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Abstract

It was recently conjectured that the Hurwitz stability of tonvex hull of a set of Metzler matrices
is a necessary and sufficient condition for the asymptotibility of the associated switched linear
system under arbitrary switching. In this paper we show: tiathis conjecture is true for systems
constructed from a pair of second order Metzler matrica$;tlfie conjecture is true for systems
constructed from an arbitrary finite number of second ordetzZMr matrices; and (iii) the conjecture
is in general false for higher order systems. The implicetiof our results, both for the design of
switched positive linear systems, and for research doestithat arise as a result of our work, are

discussed toward the end of the paper.
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I. INTRODUCTION

Positive dynamical systems are of fundamental importanaeutnerous applications in areas
such as Economics, Biology, Sociology and Communicatiorstolically, the theory of positive
linear time-invariant (LTI) systems has assumed a positbmgreat importance in systems
theory and has been applied in the study of a wide variety ofdyjc systems [1], [2], [3],
[4]. Recently, new studies in communication systems [5]niation flying [6], and other areas,

have highlighted the importance of switched (hybrid) pesilinear systems (PLS). In the
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last number of years, a considerable effort has been exdemmgaining an understanding of
the properties of general switched linear systems [7], A8].is the case for general switched
systems, even though the main properties of positive LTiesys are well understood, many
basic questions relating to switched PLS remain unanswérkd most important of these
concerns their stability, and in this paper we present samigli results on the stability of

switched PLS.

Recently, it was conjectured by the authors of [9], and inddpatly by David Angeli, that

the asymptotic stability of a positive switched linear systcan be determined by testing
the Hurwitz-stability of an associated convex set of masicThis conjecture was based on
preliminary results on the stability of positive switchadelar systems and is both appealing
and plausible. Moreover, if it were true, it would have sfgrant implications for the stability

theory of positive switched linear systems. In this papershall extend some earlier work and
show that the above conjecture is true for some specific &daskpositive systems. However,
one of the the major contributions of the paper is to constaucounterexample which proves
that, in general, the conjecture is false. However, thisum gives rise to a number of open

questions for future research, some of which we discussrtsmhie end of the paper.

The layout of the paper is as follows. In Section 2 we preseatmathematical background
and notation necessary to state the main results of the .p@pen in Section 3, we present
necessary and sufficient conditions for the uniform asytiptstability of switched second

order positive linear systems. In Section 4 we show by meé&ms @bstract construction that
the results derived in the preceding sections do not gasertal higher dimensional systems. In
Section 5, we demonstrate that these results also fail tergkse for the more restrictive case
of matrices with constant diagonals and we make some olig@rsaon the computation of the
joint Lyapunov exponent for positive switched systems ict®a 6. Finally, our conclusions

are presented in Section 7.

II. MATHEMATICAL PRELIMINARIES

In this section we present a number of preliminary resultt #hall be needed later and

introduce the main notations used throughout the paper.



(i) Notation

Throughout,R denotes the field of real numbef®} stands for the vector space of altuples
of real numbers an®™*" is the space of. x n matrices with real entries. Far in R", z;
denotes theé'* component ofr, and the notatiorr = 0 (z = 0) means that; > 0 (z; > 0)
for 1 <i<n.R% ={z € R": 2z > 0} denotes the non-negative orthantRfi. Similarly, for
a matrix A in R™*", a,; or A(i, j) denotes the element in the j) position of A, and A > 0
(A > 0) means that,;; > 0(a;; > 0) for 1 <i,5 <n. A> B (A > B) means thatd — B > 0
(A— B = 0). We write AT for the transpose afl andexp(A) for the usual matrix exponential
of A e R™™.

