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1 A short introductional note

This script is a personal compilation of introductory topics about discrete
time Markov chains on some countable state space. The choice of a countable
state space is motivated by the fact that it is mathematically richer than the
finite state space case, but still not as technically as general state space case.
Furthermore, it allows for an easier generalization to the general state space
Markov chains. Of course, this is only an introductory script that obviously
lacks a lot of (important) topic— we explicitly encourage any interested
student to study further, by referring to the literature provided at the end
of this script. Furthermore we did our best to avoid any errors, but for
sure there are still some typos out there, if you spot one, do not hesitate to
contact us.

This manuscript is based on manuscripts of Wilhelm Huisinga and Eike
Meerbach. Without their work the present version would not exist. Thanks!

Christof Schuette and Philipp Metzner
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2 Setting the scene

2.1 Introductory example

We will start with an example that illustrate some features of Markov chains:
Imagine a surfer on the world-wide-web (WWW). At an arbitrary instance in
time he is looking at some webpage out of the WWW universe of N different
webpages. Let us ignore the question of whether a specific webpage has to
be counted as one of the individual webpages or may just be a subpage of
another one. Let us simply assume that we have a listing 1, . . . , N of all
of them (like Google, for example, is said to have), and furthermore that
we know which webpage includes links to which other webpage (Google

is said to have this also). That is, for each webpage w ∈ {1, . . . , N} we do
have a list Lw ⊂ {1, . . . , N} of webpages to which w includes links.

To make things simple enough for an introduction, let us assume that
we are not interested in what an individual surfer will really do but imagine
that we are interested in producing a webbrowser and that our problem is to
find a good but not too complicated model of how often the average surfer
will be looking at a certain webpage. We plan to use the probability pw of
a visit of the average surfer on webpage w ∈ {1, . . . , N} for ranking all the
webpages: the higher the probability, the higher the ranking.

To make live even easier let us equip our average surfer with some simple
properties:

(P1) He looks at the present website for exactly the same time, say ∆t = 1,
before surfing to the next one. So, we can write down the list of
webpage he visits one after the other: w0, w1, w2, . . ., where w0 ∈
{1, . . . , N} is his start page, and wj is the page he is looking at at
time j.

(P2) When moving from webpage w to the next webpage he just chooses
from one of the webpages in Lw with equal probability. His choice is
independent of the instance at which he visits a certain webpage.

Thus, the sequence of webpages our surfer is visiting can be completely de-
scribed as a sequence of random variable wj with joint state space {1, . . . , N},
and transition probabilitiesP[wj+1 = w′|wj = w] =

{

1/|Lw| if w′ ∈ Lw, and Lw 6= ∅
0 otherwise

,

where |Lw| denotes the number of elements in Lw. We immediately see that
we get trapped whenever there is a webpage w so that Lw = ∅ which may
well happen in the real WWW. Therefore, let us adapt property (P2) of our
average surfer a little bit:
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(P2a) When moving from webpage w to the next webpage the average surfer
behaves as follows: With some small probability α he jumps to an
arbitrary webpage in the WWW (random move). With probability
(1 − α) he just chooses from one of the webpages in Lw with equal
probability; if Lw = ∅ he then stays at the present webpage. His choice
is independent of the instance at which he visits a certain webpage.

Under (P1) and (P2a) our sequence of random variable wj are connected
through transition probabilitiesP[wj+1 = w′|wj = w] =



























α
N + 1−α

|Lw| if w′ ∈ Lw, and Lw 6= ∅
α
N if w′ 6∈ Lw, and Lw 6= ∅
α
N + 1− α if w′ = w, and Lw = ∅
α
N if w′ 6= w, and Lw = ∅

. (1)

Now our average surfer cannot get trapped and will move through the WWW
till eternity.

So what now is the probability pw of a visit of the average surfer on web-
page w ∈ {1, . . . , N}. The obvious mathematical answer is an asymptotic
answer: pw is the T →∞ limit of the probability of visits on webpage w in
a long trajectory (length T ) of the random surfer. This leaves many obvious
questions open. For example: How can we compute pw? And, if there is an
explicit equation for this probability, can we compute it efficiently for very
large N?

We will give answers to these questions (see Remarks on pages 8, 22),
34, and 54)! But before we are able to do this, we will have to digest some
of the theory of Markov Chains: the sequence w0, w1, w2, . . . of random
variables described above form a (discrete-time) Markov chain. They have
the characteristic property that is sometimes stated as “The future depends
on the past only through the present”: The next move of the average surfer
depends just on the present webpage and on nothing else. This is known
as the Markov property. Similar dependence on the history might be used
to model the evolution of stock prices, the behavior of telephone customers,
molecular networks etc. But whatever we may consider: we always have
to be aware that Markov chains, as in our introductory example, are often
simplistic mathematical models of the real-world process they try to describe.

2.2 Markov property, stochastic matrix, realization, density
propagation

When dealing with randomness, some probability space (Ω,A,P) is usually
involved; Ω is called the sample space, A the set of all possible events
(the σ–algebra) and P is some probability measure on Ω. Usually, not
much is known about the probability space, rather the concept of random
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variables is used to deal with randomness. A function X0 : Ω→ S is called
a (discrete) random variable, if for every y ∈ S:

{X0 = y} := {ω ∈ Ω : X0(ω) = y} ∈ A.

In the above definition, the set S is called the state space, the set of all
possible “outcomes” or “observations” of the random phenomena. Through-
out this manuscript, the state space is assumed to be countable; hence it is
either finite, e.g., S = {0, . . . , N} for some N ∈ N or countable infinite, e.g.,
S = N. Elements of the state space are denoted by x, y, z, . . . The definition
of a random variable is motivated by the fact, that it is well-defined to assign
a probability to the outcome or observation X0 = y:P[X0 = y] = P[{X0 = y}] = P[{ω ∈ Ω : X0(ω) = y}].
The function µ0 : S→ R with µ0(y) = P[X0 = y] is called the distribution
or law of the random variable X0. Most of the time, a random variable is
characterized by its distribution rather than as a function on the sample
space Ω.

A sequence X = {Xk}k∈N of random variables Xk : Ω → S is called
a discrete-time stochastic process on the state space S. The index k
admits the convenient interpretation as time: if Xk = y, the process is said
to be in state y at time k. For some given ω ∈ Ω, the S–valued sequence

X(ω) = {X0(ω),X1(ω),X2(ω), . . .}
is called a realization (trajectory, sample path) of the stochastic process
X associated with ω. In order to define the stochastic process properly, it
is necessary to specify all distributions of the formP[Xm = xm,Xm−1=xm−1, . . . ,X0 = x0]

for m ∈ N and x0, . . . , xm ∈ S. This, of course, in general is a hard task.
As we will see below, for Markov chains it can be done quite easily.

Definition 2.1 (Homogeneous Markov chain) A discrete-time stochas-
tic process {Xk}k∈N on a countable state space S is called a homogeneous

Markov chain, if the so–called Markov propertyP[Xk+1 = z|Xk = y,Xk−1 = xk−1, . . . ,X0 = x0] = P[Xk+1 = z|Xk = y] (2)

holds for every k ∈ N, x0, . . . , xk−1, y, z ∈ S, implicitly assuming that both
sides of equation (2) are defined1 and, moreover, the right hand side of (2)
does not depend on k, henceP[Xk+1 = z|Xk = y] = . . . = P[X1 = z|X0 = y]. (3)

1The conditional probability P[A|B] is only defined if P[B] 6= 0. We will assume this
throughout the manuscript whenever dealing with conditional probabilities.
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For a given homogeneous Markov chain, the function P : S× S→ R with

P (y, z) = P[Xk+1 = z|Xk = y]

is called the transition function2; its values P (y, z) are called the (condi-
tional) transition probabilities from y to z. The probability distribution
µ0 satisfying

µ0(x) = P[X0 = x]

is called the initial distribution. If there is a single x ∈ S such that
µ0(x) = 1, then x is called the initial state.

Often, one writes Pµ0 or Px to indicate that the initial distribution or the
initial state is given by µ0 or x, respectively. We also define the conditional
transition probability

P (y,C) =
∑

z∈C

P (y, z).

from some state y ∈ S to some subset C ⊂ S.

There is a close relation between Markov chains, transition functions
and stochastic matrices that we want to outline next. This will allow us to
easily state a variety of examples of Markov chains. To do so, we need the
following

Definition 2.2 A matrix P = (pxy)x,y∈S is called stochastic, if

pxy ≥ 0, and
∑

y∈S

pxy = 1 (4)

for all x, y ∈ S. Hence, all entries are non–negative and the row-sums are
normalized to one.

By Def. 2.1, every Markov chain defines via its transition function a
stochastic matrix. The next theorem states that a stochastic matrix also
allows to define a Markov chain, if additionally the initial distribution is
specified. This can already be seen from the following short calculation: A
stochastic process is defined in terms of the distributionsPµ[Xm = xm,Xm−1=xm−1, . . . ,X0 = x0]

2Alternative notations are stochastic transition function, transition kernel, Markov
kernel.
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for every m ∈ N and x0, . . . , xm ∈ S. Exploiting the Markov property, we
deducePµ0 [Xm = xm,Xm−1=xm−1, . . . ,X0 = x0]

= P[Xm = xm|Xm−1 = xm−1, . . . ,X0 = x0] · . . .P[X2 = x2|X1 = x1,X0 = x0] ·P[X1 = x1|X0 = x0] ·Pµ0 [X0 = x0]

= P[Xm = xm|Xm−1 = xm−1] · . . . ·P[X2 = x2|X1 = x1]P[X1 = x1|X0 = x0] ·Pµ0 [X0 = x0]

= P (xm−1, xm) · · ·P (x1, x2) · P (x0, x1) · µ(x0).

Hence, to calculate the probability of a specific sample path, we start with
the initial probability of the first state and successively multiply by the con-
ditional transition probabilities along the sample path. Theorem 2.3 [12,
Thm. 3.2.1] will now make this more precise.

Remark. In our introductory example (random surfer on the WWW),
we can easily check that the matrix P = (pw,w′)w,w′=1,...,N with

pw,w′ = P[wj+1 = w′|wj = w]

according to (1) is a stochastic matrix in which all entries are positive.
Remark. Above, we have exploited Bayes’s rules. There are three of

them [2]:
Bayes’s rule of retrodiction. With P[A] > 0, we haveP[B|A] =

P[A|B] ·P[B]P[A]
.

Bayes’s rule of exclusive and exhaustive causes. For a partition
of the state space

S = B1 ∪B2 ∪ . . .

and for every A we haveP[A] =
∑

k

P[A|Bk] ·P[Bk].

Bayes’s sequential formula. For any sequence of events A1, . . . , An,P[A1, . . . , An] = P[A1] ·P[A2|A1] ·P[A3|A2, A1] · . . . ·P[An|An−1, . . . , A1].
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Theorem 2.3 For some given stochastic matrix P = (pxy)x,y∈S and some
initial distribution µ0 on a countable state space S, there exists a probability
space (Ω,A,Pµ0) and a Markov chain X = {Xk}k∈N satisfyingPµ0 [Xk+1 = y|Xk = x,Xk−1 = xk−1 . . . ,X0 = x0] = pxy.

for all x0, . . . , xk−1, x, y ∈ S.

Often it is convenient to specify only the transition function of a Markov
chain via some stochastic matrix, without further specifying its initial dis-
tribution. This would actually correspond to specifying a family of Markov
chains, having the same transition function but possibly different initial dis-
tributions. For convenience, we will not distinguish between the Markov
chain (with initial distribution) and the family of Markov chain (without
specified initial distribution) in the sequel. No confusion should result from
this usage.

Exploiting Theorem 2.3, we now give some examples of Markov chains
by specifying their transition function in terms of some stochastic matrix.

Example 2.4 1. Two state Markov chain. Consider the state space
S = {0, 1}. For any given parameters p0, p1 ∈ [0, 1] we define the
transition function as

P =

(

1− p0 p0

p1 1− p1

)

.

Obviously, P is a stochastic matrix—see cond. (4). The transition
matrix is sometimes represented by its transition graph G, whose
vertices (nodes) are identified with the states of S. The graph has an
oriented edge from node x to node y with weight p, if the transition
probability from x to y equals p, i.e., P (x, y) = p. For the two state
Markov chain, the transition graph is shown in Fig. 1.

0

p

p

1−p

1−p

1

1

0

0

1

Figure 1: Transition graph of the two state Markov chain

2. Random walk on N. Consider the state space S = {0, 1, 2, . . .} and
parameters pk ∈ (0, 1) for k ∈ N. We define the transition function as

P =











1− p0 p0

1− p1 0 p1

0 1− p2 0 p2

. . .
. . .

. . .
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Again, P is a stochastic matrix. The transition graph corresponding
to the random walk on N is shown in Fig. 2.

1-p 1-p

0
1

2
3

p
p

p

1-p

1-p1-p

p

3

3

0

1 42

1

0 2

Figure 2: Transition graph of the random walk on N.

3. A nine state Markov chain. Consider the state space S = {1, . . . , 9}
and a transition graph specified in Fig. 3. If, as usually done, non–zero
transition probabilities between states are indicated by an edge, while
omitted edges are assumed to have zero weight, then the corresponding
transition function has the form

P =





























p12

p23

p31 p35

p43 p44

p52 p54 p55 p56

p65 p66 p68

p74 p76 p77

p87 p88 p89

p98 p99





























Assume that the parameters pxy are such that P satisfies the two con-
ditions (4). Then, P defines a Markov chain on the state space S.

5
62

1 3
8

9
74

Figure 3: Transition graph of a nine state Markov chain.
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2.3 Realization of a Markov chain

We now address the question of how to simulate a given Markov chain
X = {Xk}k∈N,i.e., how to compute a realization X0(ω),X1(ω), . . . for some
ω ∈ Ω. With this respect, the following theorem will be of great use.

Theorem 2.5 (Canonical representation) [2, Sec. 2.1.1] Let {ξk}k∈N
denote some independent and identically distributed (i.i.d.) sequence of ran-
dom variables with values in some space Y, and denote by X0 some random
variable with values in S and independent of {ξk}k∈N. Consider some func-
tion f : S ×Y → S. Then the stochastic dynamical system defined by
the recurrence equation

Xk+1 = f(Xk, ξk) (5)

defines a homogeneous Markov chain X = {Xk}k∈N on the state space S.

As a simple illustration of the canonical representation, let (ξk)k∈N denote
a sequence of i.i.d. random variables, independent of X0, taking values in
Y = {−1,+1} with probabilityP[ξk = 1] = q and P[ξk = −1] = 1− q

for some q ∈ (0, 1). Then, the Markov chain {Xk}k∈N on S = Z defined by

Xk+1 = Xk + ξk

corresponding to f : Z × Y → Z with f(x, y) = x + y is a homogeneous
Markov chain, called the random walk on Z (with parameter q).

Given the canonical representation, the transition function P of the
Markov chain is defined by

P (x, y) = P[f(x, ξ0) = y].

The proof is left as an exercise. On the other hand, if some Markov chain
{Xk}k∈N is given in terms of its stochastic transition matrix P , we can
define the canonical representation (5) for {Xk}k∈N as follows: Let {ξk}k∈N
denote an i.i.d. sequence of random variables uniformly distributed on [0, 1].
Then, the recurrence relation Xk+1 = f(Xk, ξk) holds for f : S× [0, 1] → S
with

f(x, u) = z for
z−1
∑

y=1

P (x, y) ≤ u <
z
∑

y=1

P (x, y). (6)

Note that every homogeneous Markov chain has a representation (5) with
the function f defined in (6).
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Two particular classes of functions f are of further interest: If f is a
function of x alone and does not depend on u, then the thereby defined
Markov chain is in fact deterministic and the recurrence equation is called a
deterministic dynamical system with possibly random initial data. If,
however, f is a function of u alone and does not depend on x, then the re-
currence relation defines a sequence of independent random variables. This
way, Markov chains are a mixture of deterministic dynamical systems and
independent random variables.

Now, we come back to the task of computing a realization of a Markov
chain. Here, the canonical representation proves extreme useful, since it
directly implies an algorithmic realization: In order to simulate a Markov
chain {Xk}k∈N, choose a random number x0 according to the law of X0 and
choose a sequence of random numbers w0, w1, . . . according to the law of ξ0

(recall that the ξk are i.i.d.). Then, the realization x0, x1, . . . of {Xk}k∈N
is recursively defined by xk+1 = f(xk, wk). If the Markov chain is specified
in terms of some transition function P and some initial distribution X0,
then the same holds with the sequence of ξk being i.i.d. uniform in [0, 1)
distributed random variables and f is defined in terms of P via relation (6).

2.4 The evolution of distributions under the Markov chain

One important task in the theory of Markov chains is to determine the
distribution of the Markov chain while it evolves in time. Given some initial
distribution µ0, the distribution µk of the Markov chain at time k is given
by

µk(z) = Pµ0 [Xk = z]

for every z ∈ S. A short calculation reveals

µk(z) = Pµ0 [Xk = z]

=
∑

y∈S

Pµ0 [Xk−1 = y] P[Xk = z|Xk−1 = y]

=
∑

y∈S

µk−1(y)P (y, z)

To proceed we introduce the notion of transfer operators, which is closely
related to transition functions and Markov chains.

Given some distribution µ : S → C, we define the total variation
norm || · ||TV by

||µ||TV =
∑

x∈S

|µ(x)|.
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Based on the total variation norm, we define the function space

M = {µ : S→ C : ||µ||TV <∞}.

Note that M equipped with the total variation norm is a Banach space.
Given some Markov chain in terms of its transition function P , we define
the transfer operator P : M → M acting on distributions by µ 7→ µP
with

(µP )(y) =
∑

x∈S

µ(x)P (x, y).

We are aware of the fact that the term P has multiple meanings. It serves
to denote (i) some transition function corresponding to a Markov chain, (ii)
some stochastic matrix, and (iii) some transfer operator. However, no con-
fusion should result form the multiple usage, since it should be clear from
the context what meaning we are referring to. Moreover, actually, the three
meanings are equivalent expressions of the same fact.

Given some transfer operator P , we define the kth power P k of P recur-
sively by µP k = (µP )P k−1 for k > 0 and P 0 = Id, the identity operator.
As can be shown, P k is again a transfer operator associated with the k-step
Markov chain Y = (Yn)n∈N with Yn = Xkn. The corresponding transition
function Q is identical to the so-called k–step transition probability

P k(x, y) = P[Xk = y|X0 = x], (7)

denoting the (conditional) transition probability from x to y in k steps of
the Markov chain X. Thus, we have

(µP k)(y) =
∑

x∈S

µ(x)P k(x, y).

In the notion of stochastic matrices, P k is simply the kth power of the
stochastic matrix P .

Exploiting the notion of transfer operators acting on distributions, the
evolution of distributions under the Markov chain can be formulated quite
easily. In terms of powers of P , we can rewrite µk as follows

µk = µk−1 P 1 = µk−2 P 2 = . . . = µ0 P k. (8)

There is an important relation involving k–step transition probability, namely
the Chapman-Kolmogorov equation stating that

Pm+k(x, z) =
∑

y∈S

Pm(x, y)P k(y, z) (9)
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Figure 4: Evolution of some density µk in time. Top: at time k = 0, 1, 3
(left to right). Bottom: at time k = 15, 50. The stationary density is shown
at the bottom, right.

holds for every m,k ∈ N and x, y, z ∈ S. In terms of transfer operators, the
Chapman-Kolmogorov equation reads Pm+k = PmP k, which is somehow an
obvious statement.

To illustrate the evolution of densities, consider our nine state Markov
chain with suitable chosen parameters for the transition matrix. The initial
distribution µ0 and some iterates, namely, µ1, µ3, µ15, µ50 are shown in
Figure 4. We observe that µk changes while evolving in time. However,
there also exist distributions that do not change in time; as we will see in
the course of this manuscript, these are of special interest.

Definition 2.6 A probability distribution π satisfyingPπ[X1 = y] = π(y) (10)

is called a stationary distribution or invariant probability measure

of the Markov chain {Xk}k∈N. Equivalently, it is

π = πP (11)

in terms of its transfer operator P .

Note that π = πP implies π = πP k to hold for every k ∈ N. To illustrate
the above definition, we have computed the stationary density for the nine
state Markov chain (see Figure 4). Moreover, we analytically compute the
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stationary distribution of the two state Markov chain. Here, π = (π(1), π(2))
has to satisfy

π = π

(

1− a a
b 1− b

)

resulting in the two equations

π(1) = π(1)(1 − a) + π(2)b

π(2) = π(1)a + π(2)(1 − b).

This is a dependent system reducing to the single equation π(1)a = π(2)b,
to which the additional constraint π(1) + π(2) = 1 must be added (why?).
We obtain

π =

(

b

a + b
,

a

a + b

)

.

Stationary distributions need neither to exist (as we will see below) nor
they need to be unique! As an example for the latter statement, consider a
Markov chain with the identity matrix as transition function. Then, every
probability distribution is stationary.

When calculating stationary distributions, two strategies can be quite
useful. The first one is based on the interpretation of eq. (10) as an eigen-
value problem, the second one is based on the notion of the probability flux.
While we postpone the eigenvalue interpretation, we will now exploit the
probability flux idea in order to calculate the stationary distribution of the
random walk on N.

