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1 Lecture 1: A general introduction to game theory, its origins,
and classifications

1.1 What is game theory?

Game theory deals with strategic interactions among multiple decision makers, called players (and in

some context agents), with each player’s preference ordering among multiple alternatives captured

in an objective function for that player, which she either tries to maximize (in which case the

objective function is a utility function or benefit function) or minimize (in which case we refer to

the objective function as a cost function or a loss function). For a non-trivial game, the objective

function of a player depends on the choices (actions, or equivalently decision variable) of at least

one other player, and generally of all the players, and hence a player cannot simply optimize her

own objective function independent of the choices of the other players. This thus brings in a

coupling between the actions of the players, and binds them together in decision making even in a

non-cooperative environment. If the players were able to enter into a cooperative agreement so that

the selection of actions or decisions is done collectively and with full trust, so that all players would

benefit to the extent possible, and no inefficiency would arise, then we would be in the realm of

cooperative game theory, with issues of bargaining, coalition formation, excess utility distribution,

etc. of relevance there; cooperative game theory will not be covered in this overview; see for example

Owen (1995)[2], Vorob’ev (1977)[4], or Fudenberg and Tirole (1991)[3]. See also the recent survey

article [5], which emphasizes applications of cooperative game theory to communication systems.

If no cooperation is allowed among the players, then we are in the realm of non-cooperative

game theory, where first one has to introduce a satisfactory solution concept. Leaving aside for the

moment the issue of how the players can reach a satisfactory solution point, let us address the issue

of if the players are at such a solution point, what are the minimum features one would expect

to see there. To first order, such a solution point should have the property that if all players but

one stay put, then the player who has the option of moving away from the solution point should

not have any incentive to do so because she cannot improve her payoff. Note that we cannot allow

two or more players to move collectively from the solution point, because such a collective move

requires cooperation, which is not allowed in a non-cooperative game. Such a solution point where

none of the players can improve her payoff by a unilateral move is known as a non-cooperative
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equilibrium or Nash equilibrium, named after John Nash, who introduced it and proved that it

exists in finite games (that is games where each player has only a finite number of alternatives),

some sixty years ago; see Nash (1950, 1951) [16, 17]. We will discuss this result in detail later

in these Notes, following some terminology, a classification of non-cooperative games according to

various attributes, and a mathematical formulation.

We say that a non-cooperative game is nonzero-sum if the sum of the players’ objective functions

cannot be made zero after appropriate positive scaling and/or translation that do not depend on the

players’ decision variables. We say that a two-player game is zero-sum if the sum of the objective

functions of the two players is zero or can be made zero by appropriate positive scaling and/or

translation that do not depend on the decision variables of the players. If the two players’ objective

functions add up to a constant (without scaling or translation), then the game is sometimes called

constant sum, but according to our convention such games are also zero sum. A game is a finite

game if each player has only a finite number of alternatives, that is the players pick their actions

out of finite sets (action sets); otherwise the game is an infinite game; finite games are also known

as matrix games. An infinite game is said to be a continuous-kernel game if the action sets of

the players are continua, and the players’ objective functions are continuous with respect to action

variables of all players. A game is said to be deterministic if the players’ actions uniquely determine

the outcome, as captured in the objective functions, whereas if the objective function of at least one

player depends on an additional variable (state of nature) with a known probability distribution,

then we have a stochastic game. A game is a complete information game if the description of the

game (that is, the players, the objective functions, and the underlying probability distributions (if

stochastic)) is common information to all players; otherwise we have an incomplete information

game. We say that a game is static if players have access to only the a priori information (shared

by all), and none of the players has access to information on the actions of any of the other players;

otherwise what we have is a dynamic game. A game is a single-act game if every player acts only

once; otherwise the game is multi-act. Note that it is possible for a single-act game to be dynamic

and for a multi-act game to be static. A dynamic game is said to be a differential game if the

evolution of the decision process (controlled by the players over time) takes place in continuous

time, and generally involves a differential equation; is it takes place over a discrete-time horizon, a

dynamic game is sometimes called a discrete-time game.
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1.2 Past and the present

Game Theory has enjoyed over 65 years of scientific development, with the publication of the Theory

of Games and Economic Behavior by John von Neumann and Oskar Morgenstern [14] generally

acknowledged to kick start the field. It has experienced incessant growth in both the number of

theoretical results and the scope and variety of applications. As a recognition of the vitality of the

field a total of 8 Nobel Prizes were given in Economic Sciences for work primarily in game theory,

with the first such recognition given in 1994 to John Harsanyi, John Nash, and Reinhard Selten