For P in R™*™ the notationP > 0 (P > 0) means that the matri® is positive (semi-)definite,
and PSD(n) denotes the cone of positive semi-definite matriceR'ifi”. The spectral radius
of a matrix A is the maximum modulus of the eigenvalues/bfnd is denoted by(A). Also
we shall denote the maximal real part of any eigenvalueldfy p(A). If u(A) < 0 (all the

eigenvalues ofd are in the open left half plane) is said to beHurwitz or Hurwitz-stable

Given a set of points{z,...,z,} in a finite-dimensional linear spacg, we shall use
the notationsC'O(xy, ..., z,,) and Cone(xy,...,z,,) to denote the convex hull and the cone

generated by, ..., z,, respectively. Formally:

CO(xy, ..., xy) = {Zaixi ca; > 0,1 <i<m, and Zai =1};
i=1 i=1

m
Cone(xy,...,xy) = {Zaixi cay; > 0,1 <i<m}.
i=1

A closedconvex conan R” is a set(2 C R” such that, for anyr,y € 2 and anya, 3 > 0,
ax + By € Q. A convex cone is said to besolid if the interior of 2 is non-empty;pointed
if QN (=) = {0}; polyhedral if Q = Cone(xy,...,z,) for some finite se{zy,...,x,}
of vectors inR™. We shall call a closed convex cone that is both solid andtpdiraproper

convex cone

(i) Positive LTI systems and Metzler matrices

The LTI system

Ya:a(t) = Ax(t), AeR™" z(0)=x



is said to be positive if:y = 0 implies thatxz(¢) = 0 for all ¢ > 0. See [3] for a description of
the basic theory and several applications of positive hirsyatems. The systeM, is positive

if and only if the off-diagonal entries of the matrix are non-negative. Matrices of this form
are known as Metzler matrices. The next result concernirgitipe combinations of Metzler

Hurwitz matrices was pointed out in [10].

Lemma 2.1:Let A;, A, be Metzler and Hurwitz. Therl; + A, is Hurwitz for all v > 0 if

and only if A; +vA, is non-singular for ally > 0.

(iif) Common Quadratic Lyapunov Functions and Stability

It is well known that the existence of a common quadratic lwegy function (CQLF) for
the family of stable LTI system&,, : ¢ = A,z @ € {1,...,k} is sufficient to guarantee
that the associated switched systéln : © = A(t)r  A(t) € {Ay,..., Ay} is uniformly
asymptotically stable under arbitrary switching. Throoghthe paper, when we speak of the
stability (uniform asymptotic stability) of a switched &ar system, we mean stability (uniform

asymptotic stability) under arbitrary switching.

Note that any initial state;; € R™ can be written as;; = u — v whereu,v > 0. Hence, for
linear systems, uniform asymptotic stability with respgtnitial conditions in the positive
orthant is equivalent to uniform asymptotic stability withspect to arbitrary initial conditions
in R™. In particular, if a positive switched linear system failstie uniformly asymptotically
stable (UAS) for initial conditions in the whole dk”, then it is also not UAS for initial

conditions in the positive orthant.

Formally checking for the existence of a CQLF amounts to logKor a single positive definite
matrix P = PT > 0 in R™*" satisfying thek Lyapunov inequalitiesA” P + PA; <0 i€
{1,...,k}. If such aP exists, then/(z) = 27 Px defines a CQLF for the LTI systenis,,.
While the existence of such a function is sufficient for thefammn asymptotic stability of
the associated switched system, it is in general not neges$sa stability [8], and CQLF
existence can be a conservative condition for stabilityweleer, recent work has established
a number of system classes for which this is not necessdd@ycase [11], [12]. The results
in these papers relate the existence of an unbounded solistia switched linear system to

the Hurwitz-stability of the convex hull of a set of matricasd are based on the following



theorem.

Theorem 2.1:[13], [14] Let A}, A, € R™*™ be Hurwitz matrices. A sufficient condition for
the existence of an unstable switching signal for the systemA(t)x, A(t) € {4, Ao}, is

that A; + vA, has an eigenvalue with a positive real part for some positive

Any trajectory of a positive system originating in the pogtorthant will remain there as time
evolves. Consequently, to demonstrate the stability of systems, one need not search for
a CQLF, but rather the existence oftapositiveLyapunov function. Formally}/ (z) = 27 Px

is a copositive CQLF if the symmetric matrik € R**" is such thatz’ Pz > 0 for z € R?,
r#0, andz” (ATP + PA)z" <0 i€ {l,....k}, Vo =0,z #0.