Assume that the Markov chain exhibits a stationary distribution π and
let A,B ⊂ S denote two subsets of the state space. Then, the probability
flux from A to B is defined by

fluxπ(A,B) = Pπ[X1 ∈ B,X0 ∈ A] (12)

=
∑

x∈A

π(x)P (x,B) =
∑

x∈A

∑

y∈B

π(x)P (x, y).

For a Markov chain possessing a stationary distribution, the flux from some
subset A to its complement Ac is somehow balanced:

Theorem 2.7 ([3]) Let {Xk}k∈N denote a Markov chain with stationary
distribution π and A ⊂ S an arbitrary subset of the state space. Then

fluxπ(A,Ac) = fluxπ(Ac, A),

hence the probability flux from A to its complement Ac is equal to the reverse
flux from Ac to A.
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Proof: The proof is left as an exercise. �

Now, we want to exploit the above theorem to calculate the stationary
distribution of the random walk on N. For sake of illustration, we take
ak = p ∈ (0, 1) for k ∈ N. Hence, with probability p the Markov chain
moves to the right, while with probability 1 − p it moves to the left (with
exception of the origin). Then, the equation of stationarity (10) reads

π(0) = π(0)(1 − p) + π(1)(1 − p) and

π(k) = π(k − 1)p + π(k + 1)(1 − p)

for k > 0. The first equation can be rewritten as π(1) = π(0)p/(1 − p).
Instead of exploiting the second equation (try it), we use Theorem 2.7 to
proceed. For some k ∈ N consider A = {0, . . . , k} implying Ac = {k +1, k +
2, . . .}; then

fluxπ(A,Ac) =
∑

x∈A

π(x)P (x,Ac) = π(k)p

fluxπ(Ac, A) =
∑

x∈Ac

π(x)P (x,A) = π(k + 1)(1 − p)

It follows from Theorem 2.7, that

π(k)p = π(k + 1)(1 − p)

and therefore

π(k + 1) = π(k)

(

p

1− p

)

= . . . = π(0)

(

p

1− p

)k+1

.

The value of π(0) is determined by demanding that π is a probability dis-
tribution:

1 =
∞
∑

k=0

π(k) = π(0)
∞
∑

k=0

(

p

1− p

)k

.

Depending on the parameter p, we have

∞
∑

k=0

(

p

1− p

)k

=

{

∞; if p ≥ 1/2

(1− p)/(1− 2p); if p < 1/2.
(13)

Thus, we obtain for the random walk on N the following dependence on
the parameter p:

• for p < 1/2, the stationary distribution is given by

π(0) =
1− 2p

1− p
and π(k) = π(0)

(

p

1− p

)k
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• for p ≥ 1/2 there does not exist a stationary distribution π, since the
normalisation in eq. (13) fails.

A density or measure π satisfying π = πP , without the requirement
∑

π(x) = 1, is called invariant. Trivially, every stationary distribution is
invariant, but the reverse statement is not true. Hence, for p ≥ 1/2, the
family of mesures π with π(0) ∈ R+ and π(k) = π(0)p/(1− p) are invariant
measures of the random walk on N (with parameter p) .

2.5 Some key questions concerning Markov chains

1. Existence of unique invariant measure and corresponding convergence
rates

µn −→ π or Pn = 1πt +O(nm2 |λ2|n).
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2. Evaluation of expectation values and corresponding convergence rates,
including sampling of the stationary distribution

1

n

n
∑

k=1

f(Xk) −→
∑

x∈S

f(x)π(x)

3. Identification of macroscopic properties like, e.g., cyclic or metastable
behaviour, coarse graining of the state space.
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4. Calculation of return and stopping times, exit probabilities and prob-
abilities of absorption.

σD(x) = inf{t > 0 : Xt /∈ D,X0 = x}
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3 Communication and recurrence

3.1 Irreducibility and (A)periodicity

This section is about the topology of Markov chains. We start with some

Definition 3.1 Let {Xk}k∈N denote a Markov chain with transition func-
tion P , and let x, y ∈ S denote some arbitrary pair of states.

1. The state x has access to the state y, written x→ y, ifP[Xm = y|X0 = x] > 0

for some m ∈ N that possibly depends on x and y. In other words, it
is possible to move (in m steps) from x to y with positive probability.

2. The states x and y communicate, if x has access to y and y access
to x, denoted by x↔ y.

3. The Markov chain (equivalently its transition function) is said to be
irreducible, if all pairs of states communicate.

The communication relation ↔ can be exploited to analyze the Markov
chain in more detail. It is easy to prove that communication relation is a
so–called equivalence relation, hence it is

1. reflexive: x↔ x

2. symmetric: x↔ y implies y ↔ x,

3. transitive: x↔ y and y ↔ z imply x↔ z.

Recall that every equivalence relation induces a partition S = C0∪· · ·∪Cr−1

of the state space S into so–called equivalence classes defined as

Ck = [xk] := {y ∈ S : y ↔ xk}

for k = 0, . . . , r − 1 and suitable states x0, . . . , xr−1 ∈ S. In the theory of
Markov chains, the elements C0, . . . , Cr−1 of the induced partition are called
communication classes.

Why are we interested in communication classes? The partition into
communication classes allows to break down the Markov chain into easier
to handle and separately analyzable subunits. This might be interpreted
as finding some normal form for the Markov chain. If there is only one
communication class, hence all states communicate, then nothing can be
further partitioned, and the Markov chain is already in its normal form.
There are some additional properties of communication classes:
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Definition 3.2 A communication class C is called closed (invariant or
absorbing) if none of the states in C has access to the complement Cc = S\C
of C, i.e, for every x ∈ C and every y ∈ Cc we have x 9 y. In terms of
transition probabilities, this is equivalent toP[Xm ∈ Cc|X0 = x] = 0

for every x ∈ C and every m ≥ 0.

Now assume that the Markov chain is not irreducible. Let C0, . . . , Cr−1

denote the closed communication classes and D the collection of all remain-
ing communication classes. Then

S =
(

C0 ∪ . . . ∪ Cr−1

)

∪D. (14)

The following proposition states that we may restrict the Markov chain to
its closed communication classes that hence can be analyzed separately [12,
Prop. 4.1.2].

Proposition 3.3 Suppose that C is some closed communication class. Let
PC denote the transition function P = (P (x, y))x,y∈S restricted to C, i.e.,

PC =
(

P (x, y)
)

x,y∈C
.

Then there exists an irreducible Markov chain {Yn}n∈N whose state space is
C and whose transition function is given by PC .

Proof : We only have to check that PC is a stochastic matrix. Then the
Proposition follows from Theorem 2.3. �

According to [12, p.84], for reducible Markov chains we can analyze at least
the closed subsets in the decomposition (14) as separate chains. The power
of this decomposition lies largely in the fact that any Markov chain on a
countable state space can be studied assuming irreducibility. The irreducible
parts can then be put together to deduce most of the properties of the orig-
inal (possible reducible) Markov chain. Only the behavior of the remaining
part D has to be studied separately, and in analyzing stability properties
the part of the state space corresponding to D may often be ignored.

For the states x ∈ D only two things can happen: either they reach one
of the closed communication classes Ci, in which case they get absorbed, or
the only other alternative, the Markov chain leaves every finite subset of D
and “heads to infinity” [12, p.84].

Another important property is periodicity, somehow a leftover of the
deterministic realm within the stochastic world of Markov chains. It is
best illustrated by the following theorem, which we prove at the end of this
section:
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D

C2

C1

C0

P =

Figure 5: Normal form of the transition function for r = 3.

Theorem 3.4 (cyclic structure [2]) For any irreducible Markov chain
{Xk}k∈N, there exists a unique partition of the state space S into d so–called
cyclic classes E0, . . . , Ed−1 such thatP[X1 ∈ Ek+1|X0 = x] = 1

for every x ∈ Ek and k = 0, . . . , d − 1 (by convention Ed = E0). Moreover,
d is maximal in the sense that there exists no partition into more than d
classes with the same property.

Hence the Markov chain moves cyclically in each time step from one
class to the next. The number d in Theorem 3.4 is called the period of
the Markov chain (respectively the transition function). If d = 1, then the
Markov chain is called aperiodic. Later on, we will see, how to identify
(a)periodic behavior and, for d > 1 the cyclic classes.

The transition matrix of a periodic irreducible Markov chain has a special
structure. After renumbering of the states of S (if necessary), the transition
function has a block structure as illustrated in Fig. 6. There is a more
arithmetic but much less intuitive definition of the period that in addition
does not rely on irreducibility of the Markov chain.

Definition 3.5 ([2]) The period d(x) of some state x ∈ S is defined as

d(x) = gcd{k ≥ 1 : P[Xk = x|X0 = x] > 0},

with the convention d(x) = ∞, if P[Xk = x|X0 = x] = 0 for all k ≥ 1. If
d(x) = 1, then the state x is called aperiodic.

Hence, different states may have different periods. As the following
theorem states, this is only possible for reducible Markov chains [2].
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P = E1

E2

E0

Figure 6: Block structure of a periodic, irreducible Markov chain with period
d = 3.

Theorem 3.6 The period is a class property, i.e., all states of a communi-
cation class have the same period.

Proof: Let C be a communication class and x, y ∈ C. As a consequence,
there exist k,m ∈ N with P k(x, y) > 0 and Pm(y, x) > 0. Moreover,
d(x) <∞ and d(y) <∞. From the Chapman-Kolmogorov Equation (9) we
get

P k+j+m(x, x) ≥ P k(x, y)P j(y, y)Pm(y, x)

for all j ∈ N. Now, for j = 0 we infer that d(x) divides k + m, in short
d(x)|(k + m), since P k(x, y)Pm(y, x) > 0. Whereas choosing j such that
P j(y, y) > 0 yields d(x)|(k+ j +m). Therefore we have d(x)|j, which means
that d(x)|d(y). By symmetry of the argument, we obtain d(y)|d(x), which
implies d(x) = d(y). �

In particular, if the Markov chain is irreducible, all states have the same
period d, and we may call d the period of the Markov chain (cf. Theorem 3.4).
Combining Definition 3.5 with Theorem 3.6, we get the following useful
criterion for aperiodicity:

Corollary 3.7 An irreducible Markov chain {Xk}k∈N is aperiodic, if there
exists some state x ∈ S such that P[X1 = x|X0 = x] > 0.

Remark. In our introductory example (random surfer on the WWW),
we can easily check that the matrix P = (pw,w′)w,w′=1,...,N with

pw,w′ = P[wj+1 = w′|wj = w]

according to (1) is a stochastic matrix in which all entries are positive. Thus,
the associated chain is irreducible and aperiodic.
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3.1.1 Additional Material: Proof of Theorem 3.4

We now start to prove Theorem 3.4. The proof will be a simple consequence
of the following three propositions.

Proposition 3.8 Let {Xk}k∈N be an irreducible Markov chain with tran-
sition function P and period d. Then, for any states x, y ∈ S, there is an
k0 ∈ N and m ∈ {0, . . . , d− 1}, possibly depending on x and y, such that

P kd+m(x, y) > 0

for every k ≥ k0.

Proof: For now asumme that x = y, then, by the Chapman-Kolmogorov
equation (9), the set Gx = {k ∈ N : P k(x, x) > 0} is closed under addition,
since k, k′ ∈ Gx implies

P k+k′

(x, x) ≥ P k(x, x)P k′

(x, x) > 0,

and therefore k + k′ is an element of Gx. This enables us to use a number
theoretic result [15, Appendix A]: A subset of the natural numbers which
is closed under addition, contains all, except a finite number, multiples of
its greatest common divisor. By definition, the gcd of Gx is the period d,
so there is a k0 ∈ N with P kd(x, x) > 0 for k ≥ k0. Now, if x 6= y then
irreducibility of the Markov chain ensures that there is an m ∈ N with
Pm(x, y) > 0 and therefore

P kd+m(x, y) ≥ P kd(x, x)Pm(x, y) > 0

for k ≥ k0. Of course k0 can be chosen in such a way that m < d. �

Proposition 3.8 can be used to define an equivalence relation on S, which
gives rise to the cyclic classes in Theorem 3.4: Fix an arbitrary state z ∈ S
and define x and y to be equivalent, denoted by x ↔z y, if there is an
m ∈ {0, . . . , d− 1} and an k0 ∈ N such that

P kd+m(z, x) > 0 and P kd+m(z, y) > 0

for every k ≥ k0. The relation x↔z y is indeed an equivalent relation (the
proof is left as an exercise) and therefore defines a disjoint partition of the
state space S = E0 ∪ E1 ∪ E2 ∪ . . . Ed−1 with

Em = {x ∈ S : P kd+m(z, x) > 0 for k ≥ k0}

for m = 0, . . . , d−1. The next proposition confirms that these are the cyclic
classes used in Theorem 3.4.
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Proposition 3.9 Let P denote the transition function of an irreducible
Markov chain with period d and define E0, . . . , Ed−1 as above.

If P r(x, y) > 0 for some r > 0 and x ∈ Em then y ∈ Em+r, where the
indices are taken modulo d. In particular, if P (x, y) > 0 and x ∈ Em then
y ∈ Em+1 with the convention Ed = E0.

Proof : Let P r(x, y) > 0 and x ∈ Em, then there is a k0, such that
P kd+m(z, x) > 0 for all k ≥ k0, and hence

P kd+m+r(z, y) ≥ P kd+m(z, x)P r(x, y) > 0,

for every k > k0, therefore y ∈ Em+r. �

There is one thing left to do: We have to prove that the partition of S
into cyclic classes is unique, i.e., it does not depend on the z ∈ S chosen to
define ↔z.

Proposition 3.10 For two given states z, z′ ∈ S, the partitions of the state
space induced by ↔z and ↔z′ are equal.

Proof: Let Em and E′
m′ denote two arbitrary subsets from the partitions

induced by ↔z and ↔z′ , respectively. We prove that the two subsets are
either equal or disjoint. Assume that Em and E′

m′ are not disjoint and
consider some x ∈ Em ∩ E′

m′ . Consider some y ∈ Em. Then, due to
Props. 3.8 there exist k0 ∈ N and s < d such that P kd+s(x, y) > 0 for
k ≥ k0. Due to 3.9, we infer y ∈ E(kd+s)+m, hence s is a multiple of d.

Consequently, P kd(x, y) > 0 for k ≥ k′′
0 . By definition of E′

m′ , there is an
k′
0 ∈ N, such that P kd+m′

(z′, x) > 0 for k ≥ k′
0, and therefore

P (k+k′′

0 )d+m′

(z′, y) ≥ P kd+m′

(z′, x)P k′′

0 d(x, y) > 0

for k ≥ k′
0. Equivalently, P k′d+m′

(z′, y) > 0 for k′ ≥ k′
0+k′′

0 , so that y ∈ E′
m′ .

�

3.2 Recurrence and the existence of stationary distributions

In Section 3.1 we have investigated the topology of a Markov chain. Re-
currence and transience is somehow the next detailed level of investigation.
It is in particular suitable to answer the question, whether a Markov chain
admits a unique stationary distribution.

Consider an irreducible Markov chain on the state space S = N. By
definition we know that each two states communicate. Hence, given x, y ∈ S
there is always a positive probability to move from x to y and vice versa.
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Consequently, there is also a positive probability to start in x and return
to x via visiting y. However, there might also exist the possibility that
the Markov chain never returns to x within finite time. This is often an
undesirable feature; in a sense the Markov chain is unstable.

A better notion of stability is that of recurrence, when the Markov chain
returns to any state infinitely often. The strongest results are obtained,
when in addition the average return time to any state is finite. We start by
introducing the necessary notions.

Definition 3.11 A random variable T : Ω→ N∪{∞} is called a stopping

time w.r.t. the Markov chain {Xk}k∈N, if for every integer k ∈ N the event
{T = k} can be expressed in terms of X0,X1, . . . ,Xk.

We give two prominent examples.

Example 3.12 For every c ∈ N, the random variable T = c is a stopping
time.

The so–called first return time plays a crucial role in the analysis of
recurrence and transience.

Definition 3.13 The stopping time Tx : Ω→ N ∪ {∞} defined by

Tx = min{k ≥ 1 : Xk = x},

with the convention Tx = ∞, if Xk 6= x for all k ≥ 1, is called the first

return time to state x.

Note that Tx is a random variable. Hence, for a given realization ω with
X0(ω) = y for some initial state y ∈ S, the term

Tx(ω) = min{k ≥ 1 : Xk(ω) = x}

is an integer, or infinite. Using the first return time, we can specify how
often and how likely the Markov chain returns to some state x ∈ S. The
following considerations will be of use:

• The probability of starting initially in x ∈ S and returning to x in
exactly n steps: Px[Tx = n].

• The probability of starting initially in x ∈ S and returning to x in a
finite number of steps: Px[Tx <∞].

• The probability of starting initially in x ∈ S and not returning to x in
a finite number of steps: Px[Tx =∞].
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Of course, the relation among the three above introduced probabilities isPx[Tx <∞] =

∞
∑

n=1

Px[Tx = n] and Px[Tx <∞] +Px[Tx =∞] = 1.

We now introduce the important concept of recurrence. We begin by
defining a recurrent state, and then show that recurrence is actually a class
property, i.e., the states of some communication class are either all recurrent
or none of them is.

Definition 3.14 Some state x ∈ S is called recurrent ifPx[Tx <∞] = 1,

and transient otherwise.

The properties of recurrence and transience are intimately related to the
number of visits to a given state. To do so, we need a generalization of the
Markov property, the so-called strong Markov property. It states that
the Markov property, i.e. the independence of past and future given the
present state, holds even if the present state is determined by a stopping
time.

Theorem 3.15 (Strong Markov property) Let {Xk}k∈N be a homoge-
nous Markov chain on a countable state space S with transition matrix P and
initial distribution µ0. Let T denote a stopping time w.r.t. the Markov chain.
Then, conditional on T <∞ and XT = z ∈ S, the sequence (XT+n)n∈N is a
Markov chain with transition matrix P and initial state z that is independent
of X0, . . . ,XT .

Proof: Let H ⊂ Ω denote some event determined by X0, . . . ,XT , e.g., H =
{X0 = y0, . . . ,XT = yT } for y0, . . . , yT ∈ S. Then, the event H ∩ {T = m}
is determined by X0, . . . ,Xm. By the Markov property at time t = m we
get Pµ0 [XT = x0, . . . ,XT+n = xn,H,XT = z, T = m]

= Pµ0 [XT = x0, . . . ,XT+n = xn|H,Xm = z]Pµ0 [H,XT = z, T = m]

= Pz[X0 = x0, . . . ,Xn = xn]Pµ0 [H,XT = z, T = m].

Hence, summation over m = 0, 1, . . . yieldsPµ0 [XT = x0, . . . ,XT+n = xn,H,XT = z, T <∞]

= Pz[X0 = x0, . . . ,Xn = xn]Pµ0 [H,XT = z, T <∞],
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and dividing by Pµ0 [XT = z, T <∞], we finally obtainPµ0 [XT = x0, . . . ,XT+n = xn,H|XT = z, T <∞]

= Pz[X0 = x0, . . . ,Xn = xn]Pµ0 [H|XT = z, T <∞].

This is exactly the statement of the strong Markov property. �

Theorem 3.15 states that if a Markov chain is stopped by any “stopping
time rule” at, say XT = x, and the realization after T is observed, it can
not be distinguished from the Markov chain started at x (with the same
transition function, of course). Now, we are ready to state the relation
between recurrence and the number of visits Ny : Ω → N ∪ {∞} to some
state y ∈ S defined by

Ny =

∞
∑

k=1

1{Xk=y}.

Exploiting the strong Markov property and by induction [2, Thm. 7.2], it
can be shown thatPx[Ny = m] = Px[Ty <∞]Py[Ty <∞]m−1Py[Ty =∞] (15)

for m > 0, and Px[Ny = 0] = Px[Ty =∞].

Theorem 3.16 Consider some state x ∈ S. Then

x is recurrent⇔ Px[Nx =∞] = 1⇔ Ex[Nx] =∞,

and

x is transient⇔ Px[Nx =∞] = 0⇔ Ex[Nx] <∞.

The above equivalence in general fails to hold for the denumerable, more
general state space case—here, one has to introduce the notion of Harris
recurrent [12, Chapt. 9].

Proof: Now, if x is recurrent then Px[Tx <∞] = 1. Hence, due to eq. (15)Px[Nx <∞] =

∞
∑

m=0

Px[Nx = m] =

∞
∑

m=0

Px[Tx <∞]mPx[Tx =∞],

vanishes, since every summand is zero. Consequently, Px[Nx = ∞] = 1.
Now, if x is transient, then Px[Tx <∞] < 1 and hencePx[Nx <∞] = Px[Tx =∞]

∞
∑

m=0

Px[Tx <∞]m =
Px[Tx =∞]

1−Px[Tx <∞]
= 1.
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FurthermoreEx[Nx] =

∞
∑

m=1

mPx[Nx = m] =

∞
∑

m=1

mPx[Tx <∞]mPx[Tx =∞]

= Px[Tx <∞]Px[Tx =∞]
d

dPx[Tx <∞]

∞
∑

m=1

Px[Tx <∞]m

= Px[Tx <∞]Px[Tx =∞]
d

dPx[Tx <∞]

1

1−Px[Tx <∞]

=
Px[Tx <∞]Px[Tx =∞]

(1−Px[Tx <∞])2
=

Px[Tx <∞]

1−Px[Tx <∞]
.

