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Abstract

It was recently conjectured that the Hurwitz stability of the convex hull of a set of Metzler
matrices is a necessary and sufficient condition for the asymptotic stability of the associated
switched linear system under arbitrary switching. In this paper we show that: (i) this con-
jecture is true for systems constructed from a pair of second order Metzler matrices; (ii) the
conjecture is true for systems constructed from an arbitrary finite number of second order
Metzler matrices; and (iii) the conjecture is in general false for higher order systems. The
implications of our results, both for the design of switched positive linear systems, and for
research directions that arise as a result of our work, are discussed toward the end of the
paper.
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1 Introduction

Positive dynamical systems are of fundamental importance to numerous applications in areas such
as Economics, Biology, Sociology and Communications. Historically, the theory of positive linear
time-invariant (LTI) systems has assumed a position of great importance in systems theory and
has been applied in the study of a wide variety of dynamic systems [1, 2, 3, 4]. Recently, new
studies in communication systems [5], formation flying [6], and other areas, have highlighted the
importance of switched (hybrid) positive linear systems (PLS). In the last number of years, a
considerable effort has been expended on gaining an understanding of the properties of general
switched linear systems [7, 9]. As is the case for general switched systems, even though the main
properties of positive LTI systems are well understood, many basic questions relating to switched
PLS remain unanswered. The most important of these concerns their stability, and in this paper
we present some initial results on the stability of switched PLS.

Recently, it was conjectured by the authors of [14], and independently by David Angeli, that the
asymptotic stability of a positive switched linear system can be determined by testing the Hurwitz-
stability of an associated convex cone of matrices. This conjecture was based on preliminary
results on the stability of positive switched linear systems and is both appealing and plausible.
Moreover, if it were true, it would have significant implications for the stability theory of positive
switched linear systems. In this paper, we shall extend some earlier work and show that the above
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conjecture is true for some specific classes of positive systems. However, one of the the major
contributions of the paper is to construct a counterexample which proves that, in general, the
conjecture is false.

The layout of the paper is as follows. In Section 2 we present the mathematical background and
notation necessary to state the main results of the paper. Then in Section 3, we present necessary
and sufficient conditions for the uniform asymptotic stability of switched second order positive
linear systems. In Section 4 we show by means of an abstract construction that the results derived
in the preceding sections do not generalise to higher dimensional systems. Our conclusions are
presented in Section 5.

2 Mathematical Preliminaries

In this section we present a number of preliminary results that shall be needed later and introduce
the main notations used throughout the paper.

(i) Notation

Throughout, R denotes the field of real numbers, R
n stands for the vector space of all n-tuples of

real numbers and R
n×n is the space of n × n matrices with real entries. For x in R

n, xi denotes
the ith component of x, and the notation x � 0 (x � 0) means that xi > 0 (xi ≥ 0) for 1 ≤ i ≤ n.
R

n
+ = {x ∈ R

n : x � 0} denotes the non-negative orthant in R
n. Similarly, for a matrix A in R

n×n,
aij denotes the element in the (i, j) position of A, and A � 0 (A � 0) means that aij > 0(aij ≥ 0)
for 1 ≤ i, j ≤ n. A � B (A � B) means that A − B � 0 (A − B � 0). We write AT for the
transpose of A and exp(A) for the usual matrix exponential of A ∈ R

n×n.

For P in R
n×n the notation P > 0 (P ≥ 0) means that the matrix P is positive (semi-)definite,

and PSD(n) denotes the cone of positive semi-definite matrices in R
n×n. The spectral radius of a

matrix A is the maximum modulus of the eigenvalues of A and is denoted by ρ(A). Also we shall
denote the maximal real part of any eigenvalue of A by µ(A). If µ(A) < 0 (all the eigenvalues of
A are in the open left half plane) A is said to be Hurwitz or Hurwitz-stable.

Given a set of points, {x1, . . . , xm} in a finite-dimensional linear space V , we shall use the nota-
tions CO(x1, . . . , xm) and Cone(x1, . . . , xm) to denote the convex hull and the cone generated by
x1, . . . , xm respectively. Formally:

CO(x1, . . . , xm) = {x =
m

∑

i=1

αixi : αi ≥ 0, 1 ≤ i ≤ m, and
m

∑

i=1

αi = 1};

Cone(x1, . . . , xm) = {x =
m

∑

i=1

αixi : αi ≥ 0, 1 ≤ i ≤ m}.