I1l. SECOND ORDERPOSITIVE LINEAR SYSTEMS

In this section, we shall show that the conjecture in [9]uetfor second order positive switched
linear systems. First, we recall the result of [11] which aldsed necessary and sufficient

conditions for the existence of a CQLF for a pair of generabadcorder LTI systems.

Theorem 3.1:Let A;, A, € R?*? be Hurwitz. Then a necessary and sufficient condition for
Y4,, ¥4, to have a CQLF is that the matrix products 4, and A;A;' have no negative

eigenvalues.

It is only necessary to check one of the products in the abdoerém if the individual systems

Y4,, 24, are positive systems.

Lemma 3.1:Let A;, A, € R**? be Hurwitz and Metzler. Then the produet; 4, has no

negative eigenvalue.

Proof: As A, A, are both Hurwitz, the determinant of; A, must be positive. Also, the
diagonal entries ofd; A, must both be positive. Hence the trace AfA, is positive. It now

follows easily that the producti; A, cannot have any negative eigenvalues.
Combining Theorem 3.1 and Lemma 3.1 yields the following ltesu

Theorem 3.2:Let A;, A, € R?*? be Hurwitz and Metzler. Then the following statements are

equivalent:



() X4, andX 4, have a CQLF;
(b) ¥4, andX 4, have a common copositive quadratic Lyapunov function;
(c) The switched system = A(t)z, A(t) € {A;, Ay} is uniformly asymptotically stable;

(d) The matrix productd, A;' has no negative eigenvalues.

Proof : (a) & (d): From Lemma 3.1 it follows that the matrix produdt A, cannot have a

negative eigenvalue. Hence, the equivalence of (a) ando(ws from Theorem 3.1.

(b) & (d): If A;A;' has no negative eigenvalues, theép, andX 4, have a CQLF. Thus, they
certainly have a copositive common quadratic Lyapunov tionc Conversely, suppose that
A1 A has a negative eigenvalue. It follows thét++,4, has a real, non-negative eigenvalue
for some~y, > 0. Since,A; + A = N — agl, where N = 0, it follows that the eigenvector
corresponding to this eigenvalue is the Perron eigenvaiftdy and consequently lies in the

positive orthant [2]. It follows that a copositive Lyapunfwnction cannot exist.

(c) < (d): Suppose thatl; A;! has a negative eigenvalue; namely, + vA, is non-Hurwitz
for some~ > 0. It now follows from Theorem 2.1 that there exists some dwitg signal for
which the switched systeiis : & = A(t)z  A(t) € {A4;, A2} is not uniformly asymptotically
stable. This proves that (c) implies (d). Converselydifd; ' has no negative eigenvalues, then
Y4,, X4, have a CQLF and the associated switched systems is unifosyigatotically stable.

This completes the proof.

The equivalence of (c) and (d) in the previous theorem nlyugives rise to the following
question. Given a finite sefA;,..., Ay} of Metzler, Hurwitz matrices inR**%, does the
Hurwitz stability of CO(Ay, ..., A;) imply the uniform asymptotic stability of the associated
switched system? This is indeed the case and follows fronfall@ving theorem, which can
be thought of as an edge theorem for positive systems. Tawdin extends a result presented
recently in [15] by removing the restrictive assumptiontttfze diagonal entries of all the

system matrices are equal tol.

Theorem 3.3:Let A, ..., A, be Hurwitz, Metzler matrices iiR?*2. Then the positive switched

linear system,

i=A{t)r  A(t) € {A,... A}, (1)



is uniformly asymptotically stable if and only if each of teaitched linear systems,
for 1 <i < j <k is uniformly asymptotically stable.

Outline of Proof

(a) First, we show thaR?, can be partitioned into a finite collection of wedgéec;, 1 <
j < m such that, forl < j < m there exists a quadratic form’ P;z, which is non-
increasing along each trajectory of (1) withifac,. Formally, forz € Sec; and1 <i <k,
T (AT P; + PjA;)z <0.

