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Abstract

Building on recent work on homogeneous cooperative systems, we extend
results concerning stability of such systems to subhomogeneous systems. We
also consider subhomogeneous cooperative systems with constant input, and
relate the global asymptotic stability of the unforced system to the existence
and stability of positive equilibria for the system with input.
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1. Introduction

Dynamical systems leaving the non-negative orthant invariant are of great
practical importance due to their applications in Biology, Ecology, Eco-
nomics, Communications and elsewhere. Systems of this type are known
as positive systems and have been studied extensively in the literature. In
particular, the theory of linear time-invariant (LTI) positive systems is now
well developed and much recent work has been directed towards extending
this theory to broader and more realistic system classes. For instance, the au-
thors of [17] have considered positive systems defined by integro-differential
equations, while the properties of switched positive systems have been stud-
ied in [5] [6] [10]. As many of the applications of positive systems give rise
to nonlinear systems, it is natural to look for extensions of the theory of
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positive LTI systems to classes of nonlinear positive systems. In this paper,
we consider a particular class of nonlinear positive systems, subhomogeneous
cooperative systems, and derive results on their stability that echo the prop-
erties of positive LTI systems.

We first consider an extension of the following property of positive LTI
systems. If the positive LTI system & = Ax is globally asymptotically stable,
then so is the system ©# = DAx for any diagonal matrix D with positive
diagonal entries. This property is commonly referred to as D-stability. It
was shown in [15] [2] that a nonlinear analogue of D-stability property also
holds for a significant class of nonlinear positive systems; namely cooperative
systems that are homogeneous [2]. We shall show here that these results
can be further extended to subhomogeneous cooperative systems (we define
these formally in the following two sections). It should be pointed out that
the methods used in [15] [2] relied heavily on an extension of the Perron-
Frobenius theorem given in [1]. In contrast, our approach here makes use of
the Knaster-Kuratowski-Mazurkiewicz (KKM) theorem [9] and is inspired by
recent applications of this result to small-gain conditions and input-to-state
stability in [3] [19].

While we formally define both homogeneous and subhomogeneous sys-
tems later, it is appropriate to point out some reasons why the class of sub-
homogeneous systems is of interest. First of all, subhomogeneous systems
can include terms such as aff_% for a > 0, 7 > 0, which arise frequently in
models of biochemical reaction networks [16]. From a more theoretical point
of view, the class of homogeneous systems is not closed under the addition of
positive constants. More formally, if f : R" — R" is homogeneous, then it is
not true that + — f(x)-+b is homogeneous for positive vectors b. However, if
f(.) is subhomogeneous, then so is f(.) + b for any positive b. This property
is of relevance to the second question we consider.

In [14] the stability properties of the homogeneous cooperative system
& = f(x) were related to the existence and stability of positive equilibria for
the associated system @ = f(x) + b where b is a positive vector. Specifically,
it was shown that if f is an irreducible vector field (defined in Section 2)
and © = f(z) has a globally asymptotically stable (GAS) equilibrium at the
origin (defined in Section 2), then for every positive vector b there exists
a globally asymptotically stable equilibrium z of & = f(z) + b. We show
that this same result extends naturally to subhomogeneous systems. Again
our analysis does not rely on the extension of the Perron-Frobenius theorem
presented in [1] but uses the KKM theorem to establish stability.
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The layout of the paper is as follows. In Section 2, we introduce notation
as well as definitions and results that are needed throughout the paper. In
Section 3, we establish some fundamental technical facts concerning subho-
mogeneous cooperative systems including an extension of Euler’s formula to
this setting. The main contributions of the paper are contained in Section 4
and Section 5. In Section 4, we provide two results extending the D-stability
property to subhomogeneous cooperative systems; one covers systems with
an equilibrium at the origin while the other is concerned with an equilibrium
in the interior of the positive orthant. In Section 5, we extend the results
of [14] on the existence of positive equilibria to subhomogeneous systems.
Finally, in Section 6 we present our concluding remarks.

2. Preliminaries

Throughout the paper, R and R™ denote the field of real numbers and the
vector space of all n-tuples of real numbers, respectively. R™*™ denotes the
space of n x n matrices with real entries. R"} :={z € R" : z; > 0,1 <i < n}.
The interior of R’} is denoted by int (R’) and its boundary by bd (R%}) :=
R7\int (R ). For vectors z,y € R”, we write: & >y if 2; >y, for 1 <i <n;
r>yifx>yandz #y, x>yife; >y,1 <1 <n. Forx e R"and
i=1,...,n, ; denotes the i"* coordinate of z. Similarly, for A € R™" a;;
denotes the (i,7)" entry of A. Also, for z € R™, diag () is the n x n diagonal
matrix in which d;; = z;.

