoldi’ |

After k steps of the Arnoldi algorithm (without breakdown) we have the Arnoldi relation
AQy = QrHy + hiy1kqk+ 165 = Q1 Hev1 ks
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with Qx = [q1, - - - qk], Qk+1 = [Qk, @k+1]) isometric and

hi1 ... e hik
hor :
Hk+1,k — 0 c Ck-&-l,k‘

: P g—1 Dk
i 0o ... 0 Pt ]

If ¢ = 2, then Span{q,...,q} = Kp(A,10). Let z € xg + Ki(A, 1), i.e., x = 29 + Qry

lIroll”

for an y € C*. Then

16— Az| = b= Alzo+ Qry)
= |lro — AQwy|
= |ro — Qr+1Hi119||
= ||QkH+1r0 — Hi 0yl since Q41 is isometric,
= HHTOH e — Hk+1,kyH since qa, ..., qk+1 L 1 = 7 (4.4)
Reminder. For the solution of least-squares problems |[c — My|| = min, with M € Ckn,

k <n we may
1) compute QR decomposition of M,
M =QR, Q€ C™" unitary, R= [ Ry O ] .

2) Since @ is unitary, we have
2

c1— R
Hc—MyH?:H@Hc—RyH?:H[ y” . where Qe=[ca e ].

If R; is invertible, then this is minimal if R1y = ¢. Thus we solve R1y = c.

In the least-squares problem (4.3), the matrix Hj1 is in Hessenberg form and we need to
solve this problem for every k. Suppose that we have solved the problem for k — 1, i.e., we
already have a QR decomposition for Hy j_1,

Ry

Hyp 1= QrRy, Qp unitary, Ry ;= [ 0

} ,  Ryg_1 upper triangular.

Then

|: kaH 0 :| H _ |: @kH 0 :| |: Hk,kfl ‘ hkk :| . |: ék—l ‘ @thkk :|
cHpi1 =
0 1 0 1 0 [Twsrn 0 | Prsik

-1
0 hppiw |

Thus, the element A1 ; can be eliminated by a single Givens rotation and we obtain the QR
decomposition of Hyq  from Hy ;1 by this Givens rotation (this costs only O(n) flops).

Algorithm (GMRES)
For A € C™" invertible, b € C", and a starting vector xg € C", the algorithm computes the
solution & = A~'b of Az = b.
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1) Start: ro = b— Axg, hio = ||70]|-

2) Iterate for kK =1,2,... to convergence

Tk

a) gk = hkk 17

k
b) Ty = Aqk — Z hjkq]‘ with hjk = Q]HT']C,
7=1

) higik = |I7ell,

is minimal,

d) Determine yj such that H 7ol - e1 — Higt1,£Yk

e) xp = xo + QrYk-
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Remark 78 As the CG algorithm, also GMRES can be analyzed via polynomial approzima-
tion in I, = {p € II| p(0) = 1}.

x=x0+ p(A)ro for pell_q,
since x € xo + Kr(A,r9). Therefore,
rp:=b— Axp =b— Axg — Ap(A)rg = (I - Aﬁ(A))ro =p(A)ro for p € 11
Then we can reformulate GMRES as
Determine p € Iy, such that |[p(A)ro|| is minimal.
If p € I, is such that rj, = pr(A)rg, then
7|l = [lpe(A)roll < [[p(A)rol

forallp € Iy,

Theorem 79 Let A € C*" be diagonalizable and V1AV = A diagonal. Then,

7%l ,
< k(V) inf max ’p)\‘.
Iroll = ) 5, 2 P

Proof: For every p € ﬁk we have

oDl = [lp(VAVTH = [Vp(A)V Y|
< VI ) IVTHE= w(V) - [Ip(A)]],

and, furthermore,

A = A,
[p(A)]] nax Ip(N)]

since A is diagonal. Thus, we obtain

Irell = llpe(A)roll < inf [[p(A)roll < inf [[p(A)]| - [[roll
pelly pelly
< lroll - £(V) inf max [p(A)].

penk AGU(A)

Consequence The GMRES algorithm (in most cases) converges fast if
1) the spectrum A is appropriate and

2) k(V) is small, i.e., if A is not too far from a normal matrix (since for a normal matrix
V' can be chosen unitary, i.e., with condition number 1).

Remark 80 Convergence acceleration can again be achieved via preconditioning, i.e., instead
of Az = b we solve M~ Ax = M~'b, where My = c is easy to solve and chosen such that the
spectrum is appropriate.
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Remark 81 Other methods for the solution of Ax = b, A invertible with A # AH :

1) CGN. Instead of Ax = b consider the normal equations, i.e, AT Ax = A"b with positive
definite AHA and apply to this the CG algorithm without forming the product.

Disadvantage. The condition number is squared k(AH A) = rk(A)2.

Advantage. The eigenvalues of AT A are the squares of the singular values of A.
Therefore CGN s a good approach for matrices A with ’bad spectrum’ but ’good singular
values’.

2) BiCG (Bi-conjugate gradients).
CG: The computed i, € xo + Kr(A,ro) delivers ry, L ro,... 7k,
hence r, L Ki(A,10).
BiCG: choose sy with 3517“0 =1 and determine xj € xo+ Kr(A,10)
with Tk 1 ICk(A, S())

BICG corresponds to the nonsymmetric Lanczos algorithm.

Ar =Xz | Az =10
A= A" | Lanczos CcG
A+ AT | Arnoldi | GMRES
Lanczos BiCG

3) Survey of Krylov space methods

Common Krylov space: K = Ki(A,rg)
Important quantity: r, = b — Azy, (residual)
a) Ritz-Galerkin-Ansatz: choose xy € xg + K such that r, L K
~ CG, FOM, GENCG

b) Minimal-residual-Ansatz: choose x), € xo+ K such that ||rg| is minimal
~» MINRES, GMRES, ORTHODIR

¢) Petrov-Galerkin-Ansatz: choose xy € xo+ K such thatr, L L, LC C", dimL =k
~» BiCG, QMR

d) Minimal error-Ansatz: choose xy, € mo + K such that ||z, — A71b|| is minimal.
~ SYMMLQ, GMERR

There are further hybrid methods, like (CGS,Bi-CGSTAB,...)
But none of the methods is really efficient without preconditioning. To obtain a good pre-

conditioner depends very much on the problem and usually it has to be chosen based on
knowledge about the background of the problem.
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