(b) Using level sets of the quadratic forms in (a), we show tha system (1) has uniformly
bounded trajectories.

(c) Finally, we show that for sufficiently smadl > 0 the same conclusion will hold if we
replace each system matrik with A; + ¢I. This then establishes the uniform asymptotic

stability of the system (1).

Proof : It is immediate that if the system (1) is uniformly asymptatly stable (for arbitrary

switching), then each of the systems (2) is also.

Now suppose that for each; with 1 < i < j < k, the system (2) is uniformly asymptotically
stable. We can assume without loss of generality that foral 0 and1 < i < j < k, the

matrix A; — aA; is not zero. LefR? be the nonnegative orthant &*. For any vector: € R?,
Cone(Aiz, ..., Agzr) = Ur<icj<kCone(A;x, A;x).

Moreover, as the switched system (2) is uniformly asymp#tly stable forl < i < j7 < k
and the system matrices are Metzl€iyne(A;z, A;z) NR2 = {0} forall 1 <i < j <k and

nonzeroz € R%. ThereforeCone(A;x, ..., Ayx) NR2 = {0}.

For a nonzero vector € R? definearg(z), the argument ofr in the usual way, viewing
x as a complex number. Lét(z),u(x)),1 < I(z),u(x) < k be a pair of integers such that

arg(Aygyx) < arg(Ax) < arg(Aye)x). Then clearly

Cone(Avz, ..., Apx) = Cone(Ayw), Auw))-



For1 <i,j < k define
Dijy = {ye Ri,y #0: Cone(Ayy, ..., Agy) = Cone(A;y, Ajy)}

Here (7, j) is a pair of integers, not necessarily ordered and possitphaleandarg(A;y) <
arg(Ajy). It now follows thatRi — {O} = Ulgi,jng(i,j)- Note thatD(m) U {0} is a closed
cone, not necessarily convex and that i€ D; ;) andarg(A;x) < arg(Anz) < arg(Aj;z) for

m # i, j thenx belongs to the interior oD; ;.

Consider the sefymp = {a =: (a,1 —a)’ : 0 < a < 1}, and defined; ;, = Symp N Dy; ;).
We shall writea < b if and only if a < b. The setsd; ;) are closed and their (finite) union
is equal toSymp. Moreover, the only way for € Symp not to lie in the interior of some
di jy is if there existsh > 0,1 < [ # m < k such that4d;z = bA,,x. As we assumed that for
all e > 0,1 <14 < j <k the matrixA; — aA; is not zero, it follows that there exists a finite
subsetSing =: {0 < a; < ... < d, < 1} such that all vectors iymp — Sing belong to the

interior of somedy; ;.

It now follows that Symp can be partitioned into a finite family of closed intervalacle of
them contained in somé; ;). This in turn defines a partition d&% — {0} into finitely many
closed cones/wedgesec;, 1 < j < m, each of which is contained in sonie ;) ;). We
shall label the rays which define this partition . . ., r,,.; wherer; is they-axis, r,,. is the

z-axis and the rays are enumerated in the clockwise direction

Now, by assumption, the switched system= A(t)x  A(t) € {AL), Av()} is uniformly
asymptotically stable for all < j < m. Thus, it follows from Theorem 3.2 that, far <
j < m, there exist quadratic forms” Pz, P; = P[> 0, such thatA7 ; P; + PjArg) < 0,

T
Av)
and allz with 1 <4 < k.

Pj + PjAy) < 0. As Sec; C Diyu()), it follows thatz” P;A;z < 0 for all z € Sec;

Now, choose a poinf; = (0,%)”, ¥ > 0 and consider the level curve of P,z which passes
throughT;. This curve intersects the second rgyat some pointl; and the level curve of
T Pyx going throughT;, intersects the third ray; at some pointls. We can continue this
process until we reach some poifif, . ; on thez-axis. This gives us a domain bounded by the
y-axis, the chain of ellipsoidal arcs defined above, and:tagis. This domain is an invariant set

for (1), which implies that the trajectories of the systemdfie uniformly bounded. The same



conclusion will hold if we replace the system matricés ..., Ay with {A; +€l, .., Ay +€l}
for some small enough positive This implies that the original system (1) is in fact unifdym

asymptotically stable and completes the proof of the thaore

IV. HIGHER DIMENSIONAL SYSTEMS

Motivated by results such as those described in the preweason, a number of authors have

recently formulated the following conjecture.