For A € R™"™ we denote the spectrum of A by o(A). Also, the notation
1(A) denotes the spectral abscissa of A which is defined as follows:

p(A) = max{Re(\) : A € 0(A)}.

A real n x n matrix A = (a;;) is Metzler if and only if its off-diagonal
entries a;;, Vi # j are nonnegative. The matrix A is irreducible if and only
if for every nonempty proper subset K of N := {1, .- n}, there exists an
i € K,je N\K such that a;; # 0. When A is not irreducible, it is reducible.

The next result concerning Metzler matrices is standard [8] and follows
from the Perron-Frobenius theorem.

Theorem 2.1. Let A € R"™*" be Metzler. Then u(A) € o(A). In addition,
if A is also irreducible then there exist vectors v > 0, w > 0 such that
vIA = (AT, Aw = p(A)w.



The following notation and assumptions are adopted throughout the pa-
per. W is a neighbourhood of R} and f : W — R" is a C! vector field on
W.

We are concerned with the system:

#(t) = f(x(t),  (0) = o (1)

The forward solution of (1) with initial condition o € W at t = 0 is denoted
as x(t, o) and is defined on the maximal forward interval of existence Z,, :=
[0, Thnaz(0)). A set D C R" is called forward invariant if and only if for all
xg € D, x(t,x9) € D for all t € Z,,.

We shall be exclusively concerned with positive systems. The system (1)
is positive if R} is forward invariant. Formally, it means that zo > 0 implies
x(t,zg) > 0 for all t > 0. It is intuitively clear and shown in [13] that
given the uniqueness of solutions of the system (1) the following property is
necessary and sufficient for positivity of the system:

P:Vx € bd(R%}) :2; =0= fi(x) >0

As is standard, we say that the C! vector field f : W — R" is cooperative
on U C W if the Jacobian matrix %(a) is Metzler for all @ € . When
we say that f is cooperative without specifying the set U, we understand
that it is cooperative on R’} . It is well known that cooperative systems are
monotone [20]. Formally, this means that if f : W — R" is cooperative on
R then zo < yo, To, yo € R} implies (¢, z¢) < (¢, o) for all £ > 0.

Our results here extend previous work on homogeneous systems. In the
interest of completeness, we recall now the definitions of dilation map and
homogeneity [1].

Given an n-tuple r = (ry,...,r,) of positive real numbers and A > 0, the
dilation map 0% (x) : R — R™ is given by 05 (z) = (\'zq, ..., \™z,,). For an
a > 0, the vector field f : R® — R” is said to be homogeneous of degree «
with respect to d%(z) if

Ve € R, A >0, f(d)(x)) = A"05(f(2))

If r=(1,---,1), then 05(x) is the standard dilation map.

We next recall various fundamental stability concepts. As we are dealing
with positive systems throughout the paper, all definitions are with respect
to the state space X = R7}.



Definition 2.1. Let the system (1) have an equilibrium at p > 0. Then we
say that the equilibrium point p s

o stable, if for each € > 0, there is 6 = 6(e) > 0 such that

lzo — pll <6 = [|x(t, z0) — pl| < € VE > 0.

e unstable, if it is not stable,

o asymptotically stable if it is stable and there exists a neighbourhood N
of p such that

o € N = lim z(t,z9) = p.
t—o0
The set
A(p) == {zo € R} : 2(t,29) = p, ast — oo}
is the domain of attraction of p. If A(p) = R, then we say that p is globally
asymptotically stable (GAS).

In this manuscript, we will often use the following lemma, which is Propo-
sition 3.2.1 in [20].

Lemma 2.1. Let f: W — R"™ be a cooperative vector field and assume there
ezists a vector w such that f(w) < 0 (f(w) > 0). Then the trajectory z(t, w)
of system (1) is decreasing (increasing) for t > 0 with respect to the order on
R . In the case of f(w) <0 (f(w) > 0), the trajectory will be non-increasing
(non-decreasing).

One immediate consequence of Lemma 2.1 is the following result, which we
shall use often in the sequel.

Lemma 2.2. Let f : W — R" be cooperative and satisfy P. Suppose that

the system (1) has an equilibrium point at p € R'y. The following statements
hold.

(1) If there ezists w > p with f(w) >0, then x(t,w) > w for all t > 0.
(11) If there exists 0 < w < p with f(w) <0, then x(t,w) < w for allt > 0.