Hence, Ex[Nx] <∞ implies Px[Tx <∞] < 1, and vice versa. The remaining
implications follow by negation. �

A Markov chain may possess both, recurrent and transient states as,
e.g., the two state Markov chain given by

P =

(

1− a a
0 1

)

.

for some a ∈ (0, 1). This example is actually a nice illustration of the next
proposition.

Proposition 3.17 Consider a Markov chain {Xk}k∈N on a state space S.

1. If {Xk}k∈N admits some stationary distribution π and y ∈ S is some
transient state then π(y) = 0.

2. If the state space S is finite, then there exists at least some recurrent
state x ∈ S.

Proof: 1. Assume we had proven that Ex[Ny] <∞ for arbitrary x ∈ S and
transient y ∈ S, which implies P k(x, y)→ 0 for k →∞. Then

π(y) =
∑

x∈S

π(x)P k(x, y)

for every k ∈ N, and finally

π(y) = lim
k→∞

∑

x∈S

π(x)P k(x, y) =
∑

x∈S

π(x) lim
k→∞

P k(x, y) = 0.

where exchanging summation and limit is justified by the theorem of domi-
nated convergence (e.g., [2, Appendix]), which proves the statement. Hence,
it remains to prove Ex[Ny] <∞.
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If Py[Ty < ∞] = 0, then Ex[Ny] = 0 < ∞. Now assume that Py[Ty <
∞] > 0. Then, we obtainEx[Ny] =

∞
∑

m=1

mPx[Ty <∞]Py[Ty <∞]m−1Py[Ty =∞]

=
Px[Ty <∞]Py[Ty <∞]

Ey[Ny] <∞

where the last inequality is due to transience of y and Thm. 3.16.
2. Proof left as an excercise (Hint: Use Proposition 3.17 and think on

properties of stochastic matrices). �

The following theorem gives some additional insight into the relation
between different states. It states that recurrence and transience are class
properties.

Theorem 3.18 Consider two states x, y ∈ S that communicate. Then

1. If x is recurrent then y is recurrent;

2. If x is transient then y is transient.

Proof: Since x and y communicate, there exist integers m,n ∈ N such that
Pm(x, y) > 0 and Pn(y, x) > 0. Introducing q = Pm(x, y)Pn(y, x) > 0,
and exploiting the Chapman-Kolmogorov equation, we get Pn+k+m(x, x) ≥
Pm(x, y)P k(y, y)Pn(y, x) = qP k(y, y) and Pn+k+m(y, y) ≥ qP k(x, x), for
k ∈ N. Consequently,Ey[Ny] = Ey

[

∞
∑

k=1

1{Xk=y}

]

=

∞
∑

k=1

Ey[1{Xk=y}] =

∞
∑

k=1

Py[Xk = y]

=

∞
∑

k=1

P k(y, y) ≤ 1

q

∞
∑

k=m+n

P k(x, x) ≤ 1

q
Ex[Nx].

Analogously, we get Ex[Nx] ≤ Ey[Ny]/q. Now, the two statements directly
follow by Thm. 3.16. �

As a consequence of Theorem 3.18, all states of an irreducible Markov
chain are of the same nature: We therefore call an irreducible Markov chain
recurrent or transient, if one of its states (and hence all) is recurrent, re-
spectively, transient. Let us summarize the stability properties introduced
so far. Combining Theorem 3.18 and Prop. 3.17 we conclude:

• Given some finite state space Markov chain

(i) that is not irreducible: there exists at least one recurrent com-
munication class that moreover is closed.
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(ii) that is irreducible: all states are recurrent, hence so is the Markov
chain.

• Given some countable infinite state space Markov chain

(i) that is not irreducible: there may exist recurrent as well as tran-
sient communication classes.

(ii) that is irreducible: all states are either recurrent or transient.

We now address the important question of existence and uniqueness
of invariant measures and stationary distributions. The following theorem
states that for irreducible and recurrent Markov chains there always exists
a unique invariant measure (up to a multiplicative factor).

Theorem 3.19 Consider an irreducible and recurrent Markov chain. For
an arbitrary state x ∈ S define µ =

(

µ(y)
)

y∈S
with

µ(y) = Ex

[

Tx
∑

n=1

1{Xn=y}

]

, (16)

the expected value for the number visits in y before returning to x. Then

1. 0 < µ(y) < ∞ for all y ∈ S. Moreover, µ(x) = 1 for the state x ∈ S
chosen in the eq. (16).

2. µ = µP .

3. If ν = νP for some measure ν, then ν = αµ for some α ∈ R.

The interpretation of eq. (16) is this: for some fixed x ∈ S the invariant
measure µ(y) is proportional to the number of visits to y before returning
to x. Note that the invariant measure µ defined in (16) in general depends
on the state x ∈ S chosen, since µ(x) = 1 per construction. This reflects the
fact that µ is only determined up to some multiplicative factor (stated in
(iii)). We further remark that eq. (16) defines for every x ∈ S some invari-
ant distribution, however for some arbitrarily given invariant measure µ, in
general there does not exist an x ∈ S such that eq. (16) holds.

Proof: 1. Note that due to recurrence of x and definition of µ we have

µ(x) = Ex

[

Tx
∑

n=1

1{Xn=x}

]

=

∞
∑

n=1

Ex[1{Xn=x}1{n≤Tx}]

=

∞
∑

n=1

Px[Xn = x, n ≤ Tx] =

∞
∑

n=1

Px[Tx = n] = Px[Tx <∞] = 1,
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which proves µ(x) = 1. We postpone the second part of the first statement
and prove

2. Observe that for n ∈ N, the event {Tx ≥ n} depends only on the
random variables X0,X1, . . . ,Xn−1. ThusPx[Xn = z,Xn−1 = y, Tx ≥ n] = Px[Xn−1 = y, Tx ≥ n]P (y, z).

Now, we have for arbitrary z ∈ S
∑

y∈S

µ(y)P (y, z) = µ(x)P (x, z) +
∑

y 6=x

µ(y)P (y, z)

= P (x, z) +
∑

y 6=x

∞
∑

n=1

Px[Xn = y, n ≤ Tx]P (y, z)

= P (x, z) +
∞
∑

n=1

∑

y 6=x

Px[Xn+1 = z,Xn = y, n ≤ Tx]

= Px[X1 = z] +
∞
∑

n=1

Px[Xn+1 = z, n + 1 ≤ Tx]

= Px[X1 = z, 1 ≤ Tx] +

∞
∑

n=2

Px[Xn = z, n ≤ Tx]

=
∞
∑

n=1

Px[Xn = z, n ≤ Tx] = µ(z),

where for the second equality we used µ(x) = 1 and for the fourth equality
we used that Xn = y, n ≤ Tx and x 6= y implies n+1 ≤ Tx. Thus we proved
µP = µ.

1. (continued) Since P is irreducible, there exist integers k, j ∈ N such
that P k(x, y) > 0 and P j(y, x) > 0 for every y ∈ S. Therefore, for every
k ∈ N and exploiting statement 2.), we have

0 < µ(x)P k(x, y) ≤
∑

z∈S

µ(z)P k(z, y) = µ(y).

On the other hand,

µ(y) =
µ(y)P j(y, x)

P j(y, x)
≤
∑

z∈S
µ(z)P j(z, x)

P j(y, x)
=

µ(x)

P j(y, x)
<∞.

Hence, the first statement has been proven.
3. The first step to prove the uniqueness of µ is to show that µ is minimal,

which means that ν ≥ µ holds for any other invariant measure ν satisfying
ν(x) = µ(x) = 1. We prove by induction that

ν(z) ≥
k
∑

n=1

Px[Xn = z, n ≤ Tx] (17)
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holds for every z ∈ S. Note that the right hand side of eq. (17) converges
to µ(z) as k →∞ (cmp. proof of 1.). For k = 1 it is

ν(z) =
∑

y∈S

ν(y)P (y, z) ≥ P (x, z) = Px[X1 = z, 1 ≤ Tx].

Now, assume that eq. (17) holds for some k ∈ N. Then

ν(z) ≥ ν(x)P (x, z) +
∑

y 6=x

ν(y)P (y, z)

≥ P (x, z) +
∑

y 6=x

k
∑

n=1

Px[Xn = y, n ≤ Tx]P (y, z)

= Px[X1 = z, 1 ≤ Tx] +
k
∑

n=1

Px[Xn+1 = z, n + 1 ≤ Tx]

=

k+1
∑

n=1

Px[Xn = z, n ≤ Tx].

Therefore, eq. (17) holds for every k ∈ N, and in the limit we get ν ≥ µ.
Define λ = ν − µ; since P is irreducible, for every z ∈ S there exists some
integer k ∈ N such that P k(z, x) > 0. Thus

0 = λ(x) =
∑

y∈S

λ(y)P k(y, x) ≥ λ(z)P k(z, x),

implying λ(z) = 0 and finally ν = µ. Now, if we relax the condition ν(x) = 1,
then statement 3. follows with c = ν(x). �

We already know that the converse of Theorem 3.19 is false, since there
are transient irreducible Markov chains that possess invariant measures. For
example, the random walk on N is transient for p > 1/2, but admits an
invariant measure. At the level of invariant measures, nothing more can
be said. However, if we require that the invariant measure is a probability
measure, then it is possible to give necessary and sufficient conditions. These
involve the expected return timesEx[Tx] =

∞
∑

n=1

nPx[Tx = n]. (18)

Depending on the behavior of Ex[Tx], we further distinguish two types of
states:

Definition 3.20 A recurrent state x ∈ S is called positive recurrent, ifEx[Tx] < ∞
and null recurrent otherwise.
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In view of eq. (18) the difference between positive and null recurrence is
manifested in the decay rate of Px[Tx = n] for n → ∞. If Px[Tx = n]
decays too slowly as n → ∞, then Ex[Tx] is infinite and the state is null
recurrent. On the other hand, if Px[Tx = n] decays rapidly in the limit
n→∞, then Ex[Tx] will be finite and the state is positive recurrent.

As for recurrence, positive and null recurrence are class properties [2].
Hence, we call a Markov chain positive or null recurrent, if one of its states
(and therefore all) is positive, respectively, null recurrent. The next theorem
illustrates the usefulness of positive recurrence and gives an additional useful
interpretation of the stationary distribution.

Theorem 3.21 Consider an irreducible Markov chain. Then the Markov
chain is positive recurrent, if and only if there exists a stationary distri-
bution. Under these conditions, the stationary distribution is unique and
positive everywhere, with

π(x) =
1Ex[Tx]

.

Hence π(x) can be interpreted as the inverse of the expected first return time
to state x ∈ S.

Proof: Theorem 3.19 states that an irreducible and recurrent Markov chain
admits an invariant measure µ defined through (16) for an arbitrary x ∈ S.
Thus

∑

y∈S

µ(y) =
∑

y∈S

Ex

[

Tx
∑

n=1

1{Xn=y}

]

= Ex





∞
∑

n=1

∑

y∈S

1{Xn=y}1{n≤Tx}





= Ex

[

∞
∑

n=1

1{n≤Tx}

]

=

∞
∑

n=1

Px[Tx ≥ n]

=

∞
∑

n=1

∞
∑

k=n

Px[Tx = k] =

∞
∑

k=1

kPx[Tx = k] = Ex[Tx],

which is by definition finite in the case of positive recurrence. Therefore the
stationary distribution can be obtained by normalization of µ with Ex[Tx]
yielding

π(x) =
µ(x)Ex[Tx]

=
1Ex[Tx]

.

Since the state x was chosen arbitrary this is true for all x ∈ S. Uniqueness
and positivity of π follows from Theorem 3.19. On the other hand, if there
exists a stationary distribution the Markov process must be recurrent be-
cause otherwise π(x) would be zero for all x ∈ S according to Theorem 3.17.
Positive recurrence follows from the uniqueness of π and the consideration
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above. �

Our considerations in the proof of Theorem 3.21 easily leads to a criteria
to distinguish positive recurrence from null recurrence.

Corollary 3.22 Consider an irreducible recurrent Markov chain {Xk}k∈N
with invariant measure µ = (µ(x))x∈S. Then

1. {Xk}k∈N positive recurrent ⇔ ∑

x∈S

µ(x) <∞,

2. {Xk}k∈N null recurrent ⇔ ∑

x∈S

µ(x) =∞.

Proof: The proof is left as an exercise. �

For the finite state space case, we have the following powerful statement.

Theorem 3.23 Every irreducible Markov chain on a finite state space is
positive recurrent and therefore admits a unique stationary distribution that
is positive everywhere.

Proof: The proof is left as an exercise. �

For the general possibly non-irreducible case, the results of this section
are summarized in the next

Proposition 3.24 Let C ⊂ S denote a communication class corresponding
to some Markov chain {Xk}k∈N on the state space S.

1. If C is not closed, then all states in C are transient.

2. If C is closed and finite, then all states in C are positive recurrent.

3. If all state in C are null recurrent, then C is necessarily infinite.

Proof: The proof is left as an exercise. �

Remark. In our introductory example (random surfer on the WWW)
we considered the transition matrix P = (pw,w′)w,w′=1,...,N with

pw,w′ = P[wj+1 = w′|wj = w]

according to (1). The associated chain is irreducible (one closed commu-
nication class), aperiodic and positive recurrent. Its stationary distribu-
tion π thus is unique, positive everywhere and given by either πP = π or
π(w) = 1/Ew[Tw]. The value π(w) is a good candidate for the probability
pw of a visit of the average surfer on webpage w ∈ {1, . . . , N}. That this is
in fact true will be shown in the next chapter.
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Figure 7: Different recurrent behavior of irreducible, aperiodic Markov
chains.
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4 Asymptotic behavior

The asymptotic behavior of distributions and transfer operators is closely
related to so-called ergodic properties of the Markov chain. The term er-
godicity is not consistently used in literature. In ergodic theory, it roughly
refers to the fact that space and time averages coincide (as, e.g., stated in
the strong law of large numbers by Thm. 5.1). In the theory of Markov
chain, however, the meaning is slightly different. Here, ergodicity is related
to the convergence of probability distributions ν0 in time, i.e., νk → π as
k →∞, and assumes aperiodicity as a necessary condition.

4.1 k-step transition probabilities and distributions

We prove statements for the convergence of k-step probabilities involving
transient, null recurrent and finally positive recurrent states.

Proposition 4.1 Let y ∈ S denote a transient state of some Markov chain
with transition function P . Then, for any initial state x ∈ S

P k(x, y)→ 0

as k →∞. Hence, the y-th column of P k tends to zero as k →∞.

Proof: This has already been proved in the proof of Prop. 3.17 �

The situation is similar for an irreducible Markov chain that is null re-
current (and thus defined on a infinite countable state space due to Theo-
rem 3.23):

Theorem 4.2 (Orey’s Theorem) Let {Xk}k∈N be an irreducible null re-
current Markov chain on S. Then, for all pairs of states x, y ∈ S

P k(x, y)→ 0

as k →∞.

Proof: See, e.g., [2], p.131. �

In order to derive a result for the evolution of k-step transition proba-
bilities for positive recurrent Markov chains, we will exploit a powerful tool
from probability theory, the coupling method (see, e.g., [9, 14]).

Definition 4.3 A coupling of two random variables X,Y : Ω → S is a
random variable Z : Ω→ S× S such that

∑

y∈S

P[Z = (x, y)] = P[X = x], and
∑

x∈S

P[Z = (x, y)] = P[Y = y]
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for every x ∈ S, and for every y ∈ S, respectively. Hence, the coupling Z
has X and Y as its marginals.

Note that, except for artificial cases, there exists infinitely many cou-
plings of two random variables. The coupling method exploits the fact that
the total variation distance between the two distributions P[X ∈ A] andP[Y ∈ A] can be bounded in terms of the coupling Z.

Proposition 4.4 (Basic coupling inequality) Consider two independent
random variables X,Y : Ω→ S with distributions ν and π, respectively, de-
fined via ν(x) = P[X = x] and π(y) = P[Y = y] for x, y ∈ S. Then

‖ν − π‖TV ≤ 2P[X 6= Y ],

with [X 6= Y ] = {ω ∈ Ω : X(ω) 6= Y (ω)}.

Proof: We have for some subset A ⊂ S

|ν(A)− π(A)| = |P[X ∈ A]−P[Y ∈ A]|
= |P[X ∈ A,X = Y ] +P[X ∈ A,X 6= Y ]

−P[Y ∈ A,X = Y ]−P[Y ∈ A,X 6= Y ]|
= |P[X ∈ A,X 6= Y ]−P[Y ∈ A,X 6= Y ]|
≤ P[X 6= Y ].

Since
‖ν − π‖TV = 2 sup

A⊂S

|ν(A)− π(A)|

the statement directly follows. �

Note that the term P[X 6= Y ] in the basic coupling inequality can be
stated in terms of the coupling Z:P[X 6= Y ] =

∑

x,y∈S,x 6=y

P[Z = (x, y)] = 1−
∑

x∈S

P[Z = (x, x)].

Since there are many couplings the aim is two construct a coupling Z such
that

∑

x 6=yP[Z = (x, y)] is as small, or
∑

xP[Z = (x, x)] is as large as
possible. To prove convergence results for the evolution of the distribution
of some Markov chain, we exploit a specific (and impressive) example of the
coupling method.

Consider an irreducible, aperiodic, positive recurrent Markov chain X =
{Xk}k∈N with stationary distribution π and some initial distribution ν0.
Moreover, define another independent Markov chain Y = {Yk}k∈N that
has the same transition function as X, but the stationary distribution π as
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initial distribution. Observe that Y is a stationary process, i.e., the induced
distribution of Yk equals π for all k ∈ N. Then, we can make use of the
coupling method by interpreting the Markov chains as random variables
X,Y : Ω → SN and consider some coupling Z : Ω → SN × SN. Define the
coupling time Tc : Ω→ N by

Tc = min{k ≥ 1 : Xk = Yk};

Tc is the first time at which the Markov chains X and Y met; moreover, it
is stopping time for Z. The next proposition bounds the distance between
the distributions νk and π at time k in terms of the coupling time Tc.

Proposition 4.5 Consider some irreducible, aperiodic, positive recurrent
Markov chain with initial distribution ν0 and stationary distribution π. Then,
the distribution νk at time k satisfies

‖νk − π‖TV ≤ 2P[k < Tc]

for every k ∈ N, where Tc denote the coupling time defined above.

T k−>

S

X
k

Y
k

X
’

k

Figure 8: The construction of the coupled process X ′ as needed in the proof
of Prop. 4.5. Here, T denotes the value of the coupling time Tc for this
realization.

Proof: We start by defining a new stochastic process X ′ = {X ′
k}k∈N with

X ′
k : Ω→ S (see Fig. 8) according to

X ′
k =

{

Xk; if k < Tc,

Yk; if k ≥ Tc.

Due to the strong Markov property 3.15 (applied to the coupled Markov
chain (Xk, Yk)k∈N), X ′ is a Markov chain with the same transition prob-
abilities as X and Y . As a consequence of the definition of X ′ we have
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′
k ∈ A] for k ∈ N and every A ⊂ S, hence the distribu-

tions of Xk and X ′
k are the same. Hence, from the basic coupling inequality,

we get

|νk(A) − π(A)| = |P[X ′
k ∈ A]−P[Yk ∈ A]| ≤ 2P[X ′

k 6= Yk].

Since {X ′
k 6= Yk} ⊂ {k < Tc}, we finally obtainP[X ′

k 6= Yk] ≤ P[k < Tc],

which implies the statement. �

Proposition 4.5 enables us to prove the convergence of νk to π by proving
that P[k < Tc] converges to zero.

Theorem 4.6 Consider some irreducible, aperiodic, positive recurrent Markov
chain with stationary distribution π. Then, for any initial probability distri-
bution ν0, the distribution of the Markov chain at time k satisfies

‖νk − π‖TV → 0

as k → ∞. In particular, choosing the initial distribution to be a delta
distribution at x ∈ S, we obtain

‖P k(x, ·) − π‖TV → 0

as k →∞.

Proof: It suffices to prove P[Tc <∞] = 1. Moreover, if we fixe some state
x∗ ∈ S and consider the stopping time

T ∗
c = inf{k ≥ 1;Xk = x∗ = Yk},

then P[Tc < ∞] = 1 follows from P[T ∗
c < ∞] = 1. To prove the latter

statement, consider the coupling Z = (Zk)k∈N with Zk = (Xk, Yk) ∈ S× S
with X = {Xk}k∈N and Y = {Yk}k∈N defined as above. Because X and Y
are independent, the transition matrix PZ of Z is given by

PZ

(

(v,w), (x, y)
)

= P (v,w)P (x, y)

for all v,w, x, y ∈ S. Obviously, Z has a stationary distribution given by

πZ(x, y) = π(x)π(y).