The properties of convex cones shall play a key role in the results described later in this paper.
Formally, a closed convex cone in R

n is a set Ω ⊆ R
n such that, for any x, y ∈ Ω and any α, β ≥ 0,

αx + βy ∈ Ω. A convex cone is said to be:

(i) Solid if the interior of Ω, with respect to the usual norm topology on R
n, is non-empty;

(ii) Pointed if Ω ∩ (−Ω) = {0};
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(iii) Polyhedral if Ω = Cone(x1, . . . , xm) for some finite set {x1, . . . , xm} of vectors in R
n.

For the remainder of the paper, we shall call a closed convex cone that is both solid and pointed,
a proper convex cone.

(ii) Positive LTI systems and Metzler matrices

The LTI system

ΣA : ẋ(t) = Ax(t), x(0) = x0

is said to be positive if x0 � 0 implies that x(t) � 0 for all t ≥ 0. Basically, if the system starts
in the non-negative orthant of R

n, it remain there for all time. See [3] for a description of the
basic theory and several applications of positive linear systems. It is well-known that the system
ΣA is positive if and only if the off-diagonal entries of the matrix A are non-negative. Matrices
of this form are known as Metzler matrices. If A is Metzler we can write A = N − αI for some
non-negative N and a scalar α ≥ 0. Note that if the eigenvalues of N are λ1, . . . λn, then the
eigenvalues of N − αI are λ1 − α, . . . λn − α. Thus the Metzler matrix N − αI is Hurwitz if and
only if α > ρ(N).

The next result concerning positive combinations of Metzler Hurwitz matrices was pointed out in
[8].

Lemma 2.1 Let A1, A2 be Metzler and Hurwitz. Then A1 + γA2 is Hurwitz for all γ > 0 if and
only if A1 + γA2 is non-singular for all γ > 0.

(iii) Common Quadratic Lyapunov Functions and Stability

It is well known that the existence of a common quadratic Lyapunov function (CQLF) for the
family of stable LTI systems

ΣAi
: ẋ = Aix i ∈ {1, . . . , k}

is sufficient to guarantee that the associated switched system

ΣS : ẋ = A(t)x A(t) ∈ {A1, . . . , Ak} (1)

is uniformly asymptotically stable under arbitrary switching. Throughout the paper, when we
speak of the stability (uniform asymptotic stability) of a switched linear system, we mean stability
(uniform asymptotic stability) under arbitrary switching.

Formally checking for the existence of a CQLF amounts to looking for a single positive definite
matrix P = P T > 0 in R

n×n satisfying the k Lyapunov inequalities

AT
i P + PAi < 0 i ∈ {1, . . . , k}. (2)
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If such a P exists, then V (x) = xT Px defines a CQLF for the LTI systems ΣAi
. While the existence

of such a function is sufficient to assure the uniform asymptotic stability of the system (1), it is in
general not necessary for stability [9]. Hence CQLF existence is in general a conservative way of
establishing stability for switched linear systems. However, recent work has established a number
of system classes for which this is not necessarily the case [10, 11]. The results in these papers
relate the existence of an unbounded solution to a switched linear system to the Hurwitz-stability
of the convex hull of a set of matrices and are based on the following theorem.

Theorem 2.1 [12, 13] Let Ai ∈ R
n×n, i = {1, 2}, be Hurwitz matrices. A sufficient condition

for the existence of an unstable switching signal for the system

ẋ = A(t)x, A(t) ∈ {A1, A2},

is that A1 + γA2 has an eigenvalue with a positive real part for some positive γ.

The relationship between the existence of a CQLF, the existence of an unbounded solution to a
switched linear system and the Hurwitz-stability of convex sets of matrices will play a crucial role
in this paper.