In particular, in both case (i) and case (i), w cannot lie in the domain of
attraction A(p) of p.



Lemma 2.3. Let f : W — R" be cooperative with a unique equilibrium at
the origin. Then the system (1) is positive.

Proof: Since f is cooperative, the system (1) is monotone, which means for
every initial conditions x; and x5 we have:

x1 < xo = x(t,r1) < x(t,29) for all t >0
Since z(t,0) = 0 for all ¢ > 0, then for all initial conditions xzy > 0 we have
o > 0= x(t,xo) > x(t,0) =0 for allt >0

which means the positive orthant is an invariant set for the system (1) and
this concludes the proof. [

D-STABILITY
One well-known fact about positive LTI systems is that they are D-stable
[4]. Formally, if the positive LTI system

T = Ax
has a GAS equilibrium at the origin, then so does the system
= DAx

for all diagonal D with positive diagonal entries.

Extending the notion of D-stability to nonlinear positive systems is a cen-
tral theme for this paper. A restricted form of this concept was considered
in [15] for a specific class of homogeneous systems. A more general definition
was then introduced in [2] wherein D-stability results for arbitrary homoge-
neous cooperative systems were established. Such systems are automatically
positive and moreover, they always possess an equilibrium at the origin. In
this earlier paper, it was shown that, analogous to positive LTI systems,
any homogeneous cooperative system with a globally asymptotically stable
equilibrium at the origin is in fact D-stable.

To study nonlinear extensions of D-stability to systems such as (1), we
consider the system

(t) = diag (d(x(t))) f(x(t)) (2)
where d : R® — R" is a C! mapping satisfying the following condition.
Condition D:



(1) d(l’l,l'g,...,.il?n) = (dl(x1)7d2('r2)7"'adn(xn)) for Cl mappings dz :
R—oR,1<i<n;

(ii) for 1 <i <mn, d;(x;) > 0, for z; > 0.

In Section 4 we present results that relate the stability properties of the
system (2) to those of the system (1). First, we make the following simple
observation that the properties of cooperativity and positivity are preserved
under pre-multiplication by diag (d(x)).

Proposition 2.1. Let f : W — R" be cooperative and satisfy condition
P. Further, let d : R™ — R™ satisfy condition D. Then the vector field
g : W — R" given by g(xz) = diag (d(z))f(x) is cooperative and satisfies
condition P.

Proof: If z; = 0, then f;(z) > 0 as f satisfies condition P. It is now
immediate that g;(z) = d;(x;) fi(x) > 0 as d;(0) > 0 by continuity. Hence g
satisfies condition P. Direct calculation shows that for i # j

dgi N ofi
(@) = dila) 52 (@) 2 0

for all @ € R"} as f is cooperative. Hence g is cooperative as claimed.

KKM Lemma

The arguments presented later in the paper will make considerable use
of the Knaster, Kuratowski, Mazurkiewicz (KKM) Lemma [18][12][9]. The
lemma as originally stated was concerned with coverings of a simplex by
closed sets, but it is a later version of the result concerning open coverings
that we make use of here. Before stating the lemma we first need to recall
some definitions.

A set {ag, a1, ,a,} € R"is affinely independent if the system of vectors
(al - (lo), T 7(a7‘ - aO)
is linearly independent. Given a set of affinely independent vectors, ag, ay,- - , a,,

the set of all vectors of the form
T = Nag + Aag + - + \a,

where \; > 0,0<7<7r, A\g+ A +---+ A\ = 1is called an r-dimensional
simplex, or briefly an r-simplex. The points ag, aq,- - - , a, are the vertices of
the simplex. For simplicity, we denote the simplex by S(ayo, ..., a,).
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The simplex whose vertices are the standard basis vectors eq,...,e, of
R™ is referred to as the standard simplex and denoted by A,,.

Given a simplex S(ao, . ..,a,) and indices 0 < 4y < iy < --- < i, <r, the
simplex S(as, ..., a;,) is a face of S(ao, ..., a,). We shall need the following
open version of the KKM Lemma [18].

Theorem 2.2 (KKM Lemma). Let A := S(ag,ay,...,a,) be an r-simplex
and let Fy, Fy, ..., F,. be (relatively) open subsets of A. If

S(agy,...,a;,) C Fy UF, U---UF,

holds for all faces S(ai,,...,a;,), 1 <p<r, 0<ip <ip <---<ip, <7,
then
FoNFy---NF, #0.

3. Subhomogeneous Systems

In this section, we introduce the class of subhomogeneous cooperative
systems and present some basic properties of such systems that shall prove
useful later.