Furthermore the coupled Markov chain is irreducible: consider (v,w), (x, y) ∈
S×S arbitrary. Since X and Y are irreducible and aperiodic we can choose
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Irreducible and aperiodic

Recurrent MC

Positive recurrent Null recurrent

Markov chain

Transient MC

, x ∈ SPx[Tx <∞] < 1 Px[Tx <∞] = 1

Ex[Tx] <∞
Ex[Tx] =∞P k(x, y)→ 0 ∀y ∈ S

P k(x, y)→ π(y) = 1Ey [Ty] P k(x, y)→ 0 ∀y ∈ S

1

Figure 9: Long run behaviour of an irreducible aperiodic Markov chain.

an integer k∗ > 0 such that P k∗

(v,w) > 0 and P k∗

(x, y) > 0 holds, see
Prop. 3.8. Therefore

P k∗

Z

(

(v,w), (x, y)
)

= P k∗

(v,w)P k∗

(x, y) > 0.

Hence Z is irreducible. Finally observe that T ∗
c is the first return time of the

coupled Markov chain to the state (x∗, x∗). Since Z is irreducible and has a
stationary distribution, it is positive recurrent according to Thm. 3.21. By
Thm. 3.18, this implies P[T ∗

c < ∞] = 1, which completes the proof of the
statement. �

Fig. 9 summarizes the long run behavior of irreducible and aperiodic
Markov chains.

4.2 Time reversal and reversibility

The notions of time reversal and time reversibility are very productive, in
particular w.r.t. the spectral theory, the central limit theory and theory of
Monte Carlo methods, as we will see.

Chang [3] has a nice motivation of time reversibility: Let X0,X1, . . . de-
note a Markov chain with transition function P . Imagine that I recorded
a movie of the sequence of states (X0, . . . ,Xn), and I am showing you the
movie on my fancy machine that can play the tape forward or backward
equally well. Can you tell by watching the sequence of transitions on the
movie whether I am showing it forward or backward?

To answer this question, we determine the transition probabilities of the
Markov chain {Yk}k∈N obtained by reversing time for the original Markov
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chain {Xk}k∈N. Given some probability distribution π > 0, we require thatPπ[Y0 = xm, . . . , Ym = x0] = Pπ[X0 = x0, . . . ,Xm = xm]

holds for every m ∈ N and every x0, . . . , xm ∈ S in the case of reversibility.
For the special case m = 1 we havePπ[Y0 = y, Y1 = x] = Pπ[X0 = x,X1 = y] (19)

for x, y ∈ S. Denote by Q and P the transition functions of the Markov
chains {Yk} and {Xk}, respectively. Then, by equation (19) we obtain

π(y)Q(y, x) = π(x)P (x, y). (20)

Note that the diagonals of P and Q are always equal, hence Q(x, x) =
P (x, x) for every x ∈ S. Moreover, from eq. (20) we deduce by summing
over all x ∈ S that π is some stationary distribution of the Markov chain.

Definition 4.7 Consider some Markov chain X = {Xk}k∈N with transition
function P and stationary distribution π > 0. Then, the Markov chain
{Yk}k∈N with transition function Q defined by

Q(y, x) =
π(x)P (x, y)

π(y)
(21)

is called the time-reversed Markov chain (assoziated with X).

Example 4.8 Consider the two state Markov chain given by

P =

(

1− a a
b 1− b

)

.

for a, b ∈ [0, 1]. The two state Markov chain is an exceptionally simple
example, since we know on the one hand that the diagonal entries of Q
and P are identical, and on the other hand that Q is a stochastic matrix.
Consequently Q = P .

Example 4.9 Consider a Markov chain on the state space S = {1, 2, 3}
given by

P =





1− a a 0
0 1− b b
c 0 1− c



 .

for a, b, c ∈ [0, 1]. Denote by π the stationary distribution (which exists due
to Theorem 3.23). Then, π = πP is equivalent to aπ(1) = bπ(2) = cπ(3). A
short calculation reveals

π =
1

ab + ac + bc

(

bc, ac, ab
)

.
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Once again, we have only to compute the off–diagonal entries of Q. We get

Q =





1− a 0 a
b 1− b 0
0 c 1− c



 .

For illustration, consider the case a = b = c = 1. Then P is periodic
with period d = 3; it moves deterministically: 1 → 2 → 3 → 1 . . .. By
construction, the matrix Q corresponds to the time reversed Markov chain
that moves like: 3→ 2→ 1→ 3 . . ., but this is exactly the dynamics defined
by Q.

Definition 4.10 Consider some Markov chain X = {Xk}k∈N with transi-
tion function P and stationary distribution π > 0, and its associated time-
reversed Markov chain with transition function Q. Then X is called re-

versible w.r.t. π, if
P (x, y) = Q(x, y)

for all x, y ∈ S.

The above definition can be reformulated: a Markov chain is reversible
w.r.t. π, if and only if the detailed balance condition

π(x)P (x, y) = π(y)P (y, x) (22)

is satisfied for every x, y ∈ S. Eq. (22) has a nice interpretation in terms
of the probability flux defined in (12). Recall that the flux from x to y is
defined by fluxπ(x, y) = π(x)P (x, y). Thus, eq. (22) states that the flux from
x to y is the same as the flux from y to x—it is locally balanced between each
pair of states: fluxπ(x, y) = fluxπ(y, x) for x, y ∈ S. This is a much stronger
condition than the global balance condition that characterizes stationarity.
The global balance condition that can be rewritten as

∑

x π(y)P (y, x) =
π(y) =

∑

x π(x)P (x, y) states that the total flux leaving state x is the same
as the total flux into state x: fluxπ(x,S \ {x}) = fluxπ(S \ {x}, x).

Corollary 4.11 Given some Markov chain with transition function P and
stationary distribution π. If there exist a pair of states x, y ∈ S with π(x) > 0
such that

P (x, y) > 0, while P (y, x) = 0

then the detailed balance condition cannot hold for P , hence the Markov
chain is not reversible. This is in particular the case, if the Markov chain
is periodic with period d > 2.

Application of Corollary 4.11 yields that the three state Markov chain
defined in Example 4.9 cannot be reversible.
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Example 4.12 Consider the random walk on N with fixed parameter p ∈
(0, 1

2). The Markov chain is given by

P (x, x + 1) = p and P (x + 1, x) = 1− p

for x ∈ S and P (0, 0) = 1 − p, while all other transition probabilities are
zero. It is irreducible and admits a unique stationary distribution given by

π(0) =
1− 2p

1− p
and π(k) = π(0)

(

p

1− p

)k

for k > 0. Obviously, we expect no trouble due to Corollary 4.11. Moreover,
we have

π(x)P (x, x + 1) = π(x + 1)P (x + 1, x)

for arbitrary x ∈ S; hence, the detailed balance condition holds for P and
the random walk on N is reversible.

Last but not least let us observe that the detailed balance condition can
also be used without assuming π to be a stationary distribution:

Theorem 4.13 Consider some Markov chain X = {Xk}k∈N with transition
function P and a probability distribution π > 0. Let the detailed balance
condition be formally satisfied:

π(x)P (x, y) = π(y)P (y, x).

Then, π is a stationary distribution of X, i.e., πP = π.

Proof: The statement is an easy consequence of the detailed balance con-
dition and

∑

y P (x, y) = 1 for all y ∈ S:

πP (y) =
∑

x∈S

π(x)P (x, y) = π(y)
∑

x∈S

P (y, x) = π(y).

�

4.3 Some spectral theory

We now introduce the necessary notions from spectral theory in order to
analyze the asymptotic behavior of transfer operators. Throughout this sec-
tion, we assume that π is some stationary distribution of a Markov chain
with transition function P . Note that π is neither assumed to be unique nor
positive everywhere.
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We start by introducing the Banach spaces (of equivalence classes)

lr(π) = {v : S→ C :
∑

x∈S

|v(x)|rπ(x) <∞},

for 1 ≤ r <∞ with corresponding norms

‖v‖r =

(

∑

x∈S

|v(x)|rπ(x)

)1/r

and
l∞(π) = {v : S→ C : π- sup

x∈S

|v(x)| <∞},

with supremums norm defined by

‖v‖∞ = π- sup
x∈S

|v(x)| = sup
x∈S,π(x)>0

|v(x)|.

Given two functions u, v ∈ l2(π), the π–weighted scalar product 〈·, ·〉π :
S× S→ C is defined by

〈u, v〉π =
∑

x∈S

u(x)v̄(x)π(x),

where v̄ denotes the conjugate complex of v. Note that l2(π), equipped with
the scalar product 〈·, ·〉π , is a Hilbert space.

Remark. In general, the elements of the above introduced function
spaces are equivalence classes of functions [f ] = {g : S → C : g(x) =
f(x), if π(x) > 0} rather than single functions f : S→ C (this is equivalent
to the approach of introducing equivalence classes of Lebesgue-integrable
functions (see, e.g., [20])). Hence, functions that differ on a set of points
with π-measure zero are considered to be equivalent. However, if the prob-
ability distribution π is positive everywhere, we regain the interpretation of
functions as elements.

Before proceeding, we need the following two definitions.

Definition 4.14 Given some Markov chain with stationary distribution π.

1. Some measuere ν ∈M is said to be absolutely continuous w.r.t. π,
in short ν ≪ π, if

π(x) = 0 ⇒ ν(x) = 0

for every x ∈ S. In this case, there exists some function f : S → C
such that ν = fπ. The function f is called the Radon-Nikodym

derivative of ν w.r.t. π and sometimes denoted by dν/dπ.
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2. The stationary distribution π is called maximal, if every other sta-
tionary distribution ν is absolutely continuous w.r.t. π.

In broad terms, a stationary distribution is maximal, if it possesses as
many non–zero elements as possible. Note that a maximal stationary dis-
tribution need not be unique.

Example 4.15 Consider the state space S = {1, 2, 3, 4} and a Markov chain
with transition function

P =









1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0









.

Then ν1 = (1, 0, 0, 0), ν2 = (0, 1, 0, 0), ν3 = (0, 0, 1, 0) are stationary distri-
butions of P , but none of them is obviously maximal. In contrast to that,
both π = (1

3 , 1
3 , 1

3 , 0) and σ = (1
2 , 1

4 , 1
4 , 0) are maximal stationary distribu-

tions. Note that since state x = 4 is transient, every stationary distribution
ν satisfies ν(4) = 0 due to Proposition 3.17.

To this end, we consider some Markov chain with maximal stationary
distribution π. We now restrict the transfer operator P from the space of
complex finite measuresM to the space of complex finite measures that are
absolutely continuous w.r.t. π. We define for 1 ≤ r ≤ ∞

Mr(π) = {ν ∈M : ν ≪ π and dν/dπ ∈ lr(π)}

with corresponding norm ‖ν‖Mr(π) = ‖dν/dπ‖r. Note that ‖ν‖M1(π) =
‖ν‖TV and M1(π) ⊇ M2(π) ⊇ . . .. We now define the transfer operator
P :M1(π)→M1(π) by

νP (y) =
∑

x∈S

ν(x)P (x, y).

It can be shown by exploiting Hölders inequality that P is well-defined on
anyMr(π) for 1 ≤ r ≤ ∞.

It is interesting to note that the transfer operator P on M1(π) induces
some transfer operator P on l1(π): Given some ν ∈ M1(π) with derivative
v = dν/dπ, it follows that νP ≪ π (if π is some stationary measure with
πP = π then π(y) implies p(x, y) for every x ∈ S with π(x) > 0. Now, the
statement directly follows). Hence, we define P by (vπ)P = (vP)π. More
precisely, it is P : l1(π)→ l1(π) given by

vP(y) =
∑

x∈S

Q(y, x)v(x)
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for v ∈ l1(π). Above, Q with Q(y, x) = π(x)P (x, y)/π(y) is the transition
function of the time-reversed Markov chain (see eq. (20)), which is an in-
teresting relation between the original Markov chain and the time-reversed
one. Actually, we could formulate all following results also in terms of the
transfer operator P, which is usually done for the general state space case.
Here, however, we prefer to state the results related to the function space
M1(π), since then there is a direct relation to the action of the transfer
operator and the (stochastic) matrix-vector multiplication from the left. In
terms of l1(π), this important relation would only hold after some suitable
reweighting (of the stochastic matrix). From a functional analytical point
of view, however, the two function spaces (M1(π), ‖ · ‖TV ) and (l1(π), ‖ · ‖1)
are equivalent.

Central for our purpose will be notion of eigenvalues and eigenvectors of
some transfer operator P :M1(π)→M1(π). Some number λ ∈ C is called
an eigenvalue of P , if there exists some ν ∈ M1(π) with ν 6= 0 satisfying
the eigenvalue equation

νP = λν. (23)

The function ν is called an (left) eigenvector corresponding to the eigen-
value λ. Note that not every function ν satisfying (23) is an eigenvector,
since ν has to fulfill the integrability condition ||ν||TV < ∞ by definition
(which, of course, is always satisfied in the finite state space case). The
subspace of all eigenvectors corresponding to some eigenvalue λ is called the
eigenspace corresponding to λ. By σ(P ) we denote the spectrum of P ,
which contains all eigenvalues of P . In the finite state space case, we have
σ(P ) = {λ ∈ C : λ is eigenvalue of P}, while for the infinite state space
case, it may well contain elements that are not eigenvalues (see, e.g., [20,
Kap. VI]).

The transfer operators considered above is closely related to a transfer
operator acting on bounded (measurable) functions. Define T : l∞(π) →
l∞(π) by

Tu(x) = Ex[u(X1)] =
∑

y∈S

P (x, y)u(y)

for u ∈ l∞(π). We remark that for the important class of reversible Markov
chains, T is simply given by Tv(x) =

∑

y P (x, y)v(y) (which corresponds
to the matrix vector multiplication from the right). For some function ν ∈
M1(π) and u ∈ l∞(π), define the duality bracket 〈·, ·〉 :M1(π)× l∞(π) by

〈ν, u〉 =
∑

x∈S

ν(x)u(x).

Then, we have

〈νP, u〉 =
∑

x∈S

∑

y∈S

ν(y)P (y, x)u(x) =
∑

y∈S

ν(y)
∑

x∈S

P (y, x)u(x) = 〈ν, Tu〉,
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hence T is the adjoint operator of P , or P ∗ = T . This fact can be widely
exploited when dealing with spectral properties of P , since the spectrum of
some operator is equal to the spectrum of its adjoint operator (see, e.g., [20,
Satz VI.1.2]). Hence, if λ ∈ σ(P ), then there exists some non-vanishing func-
tion u ∈ l∞(π) with Tu = λu (and analogously for the reversed implication).

Example 4.16 Consider some transfer operator P acting onM1(π). Then
πP = π (since 1 is in M1(π)) and consequently the λ = 1 is an eigenvalue
of P .

The next proposition collects some useful facts about the spectrum of
the transfer operator.

Proposition 4.17 Consider a transition function P on a countable state
space with stationary distribution π. Then, for the associated transfer oper-
ator P :M1(π)→M1(π) holds:

(a) The spectrum of P is contained in the unit disc, i.e. λ ∈ σ(P ) implies
|λ| ≤ 1.

(b) λ = 1 is an eigenvalue of P , i.e., 1 ∈ σ(P ).

(c) If λ = a + ib is some eigenvalue of P , so is η = a − ib. Hence, the
spectrum σ(P ) is symmetric w.r.t. the real axis.

(d) If the transition function is reversible, then the spectrum of P acting
on M2(π) is real–valued, i.e., σ(P ) ⊂ [−1,+1].

Item (d) of Proposition 4.17 is due to the following fact about reversible
Markov chains that emphasizes their importance.

Theorem 4.18 Let T : l2(π) → l2(π)) denote some transfer operator cor-
responding to some reversible Markov chain with stationary distribution π.
Then T is self–adjoint w.r.t. to 〈·, ·〉π , i.e.,

〈Tu, v〉π = 〈u, Tv〉π

for arbitrary u, v ∈ l2(π). Since P ∗ = T , the same result holds for P on
M2(π).

Below, we will give a much more detailed analysis of the spectrum of P such
that it is possible to infer structural properties of the corresponding Markov
chain.

In the sequel, we often will assume that the following assumption on the
spectrum of P as an operator action on M1(π) holds.
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Assumption R. There exists some constant R < 1 such that
there are only finitely many λ ∈ σ(P ) with |λ| > R, each being
an eigenvalue of finite multiplicity3.

Assumption R is, e.g., a condition on the so–called essential spectral ra-
dius of P inM1(π) [7]; it is also closely related to the so-called Doeblincondition.
Assumption R is necessary only for the infinite countable state space case,
since for the finite state space case, it is trivially fulfilled.

Proposition 4.19 Given some Markov chain {Xk}k∈N on S with maxi-
mal stationary distribution π > 0. Let P : M1(π) → M1(π) denote the
associated transfer operator. Then, condition R is satisfied, if

1. the state space is finite; in this case it is R = 0.

2. the transition function P fulfills the Doeblin condition, i.e., there
exist ǫ, δ > 0 and some m ∈ N such that for every y ∈ S

π(y) ≤ ǫ =⇒ Pm(x, y) ≤ 1− δ.

for all x ∈ S. In this case, it is R = (1− δ)1/m.

3. the transfer operator is constrictive, i.e., there exist ǫ, δ > 0 and
some m0 ∈ N such that for every ν ∈M1(π)

π(y) ≤ ǫ =⇒ νPm(y) ≤ 1− δ.

for all m ≥ m0. In this case, it is R = (1− δ)1/m0 .

Proof: The statements 2. and 3. follow from Thm. 4.13 in [7]. 1. follows
from 2. or 3. by choosing ǫ < miny∈S π(y), which is positive due to the
finiteness of the state space. Now, choose δ = 1 and m = m0 = 1. �

4.4 Evolution of transfer operators

We start by stating the famous Frobenius–Perron theorem for transfer oper-
ators related to Markov chains on some finite state space (see, e.g., [1, 2, 15]).
We then state the result for the infinite state space case. To do so, we
define, based on stationary distribution π, the transition function Π =
(Π(x, y))x,y∈S by

Π(x, y) = π(y)

3For the general definition of multiplicity see [8, Chap. III.6]. If P is in addition
reversible, then the eigenvalue λ = 1 is of finite multiplicity, if there exist only finitely
many mutually linear independent corresponding eigenvectors.
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Hence, each row of Π is identical to π, and the Markov chain associated
with Π is actually a sequence of i.i.d. random variables, each distributed
according to π. We will see that Π is related to the asymptotic behaviour
of the powers of the transition matrix P . In matrix notation, it is Π = 1πt,
where 1 is the function constant 1.

Theorem 4.20 (Frobenius–Perron theorem) Let P denote an n × n
transition matrix that is irreducible and aperiodic. Then

1. The eigenvalue λ1 = 1 is simple and the corresponding left and right
eigenvectors can be chosen positive. More precisely, πP = π for π > 0
and P1 = 1 for 1 = (1, . . . , 1).

2. Any other eigenvalue µ of P is strictly smaller (in modulus) than λ1 =
1, i.e., |µ| < 1 for any µ ∈ σ(P ) with µ 6= 1.

3. Let λ1, λ2, . . . , λr with some r ≤ n 4 denote the eigenvalues of P or-
dered in such a way that

λ1 > |λ2| ≥ |λ3 ≥ . . . ≥ |λr|.

Let moreover m denote the algebraic multiplicity5 of λ2. Then

Pn = 1πt +O(nm−1|λ2|n).

Proof: See, e.g., [15]. �

We now state an extended result for the infinite state space case.

Theorem 4.21 Consider some Markov chain X = {Xk}k∈N with maximal
stationary distribution π > 0 and let P : M1(π) → M1(π) denote the
associated transfer operator satisfying Assumption R. Then the following
holds:

1. The Markov chain X is irreducible, if and only if the eigenvalue λ = 1
of P is simple, i.e., the multiplicity is equal to 1.

2. Assume that the Markov chain is irreducible. Then X is aperiodic,
if and only if the eigenvalue λ = 1 of P is dominant, i.e., for any
η ∈ σ(P ) with η 6= 1 implies |η| < 1.

4If P is reversible than r = n and there exists a complete basis of (orthogonal) eigen-
vectors.

5The algebraic multiplicity of λ2 is defined as .... If P is reversible than m is equal to
the dimension of the eigenspace corresponding to λ2.
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3. If the Markov chain is irreducible and aperiodic, then Pn → Π as
n→∞. More precisely, there exists constants M > 0 and r < 1 such
that

||Pn −Π||TV ≤ Mrn

for n ≥ 1. Defining Λabs(P ) = sup{|λ| : λ ∈ σ(P ), |λ| < 1}, it is
r ≤ Λabs + ǫ for any ǫ > 0 and r = Λabs for reversible Markov chains.

Proof: 1.) By Thm. 4.14 of [7], λ = 1 simple is equivalent to a decomposi-
tion of the state space S = E ∪ F with E being invariant (πEP = πE with
πE = 1Eπ) and F being of π–measure zero. Since π > 0 by assumption,
F is empty and thus E = S. By contradiction it follows that the Markov
chain is irreducible.

2.) By Cor. 4.18 (ii) of [7], λ = 1 simple and dominant is equivalent to P
being aperiodic (which in our case is equivalent to the Markov chain being
aperiodic).