Finally, we note that a defining characteristic of switched positive linear systems is that any
trajectory originating in the positive orthant will remain there as time evolves. Consequently, to
demonstrate the stability of such systems, one need not search for a common quadratic Lyapunov
function, but rather the existence of a copositive Lyapunov function. Formally checking for the
existence of a copositive CQLF amounts to looking for a single symmetric matrix P such that
xT Px > 0 for x ∈ R

n, x � 0, x 6= 0, satisfying the k Lyapunov inequalities

xT (AT
i P + PAi)x

T < 0 i ∈ {1, . . . , k}, ∀x � 0. (3)

3 Second Order Positive Linear Systems

In this section, we shall show that the conjecture in [14] is true for second order positive switched
linear systems. To begin with, we recall the result of [10] which described necessary and sufficient
conditions for the existence of a CQLF for a pair of general second order LTI systems.

Theorem 3.1 Let A1, A2 ∈ R
2×2 be Hurwitz. Then a necessary and sufficient condition for ΣA1

,
ΣA2

to have a CQLF is that the matrix products A1A2 and A1A
−1
2 have no negative eigenvalues.

We next show that it is only necessary to check one of the products in the above theorem if the
individual systems ΣA1

, ΣA2
are positive systems.

Lemma 3.1 Let A1, A2 ∈ R
2×2 be Hurwitz and Metzler. Then the product A1A2 has no negative

eigenvalue.

Proof: First of all, as A1, A2 are both Hurwitz, the determinant of A1A2 must be positive.
Secondly, a straightforward calculation shows that all of the diagonal entries of A1A2 must be
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positive. Hence the trace of A1A2 is also positive. It now follows easily that the product A1A2

cannot have any negative eigenvalues as claimed.

A straightforward combination of Theorem 3.1 and Lemma 3.1 yields the following result.

Theorem 3.2 Let ΣA1
, ΣA2

be stable positive LTI systems with A1, A2 ∈ R
2×2. Then the follow-

ing statements are equivalent:

(a) ΣA1
and ΣA2

have a CQLF;

(b) ΣA1
and ΣA2

have a common copositive quadratic Lyapunov function;

(c) The switched system
ẋ = A(t)x, A(t) ∈ {A1, A2}

is uniformly asymptotically stable;

(d) The matrix product A1A
−1
2 has no negative real eigenvalues.

Proof :

(a) ⇔ (d)

From Lemma 3.1 it follows that the matrix product A1A2 cannot have a negative eigenvalue.
Hence, from Theorem 3.1, a necessary and sufficient condition for a CQLF for ΣA1

and ΣA2
is

that A1A
−1
2 has no negative eigenvalue.

(b) ⇔ (d)

Since the fact that A1A
−1
2 has no negative eigenvalue is necessary and sufficient for a CQLF for

ΣA1
and ΣA2

, it follows that this condition is certainly sufficient for the existence of a copositive
common quadratic Lyapunov function for this pair of positive LTI systems. Suppose now that
A1A

−1
2 has a negative eigenvalue. It follows that A1 + γA2 has a real non-negative eigenvalue

for some γ0 > 0. Since, A1 + γ0A2 = N − α0I, where N � 0, it follows that the eigenvector
corresponding to this eigenvalue is the Perron eigenvector of N and consequently lies in the
positive orthant [2]. It follows that a copositive Lyapunov function cannot exist and the condition
that A1A

−1
2 has no negative eigenvalue is necessary and sufficient for the existence of a copositive

common quadratic Lyapunov function for ΣA1
and ΣA2

.

(c) ⇔ (d)

Suppose that A1A
−1
2 has a negative eigenvalue; namely, A1 + γA2 is non-Hurwitz for some γ > 0.

It now follows from Theorem 2.1 that there exists some switching signal for which the switched
system

ΣS : ẋ = A(t)x A(t) ∈ {A1, A2} (4)

is not uniformly asymptotically stable. This proves that (c) implies (d). Conversely, if A1A
−1
2 has

no negative eigenvalues, then ΣA1
, ΣA2

have a CQLF and (4) is uniformly asymptotically stable.
This completes the proof.

The equivalence of (c) and (d) in the previous theorem naturally gives rise to the following
question. Given a finite set {A1, . . . , Ak} of Metzler, Hurwitz matrices in R

2×2, does the Hurwitz
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stability of CO(A1, ..., Ak) imply the uniform asymptotic stability of the associated switched
system? This is indeed the case and follows from the following theorem, which can be thought of
as an edge theorem for positive systems. Formally, we can state this result as follows.