Definition 3.1. A vector field f : W — R" is subhomogeneous of degree
7> 04f f(Av) < A f(v), for allv € R}, X € R with A > 1.

The class of subhomogeneous vector fields given above includes concave
vector fields [11]. Furthermore,it includes vector fields which are homoge-
neous with respect to the standard dilation map (given by z — Az for A > 0).

Comment: We are assuming that the vector field f is C' on a neigh-
bourhood W of R}. In [14], vector fields were not required to be C' at
the equilibrium at the origin. As shown by the authors of this paper, for
homogeneous systems this is sufficient to guarantee uniqueness of solutions.
However, for subhomogeneous systems, this is not the case as can be seen
from the simple 1-dimensional example # = 32%? which has multiple solu-
tions satisfying z(0) = 0.

The following result establishes an inequality for subhomogeneous vector
fields that is reminiscent of Euler’s formula for homogeneous functions [14].

Lemma 3.1. The vector field f : W — R" is subhomogeneous of degree
T > 0 if and only if:

of

%(x)x <7f(x) forallz>0. (3)



Proof: We first show that f is subhomogeneous of degree 7 if and only if
for any x > 0, the mapping

A= AT F(Ax)

is a non-increasing function for A > 0.
Let > 0 be given. If f is subhomogeneous, then for any u > A > 0 we
have

fur) = f ($2a) < (5) £ )
<

Thus, we can conclude that A™7 f (Az) is a non-increasing function with re-
spect to A for all A > 0. Conversely, if this function is non-increasing for
A > 0, then by choosing i > A = 1, we see immediately that f(ux) < u” f(x).

Differentiating with respect to A, we see that f is subhomogeneous if and

only if for all A > 0

4T () <0

d\
—7—1 -7 af
& —TA f(Ax)+ A %(Ax)xgo
Rearranging this inequality, we see that f is subhomogeneous if and only
of
%(Ax)()\x) <7f(Ax) Vo >0;VA>0

This last statement is equivalent to

of
ox

if

(z)(z) < 7f(x) Vo >0

This concludes the proof. O
In the following corollary, some of the basic properties of subhomogeneous
systems are stated.

Corollary 3.1. (i) The set of subhomogeneous vector fields of degree T on
R? is a convex cone.

(i) A non-negative constant vector field f(x) = ¢ is subhomogeneous of any
degree T > 0.



(iii) Any affine map f(x) = Ax +b where A € R™" and b € R"} is subho-
mogeneous of degree 1.

Proof:

(i) The claim follows as the condition (3) has to be satisfied pointwise and
is clearly convex in f and invariant under positive scaling of f.

(ii) Immediate from (3) as f(x) > 0= 0f/0x(z) for all x > 0.

(iii) The claim follows from (i), (ii) and (3) as for linear maps we have

f(z) = Az = 0f/0x(z) - x. O

In the following result, we show that subhomogeneous cooperative sys-
tems are positive.

Theorem 3.1. Let f : W — R" be subhomogeneous of degree T > 0 and
cooperative. Then the system (1) is positive.

Proof: It follows from Lemma 3.1 and the fact that the Jacobian matrix is
Metzler for all x € R} that f;(z) > 0 for all z € R?, with 2; = 0. Therefore,
condition P is satisfied and this immediately implies that (1) is positive. O

4. D-Stability for Subhomogeneous Cooperative Systems

In this section, we are concerned with extending results on D-stability to
subhomogeneous cooperative systems. We shall consider two distinct cases:
systems with a GAS equilibrium at the origin and systems with an asymp-
totically stable equilibrium in int (R}) whose region of attraction includes
int (R7).

4.1. Equilibrium at the origin

The main result of this subsection states that if a subhomogeneous coop-
erative system (1) has a GAS equilibrium at the origin then the system (2)
also has a GAS equilibrium at the origin. Before stating this theorem, we
establish some preliminary results.

Lemma 4.1. Let f : W — R" be a cooperative vector field such that system
(1) has a GAS equilibrium at the origin. Let d : R™ — R™ satisfy condition
D. Then the system (2) has a unique equilibrium at the origin.
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Proof: Clearly, (2) has an equilibrium at the origin. It remains to show that
it is unique.

Based on the definition of d(x), we know that (2) cannot have any equilib-
rium points in int (R” ). Now, by way of contradiction, suppose diag (d(p)) f(p) =
0 for some p # 0 in bd (R?).

We define Z :={i:p; =0} and NZ := {i : p; # 0}. As d;(p;) > 0 for all
i € NZ by assumption, we must have f;(p) = 0 for all i € NZ. As the origin
is a GAS equilibrium of (1), it follows from Lemma 2.2 that we cannot have
f(p) > 0. Hence, there must be some iy € Z such that f;,(p) < 0.