Conjecture 1. Let A,,..., A, be a finite family of Hurwitz, Metzler matrices iR"*". Then

the following statements are equivalent:

(i) All matrices in the convex hullCO(Ay,..., A), are Hurwitz;
(i) The switched linear system; = A(t)x  A(t) € {44, ..., Ax}, is uniformly asymptoti-

cally stable.

In the remainder of this section, we shall present a couxaenple to Conjecture 1, based on

arguments first developed by Gurvits in [16](which extenteslresults in [17], [18]).

Lemma 4.1:Let A, ..., A, be a finite family of matrices ifR"*". Assume that there exists a
proper polyhedral convex corfein R™ such thaezp(A;t)(2) C Qforallt > 0andl <i < k.

Then there is some intege¥ > n and a family of Metzler matricest’,... AM in RV*V

such that:

(i) All matrices in CO(Ay, ..., A;) are Hurwitz if and only ifCO(AY,... A}M) consists
entirely of Hurwitz matrices;

(i) The switched linear system = A(t)z, A(t) € {A4,..., Ay} is uniformly asymptotically
stable if and only if the positive switched linear systems A(t)z, A(t) € {AM, ..., AM}

is uniformly asymptotically stable.
Proof:

As () is polyhedral, solid and pointed, we can assume withoutdbggenerality that there exist
vectorszy, ..., zy in R™, with N > n, such that? = Cone(zy,...,zy). Also, (see Theorem
8in [19]) for 1 < i < k, exp(A;t)(2) C Q for all t > 0 if and only if there is some > 0
such that(/ 4 74;)(2) C Q.



Define a linear operatob : RY — R"™ by ®(e¢;) = z; for 1 <i < N whereey, ..., ey is the
standard basis dR”. We shall now show how to construct Metzler matricé¥ € RV*V

satisfying the requirements of the lemma.

First, we note the following readily verifiable facts:

(i) For any trajectory;(t) = >, oy @i(t)zi, ai(t) > 0, in €, lim; . x(t) = 0 if and only
if limy oo ;(t) =0 for 1 <i < N;

(i) Foreachi € {1,...,k} andq € {1,..., N}, we can write (non-uniquely)
N
Ai(zy) = Zamzp wherea,, > 0 if p # q.
p=1

In this way, we can associate a Metzler mate¥! = (a,, : 1 < p,q < N) in RV with
each of the system matricel in R"*".
(i) By construction, ®AM = A,® and ®(exp(AMt)) = (exp(A;t))® for all ¢+ > 0. Hence,

AM is Hurwitz if and only if A; is Hurwitz for 1 <i < k.

From points (i) and (iii) above we can conclude that all neasiin the convex hull'O(A;, ..., Ax)
are Hurwitz if and only if all matrices in the convex hdllO (A%, ..., AM) are Hurwitz. More-
over, the switched linear systein= A(t)x,, A(t) € {A4,..., Ax} is uniformly asymptotically
stable if and only if the positive switched linear systém- A(t)z, A(t) € {AM, ... A¥} is

uniformly asymptotically stable. This proves the lemma.

It follows from Lemma 4.1 that if Conjecture 1 was true, thea #ame statement would also

hold for switched linear systems having an invariant prgpayhedral convex cone.

Given a matrixA € R™*", define the linear operatot, on the space of x n real symmetric
matrices, byA(X) = ATX + X A. It is a straightforward exercise to verify thatif(¢) and
z5(t) are solutions of the systein= ATz with initial conditionsz,(0) = 1, 22(0) = z, then
21 () aa ()T + 22(t)z, (t)7 is a solution of the linear systei = A(X), with initial conditions
12l + 2927, The following result follows easily by combining this olpgation with standard

facts about the existence and uniqueness of solutions ¢arlisystems.