Theorem 3.3 Let A1, . . . , Ak be Hurwitz, Metzler matrices in R
2×2. Then the positive switched

linear system,

ẋ = A(t)x A(t) ∈ {A1, . . . , Ak}, (5)

is uniformly asymptotically stable (GUAS) if and only if each of the switched linear systems,

ẋ = A(t)x A(t) ∈ {Ai, Aj}, (6)

for 1 ≤ i < j ≤ k is uniformly asymptotically stable.

Outline of Proof

In the interests of clarity, we now outline the main steps involved in proving that the uniform
asymptotic stability of each of the systems (6) implies that the overall system (5) is uniformly
asymptotically stable. The proof of the converse is straightforward.

The basic idea is to use a piecewise quadratic Lyapunov function to prove uniform asymptotic
stability of the system (5). We show that such a function may always be constructed provided
that each of the systems (6) is uniformly asymptotically stable.

(a) The first step is to show that the non-negative orthant, R
2
+, can be partitioned into a finite

collection of cones or wedges, Secj , 1 ≤ j ≤ m with the following property: there are
integers L(j), U(j) in {1, . . . , k} for each j, 1 ≤ j ≤ m, with

Cone(A1x, . . . , Akx) = Cone(AL(j)x, AU(j)x).

Effectively, this fact means that we need only consider the two systems corresponding to
AL(j), AU(j) within the region Secj .

(b) We next construct quadratic forms, xT Pjx for 1 ≤ j ≤ m which are non-increasing along
each trajectory of (5) within Secj . Formally, for x ∈ Secj and 1 ≤ i ≤ k,

xT (AT
i Pj + PjAi)x ≤ 0.

(c) The forms in (b) are next used to show that the system (5) has uniformly bounded trajec-
tories.

(d) Finally, a simple perturbation argument shows that, by choosing a sufficiently small ε > 0
the same conclusion will hold if we replace each system matrix Ai with Ai + εI. This then
establishes the uniform asymptotic stability of the system (5).

Proof : It is immediate that if the system (5) is uniformly asymptotically stable (for arbitrary
switching), then each of the systems (6) is also.
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Now suppose that for each i, j with 1 ≤ i < j ≤ k, the system (6) is uniformly asymptotically
stable. We can assume without loss of generality that for all a > 0 and 1 ≤ i < j ≤ k, the matrix
Ai − aAj is not zero. Let R

2
+ be the nonnegative orthant in R

2. For any vector x ∈ R
2,

Cone(A1x, . . . , Akx) = ∪1≤i<j≤kCone(Aix, Ajx).

Moreover, as the switched system (6) is uniformly asymptotically stable for 1 ≤ i < j ≤ k and
the system matrices are Metzler, Cone(Aix, Ajx) ∩ R

2
+ = {0} for all 1 ≤ i < j ≤ k and nonzero

x ∈ R
2
+. Therefore Cone(A1x, . . . , Akx) ∩ R

2
+ = {0}.

For a nonzero vector x ∈ R
2 define arg(x), the argument of x in the usual way, viewing x as a

complex number. Let (l(x), u(x)), 1 ≤ l(x), u(x) ≤ k be a pair of integers such that arg(Al(x)x) ≤
arg(Aix) ≤ arg(Au(x)x). Then clearly

Cone(A1x, . . . , Akx) = Cone(Al(x), Au(x)).

For 1 ≤ i, j ≤ k define

D(i,j) = {y ∈ R
2
+, y 6= 0 : Cone(A1y, . . . , Aky) = Cone(Aiy, Ajy)}

Here (i, j) is a pair of integers, not necessarily ordered and possibly equal and arg(Aiy) ≤
arg(Ajy). It now follows that R

2
+ − {0} = ∪1≤i,j≤kD(i,j). Note that D(i,j) ∪ {0} is a closed

cone, not necessarily convex and that if x ∈ D(i,j) and arg(Aix) < arg(Amx) < arg(Ajx) for
m 6= i, j then x belongs to the interior of D(i,j).

Consider
Symp = {â =: (a, 1 − a)T : 0 ≤ a ≤ 1},

and define
d(i,j) = Symp ∩ D(i,j).