On the other hand

0fi

>0
8xj (S) -
for all j # i and for all s € R”. Furthermore, p;, = 0 as iy € Z. Thus
"¢ 6’fio
fio(p) = flO(O) + Z P) (Sp)pjds > 0.
- Zj

This is a contradiction and we can conclude that the origin is the only equi-
librium of (2). O

The following proposition plays a key role in proving later results. The
argument presented here is essentially the same as was used in [3][19] albeit
for a different class of systems.

Proposition 4.1. Let f : W — R" be a cooperative vector field such that
(1) has a GAS equilibrium at the origin. Then there exists v > 0 such that
f(v) <O0.

Proof: Firstly, Lemma 2.3 implies that the system (1) is positive. Secondly,
consider the standard simplex A,. We define C; = {x € A, : fi(z) < 0}
forv =1,---,n. As f is continuous, C; is a relatively open set in A,, for
i=1,---,n. On the other hand, since the system (1) has a GAS equilibrium
at 0, there is no w > 0 in the simplex, such that f(w) > 0 by Lemma 2.2.
Therefore, U C; = A,,.

Let S(eiy, €, ,€:,) be an arbitrary face of the simplex and let x €
S(€iy, €irs- -+ 5 €,). Then x; = 0 for j ¢ {ip, - ,is}. Since the positive
orthant is an invariant set for (1), it follows that f;(z) > 0for j ¢ {io, -+ ,is}.
Therefore as (1) has a GAS equilibrium at the origin, Lemma 2.2 implies that
fi(xz) <0 for some j € {ip,--- ,is}. This means that

ZBGCZOUC”UUCZS
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As x was arbitrary, we conclude that for any face of the simplex, we have
S(eigs€ips e se5,) CCiy UC;, U---UC;,.

It follows from Theorem 2.2 that N?_,C; # &. As f is continuous, this means
there exists a v > 0 in A, such that f(v) < 0. O
Now we are ready to state and prove the following theorem.

Theorem 4.1. Let f : W — R" be a cooperative vector field that is subho-
mogeneous of degree T > 0. Let d : R®™ — R"™ be a C' mapping satisfying
condition D. Assume that (1) has a GAS equilibrium at the origin. Then (2)
also has a GAS equilibrium at the origin.

Proof: It follows from Proposition 2.1 that the system (2) is positive and
monotone.

As the origin is a GAS equilibrium of (1), Proposition 4.1 implies that
there exists a v > 0 such that f(v) < 0.

Let zo € R% be given. We can find a A > 1 such that w = Av > 4. From
subhomogeneity, it follows that

fw) = f(h) <A f(v) <0.
Further, it follows from Property D, that
diag (d(w)) f(w) < 0.

Lemma 2.1 implies that the trajectory z(t, w) of (2) starting from z(0) =
w is decreasing. In addition R} is invariant under (2). It now follows from
Theorem 1.2.1 of [20] that z(¢,w) converges to an equilibrium of (2) as t —
oo. Lemma 4.1 implies that the origin is the only equilibrium of (2). It
follows immediately that z(¢,w) — 0 as t — co.

As (2) is positive and monotone and as zy < w, it follows that

0 <zx(t,xg) <z(t,w) <w

for all ¢ > 0. This implies that z(¢,x29) — 0 as ¢ — oco. This concludes the
proof. O
Example 4.1. Consider the system
—x1 + o2
a—+ To
&= f(z) = (4)

+
—x
2 b+ T

12



where a > 1, b > 1. It can be easily checked that f is C! on R"\ {(—=b, —a)},
cooperative and subhomogeneous. Hence (4) is positive and monotone.
Also f(x) = 0 has two solutions, one is x = 0 and the other is

_(1—ab 1—ab
v ( 1+a’ 1+0 )
Since a,b > 1, the second solution is outside the positive orthant. Hence the
system (4) has a unique equilibrium in R}. As f(1,1) < 0, the argument in
the previous proof can be readily adapted to show that the origin is a GAS
equilibrium of (4).
If we define

2
Ty

2

1 + sin®(z)

then it satisfies condition D. Now based on Theorem 4.1 we can say that the
system

& = diag (d(x)) f ()
has a GAS equilibrium at the origin. Note that this new system is cooperative
but not subhomogeneous.

We next note that the result of Theorem 4.1 is not true for general co-
operative systems (not necessarily subhomogeneous) with an equilibrium at
the origin.