3.) By Cor. 4.22 of [7], the inequality ||Pn −Π||TV ≤Mrn is equivalent
to P being ergodic and aperiodic (which in our case is equivalent to the
Markov chain being irreducible and aperiodic—following from 1.) and 2.)).
�

Theorem 4.21 (3.) states that for large n, the Markov chain Xn at time n
is approximately distributed like π, and moreover it is approximately inde-
pendent of its history, in particular of Xn−1 and X0. Thus the distribution
of Xn for n ≫ 0 is almost the same, namely π, regardless of whether the
Markov chain started at X0 = x or X0 = y for some initial states x, y ∈ S.

We end by relating a certain type of ergodicity condition to the above
theorem.

Definition 4.22 Let X = {Xk}k∈N denote an irreducible Markov chain
with transition function P and stationary distribution π. Then, X is called
uniformly ergodic, if for every x ∈ S

||P k(x, ·)− π||TV ≤ Crk (24)

with positive constants C ∈ R and r < 1.

Theorem 4.23 Let {Xk}k∈N denote some uniformly ergordic Markov chain.
Then, the Markov chain is irreducible, aperiodic and Assumption R is sat-
isfied. Hence, Pn → Π for n→∞ as in Them. 4.21.

Proof: Apply Thm. 4.24 of [7] and note that we required the properties to
hold for every x ∈ S rather than for π almost every x ∈ S. �
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5 Empirical averages

5.1 The strong law of large numbers

Assume that we observe some realization X0(ω),X1(ω), . . . of a Markov
chain. Is it possible to “reconstruct” the Markov chain by determining
its transition probabilities just from the observed data?

In general the answer is ’no’; for example, if the Markov chain is re-
ducible, we would expect to be able to approximate only the transition
probabilities corresponding to one communication class. If the Markov chain
is transient, the reconstruction attempt will also fail. However, under some
reasonable conditions, the answer to our initial question is ’yes’.

In the context of Markov chain theory, a function f : S → R defined
on the state space of the chain is called an observable. Observables allow
to perform “measurements” on the system that is modelled by the Markov
chain. Given some Markov chain {Xk}k∈N we define the so–called empiri-
cal average Sn(f) of the observable f by

Sn(f) =
1

n + 1

n
∑

k=0

f(Xk).

Note that the empirical average is a random variable, hence Sn(f) : Ω →R ∪ {±∞}. Under suitable conditions the empirical average converges to a
probabilistic average, i.e., the expectation valueEπ[f ] =

∑

x∈S

f(x)π(x).

Theorem 5.1 (Strong law of large numbers [2, 17]) Let {Xk}k∈N de-
note an irreducible Markov chain with stationary distribution π, and let
f : S→ R be some observable such that

∑

x∈S

|f(x)|π(x) < ∞. (25)

Then for any initial state x ∈ S, i.e., X0 = x

1

n + 1

n
∑

k=0

f(Xk) −→ Eπ[f ] (26)

as n→∞ and Px–almost surely, i.e,Px

[

{

ω : lim
n→∞

1

n + 1

n
∑

k=0

f
(

Xk(ω)
)

= Eπ[f ]
}

]

= 1.
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Proof: Due to the assumption {Xk}k∈N is irreducible and positive rekur-
rent, therefore ν(y) = Ex[

∑Tx

n=0 1{Xn=y}] defines an invariant measure, while

the stationary distribution is given by π(y) = ν(y)
Z , with the normalization

constant Z =
∑

y∈S
ν(y) (cp. Theorem 3.19). For the random variable

U0 =
∑Tx

k=0 f(Xk) the expectation is given byE[U0] = Ex

[

Tx
∑

k=0

f(Xk)

]

= Ex





Tx
∑

k=0

∑

y∈S

f(y)1{Xk=y}





=
∑

y∈S

f(y)Ex

[

Tx
∑

k=0

1{Xk=y}

]

=
∑

y∈S

f(y)ν(y)

(27)

Now consider Up =
∑τp+1

k=τp+1 f(Xk), with p ≥ 1 and Tx = τ0, τ1, τ2, . . . the
successive return times to x. It follows from the strong Markov property
(Theorem 3.15) that U0, U1, U2, . . . are i.i.d. random variables. Since from
(25) and (27) we have E[|U0|] < ∞, therefore the famous Strong Law of
Large Numbers for i.i.d. random variables can be applied and yields with
probability one, i.e. almost surely,

lim
n→∞

1

n + 1

n
∑

k=0

Uk =
∑

y∈S

f(y)ν(y)⇔ lim
n→∞

1

n + 1

τn+1
∑

k=0

f(Xk) =
∑

y∈S

f(y)ν(y).

For the moment assume that f ≥ 0 and define Nx(n) :=
∑n

k=0 1{Xk=x}, the
number of visits in x within the first n steps. Due to

τNx(n) ≤ n < τNx(n)+1

and f ≥ 0 it follows that

1

Nx(n)

τNx(n)
∑

k=0

f(Xk) ≤
1

Nx(n)

n
∑

k=0

f(Xk) ≤
1

Nx(n)

τNx(n)+1
∑

k=0

f(Xk). (28)

Since the Markov chain is recurrent limn→∞ Nx(n) = ∞, so that the ex-
tremal terms in (28) converge to

∑

y∈S
f(y)ν(y) and therefore

lim
n→∞

1

Nx(n)

n
∑

k=0

f(Xk) =
∑

y∈S

f(y)ν(y) = Z
∑

y∈S

f(y)π(y).

Now consider the observable g ≡ 1, which is positive and fulfills condi-
tion (25), since {Xk}k∈N is recurrent. By the equation above we have

lim
n→∞

1

Nx(n)

n
∑

k=0

g(Xk) = lim
n→∞

n + 1

Nx(n)
= Z ⇒ lim

n→∞

Nx(n)

n + 1
=

1

Z
,
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and finally

lim
n→∞

1

n + 1

n
∑

k=0

f(Xk) = lim
n→∞

1

Nx(n)

Nx(n)

n + 1

n
∑

k=0

f(Xk)

=
1

Z

∑

y∈S

f(y)ν(y) =
∑

y∈S

f(y)π(y).

For arbitrary f , consider f+ = max(0, f) and f− = max(0,−f) and take
the difference between the obtained limits. �

Theorem 5.1 is often referred to as ergodic theorem. It states that the
time average (left hand side of (26)) is equal to the space average (right
hand side of (26)). The practical relevance of the strong law of large num-
bers is the following. Assume we want to calculate the expectation Eπ[f ]
of some observable f w.r.t. the stationary distribution of the Markov chain
{Xk}k∈N. Instead of first computing π and then Eπ[f ], we can alternatively
compute some realization X0(ω),X1(ω), . . . and then determine the corre-
sponding empirical average Sn(f). By Theorem 5.1, Sn(f) will be a good
approximation to Eπ[f ] for “large enough” n and almost every realization
ω ∈ Ω.

Why should we do so? There are many applications, for which the transi-
tion matrix of the Markov chain is not given explicitly. Instead, the Markov
chain is specified by an algorithm of how to compute a realization of it (this
is, e.g., the case, if the Markov chain is specified as a stochastic dynamics
system like in eq. (5)) . In such situations, the strong law of large numbers
can be extremely useful. Of course, we have to further investigate the ap-
proximation quality of the expectation by empirical averages, in particular
try to specify how large “large enough” is.

Example 5.2 Consider as observable f : S → R the indicator function of
some subset A ⊂ S, i.e.,

f(x) = 1{x ∈ A} =

{

1; if x ∈ A

0; otherwise .

Then under the conditions of Theorem 5.1

1

n + 1

n
∑

k=0

1{Xk ∈ A} =
1

n + 1

n
∑

k=0

1A(Xk) −→ π(A)

as n→∞. Hence, π(A) can be interpreted as the long time average number
of visits to the subset A. Consequently for large enough n, π(A) approx-
imately denotes the probability of encountering the Markov chain after n
steps in subset A.
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Remark. In our introductory example (random surfer on the WWW)
we considered the transition matrix P = (pw,w′)w,w′=1,...,N with

pw,w′ = P[wj+1 = w′|wj = w]

according to (1). The associated chain is irreducible, and aperiodic on finite
state space. Its stationary distribution π thus is unique, positive everywhere
and given by either πP = π. The probability pw of a visit of the average
surfer on webpage w ∈ {1, . . . , N} is the relative frequency of visits in w
in some infinitely long realization of the chain. It is given by its stationary
distribution

pw = lim
n→∞

1

n + 1

n
∑

j=0

1{wj = w} = π(w).

Thus the ranking of webpage can be computed by solving the eigenvalue
problem πP = π, which is very large since the number N of webpages in the
WWW is extemely large (N is in the range of 1010). Thus direct numerical
solution of the eigenvalue problem is prohibitive, and only iterative solvers
can lead to success. Google’s famous page rank algorithm is an iterative
scheme for computing the solution π iteratively via the application of the
power method to πP = π.

To answer the initial question whether we can reconstruct the transition
probabilities from a realization, we state the following

Corollary 5.3 (Strong law of large numbers II [2]) Let {Xk}k∈N de-
note an irreducible Markov chain with transition matrix P =

(

P (x, y)
)

x,y∈S

and stationary distribution π, and let g : S× S→ R be some function such
that

∑

x,y∈S

|g(x, y)|π(x)P (x, y) < ∞.

Then for any initial state x ∈ S, i.e., X0 = x we have

1

n + 1

n
∑

k=0

g(Xk,Xk+1) −→ Eπ,P [g] =
∑

x,y∈S

g(x, y)π(x)P (x, y)

as n→∞ and Px–almost surely.

Proof: We leave this as an excercise. Prove that π(x)P (x, y) is a stationary
distribution of the bivariate Markov chain Yk = (Xk,Xk+1). �

Corollary 5.3 is quite useful for our purpose. Consider the function
g : S× S→ R with

g(x, y) = 1(u,v)(x, y) =

{

1; if x = u, y = v

0; otherwise .
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Under the condition of Corollary 5.3

1

n + 1

n
∑

k=0

1{Xk = u,Xk+1 = v} −→ π(u)P (u, v)

as n → ∞. Hence, if we first compute π(u) as outlined in Example 5.2
with A = {u}, we can then approximate the transition probability P (u, v)
by computing the average number of “transitions Xk = u,Xk+1 = v” with
0 ≤ k < n and divide it by nπ(u).

5.2 Central limit theorem

We are now ready to state the important central limit theorem:

Theorem 5.4 (central limit theorem) Let {Xk}k∈N denote an irredu-
cible reversible Markov chain with stationary distribution π. Let moreover
f : S→ R denote some observable satisfying

∑

x∈S

|f(x)|π(x) < ∞.

Then, for every initial state X0 = x ∈ S:

(i) The variance of the empirical averages satisfies

n Var

[

1

n

n−1
∑

k=0

f(Xk)

]

−→ σ2(f)

as n→∞, where σ2(f) is called the asymptotic variance w.r.t. f .

(ii) If σ(f) <∞, then the distribution of the empirical averages satisfies

√
n

(

1

n

n−1
∑

k=0

f(Xk)−Eπ[f ]

)

−→ N
(

0, σ2(f)
)

(29)

for n→∞, where the convergence is understood in distribution, i.e.,

lim
n→∞

P [{ω :
√

n

(

1

n

n−1
∑

k=0

f(Xk(ω))−Eπ[f ]

)

≤ z
}

]

= Φσ(f)(z)

for every z ∈ R. Here Φ : R→ R given by

Φσ(f)(z) =
1

√

2πσ2(f)

∫ z

−∞
exp

(

− y2

2σ2(f)

)

dy

denotes the distribution function of the normal distribution with mean
zero and variance σ2(f).
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Remarks. For P acting onM2(π) define the quantity Λmax(P ) = sup{λ ∈
σ(P ) : λ 6= 1} ≤ 1.

1. The convergence process related to the asymptotic variance can be
characterized more precisely by

Var

[

1

n

n−1
∑

k=0

f(Xk)

]

=
σ2(f)

n
+O

(

1

n2

)

.

2. We have the upper bound on the asymptotic variance in terms of
Λmax(P ). If Λmax(P ) < 1, then

σ2(f) ≤ 1 + Λmax(P )

1− Λmax(P )
〈f, f〉π <∞.

3. For finite state space case we always have Λmax(P ) < 1.

4. The asymptotic variance in the central limit theorem is related to the
convergence rates of the empirical averages Sn(f). The smaller the
asymptotic variance σ2(f), the better the convergence of Sn(f) to its
limit values Eπ[f ].

5. Equation (29) is often interpreted in the following way to quantify
convergence for a given observable f . For large n we approximately
have

(

1

n

n−1
∑

k=0

f(Xk)−Eπ[f ]

)

≈ 1√
n
N
(

0, σ2(f)
)

in a distributional sense. Hence if we quadruple the length of the
Markov chain realization, we gain only the double precision.

6. Note that the asymptotic variance depends on the observable f . Hence,
for one and the same Markov chain the asymptotic variance may be
small for one observable, but large for another.

5.3 Markov Chain Monte Carlo

We will now give a very short summary of the idea behind Markov Chain
Monte Carlo (MCMC). There are many different (and very general) ap-
proaches to the construction of MCMC methods; however, we will concen-
trate completely on Metropolis MCMC.
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The background. We consider the following problem: Let π be a prob-
ability distribution on state space S. We are interested in computing the
expectation value of some observable f : S→ R,Eπ[f ] =

∑

x∈S

f(x)π(x).

For the sake of simplification we consider π and f to be everywhere positive
both. If the state space is gigantic the actual computation of the expectation
value may be a very hard or even seemingly infeasible task. Furthermore, in
many such applications the value of π(x) for some arbitrary x ∈ S cannot
be computed explicitly but has the form

π(x) =
1

Z
µ(x),

with some µ for which µ(x) is explicitly given and easily computable but
the normalization constant

Z = Eπ[1] =
∑

x∈S

π(x),

is not!

The idea. Given π we want to construct an irreducible Markov Chain
{Xk}k∈N such that

(C1) π is a stationary distribution of {Xk}k∈N, and

(C2) realizations of {Xk}k∈N can be computed by evaluations of µ only
(without having to compute Z).

Then we can exploit the law of large numbers and approximate the desired
expectation value by mean values Sn(f) of finite realization of {Xk}k∈N:

Sn(f) =
1

n + 1

n
∑

k=0

f(Xk) −→ Eπ[f ].

Theory. We start with the assumption that we have a transition function
Q : S × S → R that belongs to an irreducible Markov Chain. We can take
any irreducible transition function; it does not need to have any relation to
π but should have the additional property of being efficiently computable.
Surprisingly this is enough to construct an irreducible Markov chain with
above properties (C1) and (C2):
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Theorem 5.5 Let π > 0 be the given probability distribution and Q : S ×
S→ R a transition function of an arbitrary irreducible Markov Chain which
satisfies

Q(x, y) 6= 0 ⇔ Q(y, x) 6= 0,

which we will call the proposal function. Furthermore let Ψ : (0,∞)→ (0, 1]
be a function satisfying

Ψ(x)

Ψ(1/x)
= x, for all x ∈ (0,∞).

Then, the acceptance function A : S× S→ (0, 1] is defined by

A(x, y) =

{

Ψ
(

π(y)Q(y,x)
π(x)Q(x,y)

)

∈ (0, 1] if Q(x, y) 6= 0

0 otherwise
,

and the transition function P : S× S→ R by

P (x, y) =

{

Q(x, y)A(x, y) if x 6= y
1− ∑

z∈S,z 6=x

Q(x, z)A(x, z) if x = y . (30)

Then the Markov Chain {Xk}k∈N associated with P is irreducible, and has
π as stationary distribution, i.e., πP = π.

Proof: First, we observe that P indeed is a transition function:

∑

y∈S

P (x, y) =
∑

z∈S,z 6=x

Q(x, z)A(x, z) + 1−
∑

z∈S,z 6=x

Q(x, z)A(x, z) = 1.

Furthermore, since π > 0 and Q ≥ 0 per definition, we have A ≥ 0 and
P ≥ 0, and in particular A > 0 and P > 0 whenever Q > 0. Thus P inherits
the irreducibility from Q.

Next, assume that x, y ∈ S are chosen such that Q(x, y) 6= 0 and there-
fore Q(y, x) 6= 0; then also P (x, y) > 0 and therefore P (y, x) > 0, and the
same for A. Hence, we compute by exploitation of the property of Ψ:

A(x, y)

A(y, x)
=

π(y)Q(y, x)

π(x)Q(x, y)
,

and therefore finally

π(x)P (x, y) = π(y)P (y, x). (31)

The same equation is obviously satisfied if x = y. If x 6= y and such that
Q(x, y) = 0 then also P (x, y) = 0 such that (31) is satisfied again. Thus,
the detailed balance condition (31) is valid for all x, y ∈ S. Then, by Theo-
rem 4.13, π is a stationary distribution of {Xk}k∈N and πP = π. �
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The usual choice for the function Ψ is the so-called Metropolis function

Ψ(x) = min{1, x}.

In contrast to this, the transition function Q needs to be chosen individually
for each application under consideration.

Algorithmic realization. Computing a realization (xk)k=0,1,2,... of the
Markov Chain {Xk}k∈N associated with the transition function P is easier
than expected:

1. Start in some state x0 with iteration index k = 0.

2. Let xk be the present state.

3. Draw y from the proposal distribution Q(xk, ·). This can be done as
described in Sec. 2.3.

4. Compute the acceptance probability

a = A(xk, y) = Ψ
( π(y)Q(y, xk)

π(xk)Q(xk, y)

)

= Ψ
( µ(y)Q(y, xk)

µ(xk)Q(xk, y)

)

.

5. Draw r ∈ [0, 1) randomly from a uniform distribution in [0, 1).

6. Set

xk+1 =

{

y if r ≤ a
xk if r > a

.

7. Set k := k + 1 and return to step 2.

Thus, a = A(xk, y) really is an acceptance probability since the proposed
state y is taken as the next state xk+1 with probability a, while we remain
in the present state (xk = xk+1) with probability 1− a.

If in addition Q is symmetric, i.e., Q(x, y) = Q(y, x) for all pairs x, y ∈ S,
then the acceptance probability takes the particularly simple form

A(xk, y) = Ψ
( µ(y)

µ(xk)

)

.

General remarks. We observe that we do not need the normalization
constant Z from π = µ/Z; instead we only need fractions of the form
µ(x)/µ(y). Thus, we achieved everything we wanted, and we can compute
the desired expectation values from the mean values Sn(f) of realization of
{Xk}k∈N. The speed of convergence Sn(f) → Eπ[f ] is given by the cen-
tral limit theorem; we can apply Theorem 5.4 since the chain {Xk}k∈N is
reversible by construction. From our remarks to the central limit theorem
on page 56 we learn that the variance of the random variables Sn(f) will
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decay with O(n−1σ2(f)) with an asymptotic variance σ2(f) that essentially
depends on largest eigenvalues of P (not counting λ = 1). It is an art to
choose Q in a way that minimizes these largest eigenvalues of P and thus
minimizes the asymptotic variance.
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6 Markov jump processes

In the following two sections we will consider Markov processes on discrete
state space but continuous in time. Many of the basic notions and definitions
for discrete-time Markov chains will be repeated. We do this without too
much reference to the former sections in order to make the following sections
readable on their own.

6.1 Setting the scene

Consider some probability space (Ω,A,P), where Ω is called the sample
space, A the set of all possible events (the σ–algebra) and P is some prob-
ability measure on Ω. A family X = {X(t) : t ≥ 0} of random variables
X(t) : Ω → S is called a continuous-time stochastic process on the
state space S. The index t admits the convenient interpretation as time:
if X(t) = y, the process is said to be in state y at time t. For some given
ω ∈ Ω, the S–valued set {X(t, ω) : t ≥ 0} is called a realization (trajectory,
sample path) of the stochastic process X associated with ω.

Definition 6.1 (Markov process) A continuous-time stochastic process
{X(t) : t ≥ 0} on a countable state space S is called a Markov process, if
for any tk+1 > tk > . . . > t0 and B ⊂ S the Markov propertyP[X(tk+1) ∈ B|X(tk), . . . ,X(t0)] = P[X(tk+1) ∈ B|X(tk)] (32)

holds. If, moreover, the right hand side of (32) does only depend on the
time increment tk+1 − tk, but not on tk, then the Markov process is called
homogeneous. Given a homogeneous Markov process, the function p :R+ × S× S→ R+ defined by

p(t, x, y) = P[X(t) = y|X(0) = x]

is called the stochastic transition function; its values p(t, y, z) are the
(conditional) transition probabilities to move from x to y within time t. The
probability distribution µ0 satisfying

µ0(x) = P[X(0) = x]

is called the initial distribution. If there is a single x ∈ S such that
µ0(x) = 1, then x is called the initial state.

In the following, we will focus on homogeneous Markov process, and thus the
term Markov process will always refer to a homogeneous Markov process,
unless otherwise stated.

There are some subtleties in the realm of continuous time processes that
are not present in the discrete-time case. These steam from the fact that the
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uncountable union of measurable sets need not be measurable anymore. For
example, the mapping X(t, ·) : Ω → S is measurable for every t ∈ R+, i.e.,
{ω ∈ Ω : X(t, ω) ∈ A} ∈ A for every measurable subset A ⊂ S. However,

{ω ∈ Ω : X(t, ω) ∈ A, t ∈ R+} =
⋂

t∈R+

{ω ∈ Ω : X(t, ω) ∈ A}

need not be in A in general. This is related to functions like inft∈R+ X(t)
or supt∈R+ X(t), since, e.g.,

{

sup
t∈R+

X(t) ≤ x

}

=
⋂

t∈R+

{ω ∈ Ω : X(t, ω) ≤ x}.