We shall write â < b̂ if and only if a < b. The sets d(i,j) are closed and their (finite) union is
equal to Symp. Moreover, the only way for x ∈ Symp not to lie in the interior of some d(i,j)

is if there exists b > 0, 1 ≤ l 6= m ≤ k such that Alx = bAmx. As we assumed that for all
a > 0, 1 ≤ i < j ≤ k the matrix Ai − aAj is not zero, it follows that there exists a finite subset
Sing =: {0 ≤ â1 < ... < âq ≤ 1} such that all vectors in Symp − Sing belong to the interior of
some d(i,j).

It now follows that symp can be partitioned into a finite family of closed intervals, each of them
contained in some d(i,j). This in turn defines a partition of R

2
+ − {0} into finitely many closed

cones/wedges Secj , 1 ≤ j ≤ m, each of which is contained in some D(L(j),U(j)). We shall label
the rays which define this partition r1, . . . , rm+1 where r1 is the y-axis, rm+1 is the x-axis and the
rays are enumerated in the clockwise direction.

Now, by assumption, the switched system

ẋ = A(t)x A(t) ∈ {AL(j), AU(j)}

is uniformly asymptotically stable for all 1 ≤ j ≤ m. Thus, it follows from Theorem 3.2 that, for
1 ≤ j ≤ m, there exist quadratic forms xT Pjx, Pj = P T

j > 0, such that

AT
L(j)Pj + PjAL(j) < 0, AT

U(j)Pj + PjAU(j) < 0.
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As Secj ⊂ D(L(j),U(j)), it follows that xT PjAix ≤ 0 for all x ∈ Secj and all i with 1 ≤ i ≤ k.

Using the above quadratic forms, we shall now show that the trajectories of the system (5) are
uniformly bounded. First, choose a point T1 = (0, y)T , y > 0 and consider the level curve of
xT P1x which passes through T1. This curve must intersect the second ray r2 at some point T2;
now consider the level curve of xT P2x going through T2, it will intersect the third ray r3 at some
point T3; continue this process until we reach some point Tm+1 on the x-axis. This gives us a
domain bounded by the y-axis, the chain of ellipsoidal arcs defined above and the x-axis.

The domain constructed above is an invariant set for the switched system (5) and, hence, this sys-
tem has uniformly bounded trajectories. By a simple perturbation argument the same conclusion
will hold if we replace the system matrices A1, . . . , Ak with {A1 + εI, .., Ak + εI} for some small
enough positive ε. This implies that the original system (5) is in fact uniformly asymptotically
stable and completes the proof of the theorem.

4 Higher Dimensional Systems

In view of the results obtained above for second order systems, and keeping in mind that the
trajectories of a positive switched linear system are constrained to lie in the positive orthant for
all time, it may seem reasonable to hope that analogous results could be obtained for higher
dimensional systems. Recently, such considerations have led a number of authors to the following
conjecture.

Conjecture 1

Let A1, . . . , Ak be a finite family of Hurwitz, Metzler matrices in R
n×n. Then the

following statements are equivalent:

(i) All matrices in the convex hull, CO(A1, . . . , Ak), are Hurwitz;

(ii) The switched linear system

ẋ = A(t)x A(t) ∈ {A1, . . . , Ak}

is uniformly asymptotically stable.

Unfortunately, while this conjecture is both appealing and plausible, it is untrue in general for
higher dimensional systems. In the remainder of this section, we shall present a counterexample
to Conjecture 1, based on arguments first developed by Gurvits in [15](which extended the results
in [16, 17]).

Systems with Invariant Cones

The result of the following lemma is fundamental to our construction of a counterexample to
Conjecture 1.

Lemma 4.1 Let A1, . . . , Ak be a finite family of matrices in R
n×n. Assume that there exists a

proper polyhedral convex cone Ω in R
n such that exp(Ait)(Ω) ⊆ Ω for all t ≥ 0 and 1 ≤ i ≤ k.