Example 4.2. Consider the system on R? given by

T

+ xo
:L,3
p=fw=| U (5)

It is easy to verify that f is cooperative and that the origin is the only equi-
librium of this system. Also, for v = (1,0.25)7, f(v) = (—=0.25, —-0.25)7 < 0.
This system satisfies all the conditions of Theorem 4.1 except subhomogene-
ity. We will prove that (5) has a GAS equilibrium at the origin but is not
D-stable.

First note that

X1 X1
+JI2—LL’2:—

<0
1+ a3 1+ a3 —

By + g = —

13



for all x1, x5 € R,. This implies that for every K > 0, the bounded set
{(z1,29) € Ri cx+1xe < K}

is invariant under (5). In particular, the trajectories of (5) have compact
closure in R?. Using Theorem 3.2.2 in [20], we can conclude that the single
equilibrium of this system, which is the origin, is globally asymptotically
stable.

In order for (5) to be D-stable, the associated system (2) should have a
GAS equilibrium at the origin for all choices of d(x) satisfying Condition D.
Choosing d(x) = (1,23), (2) takes the form:

X1

1+ a3 + 2
i = diag (d(z)) f(z) = ' (6)

4

As stated in Example 3.11 of [19], the origin is not a GAS equilibrium of (6).
In fact, for the initial condition (x(0), z2(0)) = (1, 1), the x; component of
the associated solution grows without bound. This shows that the system
(5) is not D-stable.

4.2. Equilibrium at p > 0

We next derive a version of Theorem 4.1 for the case where (1) has a
unique equilibrium at p > 0. For this scenario, rather than showing that
GAS of p for (1) implies GAS of p for (2), we shall show that if the domain
of attraction of p under (1) contains int (R, ), then the domain of attraction
of p under (2) contains int (R7}).

To see why this is necessary, consider a Mutualistic Lotka-Volterra system
[7]:

= f(x) = diag (z)(Az + b) (7)

where A is Metzler and b > 0.

Based on Corollary 3.1, we know f(x) = Ax + b is subhomogeneous of
order 1. Also since A is Metzler, f is also cooperative. However, even if this
system has a GAS equilibrium at some point p € int (R7}), each axis, z; = 0
is an invariant set for the system (7). Hence, p cannot be GAS for (7) in this
case.

To prove the main result of this section, we will need the following variant
of Proposition 4.1. In the statement of the proposition we use the following
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notation for p € int (R%}): Ri(p) = {x : 2> p}; Re(p) = {z € int (R}) : 2 <

p}-

Proposition 4.2. Let f : W — R" be a cooperative vector field. Assume
that (1) has an asymptotically stable equilibrium at p > 0 and that the do-
main of attraction of p contains int (R7). Then there exists vy € Ri(p) such
that f(v1) < 0 and vy € Ry(p) such that f(vy) > 0.

Proof: Firstly, we prove there exists a v; € Ri(p) such that f(v;) < 0.
Let A,, be the standard simplex. We consider p + A,,, the standard simplex
shifted to point p and define C; = {z € p+ Ay : fi(z) <0} fori=1,--- n.
Note the following facts.

(i) The set {x € R} : « > p} is forward invariant under (1). This is
because p is an equilibrium and (1) is monotone.

(ii) There is no x > p with f(x) > 0. This follows from Lemma 2.2 as the
domain of attraction of p contains int (R} ).

Using (i) and (ii), we can apply Theorem 2.2 in the same way as in Proposi-
tion 4.1 to conclude that there exists v; > p such that f(v;) < 0.

We next show that there exists a vy € Ra(p) with f(vy) > 0. First,
choose r > 0 small enough to ensure that the shifted simplex p — rA,, is
wholly contained in int (R’}). As above, it follows that {x € R} : 2 < p} is
forward invariant under (1) and that there can be no x < p with f(z) < 0.
Again applying Theorem 2.2, we conclude that there exists a vy < p, such
that f(ve) > 0. O

With the above proposition, we can now prove the following.

Theorem 4.2. Let f : W — R" be subhomogeneous of degree T and co-
operative. Let d : R" — R"™ satisfy condition D. Assume that (1) has an
asymptotically stable equilibrium at p > 0 and that the domain of attraction
of p under (1) contains int (R"). Then the system (2) has an asymptotically
stable equilibrium at p > 0 and the domain of attraction of p under (2)
contains int (R7}).