We will therefore impose some (quite natural) regularity conditions on
the Markov process in order to exclude pathological cases (or too technical
details). Throughout this chapter, we assume that

p(0, x, y) = δxy, (33)

where δxy = 1, if x = y and zero otherwise. This guarantees that no transi-
tion can take place at zero time. Moreover, we assume that the transition
probabilities are continuous at t = 0:

lim
t→0+

p(t, x, y) = δxy (34)

for every x, y ∈ S. This guarantees (up to stochastic equivalence) that the
realizations of {X(t) : t ≥ 0} are right continuous functions (more precisely,
it implies that the Markov process is stochastically continuous, separable and
measurable on compact intervals. Moreover, there exists a separable version,
being stochastically equivalent to {X(t) : t ≥ 0} and all of whose realizations
are continuous from the right; for details see reference [18, Chapt. 8.5]). Due
to the fact that the state space is discrete, continuity from the right of the
sampling functions implies that they are step functions, that is, for almost
all ω ∈ Ω and all t ≥ 0 there exists ∆t(t, ω) > 0 such that

X(t + τ, ω) = X(t, ω); τ ∈ [0,∆t(t, ω)).

This fact motivates the name Markov jump process.

For our further study, we recall to important random variables. A con-
tinuous random variable τ : Ω→ R+ satisfyingP[τ > s] = exp(−λs)

for every s ≥ 0 is called an exponential random variable with parameter
λ ≥ 0. Its probability density f : R+ → R+ is given by

f(s) = λ exp(−λs)
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for s ≥ 0 (and zero otherwise). Moreover, the expectation is given byE[τ ] =
1

λ
.

One of the most striking features of exponential random variables is their
memoryless property, expressed asP[τ > t + s|τ > t] = P[τ > s]

for all s, t ≥ 0. This is easily proven by noticing that the left hand side is
per definition equal to exp(−λ(t + s))/ exp(−λt) = exp(−λs), being equal
to the right hand side.

A discrete random variable N : Ω→ N with probability distributionP[N = k] =
λke−λ

k!

for k ∈ N is called a Poisson random variable with parameter λ ∈ R+.
Its expectation is given by E[N ] = λ.

We now consider two examples of Markov jump processes that are of proto-
type nature.

Example 6.2 Consider an iid. sequence {τk}k∈N of exponential random
variable with parameter λ > 0 and define recursively the sequence of random
variable {Tk}k∈N by

Tk+1 = Tk + τk

for k ≥ 1 and T0 = 0. Here, Tk is called the kth event time and τk the
inter-event time. Then, the sequence of random variables {N(t) : t ≥ 0}
defined by

N(t) =

∞
∑

k=0

1{Tk≤t} = max {k ≥ 0 : Tk ≤ t} .

for t ≥ 0 and with N(0) = 0. Its (discrete) distribution is given by the
Poisson distribution with parameter λt:P[N(t) = k] =

(λt)k

k!
e−λt;

for k ≥ 1. That is why {N(t)} is called a homogeneous Poisson process

with intensity λ. Per construction, N(t) is counting the number of events
up to time t. Therefore, it is also sometime called the counting process

associated with {Tk}.
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Remark: One could also determine the distribution of the event times
Tk, the time at which the kth event happens to occur. Since per definition
Tk is the sum of k iid. exponential random variables with parameter λ, the
probability density is known as

fTk
(t) =

(λt)k

k!
λe−λt

for t ≥ 0 and zero otherwise. This is the so-called Erlang distribution (a
special type of Gamma distribution) with parameter k + 1 and λ.

Example 6.3 Consider some discrete-time Markov chain {Ek}k∈N on a
countable state space S with stochastic transition matrix K = (k(x, y))xy∈S,
and furthermore, consider some homogeneous Poisson process {Tk}k∈N onR+ with intensity λ > 0 and associated counting process {N(t) : t ≥ 0}.
Then, assuming independence of {Ek} and {N(t)}, the process {X(t) : t ≥
0} with

X(t) = EN(t)

is called the uniform Markov jump process with clock {N(t)} and sub-
ordinated chain {Ek}. The thus defined process is indeed a Markov jump
process (exercise). Note that the jumps of X(t) are events of the clock pro-
cess N(t), however, not every event of N(t) corresponds to a jump (unless
E(x, x) = 0 for all x ∈ S). In order to compute its transition probabilities,
note thatP[X(t) = y|X(0) = x] = P[EN(t) = y|E0 = x]

=

∞
∑

n=0

P[En = y,N(t) = n|E0 = x]

=

∞
∑

n=0

P[En = y|E0 = x] P[N(t) = n],

where the last equality is due to the assumed independence of En and N(t).
Hence, its transition probabilities are given by

p(t, x, y) =

∞
∑

n=0

e−λt (λt)n

n!
kn(x, y), (35)

for t ≥ 0, x, y ∈ S, where kn(x, y) is the corresponding entry of Kn, the
n-step transition matrix of the subordinated Markov chain.

Solely based on the Markov property, we will now deduce some properties
of Markov jump processes that illuminate the differences, but also the close
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relations to the realm of discrete-time Markov chains. We will see that
the uniform Markov chain is in some sense the prototype of a Markov jump
process. To do so, define for t ∈ R+ the residual life time τ(t) : S→ [0,∞]
in state X(t) by

τ(t) = inf{s > 0 : X(t + s) 6= X(t)}. (36)

Obviously, τ(t) is a stopping time, i.e., it can be expressed in terms of
{X(s) : 0 ≤ s ≤ t} (since the sample paths are right-continuous). Hence,
conditioned on X(t) and τ(t) <∞, the next jump (state change) will occur
at time t+ τ(t). Otherwise the Markov process will not leave the state X(t)
anymore.

Proposition 6.4 Consider some Markov process {X(t) : t ≥ 0} being in
state x ∈ S at time t ∈ R+. Then, there exists λ(x) ≥ 0, independent of the
time t, such that P[τ(t) > s|X(t) = x] = exp(−λ(x)s) (37)

for every s > 0.

Therefore, λ(x) is called the jump rate associated with the state x ∈ S.
Prop. 6.4 states that the residual life time decays exponentially in s.

Proof: Note that P[τ(t) > s|X(t) = x] = P[τ(0) > s|X(0) = x], since the
Markov jump process is homogeneous. Define g(s) = P[τ(0) > s|X(0) = x]
and compute

g(t + s) = P[τ(0) > t + s|X(0) = x] = P[τ(0) > t, τ(t) > s|X(0) = x]

= P[τ(0) > t|X(0) = x]P[τ(t) > s|τ(0) > t,X(0) = x]

= g(t)P[τ(t) > s|τ(0) > t,X(0) = x,X(t) = x]

= g(t)P[τ(t) > s|X(t) = x] = g(t)g(s).

In addition, g(s) is continuous at s = 0, since the transition probabilities
were assumed to be continuous at zero. Moreover, 0 ≤ g(s) ≤ 1, which
finally implies that the only solution must be

g(s) = exp(−λ(x)s)

with λ(x) ∈ [0,∞] given by λ(x) = − ln(P[τ(0) > 1|X(0) = x]). �

To further illuminate the characteristics of Markov processes on count-
able state spaces, denote by T0 = 0 < T1 < T2 < . . . the random jump
times or event times, at which the Markov process changes its state. Based
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on the jump times, define the sequence of random life times (τk)k∈N via
the relation

τk = Tk+1 − Tk

for k ∈ N. Due to Prop. 6.4 we know thatP[τk > s|X(Tk) = x] = exp(−λ(x)s)

for s ≥ 0. Moreover, the average life time of a state isE[τ(t)|X(t) = x] =
1

λ(x)
.

In terms of the jump times, we have

X(t) = X(Tk); t ∈ [Tk, Tk+1),

hence the Markov process is constant, except for the jumps.

Definition 6.5 Consider a state x ∈ S with associated jump rate λ(x).
Then, x is called

1. permanent, if λ(x) = 0

2. stable, if 0 < λ(x) <∞,

3. instantaneous, if λ(x) = ∞ (not present for Markov processes with
right continuous sample paths).

Assume that X(t) = x at time t; if x is

1. permanent, then P[X(s) = x|X(t) = x] = 1 for every s > t, hence the
Markov process stays in x forever,

2. stable, then P[0 < τ(t) <∞|X(t) = x] = 1,

3. instantaneous, then P[τ(t) = 0|X(t) = x] = 1, hence the Markov
process exists the state as soon as it enters it.

Due to our general assumption, we know that the Markov process has right
continuous sample paths. As a consequence, the state space S does not
contain instantaneous states.

Definition 6.6 Consider some Markov process {X(t) : t ≥ 0} with right
continuous sample paths. Then, the Markov process is called regular or
non-explosive, if

T∞ := sup
k∈NTk =∞ (a.s.),

where T0 < T1 < . . . denote the jump times of {X(t) : t ≥ 0}. The random
variable T∞ is called the explosion time.
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If the Markov jump process is explosive, then P[T∞ < ∞] > 0. Hence
there is a ”substantial” set of realizations, for which the Markov process
”blows up” in finite time. In such a situation, we assume that the Markov
jump process is only defined for times smaller than the explosion time. The
following proposition provides a quite general condition for a Markov process
to be regular.

Proposition 6.7 A Markov process {X(t) : t ≥ 0} on a countable state
space S is regular, if and only if

∞
∑

k=1

1

λ(X(Tk))
=∞ (a.s.).

This is particularly the case, if (1) S is finite, or (2) if supx∈S λ(x) <∞.

Proof: See Prop. 8.7.2 in [18]. �

Compare also Prop. 6.16. Based on the sequence of event times (Tk)k∈N,
we define the following discrete-time S-valued stochastic process {Ek} by
Ek = X(Tk). As is motivated from the definition and the following results,
{Ek}k∈N is called the embedded Markov chain. However, it still remains to
prove that {Ek}k∈N is really well-defined and Markov. To do so, we need
the following

Definition 6.8 A Markov process {X(t) : t ≥ 0} on a state space S fulfills
the strong Markov property if, for any stopping time τ , being finite a.s.,P[X(s + τ) ∈ A|X(τ) = x,X(t), t < τ ] = Px[X(s) ∈ A]

for every A ∈ A, whenever both sides are well-defined. Hence, the process
{X(s + τ) : s ≥ 0} is Markov and independent of {X(t), t < τ}, given
X(τ) = x.

In contrast to the discrete-time case, not every continuous-time Markov
process on a countable state space obeys the strong Markov property. How-
ever, under some suitable regularity conditions, this is true.

Theorem 6.9 A regular Markov process on a countable state space fulfills
the strong Markov property.

Proof: See Thm. 4.1 in Chapter 8 of [2]. �

The next proposition states that the time, at which the Markov process
jumps next, and the state, it jumps into, are independent.
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Proposition 6.10 Consider a regular Markov jump process on S, and as-
sume that Tk+1 < ∞ a.s. Then, conditioned on X(Tk) = x, the random
variables τk+1 and X(Tk+1) are independent, i.e.,P[τk+1 > t,X(Tk+1) = y|X(Tk) = x] (38)

= P[τk+1 > t|X(Tk) = x] ·P[X(Tk+1) = y|X(Tk) = x]

Proof: Starting with (38) we get, by applying Bayes rule,P[τk+1 > t,X(Tk+1) = y|X(Tk) = x]

= P[τk+1 > t|X(Tk) = x] ·P[X(Tk+1) = y|X(Tk) = x, τk+1 > t].

Using the Markov property we can rewrite he last factorP[X(Tk+1) = y|X(Tk) = x, τk+1 > t]

= P[X(Tk+1) = y,X(s) = x, Tk ≤ s < Tk+1|X(Tk + t) = x]

= P[X(Tk + τ(Tk + t)) = y,X(s) = x, Tk ≤ s < Tk + τ(Tk + t)|X(Tk) = x]

= P[X(Tk+1) = y|X(Tk) = x],

where we used the homogeneity of the Markov process to proceed from the
second to the third line. �

We are now ready to define the embedded Markov chain of the
Markov jump process.

Definition 6.11 Define the homogeneous Markov chain {Ek}k∈N on the
state space S in terms of the following transition function P =

(

p(x, y)
)

xy∈S
.

If x is permanent, set p(x, x) = 1. Otherwise, if x is stable, set

p(x, y) = P[X(T1) = y|X(0) = x] (39)

and consequently p(x, x) = 0.

Summarizing our results we obtain the following theorem.

Theorem 6.12 Consider a regular Markov jump process and assume that
the state space consists only of stable states. Then, {X(Tk)}k∈N is a ho-
mogeneous Markov chain with transition function defined in (39). In other
words, it is

Ek = X(Tk)

for every k ∈ N (in distribution).

So, we obtain the following characterization of a Markov jump processes
{X(t)} on the state space S. Assume that the process is at state x at time
t, i.e., X(t) = x. If the state is permanent, then the Markov process will
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stay in x forever, i.e., X(s) = x for all s > t. If the state is stable, then the
Markov process will leave the state x at a (random) time being exponentially
distributed with parameter 0 < λ(x) < ∞. It then jumps into some other
state y 6= x ∈ X with probability p(x, y), hence according to the law of the
embedded Markov chain {Ek}k∈N. Therefore knowing the rates (λ(x)) and
the embedded Markov chain in terms of its transition function P = (p(x, y))
completely characterizes the Markov jump process.

The above characterization is also the basis for a numerical simulation
of the Markov jump process. To do so, one might exploit the following
important and well-known relation between an exponential random variable
τ with parameter λ and some uniform random variable U on [0, 1], given by

τ = − 1

λ
ln(U).

Hence, a numerical simulation of a Markov jump process can be based on
randomly drawing two uniform random numbers for each jump event (one
for the time, another one for the state change).

6.2 Communication and recurrence

This section is about the topology of regular Markov jump processes (unless
stated otherwise). As in the case of Markov chains, we start with some

Definition 6.13 Let {X(t) : t ≥ 0} denote a Markov process with transition
function P (t), and let x, y ∈ S denote some arbitrary pair of states.

1. The state x has access to the state y, written x→ y, ifP[X(t) = y|X(0) = x] > 0

for some t > 0.

2. The states x and y communicate, if x has access to y and y access
to x, denoted by x↔ y.

3. The Markov chain is said to be irreducible, if all pairs of states com-
municate.

As for Markov chains, it can be proven that the communication relation
↔ is an equivalence relation on the state space. We remark that periodicity
plays no role for continuous-time Markov jump processes, since they are
always aperiodic. We proceed by introducing the first return time.

Definition 6.14 1. The stopping time Ex : Ω→ R+ ∪ {∞} defined by

Ex = inf{t ≥ 0 : X(t) 6= x,X(0) = x}.
is called the first escape time from state x ∈ S.
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2. The stopping time Rx : Ω→ R+ ∪ {∞} defined by

Rx = inf{t > T1 : X(t) = x},

with inf{} =∞, is called the first return time to state x.

Note that Px[Ex] = Px[τ(0)] (see eq. (36)).

Analogous to the Markov chain theory, based on the first return time to
a state, we may define recurrence and transience of a state.

Definition 6.15 A state x ∈ S is called recurrent, if it is permanent orPx[Rx =∞] = 1,

and transient otherwise.

Again, recurrence and transience are class properties, i.e., the states of some
communication class are either all recurrent or all transient. Interestingly
and maybe not surprisingly, some (but not all, as we will see later) properties
of states can be determined in terms of the embedded Markov chain.

Proposition 6.16 Consider a regular and stable Markov jump process {X(t) :
t ≥ 0} and the associated embedded Markov chain {Ek}k∈N, then the fol-
lowing holds true.

a) The Markov jump process is irreducible, if and only if its embedded Markov
chain is irreducible.

b) A state x ∈ S is recurrent (transient) for the embedded Markov chain, if
and only if is recurrent (transient) for the Markov jump process.

c) A state x ∈ S is recurrent for the Markov jump process, if and only if

∫ ∞

0
p(t, x, x)dt =∞.

d) Recurrence and transience of the Markov process inherits to any dis-
cretization, i.e. if h > 0 and Zk := X(kh) then recurrence of x ∈ S for
the Markov process is equivalent to recurrence of x ∈ S for the discretiza-
tion {Zk}k∈N.

Proof: We leave the proof of the first two statements as an exercise to the
reader.
c) Remember the analogous formulation in the time-discrete case: if for
some Markov chain, e.g. {Ek}k∈N, and some state, e.g. x ∈ S, the random
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variable Nx counts the number of visits in x, then x is recurrent if and only
if Ex[Nx] = Ex

[

∞
∑

k=0

1Ek=x

]

=

∞
∑

k=0

Ex[1Ek=x]

=

∞
∑

k=0

p(k)(x, x) =∞,

where, as usual, p(k)(x, x) denotes the k−step transition probabilityPx[Ek =
x]. Therefore we can prove the statement by showing that

∫ ∞

0
p(t, x, x)dt =

1

λ(x)

∞
∑

k=0

p(k)(x, x).

This is done in the following, where we use Fubini’s theorem to exchange
integral and expectation and Beppo Levi’s theorem to exchange summation
and expectation:
∫ ∞

0
p(t, x, x)dt =

∫ ∞

0
Ex[1X(t)=x]dt = Ex

[∫ ∞

0
1X(t)=xdt

]

= Ex

[

∞
∑

k=0

τk+11Ek=x

]

=

∞
∑

k=0

Ex[τk+1|Ek = x]Px[Ek = x]

=

∞
∑

k=0

1

λ(x)
p(k)(x, x)

Be aware that the conditions to use Fubini’s theorem are only met because
X is a jump process.
d) That transience inherits to any discretization is obvious, so consider x
recurrent. If t is constrained by kh ≤ t < (k + 1)h, then

p((k + 1)h, x, x) ≥ p((k + 1)h− t, x, x)p(t, x, x)

≥ exp(−λ(x)((k + 1)h− t)p(t, x, x)

≥ exp(−λ(x)h)p(t, x, x).

Multiplication with exp(λ(x)h) yields

exp(λ(x)h)p((k + 1)h, x, x) ≥ p(t, x, x) , for kh ≤ t < (k + 1)h.

This enables us to give an upperbound to the integral

∫ ∞

0
p(t, x, x)dt ≤ h

∞
∑

k=0

exp(−λ(x)h)p((k + 1)h, x, x)

= h exp(−λ(x)h)
∞
∑

k=1

p(kh, x, x).
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It follows from d) that
∑∞

k=1 p(kh, x, x) = ∞, which is the sum over the
transition probabilities of the discretized Markov chain.
�

Irreducible and recurrent Markov jump processes are regular, as the next
theorem states.

Theorem 6.17 An irreducible and recurrent Markov jump process is regu-
lar.

Proof: Regularity means that the sequence of event times heads to infinity

lim
k→∞

Tk =∞⇔
∞
∑

k=1

τk =∞.

Let x ∈ S be an arbitrary start position. Since the Markov process is irre-
ducible and recurrent, we know that the embedded Markov chain {Ek}k∈N
visits x infinitely often. Denote by {Nk(x)}k∈N the sequence of visits in x.
Observe that if τ is λ−exponential distributed, then λτ is 1−exponential
distributed (we pose that as an easy exercise), therefore we have

∞ =

∞
∑

k=0

λ(ENk(x))τNk+1 = λ(x)

∞
∑

k=0

τNk+1

≤ λ(x)
∞
∑

k=0

τk+1.

�

As we will see below, it is also possible to characterize invariant measures
in terms of the embedded Markov chain. However, the distinction between
positive and null-recurrence and the existence of stationary distributions can
not be examined in terms of the embedded Markov chain. Here, the rates
(λ(x)) also have to come into play. That is why we postpone the correspond-
ing analysis and first introduce the concept of infinitesimal generators, which
is the more adequate object to study.

6.3 Infinitesimal generators and the master equation

We now come to the characterization of Markov jump processes that is not
present for the discrete-time case. It is in terms of infinitesimal changes of
the transition probabilities and based on the notion of generators. As in
the preceding section, we assume throughout that the Markov jump process
satisfies the two regularity conditions (33) and (34).
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To start with, we introduce the transition semigroup {P (t) : t ≥ 0}
with

P (t) =
(

p(t, x, y)
)

xy∈S
.

Due to (33), it is P (0) = Id and due to (34), we have

lim
t→0+

P (t) = Id.

In terms of the transition semigroup, we can also easily express the Chapman-
Kolmogorov equation as

P (s + t) = P (s)P (t)

for t, s ≥ 0 (which justifies the notion of a semigroup). In semigroup theory,
one aims at characterizing P (t) in terms of its infinitesimal generator Q. In
broad terms, the goal is to prove and justify the notion P (t) = exp(tQ). In
the following, we will proceed towards this goal.

Proposition 6.18 Consider the semigroup P (t) of a Markov jump process.
Then, the limit

A = lim
t→0+

P (t)− Id

t

exists (entrywise) and defines the infinitesimal generator A = (a(x, y))xy∈S

with −∞ ≤ a(x, x) ≤ 0 ≤ a(x, y) <∞.