Lemma 4.2:Consider a family{ A, ..., Ay}, of matrices inR™*". Then:

(i) CO(A4,..., Ax) consists entirely of Hurwitz stable matrices if and only if af the



operators inCO(Ay, ..., A;) are Hurwitz stable;

(i) The cone,PSD(n), of positive semi-definite matrices iR"*" is an invariant cone for
the switched systenX = A(t, X) A(t,X) € {A;(X),..., A(X)};

(i) The systemX = A(t, X), A(t,X) € {4A,(X),...,Ax(X)} is uniformly asymptotically
stable if and only if the system = A(t)x, A(t) € {Ai, ..., A} is uniformly asymptoti-

cally stable.

The Counterexample

To begin, consider the following two matrices R¥*?

0 1 0 a
Al - ) A2 =

-1 0 —-b 0
wherea > b > 0. Then, for some,, ¢, > 0 the spectral radiug((exp(Ait1)(exp(Asty)) > 1.1n
fact, if we takea = 2, b = 1 then this is true with; = 1, ¢, = 3/2. By continuity of eigenvalues,
if we choosee > 0 sufficiently small, we can ensure that(exp((A; — el)ty))(exp((As —
el)ty))) > 1. Hence, the switched linear system associated with themsystatrices4d; — e/,
Ay — el is unstable and moreover, all matrices in the convex Qial({ A, —el, Ay —el}) are

Hurwitz.

The above remarks establish the existence of Hurwitz nestiit;, B, in R>*2 such that all
matrices inCO(By, By) are Hurwitz and the switched linear systein= A(t)z, A(t) €
{By, By} is unstable.

Next, consider the Lyapunov operatofs,, B> on the symmetri@ x 2 real matrices. It follows
from Lemma 4.2 thaCO(Bl, BQ) consists entirely of Hurwitz stable operators and that the
switched linear system associated with B; is unstable, and leaves the proper (not polyhedral)
cone PSD(2) invariant. Formally,exp(B;t)(PSD(2)) € PSD(2) for i = 1,2, and allt > 0.

From examining the power series expansioneﬁ;b(éit), it follows that for anye > 0, there
existsr > 0 and two linear operatord,, i = 1,2 such thai 7]+ B;+A;)(PSD(2)) C PSD(2)
with ||A;|]| < e for i = 1,2. Combining this fact with standard results on the existerfce o
polyhedral approximations of arbitrary proper cones intéirdimensions (see Theorem 20.4
in [20]), we can conclude that for any> 0, there exists a proper polyhedral coRdd, C
PSD(2), and two linear operatorg;, i = 1,2 such that(r/ + B + A; + %;)(PH.) C PH,



with [|A,]], [|6]] < e for i = 1,2.

Recall thatOO(Bl,BQ) consists entirely of Hurwitz-stable operators and that shached
linear system associated wifhy, B, is unstable. For > 0, define the linear operatot3; . =

A; +A\;+6; for i = 1, 2. By choosinge > 0 sufficiently small, we can ensure that all operators
in CO(By ., By.) are Hurwitz-stable and that the switched linear system A(t)z, A(t) €
{Bi., B2} is unstable. Moreover, this switched linear system lealiesproper, polyhedral

cone PH, invariant.

Thus, the statement of Conjecture 1 is not true for switcheeali systems with an invariant
proper, polyhedral cone and hence, it follows from Lemma thdt Conjecture 1 itself is
also false. However, on examining the proof of Lemma 4.1, eethat the dimension of the
counterexample is determined by the number of generatotkeopolyhedral approximation

PH,, and this may be very large.