“for their pioneering analysis of equilibria in the theory of non-cooperative games.” The second set

of Nobel Prizes in game theory went to Robert Aumann and Thomas Schelling in 2005, “for having

enhanced our understanding of conflict and cooperation through game-theory analysis.” And the

most recent one was in 2007, recognizing Leonid Hurwicz, Eric Maskin, and Roger Myerson, “for

having laid the foundations of mechanism design theory.” I should add to this list of highest-level

awards in game theory, also the Crafoord Prize in 1999 (which is the highest prize in Biological

Sciences), which went to John Maynard Smith (along with Ernst Mayr and G. Williams) “for

developing the concept of evolutionary biology,” where Smith’s recognized contributions had a

strong game-theoretic underpinning, through his work on evolutionary games and evolutionary

stable equilibrium [8, 9, 10].

Even though von Neumann and Morgenstern’s 1944 book is taken as the starting point of the

scientific approach to game theory, game-theoretic notions and some isolated key results date back

to earlier years. Sixteen years earlier, in 1928, John von Neumann himself had resolved completely

an open fundamental problem in zero-sum games, that every finite two-player zero-sum game admits

a saddle point in mixed strategies, which is known as the Minimax Theorem [15] — a result which

Emile Borel had conjectured to be false eight years before. Some early traces of game-theoretic

thinking can be seen in the 1982 work (Considérations sur la théorie mathématique du jeu) of

André-Marie Ampère (1775-1836), who was influenced by the 1777 writings (Essai d’Arithmétique

Morale) of Georges Louis Buffon (1707-1788).

Which event or writing has really started game-theoretic thinking or approach to decision

making (in law, politics, economics, etc.) may be a topic of debate, but what is indisputable is

that the second half of the twentieth century was a golden era of game theory, and the twenty-first
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century has started with a big bang, and is destined to be a platinum era with the proliferation

of text-books, monographs, and journals covering the theory and applications (to an ever-growing

breadth) of static and dynamic games. Some selected textbooks that cover non-cooperative as

well as cooperative games, with various shades of mathematical rigor and sophistication, are (an

incomplete list):

• G. Owen, Game Theory, 3rd edition, Academic Press, 1995

• D. Fudenberg, J. Tirole, Game Theory, MIT Press, 1991

• T. Başar and G.J. Olsder, Dynamic Noncooperative Game Theory, 2nd edition, SIAM Classics,

1999 (original: Academic Press, 1982)

• R.B. Myerson, Game Theory: Analysis of Conflict, Harvard, 1991

• N.H. Vorobev, Game Theory, Springer Verlag, 1977

• R. Gibbons, Game Theory for Applied Economists, Princeton University Press, 1992

• K. Binmore, Fun and Games, D.C. Heath and Co, 1992

• J.D. Williams, The Compleat Strategyst. McGraw-Hill, 1954

• W. Poundstone, Prisoners Dilemma, Doubleday, 1992

Two international societies exist,

• International Society of Dynamic Games (1990 - )

• Game Theory Society (1999 - )

as well as several regional ones, and the rate at which conferences and symposia on game theory

or related to game theory are being organized is growing from year to year. Several journals in

other fields (economics, biology, political science, sociology, communications, various disciplines of

engineering, etc.) are publishing papers that use tools of game theory in increasing numbers, and

there are at least four journals that are primarily on game theory:

• Games and Economic Behavior

• International J. Game Theory

• International Game Theory Review

• J. Dynamic Games and Applications (just launched)

Hence, in all respects game theory is on an upward slope in terms of its vitality, the wealth of topics

that fall in its scope, the richness of the conceptual framework it offers, the range of applications,

and the challenges it presents to an inquisitive mind.
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1.3 On these Lecture Notes

This set of notes will expose the reader to some of the fundamental results in non-cooperative

game theory, and highlight some current applications. It will cover both static and dynamic

games, and zero-sum as well as nonzero-sum games. Details of proofs will not be given in most

cases, and they can be found in standard texts (listed earlier), particularly in [1], as well as in some

relevant papers. In the discussion of selected applications, some relevant journal or conference

paper references will be given, and in fact reprints or pre-prints of some of these papers will be

attached. As the title of the Notes indicates, the coverage will be restricted to non-cooperative

games.