Note that we do not claim uniform convergence for all pairs of states
x, y ∈ S.

Proof : We first prove the result for the diagonal entries. Consider some
state x ∈ S and define h(t, x) = − ln(p(t, x, x)). Then, from the Chapman-
Kolmogorov equation we deduce p(t + s, x, x) ≥ p(t, x, x)p(s, x, x). In terms
of h, this implies h(t + s, x) ≤ h(t, x)h(s, x). Due to the general regularity
condition (33), it is h(0, x) = 0, implying h(t, x) ≥ 0 for all t ≥ 0. Now,
define

sup
0≤t≤∞

h(t, x)

t
=: c ∈ [0,∞].

We now proof that c is in fact equal to the limit limh(t, x)/t for t → +,
being equivalent to the statement that for every b < c it is

b ≤ lim inf
t→0+

h(t, x)

t
≤ lim sup

t→0+

h(t, x)

t
= c. (40)

So, choose b < c arbitrarily. Acc. to the definition of c, there exists s > 0
such that b < h(s, x, x)/s. Rewriting s = nt+∆t with t > 0 and 0 ≤ ∆t < t,
we obtain

b <
h(s, x)

s
≤ nt

s

h(t, x)

t
+

h(∆t, x)

s
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Taking the joint limit t → 0+, ∆t → 0 and n → ∞ such that nt/s →
1 proves the first inequality in (40) and thus completes the proof for the
diagonal entries.

To prove the statement for the off-diagonal entries, assume that we are
able to prove for every ǫ ∈ (1/2, 1) there exist δ > 0 such that

p(ns, x, y) ≥ (2ǫ− 1)np(s, x, y) (41)

for every n ∈ N and s ≥ 0 such that 0 ≤ ns < δ. Denote by [x] the integer
part of x. Then,

p(s, x, y)

s
≤ p([t/s]s, x, y)

[t/s]s(2ǫ2 − ǫ)

with t, s < δ. Considering s→ 0+, we obtain for all t > 0

lim sup
s→0+

p(s, x, y)

s
≤ p(t, x, y)

t(2ǫ2 − ǫ)
<∞

since lims→0+[t/s]s = t. Therefore,

lim sup
s→0+

p(s, x, y)

s
≤ 1

(2ǫ2 − ǫ)
lim inf
t→0+

p(t, x, y)

t
<∞.

Since ǫ can be chosen arbitrarily close to 1, we finally obtain the desired
result. However, statement (41) still needs to be proven ... �

Sometimes, even for discrete-time Markov chains ”generators” are de-
fined; here A = P − Id mimics the properties of a infinitesimal generator
(which it of course not is). In Graph Theory, such a matrix is known as
Laplace matrix.

Example 6.19 Rewriting eq. (35) in matrix form, we obtain for the tran-
sition semigroup of the uniform Markov process with intensity λ > 0 and
subordinated Markov chain K = (k(x, y))

P (t) =

∞
∑

n=0

e−λt (λt)n

n!
Kn = etλ

(

K−Id
)

, (42)

for t ≥ 0.The infinitesimal generator is thus given by

A = λ
(

K − Id
)

, (43)

which, entry-wise, corresponds to a(x, x) = λ(1 − k(x, x)), and a(x, y) =
λk(x, y) for x 6= y. The result directly follows from eq. (42).

By now we have two different descriptions of a Markov jump process,
one in of form sojourn times and the embedded Markov chain, the other
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by the generator. We saw in the preceding sections that a Markov jump
process is fully determined by its sojourn times and the embedded Markov
chain. Why did we introduce the notion of a generator then? The answer is
that more general Markov processes, i.e. in continuous state space, can not
described by an embedded Markov chain anymore, while it is still possible
to use the generator concept. But of course, in the case of a Markov jump
process, it is possible to convey both description types into each other, like
we did in the case of a uniform Markov jump process. This is what we do
in the next paragraph. Therefore we will construct for a given generator a
suitable Markov jump process and use this construction afterwards to get
insight about the entries of a generator of a given Markov jump process.
As preparation we need

Proposition 6.20 Consider a series of independent exponential distributed
random variables {Nk}k∈N with parameters {λk}k∈N. Assume that

∑∞
k=0 λk =

λ <∞ and let
T = min{N0, N1, N2, . . . , }

be the minimum value of the random variables series and J such that NJ =
T . Then J and T are independent random variables withP[J = i, T ≥ t] = P[J = i]P[T ≥ t] =

λi

λ
exp(−λt).

Proof : Left as an exercise (use results about the distribution of a mini-
mum of exponential distributed random variables, show the proposition for
a finite number of random variables and then generalize to the case of an
infinite number of random variables). �

Given a stable and conservative generator, i.e. a matrix A with

−∞ < −a(x, x) ≤ 0,

0 ≤ a(x, y) <∞ for x 6= y

and
∑

y 6=x a(x, y) = −a(x, x). To construct a jump process based on this
matrix set T0 = 0, X(T0) = X(0) = x0 and define recursively the following
process

1. Assume X(Tk) = x.

2. If a(x, x) = 0 end the construction by setting τk = ∞ and X(t) = x
for all t ≥ Tk.

3. Otherwise τk = min{Nx,0, Nx,1, . . . , Nx,x−1, Nx,x+1, Nx,x+2, . . .}, where
N(x, y) is exponential distributed to the parameter a(x, y).

4. Set Tk+1 = Tk + τk and Xk+1 = X(Tk+1) = y, where y is the state
such that τk = N(x, y).
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Theorem 6.21 The previous constructed process is a homogeneous Markov
jump process with generator A

Proof : We leave the fact that the constructed process is a homogeneous
Markov jump process to the careful reasoning of the reader. It remains to
show that a(x, y) = limt→0

P (t,x,y)−P (0,x,y)
t , i.e. it is necessary to analyze

the transition function P . The statement is trivial if a(x, x) = 0 (why?),
therefore it is assumed in the following that a(x, x) 6= 0.
The first case to be considered is x 6= y, then

P (t, x, y) = Px[T2 ≤ t,X(t) = y] +Px[T2 > t,X(t) = y]

= Px[T2 ≤ t,X(t) = y] +Px[T2 > t, T1 ≤ t,X1 = y]

= Px[T2 ≤ t,X(t) = y] +Px[T1 ≤ t,X1 = y]−Px[T1 ≤ t,X1 = y, T2 ≤ t]

The three terms on the right-hand side are now to be analyzed separately.
For the second term we have, by 6.20,Px[T1 ≤ t,X1 = y] = (1− exp(−a(x, x)t)

a(x, y)

a(x, x)
=: f(t).

Since f ′(t) = a(x, y) exp(a(x, x)t) we have f ′(0) = a(x, y) and

lim
t→0

f(t)− f(0)

t
= lim

t→0

f(t)

t
= a(x, y).

The first and the third term are both upper-bounded by Px[T2 ≤ t], which
can be bounded further byPx[T2 ≤ t] ≤ Px[T1 ≤ t, τ1 ≤ t]

=
∑

x 6=y

Px[T1 ≤ t,X1 = y, τ1 ≤ t]

=
∑

x 6=y

(1− exp(a(x, x)t))
a(x, x)

−a(x, y)
(1− exp(a(y, y)t)) = f(t)g(t),

where f(t) := exp(a(y, y)t) − 1 and g(t) :=
∑

x 6=y(1 − exp(a(x, x)t)a(x,x)
a(x,y) .

Now observe

lim
t→0

1

t
f(t) = lim

t→0

exp(a(y, y)t) − exp(a(y, y)0)

t− 0
= (exp(a(y, y)t))′|t=0 = a(y, y)

and

lim
t→0

g(t) = lim
t→0

∑

x 6=y

(1− exp(a(x, x)t)
a(x, x)

a(x, y)
= 0,

(the exchange of limes and summation is allowed in this case, because all
summands in the sum are positive, bounded and with an existing limes).

This yields limt→0
Px[T2≤t]

t = limt→0
f(t)g(t)

t = 0 and, putting it all together,

lim
t→0

P (t, x, y)

t
= a(x, y).
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It remains to show that limt→0
P (t,x,x)−1

t = −a(x, x). This is very similar to
the case x 6= y, in that P (t, x, x) is decomposed by

P (t, x, x) = Px[T2 ≤ t,X(t) = x] +Px[T2 > t,X(t) = x]

= Px[T2 ≤ t,X(t) = x] +Px[T1 > t],

which can be treated similar to the first case to show the assertion. �

As it is clear by now how to construct a Markov jump process to a given
generator we proceed to the reverse direction. Assume a given Markov jump
process {X(t) : t ≥ 0} with jump rates {λ(x)}x∈S and conditional transition
probabilities {k(x, y)}x,y∈S, furthermore k(x, x) = 0 and λ(x) < ∞ for all
x ∈ S. Let P be the transition function of this process. A matrix Ã defined
by

ã(x, y) =

{

−λ(x) for x = y

λ(x)k(x, y) for x 6= y

fulfills obviously the conditions we posed on a generator, namely conserva-
tive and stable, to construct a Markov Process by the previous described
procedure. Doing this we obtain another Markov Process with transition
function P̃ . By construction it is clear that P = P̃ (you should be able to
figure that out!) and therefore the derivatives at 0 are equal, that is the
generator of {X(t) : t ≥ 0} fulfills A = Ã. We state this important result in

Theorem 6.22 Consider a homogeneous and regular Markov jump process
on state space S with jump rates {λ(x)}x∈S and conditional transition prob-
abilities {k(x, y)}x,y∈S, where k(x, x) = 0 for all x ∈ S. Then the generator
A is given by

ã(x, y) =

{

−λ(x) for x = y

λ(x)k(x, y) for x 6= y
,

i.e. A = Λ(K − Id), where the jump rate matrix Λ is given by

Λ =











λ(0)
λ(1)

λ(2)
. . .











. (44)

Hence, the negative diagonal entry of the generator corresponds to the
life time rate of the corresponding state, while the off-diagonal entries are
proportional to the transition probabilities of the embedded Markov chain.
We further remark that many infinitesimal generators can be represent in
multiple ways, if represented by an intensity λ ∈ R+ and some subordinated
Markov chain with transition matrix S. Assume supx λ(x) <∞. Then, for
any choice of λ ≥ supx λ(x), define

S = λ−1Λ(K − Id) + Id,
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which indeed is a stochastic matrix (exercise). As a result, eq. (43) trans-
forms into the uniform representation

A = λ(S − Id), (45)

which is the representation of the infinitesimal generator of an uniform
Markov jump process with intensity λ and subordinated Markov chain rep-
resented by S. In the representation (45), every event is associated with a
state change (since p(x, x) = 0). In contrast, events in the representation
(45) need not necessarily correspond to a state change (since s(x, x) ≥ 0,
which might be positive).

Example 6.23 A birth and death process with birth rates (αx)x∈S and
death rates (γx)x∈S on the state space S = N is a continuous-time Markov
jump process with infinitesimal generator A = (a(x, y))xy∈S defined by

A =















−α0 α0 0 0 0 · · ·
γ1 −(γ1 + α1) α1 0 0 · · ·
0 γ2 −(γ2 + α2) α2 0 · · ·
0 0 γ3 −(γ3 + α3) α3 · · ·
...

...
...

. . .
. . .

. . .















.

We assume that α(x), γ(x) ∈ (0,∞) for x ∈ S. The birth and death process
is regular, if and only if the corresponding Reuters’s criterion

∞
∑

k=1

(

1

αk
+

γk

αkαk−1
+ · · ·+ γk · · · γ1

αk · · ·α0

)

=∞

is satisfied [2, Chapt. 8, Thm. 4.5].

The next proposition shows how the generator can be used to evolve the
semigroup of conditional transitions in time.

Proposition 6.24 Consider a Markov jump process with transition semi-
group P (t) and infinitesimal generator A = (a(x, y)), satisfying −a(x, x) <
∞ for all x ∈ S. Then, P (t) is differentiable for all t ≥ 0 and satisfies the
Kolmogorov backward equation

dP (t)

dt
= AP (t). (46)

If furthermore
∑

y

p(t, x, y)λ(y) <∞ (47)

is satisfied for all t ≥ 0 and x ∈ S, then also the Kolmogorov forward

equation
dP (t)

dt
= P (t)A (48)

holds.
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Remark 6.25 Condition (47) is always satisfied if the state space S is finite
or supx λ(x) <∞.

Proof : There is simple proof in the case of a finite state space. In the
general case the proof is considerably harder, we refere to [18], Prop. 8.3.4,
p.210.
By definition of a semigroup we have P (t + s) = P (t)P (s) = P (s + t),
therefore, under the assumption that S is finite,

lim
h→0

P (t + h)− P (t)

h
= lim

h→0
P (t)

P (h) − Id

h
= P (t)A

= lim
h→0

P (h)− Id

h
P (t) = AP (t)

This does not work in the infinite case, because it is not sure if we can ex-
change the limes with the sum in the matrix-matrix multiplication. �

Remark 6.26 Component wise the backward, resp. forward, equation reads

d

dt
P (t, x, y) = −λ(x)P (t, x, y) +

∑

z 6=x

a(x, z)P (t, z, y), resp.

d

dt
P (t, x, y) = −λ(y)P (t, x, y) +

∑

z 6=x

P (t, x, z)a(z, y)

If the state space is finite the solution to eq. (46) is given by P (t) = exp(tA),
where the matrix exponential function is defined via the series

exp(tA) =
∑

n∈N (tA)n

n!

which is known to converge. The situation is quite easy if A is diagonalizable,
i.e. we have A = V −1DV for a unitary matrix V and a diagonal matrix D.
Then An = V −1DnV and

exp(tA) =
∑

n∈N (tV −1DV )n

n!
= V −1

∑

n∈N (tD)n

n!
V

= V −1diag(exp(td1), exp(td2), . . . , exp(tdr))V.

In the non-diagonalizable case the exponential function can still be used for
a reasonable approximation by computing only part of the sum.
¿From the Kolmogorov forward equation we can easily deduce the evolution
equation for an arbitrary initial distribution µ0 = (µ0(x))x∈S of the Markov
jump process. As in the discrete-time case, we have

µ(t) = µ0P (t),
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with µ(t) = (µ(t, x))x∈S and µ(t, x) = Pµ0 [X(t) = x]. Now, multiplying
the Kolmogorov forward equation with µ0 from the left, we get the so-called
Master equation

dµ(t)

dt
= µ(t)A

with initial condition µ(0) = µ0. It describes on an infinitesimal scale the
evolution of densities w.r.t. the Markov process. An alternative formulation
can be given in terms of the jump rates {λ(x)} and the embedded Markov
chain K = (k(x, y))

dµ(t, z)

dt
=

∑

y∈S

µ(t, y)a(y, z)

= λ(z)
∑

y∈S

(

µ(t, y)− µ(t, z)
)

k(y, z)

for every z ∈ S.

6.4 Invariant measures and stationary distributions

This section studies the existence of invariant measures and stationary (prob-
ability) distributions. We will see that the embedded Markov chain is still
a very useful object with this regard, but we will also see that not every
property of the continuous-time Markov process can be specified in terms of
the embedded discrete-time Markov chain. This is particularly true for the
property of positive recurrence.

Definition 6.27 A measure µ = (µ(x))x∈S satisfying

µ = µP (t)

for all t ≥ 0 is called an invariant measure of the Markov jump process.
If, moreover, µ is a probability measure satisfying µ(S) = 1, it is called a
stationary distribution.

We are now able to state for a quite large class of Markov jump processes
the existence of invariant measures, and also to specify them.

Theorem 6.28 Consider an irreducible and recurrent regular Markov jump
process on S with transition semigroup P (t). For an arbitrary state x ∈ S
define µ = (µ(y))y∈S via

µ(y) = Ex

[∫ Rx

0
1{X(s)=y}ds

]

, (49)

the expected time, the process visits y before returning to x. Then
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1. 0 < µ(y) < ∞ for all y ∈ S. Moreover, µ(x) = 1/λ(x) for the state
x ∈ S chosen in the eq. (49).

2. µ = µP (t) for all t ≥ 0.

3. If ν = νP (t) for some measure ν, then ν = αµ for some α ∈ R.

Proof: See Bremaud Thm. 5.1, p 357. We just prove here µ(x) = 1/λ(x).
We have

µ(x) = Ex

[∫ Rx

0
1{X(s)=x}ds

]

(50)

= Ex

[∫ Ex

0
1{X(s)=x}ds

]

+Ex

[∫ Rx

Ex

1{X(s)=x}ds

]

(51)

= Ex [Ex] + 0 =
1

λ(x)
. (52)

�

As one would expect, there is a close relation between the invariant
measure of the transition semigroup, the infinitesimal generator and the
embedded Markov chain.

Proposition 6.29 Consider an irreducible and recurrent regular Markov
jump process on S with transition semigroup P (t), infinitesimal generator A
and embedded Markov chain with transition matrix K. Then the following
statements are equivalent:

1. There exists a measure µ = (µ(x))x∈S such that

µ = µP (t)

for all t ≥ 0.

2. There exists a measure µ = (µ(x))x∈S such that

0 = µA.

3. There exists a measure ν = (ν(x))x∈S such that

ν = νK

The relation between µ and ν is given by µ = νΛ−1, which element-wise
corresponds to

µ(x) =
ν(x)

λ(x)

for every x ∈ S.
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Proof: Exercise. �

Consider the expected return times from some state x ∈ S defined byEx[Rx] = Ex

[
∫ ∞

0
1{s≤Rx}ds

]

. (53)

Depending on the behavior of Ex[Rx], we further distinguish the two types
of recurrent states:

Definition 6.30 A recurrent state x ∈ S is called positive recurrent, ifEx[Rx] < ∞

and null recurrent otherwise.

As in the discrete-time case, we have the following result.

Theorem 6.31 An irreducible regular Markov jump process with infinitesi-
mal generator A is positive recurrent, if and only if there exists a probability
distribution π on S such that

0 = πA

holds. Under these conditions, the stationary distribution π is unique and
positive everywhere, with

π(x) =
1

λ(x)Ex[Rx]
.

Hence π(x) can be interpreted as the exit rate of state x times the inverse
of the expected first return time to state x ∈ S.

Proof : Theorem 6.28 states that an irreducible and recurrent regular
Markov jump process admits an invariant measure µ defined through (49)
for an arbitrary x ∈ S. Thus

∑

y∈S

µ(y) =
∑

y∈S

Ex

[
∫ Rx

0
1{X(s)=y}ds

]

= Ex





∫ ∞

0

∑

y∈S

1{X(s)=y}1{s≤Rx}ds





= Ex

[
∫ ∞

0
1{s≤Rx}ds

]

= Ex[Rx],

which is by definition finite in the case of positive recurrence. Therefore the
stationary distribution can be obtained by normalization of µ with Ex[Rx]
yielding

π(x) =
µ(x)Ex[Rx]

=
1

λ(x)Ex[Rx]
.
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Since the state x was chosen arbitrary this is true for all x ∈ S. Unique-
ness and positivity of π follows from Theorem 6.28. On the other hand,
if there exists a stationary distribution of the Markov process, it satisfies
π = πP (t) for all t ≥ 0 due to Prop. 6.29. Moreover if the Markov process
were transient, then

lim
t→∞

1{X(t)=y} = 0 implying lim
t→∞

p(t, x, y) = 0

for x, y ∈ S by dominated convergence. In particular, πP (t) would tend
to zero for t → ∞ component-wise, which would be in contradiction to
π = πP (t). Hence, the Markov process is recurrent. Positive recurrence
follows from the uniqueness of π and the consideration above. �

Our considerations in the proof of Theorem 6.31 easily leads to a criteria
to distinguish positive recurrence from null recurrence.

Corollary 6.32 Consider an irreducible regular Markov jump process with
invariant measure µ. Then

1. {X(t) : t ≥ 0} positive recurrent ⇔ ∑

x∈S

µ(x) <∞,

2. {X(t) : t ≥ 0} null recurrent ⇔ ∑

x∈S

µ(x) =∞.

Proof: The proof is left as an exercise. �

It is important to notice that positive recurrence can not be characterized
on the basis of the embedded Markov chain. This is due to the fact that
given an irreducible regular Markov jump process with 0 = µA, λ(x), and
ν = νK, we know by by Prop. 6.29, that

∞
∑

x=0

µ(x) =
∞
∑

x=0

ν(x)

λ(x)

So, whether the left hand side converges or not, depends on both, the asymp-
totic behavior of (ν(x)) and of (λ(x)).

Example 6.33 Consider the birth and death Markov jump process with em-
bedded Markov chain given by

K =











0 1
1− p 0 p

1− p 0 p
. . .

. . .
. . .











(54)

and jump rates (λ(x)), still to be specified. The embedded Markov chain is
irreducible and recurrent for 0 < p ≤ 1/2. Hence, so is the thereby defined
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Markov jump process, which in addition is regular due to Prop. 6.16. The
invariant measure of the embedded Markov chain is given by

ν(x) =
1

p

(

p

1− p

)x

ν(0) (55)

for x ≥ 1 and ν(0) ∈ R. Computing the norm results in

∞
∑

x=0

ν(x) =
2− 2p

1− 2p
ν(0).