V. MATRICES WITH CONSTANT DIAGONALS

In the recent paper [15], it was shown that for Metzler, HimwnatricesA, . .., A in R?*2 all
of whose diagonal entries are equal to A (¢, i) = —1fori =1,2, 5 = 1,..., k), the Hurwitz-
stability of all matrices inCO(A;, ..., Ax) is equivalent to the uniform asymptotic stability of
the associated switched linear system. Motivated by tlsslteMehmet Akar recently asked
if a counterexample to Conjecture 1 exists for the more @stei system class satisfying:
A;(ii) = —1for1 <i<mn,1<j <k We shall now show that such a counterexample
does indeed exist. Note that it is enough to provide a coexéenple such that each matrix
A;,1 < j <k has a constant diagonal in the sense that there are real rumbe ., ¢, such
that A;(i,i) =c; fori=1,...,n,j=1,... k.
Given a Metzler matrix4 in R™*", let A(l,!) = min;<;<,, A(7,7), and define th& x 2 blocks:
A(i,j) 0

Bi; = if o #j
0 A@J)

A(1,1) A(i i) — A(L 1)
A(i, i) — AL, 1) A(1, 1)



Let Lift(A) € R***" pe the block matrix whoséi, j) block is B; ;. Next define the linear

operatorF’ € R " by F(xy,...,T0,) = (Y1, .-, Yn),» Wherey; = wq; 1 +9; fori =1,... n.

It is straightforward to check that for any Metzldr € R™ ", Lift(A) € R*™**" is Metzler,
has a constant diagonal, at{ Lift(A)) = AF. The next lemma now follows readily from

the previous equation.

Lemma 5.1:Consider a set of Metzler matrices, ..., Ax in R™*". Then the following state-

ments hold ;

(i) The convex hullCO(Ay, ..., Ax) is Hurwitz iff the convex hullCO(Lift(A,), ..., Lift(Ax))
IS Hurwitz .

(i) The switched systemt = A(t)z, A(t) € {A4,..., Az} is uniformly asymptotically sta-
ble iff the switched systemi = A(t)x, A(t) € {Lift(A:),..., Lift(Ax)} is uniformly

asymptotically stable .

In the last section, we proved that there exists a posititegar n» and a pair of Metzler,
Hurwitz matricesA;, A, in R™*™ which violate Conjecture 1. Now consider one such pair
{A;, Ay} and lift it to the pair{Lift(A;), Lift(Ay)}. It now follows, using Lemma 5.1, that
the pairLift(A,), Lift(Ay) provides the required counterexample.

VI. THE JOINTLYAPUNOV EXPONENT

In this section, we shall make some simple observationsearoimgy the computation of the

joint Lyapunov exponentvhich is a continuous-time analogue of ffoént spectral radius

Definition 6.1: Let S be a compact subset &"*". The joint Lyapunov exponent of the

associated continuous-time switched linear systemJLE(S) is defined as
JLE(S) = inf{) : 3 a matrix norm||.|| : ||exp(At)|| < e for A € S;t > 0}

Notice that uniform asymptotic stability of the switcheddar systents is equivalent to the
inequality JLE(S) < 0. A relatively straightforward modification of the proof oh&orem 3.3
yields the following result.



Theorem 6.1: (i) Let S c R**2 be a compact set of Metzler matrices. Then
JLE(S) = max, JLE({A, B});
,be

(i) JLE(S) = maxyecocs) (M), whereCO(S) is the convex hull ofS and u(A) is the
maximal real part of the eigenvalues bf;
(iii) Let S ={A4,..., A;} be a finite set oR x 2 Metzler matrices . Then the joint Lyapunov

exponent/ LE(S) can be computed i®(k?) arithmetic operations .

VIl. CONCLUSIONS

In this paper we have presented a counterexample to a reoejgcture presented in [9],
and formulated independently by David Angeli, concernimg einiform asymptotic stability of
switched positive linear systems. In particular, we havewshthat the stability of a positive
switched linear system is not in general equivalent to thewita stability of the convex hull
of its system matrices. Furthermore, we have also showrthistonjecture fails for the more
restrictive case where the system matrices are requiredve tonstant diagonals. While this
conjecture is now known to be false, the lowest dimensiomfimich it fails is still not known.
Thus it may be true for other, low-dimensional classes ofitpessystems. Also, it is not
known how large the set of counterexamples is, which meaatstiie conjecture may be true

for significant sub-classes of switched positive lineateys.
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