Proof: Proposition 4.2 implies that there exists a v; > p such that f(v;) < 0
and there exists a vy with 0 < vo < p such that f(vy) > 0. It follows from
the subhomogeneity of f that for any A > 1,

fv) <A f(rn) <0
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Similarly, for any 0 < p <1,

fpvg) > 7 f(v2) >0

Let x¢ € int (R’}) be an arbitrary initial condition. Then we can choose A > 1
and p < 1 such that
pwg < o < Avy (8)

From the properties of d, it follows immediately that d(Avy)f(Av;) < 0
and d(uwvy) f(pve) > 0. Hence the trajectory x(t, Avy) of (2) is decreasing
while the trajectory xz(t, pvs) is increasing. Further, as p is an equilibrium
of (2) and (2) is monotone, the trajectories x(t, Avy), (¢, uvy) of (2) satisfy
p < z(t, \vy) < Avq, pog < z(t, poy) < p for all t > 0.

Taken together this implies that the trajectories x(t, A\vy), (¢, pvs) of (2)
converge monotonically to p. It now follows from the monotonicity of the
system (2) and (8) that

x(t, pvy) < x(t, zo) < z(t, Avq)

for all ¢ > 0. Hence, z(t, o) must also converge to p. This completes the
proof. ([l

5. Stability and Positivity of Equilibria

In [14], results relating the stability properties of a homogeneous coop-
erative irreducible system @ = f(z) to the existence of positive equilibria
of the associated system & = f(z) 4+ b were presented. The arguments of
this earlier paper relied on an extension of the Perron-Frobenius theorem
to homogeneous cooperative systems [1]. In this section, we extend some
of these results to subhomogeneous systems. Specifically, we consider the
system (1), where f is assumed to be cooperative, subhomogeneous and ir-
reducible, and relate its stability properties to the existence and stability of
positive equilibria of the associated system

= f(x)+0b, b>0. 9)
We first recall the definition of irreducibility from [14].
Definition 5.1. The vector field f : W — R" is irreducible, if:
of

(i) for all a € int (R%), the Jacobian matriz 3= (a) is irreducible;

16



(i) for x € bd (R%) \ {0} with x; =0, we must have fi(x) > 0.

The following proposition establishes a sufficient condition for the system
(9) to be positive.

Proposition 5.1. Let f: W — R" be subhomogeneous and cooperative and
let b > 0. Then the system (9) is positive.

Proof: Note that the vector field f(z)+ b will again be subhomogeneous and
cooperative under these hypotheses. The result now follows from Theorem
3.1. O

Proposition 5.2. Let f : W — R" be subhomogeneous of degree T, coop-
erative and irreducible and let b > 0 be given. Assume that the system (1)
has a GAS equilibrium at the origin. Then the system (9) has at least one
equilibrium in int (R7).

Proof: From Proposition 4.1, we know there exists a v > 0 such that
f(v) < 0. The subhomogeneity of f implies that f(Av) < A7 f(v) for all
A > 1. By choosing A large enough we can ensure that f(\v) +b < 0.
Since g(x) = f(x)+b is also cooperative, it follows from Lemma 2.1 that the
trajectory x(t, A\v) of (9) starting from Av will be decreasing.

Given any zo € R, we can find A > 1 with Av > zy and f(Av) +b < 0.
Further, as (9) is positive, this implies that

0 <az(t,zg) <z(t,\v) < v

for all ¢ > 0. Hence, the forward orbit {z(¢,z¢) : t > 0} is relatively compact
for any zo € R}.

It follows immediately from Theorem 1.2.1 of [20] that z(¢, A\v) converges
to an equilibrium point p € R’}

We have now shown that there exists an equilibrium in R’}. To complete
the proof, we show that every equilibrium of (9) is in int (R} ). (Our argument
is the same as presented in [14] but we include it here for completeness.) Since
b>0and f(0) =0, z =0 cannot be an equilibrium of the system (9). Next
consider z € bd (R%}) \ {0} with z; = 0. Since b > 0, and f;(z) >0, f(z)+b
cannot be zero. This concludes the proof. 0

We next show that when f is subhomogeneous, cooperative and irre-
ducible with a GAS equilibrium at the origin, then the system (9) has a
unique equilibrium in int (R% ). We will need the following proposition, which
extends Proposition 4 of [14] to subhomogeneous vector fields.
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Proposition 5.3. Let f : W — R" be subhomogeneous, cooperative and
irreducible and let b > 0 be given. Then the Jacobian matriz of f(z) + b
evaluated at an equilibrium point of the system (9) is a Hurwitz matriz.