Then there is some integer N ≥ n and a family of Metzler matrices AM
1 , . . . AM

k in R
N×N such

that:
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(i) All matrices in CO(A1, . . . , Ak) are Hurwitz if and only if CO(AM
1 , . . . , AM

k ) consists entirely
of Hurwitz matrices;

(ii) The switched linear system ẋ = A(t)x, A(t) ∈ {A1, . . . , Ak} is uniformly asymptotically
stable if and only if the positive switched linear system ẋ = A(t)x, A(t) ∈ {AM

1 , . . . , AM
k } is

uniformly asymptotically stable.

Proof:

As Ω is polyhedral, solid and pointed, we can assume without loss of generality that there exist
vectors z1, . . . , zN in R

n, with N ≥ n, such that:

(i) Ω = Cone(z1, . . . , zN );

(ii) There is some h ∈ R
n with hT zi = 1 for 1 ≤ i ≤ N .

From this, it follows that, for 1 ≤ i ≤ k, exp(Ait)(Ω) ⊆ Ω for all t ≥ 0 if and only if there is some
τ > 0 such that I + τAi(Ω) ⊆ Ω.

Define a linear operator Φ : RN → Rn by Φ(ei) = zi for 1 ≤ i ≤ N where e1, . . . , eN is the standard
basis of R

N . We shall now show how to construct Metzler matrices AM
i ∈ R

N×N satisfying the
requirements of the lemma.

First, we note the following readily verifiable facts:

(i) For any trajectory,

x(t) =
∑

1≤i≤N

αi(t)zi, αi(t) ≥ 0, t ≥ 0

in Ω, limt→∞ x(t) = 0 if and only if limt→∞ αi(t) = 0 for 1 ≤ i ≤ N ;

(ii) For each i ∈ {1, . . . , k} and q ∈ {1, . . . , N}, we can write (non-uniquely)

Ai(zq) =
N

∑

p=1

apqzp where apq ≥ 0 if p 6= q.

In this way, we can associate a Metzler matrix, AM
i = (apq : 1 ≤ p, q ≤ N) in R

N×N with
each of the system matrices Ai in R

n×n.

(iii) By construction, ΦAM
i = AiΦ and Φ(exp(AM

i t)) = (exp(Ait))Φ for all t ≥ 0. Hence, A
(M)
i

is Hurwitz if and only if Ai is Hurwitz for 1 ≤ i ≤ k.

From points (i) and (iii) above we can conclude that all matrices in the convex hull CO(A1, ..., Ak)

are Hurwitz if and only if all matrices in the convex hull CO(A
(M)
1 , ..., A

(M)
k ) are Hurwitz. More-

over, the switched linear system

ẋ = A(t)x, A(t) ∈ {A1, . . . , Ak}

is uniformly asymptotically stable if and only if the positive switched linear system

ẋ = A(t)x, A(t) ∈ {AM
1 , . . . , AM

k }

is uniformly asymptotically stable. This proves the lemma.

Comments

9



(i) It follows from Lemma 4.1 that if Conjecture 1 was true then the same statement would
also hold for switched linear systems having an invariant proper polyhedral convex cone.

(ii) In the course of the proof, it was shown that, for A ∈ R
n×n and a proper polyhedral cone

Ω ∈ R
n,

exp(At)(Ω) ⊆ Ω for all t ≥ 0

if and only if
(I + τA)(Ω) ⊆ Ω

for some τ > 0.

Lyapunov Operators

Given a matrix A ∈ R
n×n, define the linear operator Â, on the space of n × n real symmetric

matrices, by

Â(X) = AT X + XA. (7)

Consider the linear dynamical system on the space of symmetric matrices in R
n×n given by

Ẋ = Â(X). (8)

It is a straightforward exercise to verify that if x1(t) and x2(t) are solutions of the system ẋ = AT x
with initial conditions x1(0) = x1, x2(0) = x2, then x1(t)x2(t)

T + x2(t)x1(t)
T is a solution of the

linear system (8) with initial conditions x1x
T
2 + x2x

T
1 . The following result follows easily by

combining this observation with standard facts about the existence and uniqueness of solutions
to linear systems.