Hence, the embedded Markov chain is null-recurrent for p = 1/2 and positive
recurrent for p < 1/2. We now exemplify four possible setting:

1. Set λ(x) = x for x = 1, 2, . . . while λ(0) = 2, and p = 1/2. Then, we
know that the embedded Markov chain is null-recurrent with invariant
measure ν = (1/2, 1, 1, . . .), and

∞
∑

x=0

µ(x) =
∞
∑

x=0

1

x
=∞.

Hence, the Markov jump process is null-recurrent, too.

2. Set λ(x) = x2 for x = 1, 2, . . ., while λ(0) = 2, and p = 1/2. Again,
the embedded Markov chain is null-recurrent, but now

∞
∑

x=0

µ(x) =
∞
∑

x=0

1

x2
<∞.

Hence, now the Markov jump process is positive recurrent.

3. Set λ(x) = (1/3)x for x = 1, 2, . . ., while λ(0) = 1/4, and p = 1/4.
Now, the embedded Markov chain is positive recurrent with stationary
distribution ν(x) = 4(1/3)x+1 for x ≥ 1 and ν(0) = 1/3.

∞
∑

x=0

µ(x) =

∞
∑

x=0

4

3
=∞.

Hence, the Markov jump process is null-recurrent.

4. Set λ(x) = 4/3 for x = 1, 2, . . ., while λ(0) = 1/3, and p = 1/4. Again,
the embedded Markov chain is positive recurrent. Finally, we have

∞
∑

x=0

µ(x) =

∞
∑

x=0

(

1

3

)x

<∞.

Hence, the Markov jump process is positive recurrent.
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In the same spirit, one can show that the existence of a stationary distri-
bution of some irreducible Markov jump process (being not necessarily regu-
lar) does not guarantee positive recurrence. In other words, Theorem 6.31 is
wrong, if one drops the assumption that the Markov jump process is regular.

Example 6.34 We consider the embedded Markov chain with transition
matrix given by eq. (54). If p > 1/2, then the Markov chain is transient.
However, it does posses an invariant measure µ defined in eq. (55), where
we choose ν(0) = p. Define the jump rates by

λ(x) =

(

1− p

p

)2x

for x ≥ 1 and λ(0) = p. Then, we get that µ defined by µ(x) = ν(x)/λ(x) is
an invariant measure with

∞
∑

x=0

µ(x) =

∞
∑

x=0

(

1− p

p

)x

=
p

2p− 1
<∞.

since p > 1/2 and thus (1− p)/p < 1. Concluding, the Markov jump process
is irreducible and possesses an stationary distribution. Due to Prop. 6.16, it
moreover is transient (since the embedded Markov chain is). This can only
be in accordance with Thm 6.31, if the Markov jump process is non-regular,
hence explosive.

6.5 Reversibility and the law of large numbers

The concept of time reversibility for continuous-time Markov processes is
basically the same as for discrete-time Markov chains. Consider some pos-
itive recurrent, irreducible regular Markov jump process with infinitesimal
generator A and stationary distribution π. Then, define the time-reversed
Markov jump process {Y (t) : t ≥ 0} in terms of its transition semigroup
{Q(t); t ≥ 0} according to

q(t, y, x) =
π(x)p(t, x, y)

π(y)
(56)

for t ≥ 0 and x, y ∈ S. As can easily be shown, Q(t) fulfills all requirements
for a transition semigroup. Defining the diagonal matrix Dπ = (π(x))x,y∈S

with π on its diagonal, we may rewrite the above eq. (56) as

Q(t) = D−1
π P (t)T Dπ.

Now, let us determine the infinitesimal generator B = (b(x, y))x,y∈S of the
semigroup Q(t). It is

B = lim
t→0

Q(t)− Id

t
= lim

t→0
D−1

π

P (t)T − Id

t
Dπ = D−1

π AT Dπ, (57)
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hence the inf. generator transforms in the same way as the semigroup does.
From the inf. generator, we easily conclude that the jump rates λ(x) are for
both processes equal, since

λB(x) = −b(x, x) = −a(x, x) = λA(x).

Now, denote by K and L the transition matrix of the embedded Markov
chains of the Markov jump processes X(t) and Y (t), respectively. Assume
that K is positive recurrent with stationary distribution ν. Then, we get

Λ(L− Id) = B = D−1
π AT Dπ (58)

= D−1
π (KT − Id)ΛDπ (59)

= ΛΛ−1D−1
π (KT − Id)ΛDπ (60)

= Λ(Λ−1D−1
π KT ΛDπ − Id) (61)

= Λ(D−1
ν KTDν − Id) (62)

since λ(x)π(x) = aν(x) for all x ∈ S and some normalization constant a > 0,
which implies ΛDπ = aDν . Hence, we get the relation

L = D−1
ν KTDν

and thus that the embedded Markov chain L of the time-reversed Markov
jump process Y (t) equals the time-reversed embedded Markov chain K of
the original Markov jump process X(t).

As in the discrete time case, we have

Definition 6.35 Consider an irreducible regular Markov jump process {X(t) :
t ≥ 0} with infinitesimal generator A and stationary distribution π > 0, and
its associated time-reversed Markov jump process with infinitesimal genera-
tor B. Then X(t) is called reversible w.r.t. π, if

A = B

for all x, y ∈ S.

The above definition can be reformulated: a Markov process is reversible
w.r.t. π, if and only if the detailed balance condition

π(x)a(x, y) = π(y)a(y, x) (63)

is satisfied for every x, y ∈ S.

A measurable function f : S→ R defined on the state space is called an
observable. Observables allow to perform “measurements” on the system
that is modelled by the Markov process. The expectation of f is defined asEπ[f ] =

∑

x∈S

f(x)π(x).
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Theorem 6.36 (Strong law of large numbers) Let {X(t) : t ≥ 0} de-
note an irreducible regular Markov process with stationary distribution π,
and let f : S→ R be some observable such thatEπ[|f |] =

∑

x∈S

|f(x)|π(x) <∞.

Then for any initial state x ∈ S, i.e., X0 = x

1

t

∫ t

0
f(X(s))ds −→ Eπ[f ], (a.s.)

as t→∞.

Proof: The proof is analogous to the proof for discrete-time Markov chains.
�

6.6 Biochemical reaction kinetics

Consider a volume V containing molecules of N chemically active species
S0, . . . , SN−1 and possibly molecules of inert species. For k = 0, . . . , N − 1,
denote by Xk(t) ∈ N the number of molecules of the chemical species Sk in
V at time t ∈ R+, and set X(t) = (X0(t), . . . ,XN−1(t)) ∈ NN . Further-
more, consider M chemical reactions R0, . . . , RM−1, characterized by a
reaction constant ck. The fundamental hypothesis of chemical reaction
kinetics is that the rate of each reaction Rk can be specified in terms of a
so-called propensity function αk = αj(X(t)), depending in general on the
current state X(t) and possible on time t. For the most common reaction
type, it is (c = some generic reaction constant, r.p. = reaction products):

1. ”spontaneous creation” ∗ → r.p. , α(X(t), t) = c,

2. mono-molecular reaction Sj → r.p. , α(X(t)) = cXj(t),

3. bi-molecular reaction Sj + Sk → r.p. , α(X(t)) = cXj(t)Xk(t),

4. bi-molecular reaction Sj +Sj → r.p. , α(X(t)) = cXj(t)(Xj(t)− 1)/2,

The change in numbers of molecules of described by the state change vectors
ν0, . . . , νM−1 ∈ ZN , such that X(t)→ X(t) + νk, if reaction Rk occurs. The
state change vectors are part of the stoichiometric matrix.

Example 6.37 We consider here a model by Srivastava et al. [16] describ-
ing the intracellular growth of a T7 phage. The model comprises three chem-
ical species, the viral nucleic acids classified into genomic (Sgen) and tem-
plate (Stem) and viral structural proteins (Sstruc). The interaction network
between the bacteriophage and the host is modelled by six reactions.
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No. reaction propensity state change

R0 Sgen
c0−−→ Stem α0 = c0 ·Xgen η0=(1,-1,0)

R1 Stem
c1−−→ ∅ α1 = c1 ·Xtem η1=(-1,0,0)

R2 Stem
c2−−→ Stem + Sgen α2 = c2 ·Xtem η2= (0,1,0)

R3 Sgen + Sstruc
c3−−→ ”virus” α3 = c3 ·Xgen ·Xstruc η3=(0,-1,-1)

R4 Stem
c4−−→ Stem + Sstruc α4 = c4 ·Xtem η4=(0,0,1)

R5 Sstruc
c5−−→ ∅ α5 = c5 ·Xstruc η5=(0,0,-1)

The reaction constants are given by c0 = 0.025, c1 = 0.25, c2 = 1.0,
c3 = 7.5 · 10−6, c4 = 1000, and c5 = 1.99 (day−1). In the model, the
volume of the cell is V = 1. The interesting scenario is the low infection
level corresponding to the initial numbers of molecules Xtem = 1, Xgen =
Xstruc = 0.

We now specify the dynamics of {X(t) : t ≥ 0}, assuming that X(t) is a
regular Markov jump process on the state space S = NN that satisfies the
regularity conditions (33) and (34), which seem to be a reasonable assump-
tion for biochemical reaction systems. In terms of X(t), the fundamental
hypothesis of chemical reaction kinetics is thatP[X(t + h) = x + ηk|X(t) = x] = αk(x)h + o(h)

as h → 0 holds for k = 0, . . . ,M − 1. This allows us to determine the
infinitesimal generator A = (a(x, y))xy∈S. In view of

p(h, x, x + ηk) = a(x, x + ηk)h + o(h),

for h→ 0, we conclude that

a(x, x + ηk) = αk(x)

for k = 0, . . . ,M − 1. As a consequence, the jump rates are given by the
propensity functions {α(x)}x∈S. Defining α(x) = α0(x)+ . . .+αM−1(x), the
embedded Markov chain with transition matrix K = (k(x, y))xy∈S is given
by

k(x, x + ηk) =
αk(x)

α(x)

for k = 0, . . . ,M − 1, and zero otherwise. The algorithmic realization of
the chemical reaction kinetics is as follows:

1. Set initial time t = t0 and initial numbers of molecules X(t0);

2. Generate independently two uniformly distributed random numbers
u0, u1 ∼ U [0, 1]. Set x = X(t).
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3. Compute the next reaction time increment

τ = − ln(u0)

α(x)
;

4. Compute the next reaction Rk according to the discrete probability
distribution

(

α0(x)

α(x)
, . . . ,

αM−1(x)

α(x)

)

;

5. Update molecular numbers X(t+τ)← X(t)+ηk, and time: t← t+τ .
Go to Step 2.

This algorithmic scheme is known as the direct method [5, 6].

Consider some initial distribution u0 and set u(t, x) = P[X(t) = x|X(0) ∼
u0]. The evolution equation for u is given by the master equation, which in
this context is called the chemical master equation. It takes the form

du(t, x)

dt
=





∑

y 6=x∈S

u(t, y)a(y, x)



 + u(t, x)a(x, x)

=
M−1
∑

k=0

(

u(t, x− ηk)a(x− ηk, x) + u(t, x)a(x, x + ηk)
)

=

M−1
∑

k=0

(

αk(x− ηk)u(t, x− ηk)− αk(x)u(t, x)
)

.
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7 Transition path theory for Markov jump pro-
cesses

Transition Path Theory (TPT) is concerned with transitions in Markov pro-
cesses. The basic idea is to single out two disjoint subset in the state-space
of the chain and ask what is the typical mechanism by which the dynamics
transits from one of these states to the other. We may also ask at which
rate these transitions occur.

The first object which comes to mind to characterize these transitions is
the path of maximum likelihood by which they occur. However, this path
can again be not very informative if the two states one has singled out are
not metastable states. The main objective herein is to show that we can give
a precise meaning to the question of finding typical mechanisms and rate of
transition in discrete state spaces for continuous time processes which are
neither metastable nor time-reversible. In a nutshell, given two subsets in
state-space, TPT analyzes the statistical properties of the associated reactive
trajectories, i.e., the trajectories by which transition occur between these
sets. TPT provides information such as the probability distribution of these
trajectories, their probability current and flux, and their rate of occurrence.

The framework of transition path theory (TPT) has first been developed
in [4, 19, 10] in the context of diffusions. However, we will follow [11] and
focus on continuous-time Markov chains, but we note that the results to
be outlined can be straightforwardly extended to the case of discrete-time
Markov chains.

7.1 Notation.

We consider a Markov jump process on the countable state space S with
infinitesimal generator (or rate matrix) L = (lij)i,j∈S ,

{

lij ≥ 0 for all i, j ∈ S, i 6= j
∑

j∈S lij = 0 for all i ∈ S.
(64)

We assume that the process is irreducible and ergodic with respect to the
unique, strictly positive invariant distribution π = (πi)i∈S satisfying

0 = πT L. (65)

We will denote by {Xt} a (right-continuous with left limits) trajectory of
the Markov jump process. Finally, recall that if the infinitesimal generator
satisfies the detailed balance equation,

πilij = πjlji ∀i, j ∈ S, (66)

the process is reversible, i.e. the direct and the time-reversed process are
statistically indistinguishable. In the following we assume that the process
is irreducible and reversible.
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Figure 10: Schematic representation of the first hitting time scenario. A
trajectory hits the boundary ∂D at time τ the first time.

7.2 Hitting times and potential theory

In this paragraph we state a theorem which provides an elegant way to
derive equations for the main objects in TPT. Suppose the state space S is
decomposed into two disjoint sets D and ∂D = S \D where ∂D is called the
boundary of D. Let i ∈ D be an arbitrary state. Conditional on starting in
i, the time τ(i) at which the process hits the boundary ∂D the first time is
called the (first) hitting time. Formally, it is defined as

τ(i) = inf{t > 0 : Xt ∈ ∂D,X0 = i}. (67)

Notice that τ is a random variable and, particularly, τ is a stopping time.
For a schematic presentation of the first hitting scenario see Fig. 10.

Next, suppose that two real-valued discrete functions (ci)i, i ∈ S and
(fi)i, i ∈ S are given. The object of interest is the potential φ = (φi), i ∈ S
associated with the two functions and element-wise defined by

φi = E [∫ τ

0
c(Xt)dt + f(Xτ )1τ<∞|X0 = i

]

, (68)

where τ denotes the hitting time of ∂D. In the following we assume that
the hitting time τ is finite which is guaranteed by the irreducibility of the
process.

Regarding the (ci)i, i ∈ S and (fi)i, i ∈ S as costs, the potential can
be interpreted as an expected total cost: the process wanders around in D
until it his the boundary ∂D where the cost of wandering around in D per
unit time is given by (ci)i, i ∈ S. When the process hits the boundary, say
in state j, a final cost or fee fj is incurred. The next theorem states that
the potential satisfies a discrete Dirichlet problem involving the generator
L = (lij), i, j ∈ S of the process.
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Figure 11: Schematic representation of a piece of an ergodic trajectory. The
sub-piece connecting A to B (shown in thick black) is a reactive trajec-
tory, and the collection of reactive trajectories is the ensemble of reactive
trajectories.

Theorem 7.1 ([13], Sect. 4.2) Under the assumption that the functions
(ci)i, i ∈ S and (fi)i, i ∈ S are nonnegative, the potential φ is the nonnegative
solution to

{

∑

j∈S lijφj = −ci ∀i ∈ D,

φi = fi ∀i ∈ ∂D.
(69)

Consequently, the potential can simply numerically be computed by solving
a system of linear equations with Dirichlet boundary conditions.

7.3 Reactive trajectories.

Let A and B two nonempty, disjoint subsets of the state space S. By ergod-
icity, any equilibrium path {Xt} oscillates infinitely many times between set
A and set B. If we view A as a reactant state and B as a product state, each
oscillation from A to B is a reaction event. To properly define and charac-
terize the reaction events, we proceed by cutting a long ergodic trajectory
{Xt} into pieces that each connect A and B. To be more precise, a reactive
trajectory is a piece of the ergodic trajectory which lives in S \ (A∪B) after
leaving the set A and before hitting the set B. We shall then try to describe
various statistical properties of the ensemble of reactive trajectories consist-
ing of all these pieces. See Fig. 11 for a schematic illustration of a reaction
trajectory. For details on the pruning procedure, see [11].

7.4 Committor functions

The fundamental objects of TPT are the committor functions. The dis-
crete forward committor q+ = (q+

i )i∈S is defined as the probability that the
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process starting in i ∈ S will reach first B rather than A. Analogously,
we define the discrete backward committor q− = (q−i )i∈S as the probability
that the process arriving in state i has been started in A rather than B. It
has been proven in [11] that the forward and backward committor satisfy a
discrete Dirichlet problem that is the exact finite-dimensional analogue of
the respective continuous problem [4], namely,











∑

j∈S lijq
+
j = 0, ∀i ∈ S \ (A ∪B)

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B.

(70)

The forward committor equation (70) readily follows from Theorem 7.1. To
see that set

ci = 0 ∀i ∈ S \ (A ∪B), (71)

fi =

{

0, ∀i ∈ A

1, ∀i ∈ B
(72)

and notice that the associated potential reduces to (D = S \ (A ∪B)):

φi = E [∫ τ

0
c(Xt)dt + f(Xτ )|X0 = i

]

(73)

= E [1B(Xτ )|X0 = i] (74)

= q+
i . (75)

Finally, we state without proof that the backward committor q−i , i.e.,
the probability that the process arriving in state i has been started in A
rather than in B, is simply related to the forward committor function by

q−i = 1− q+
i . (76)

That relation is a consequence of reversibility.
Another interesting quantity follows from setting

ci = 1 ∀i ∈ S \B, (77)

fi = 0 ∀i ∈ B. (78)

The associated potential is simply the expected or mean first hitting time of
the process with respect to the set B,

φi = E [∫ τ

0
c(Xt)dt + f(Xτ )|X0 = i

]

(79)

= E [τ |X0 = i] . (80)

and satisfies the discrete Dirichlet problem
{

∑

j∈S lijmj = −1, ∀i ∈ S \B

mi = 0, ∀i ∈ B.
(81)
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7.5 Probability distribution of reactive trajectories.

The first relevant object for quantifying the statistical properties of the re-
active trajectories is the distribution of reactive trajectories mR = (mR

i )i∈S .
The distribution mR gives the equilibrium probability to observe a reactive
trajectory at state i and at any time t.

How can we find an expression for mR? Suppose we encounter the pro-
cess Xt in a state i ∈ S. What is the probability that Xt be reactive?
Intuitively, this is the probability that the process came rather from A than
from B times the probability that the process will reach B rather than A in
the future. Indeed, it was proven in [11] that the probability distribution of
reactive trajectories is given by

mR
i = q−i πiq

+
i = (1− q+)iπiq

+
i , i ∈ S. (82)

Probability current of reactive trajectories. Any equilibrated trajec-
tory {Xt} induces an equilibrium probability current fij between any pair
(i, j) of states. In other words, fij is the average number of jumps from i
to j per time unit observed in an infinitesimal time interval dt. In formula,
that current is given by

fij = πilij ,

where lij is the jump rate from i to j and πi is the probability to observe
the equilibrated process in state i.

It should be clear that probability current induced by the ensemble of
reactive trajectories differs from equilibrium probability current fij. How
can be derive an expression for the average number of reactive trajectories
flowing from state i to state j per unit of time? Again, intuitively, that
current is given by the equilibrium probability current fij weighted with
the probability that the process came rather from A than from B before
jumping from i to j and weighted by the probability that the process will
continue to B rather than to A after jumping from i to j.

Formally, the probability current of reactive trajectories fAB = (fAB
ij )i,j∈S

is given by [11]

fAB
ij =

{

(1− q+)iπilijq
+
j , if i 6= j

0, otherwise.
(83)

7.6 Transition rate and effective current.

Further we may ask for the average number of transitions from A to B
per time unit or, equivalently, the average number of reactive trajectories
observed per unit of time (transition rate). Let NT be the number of reactive
trajectories in the interval [−T, T ] in time. The transition rate kAB is defined
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as

kAB = lim
T→∞

NT

2T
. (84)

Due to [11] the transition rate is given by

kAB =
∑

i∈A,j∈S

fAB
ij =

∑

j∈S,k∈B

fAB
jk . (85)

Notice that the rate equals

kAB =
∑

i∈A,j∈S

f+
ij , (86)

where the effective current is defined as

f+
ij = max(fAB

ij − fAB
ji , 0). (87)

7.7 Reaction Pathways.

A reaction pathway w = (i0, i1, . . . , in), ij ∈ S, j = 0, . . . , n from A to B is
a simple pathway with the property

i0 ∈ A, in ∈ B, ij ∈ (A ∪B)c j = 1, . . . , n− 1.

The crucial observation which leads to a characterization of bottlenecks
of reaction pathways is that the amount of reactive trajectories which can be
conducted by a reaction pathway per time unit is confined by the minimal
effective current of a transition involved along the reaction pathway: the
min-current of w is

c(w) = min
e=(i,j)∈w

{f+
ij }. (88)

Accordingly we shall characterize the ”best” reaction pathway as the one
with the maximal min-current, and, eventually, we can rank all reaction
pathways according to the respective weight c(w). Efficient graph algorithms
for computing the hierarchy of transition pathways can be found in [11].
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