Proof: We prove the proposition by contradiction. Choose an arbitrary
equilibrium point p. Based on Proposition 5.2 we know that p € int (R7}).
of

As f is irreducible and cooperative and p € int (R%}), Z7(p) is an irre-

ducible Metzler matrix. By way of contradiction, suppose that g—fg(p) is not
a Hurwitz matrix. Writing p for the maximal real part of the eigenvalues of
91 (p), we have y > 0. Theorem 2.1 then implies that there exists a vector

oz
v € int (R?) with
oL ) = T (10)
Ox
On the other hand based on Lemma 3.1, we know that
of
—- < . 11
5 PP = Tf(P) (11)
Multiplying (11) by v” on the left and invoking (10) we have
po'p < 7o’ f(p) (12)
We know that f(p) = —b < 0. Therefore there exists at least one j

such that f;(p) < 0. This implies that the right hand side of (12) is strictly
negative, while the left hand side is nonnegative. We have therefore reached
a contradiction and we can conclude that %(p) is a Hurwitz matrix. O

We next prove that the system (9) has a unique GAS stable equilibrium
in int (R%) for each b > 0 provided that f is subhomogeneous, cooperative
and irreducible and that (1) has a GAS equilibrium at 0. This was estab-
lished in [14] for homogeneous systems using degree theoretic arguments. Our
argument does not involve degree theory but relies directly on Proposition
5.3.

Theorem 5.1. Let f: W — R" be subhomogeneous of degree T, cooperative
and irreducible such that the system (1) has a GAS equilibrium at the origin.
Then for any b > 0, the system (9) has a unique equilibrium in int (R7}), and
this equilibrium is GAS.

Proof: We know from Proposition 5.2 that (9) has an equilibrium in int (R} ).
We first prove that this equilibrium is unique.
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To this end, suppose that there are two distinct equilibria p > 0,q > 0.
Proposition 5.3 implies that that Jacobian of g(x) = f(z) + b evaluated
at each equilibrium point is Hurwitz. Further, as g is cooperative and irre-
ducible, the Jacobian evaluated at each equilibrium point is irreducible and

Metzler. Theorem 2.1 implies that there exist vectors z?, x? with [|zP]| = 1,
||z?|| = 1 and
99
—(p)¥ <0
5y P)T
dg
= 7<0.
5 (DT
Without loss of generality, we can assume that
4; -
max —>1 Vi=1,---,n
¢ Di

As g is C1, it follows from Taylor’s theorem that by choosing ¢t > 0 sufficiently
small, we can ensure that g(p+tz?) < 0, g(q —tx?) > 0. Define v = p+ta?,
w = q — tx?. Then g(v) < 0, g(w) > 0. Also, choosing a smaller t if
neccessary, we can ensure that

A 1= max Wi W oy
z (5 Vi
Now note the following facts:
(i) Av > w and vy = wg;
(ii) g(Av) < A7g(v) (as b > 0, g will also be subhomogeneous).

As g is cooperative, it follows from (i) that
gr(Av) = gr(w) >0
On the other hand, it follows from (ii) that
gr(Av) < Agg(v) < 0.
This is a contradiction, which shows that there can only be one equilibrium
of (9) in int (R%}) as claimed.

To complete the proof, we show that this unique equilibrium point is GAS.
Let p > 0 be the equilibrium point of (9). As the Jacobian of g evaluated at
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p is Hurwitz, Metzler and irreducible, it follows from Taylor’s theorem (as in
the previous paragraph) that there is some v > p with g(v) < 0. Further,
as f(0) = 0, we have ¢g(0) = b > 0. Hence from Lemma 2.1 the trajectory
x(t,0) of (9) is non-decreasing and satisfies

0<z(t,0)<p

for all t > 0. As p is the only equilibrium of (9) it follows that x(¢,0) — p as
t — oo.

Let zo € RY} be given. As g is subhomogeneous, we can find a A > 1 such
that w = Av > xp, and g(w) < 0. Lemma 2.1 implies that the trajectory
x(t, w), starting from w is decreasing and satisfies

w > z(t,w) >p

for all t > 0. Thus z(t,w) — p as t — 0.
As 0 < zp < w and (9) is monotone, it follows that

z(t,0) < z(t,x0) < x(t,w)

for all ¢ > 0. It is now immediate that z(t,z9) — p as t — oco. O

6. Conclusions

We have extended recent results on nonlinear versions of the concept of
D-stability to subhomogeneous cooperative systems. Specifically, we have
presented two separate results relating to D-stability: one for the case of
a GAS equilibrium at the origin and one for the case of an asymptotically
stable equilibrium in the interior of R}, whose domain of attraction includes
int (R”?). We have also extended a result of [14] from homogeneous systems
to subhomogeneous systems.
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