Lemma 4.2 Consider a family, {A1, . . . , Ak}, of matrices in R
n×n. Then:

(i) CO(A1, . . . , Ak) consists entirely of Hurwitz stable matrices if and only if all of the operators
in CO(Â1, . . . , Âk) are Hurwitz stable;

(ii) The cone, PSD(n), of positive semi-definite matrices in R
n×n is an invariant cone for the

switched system

Ẋ = Â(t)X Â(t) ∈ {Â1, . . . , Âk}; (9)

(iii) The system (9) is uniformly asymptotically stable if and only if the system

ẋ = A(t)x A(t) ∈ {A1, . . . , Ak}

is uniformly asymptotically stable.

The Counterexample

Using Lemmas 4.1 and 4.2, we can now present a counterexample to Conjecture 1 above. To
begin, consider the following two matrices in R

2×2

A1 =

(

0 1
−1 0

)

, A2 =

(

0 a
−b 0

)
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where a > b ≥ 0. Then, for some t1, t2 > 0 the spectral radius ρ((exp(A1t1)(exp(A2t2)) > 1. In
fact, if we take a = 2, b = 1 then this is true with t1 = 1, t2 = 3/2.

By continuity of eigenvalues, if we choose ε > 0 sufficiently small, we can ensure that

ρ((exp((A1 − εI)t1))(exp((A2 − εI)t2))) > 1.

Hence, the switched linear system associated with the system matrices A1−εI, A2−εI is unstable
and moreover, all matrices in the convex hull CO({A1 − εI, A2 − εI}) are Hurwitz.

The above remarks establish the existence of Hurwitz matrices B1, B2 in R
2×2 such that:

(i) All matrices in CO(B1, B2) are Hurwitz;

(ii) The switched linear system ẋ = A(t)x, A(t) ∈ {B1, B2} is unstable.

Next, consider the Lyapunov operators, B̂1, B̂2 on the symmetric 2 × 2 real matrices. It follows
from Lemma 4.2 that CO(B̂1, B̂2) consists entirely of Hurwitz stable operators and that the
switched linear system associated with B̂1, B̂2 is unstable, and leaves the proper (not polyhedral)
cone PSD(2) invariant. Formally, exp(B̂it)(PSD(2)) ⊆ PSD(2) for i = 1, 2, and all t ≥ 0.

From examining the power series expansion of exp(B̂it), it follows that for any ε > 0, there exists
τ > 0 and two linear operators ∆i, i = 1, 2 such that

(τI + B̂i + ∆i)(PSD(2)) ⊆ PSD(2) (10)

with ||∆i|| < ε for i = 1, 2.

Combining the previous fact with standard results on the existence of polyhedral approximations
of arbitrary proper cones in finite dimensions, we can conclude that for any ε > 0, there exists a
proper polyhedral cone PHε ⊂ PSD(2), and two linear operators δi, i = 1, 2 such that

(τI + B̂i + ∆i + δi)(PHε) ⊆ PHε (11)

with ||∆i||, ||δi|| < ε for i = 1, 2.

Recall that CO(B̂1, B̂2) consists entirely of Hurwitz-stable operators and that the switched linear
system associated with B̂1, B̂2 is unstable. For ε > 0, define the linear operators Bi,ε = Âi+∆i+δi

for i = 1, 2. By choosing ε > 0 sufficiently small, we can ensure that:

(i) All operators in CO(B1,ε, B2,ε) are Hurwitz-stable;

(ii) The switched linear system

ẋ = A(t)x A(t) ∈ {B1,ε, B2,ε}

is unstable. Moreover, from (11) this switched linear system leaves the proper, polyhedral
cone PHε invariant.

Thus, the statement of Conjecture 1 is not true for switched linear systems with an invariant
proper, polyhedral cone and hence, it follows from Lemma 4.1 that Conjecture 1 itself is also
false.
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5 Conclusions

In this paper we have presented a counterexample to a recent conjecture presented in [14], and for-
mulated independently by David Angeli, concerning the uniform asymptotic stability of switched
positive linear systems. In particular, we have shown that the stability of a positive switched
linear system is not in general equivalent to the Hurwitz stability of the convex hull of its system
matrices. While this conjecture is now known to be false, counterexamples are rare, and the
construction presented here suggests that such examples may only exist in very high dimensions.
This gives some hope that it may be possible to extend some of the work reported here and to
derive related, straightforward conditions for CQLF existence for subclasses of positive systems
of practical interest.
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