For readers who are familiar with optimization theory in its static (linear and nonlinear pro-

gramming [11]) or dynamic (optimal control or calculus of variations [12]) forms, they can be viewed

as special cases of a theory for nonzero-sum static and dynamic games when the number of players

is restricted to one. It is therefore natural for tools of single-criterion optimization to play a role

in the derivation and characterization of non-cooperative equilibrium solutions of zero-sum and

nonzero-sum static and dynamic games, as we will see throughout these lectures.
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2 Lecture 2: Non-cooperative games and equilibria

2.1 Main elements and equilibrium solution concepts

For a precise formulation of a non-cooperative game, we have have to specify (i) the number of

players, (ii) the possible actions available to each player, and any constraints that may be imposed

on them, (iii) the objective function of each player which she attempts to optimize (minimize or

maximize, as the case may be), (iv) any time ordering of the execution of the actions if the players

are allowed to act more than once, (v) any information acquisition that takes place and how the

information available to a player at each point in time depends on the past actions of other players,

and (vi) whether there is a player (nature) whose action is the outcome of a probabilistic event

with a fixed (known) distribution. Here we will first consider formulation of games where only

items (i)-(iii) above are relevant, that is players act only once, the game is static so that players

do not acquire information on other players’ actions, and there is no nature player. Subsequently,

in later lectures, we will consider more general formulations, particularly dynamic games, that will

incorporate all the ingredients listed above.

Accordingly, we consider an N -player game, with N := {1, . . . , N} denoting the Players set.

The decision or action variable of Player i is denoted by xi ∈ Xi, where Xi is the action set of

Player i. The action set could be a finite set (so that the player has only a finite number of

possible actions), or an infinite but finite-dimensional set (such as the unit interval, [0, 1]), or an

infinite-dimensional set (such as the space of all continuous functions on the interval [0, 1]). We

let x denote the N -tuple of action variables of all players, x := (x1, . . . , xN ). Allowing for possibly

coupled constraints, we let Ω ⊂ X be the constraint set for the game, where X is the N -product of

X1, . . . , XN ; hence for an N -tuple of action variables to be feasible, we need x ∈ Ω (for example,

with N = 2, we could have a coupled constraint set described by: 0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1).

If we consider the players to be minimizers, the objective function (loss function or cost function)

of Player i will be denoted by Li(xi, x−i), where x−i stands for the action variables of all players

except the i’th one. If the players are maximizers, then the objective function (utility function)

of Player i will be denoted by Vi(xi, x−i). In these Notes, we will use Li and Vi interchangeably,

depending on whether a player is respectively a minimizer or a maximizer. Note that a game

where all players are minimizers, with cost functions Li’s, can be seen as one where all players are
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maximizers, with utility functions Vi ≡ −Li’s.

Now, an N -tuple of action variables x∗ ∈ Ω constitutes a Nash equilibrium (or, non-cooperative

equilibrium) (NE) if, for all i ∈ N ,

Li(x∗i , x
∗
−i) ≤ Li(xi, x∗−i) , ∀xi ∈ Xi , such that (xi, x∗−i) ∈ Ω , (1)

or, if the players are maximizers,

Vi(x∗i , x
∗
−i) ≥ Li(xi, x∗−i) , ∀xi ∈ Xi , such that (xi, x∗−i) ∈ Ω . (2)

If N = 2, and L1 ≡ −L2 =: L, then we have a two-player zero-sum game (ZSG), with Player

1 minimizing L and Player 2 maximizing the same quantity. In this case, the Nash equilibrium

becomes the saddle-point equilibrium (SPE), which is formally defined as follows, where we leave

out the coupling constraint set Ω (or simply assume it to be equal to the product set X := X1×X2):

A pair of actions (x∗1, x
∗
2) ∈ X is in saddle-point equilibrium (SPE) for a game with cost function

L, if

L(x∗1, x2) ≤ L(x∗1, x
∗
2) ≤ L(x1, x

∗
2) , ∀(x1, x2) ∈ X . (3)

This also implies that the order in which minimization and maximization are carried out is incon-

sequential, that is

min
x1∈X1

max
x2∈X2

L(x1, x2) = max
x2∈X2

min
x1∈X1

L(x1, x2) = L(x∗1, x
∗
2) =: L∗

where the first expression on the left is known as the upper value of the game, the second expression

is the lower value of the game, and L∗ is known as the value of the game.1 Note that we generally

have

min
x1∈X1

max
x2∈X2

L(x1, x2) ≥ max
x2∈X2

min
x1∈X1

L(x1, x2) ,

or more precisely

inf
x1∈X1

sup
x2∈X2

L(x1, x2) ≥ sup
x2∈X2

inf
x1∈X1

L(x1, x2) ,

which follows directly from the obvious inequality

sup
x2∈X2

L(x1, x2) ≥ inf
x1∈X1

L(x1, x2) ,

1Upper and lower values are defined in more general terms using infimum (inf) and supremum (sup) replacing
minimum and maximum, respectively, to account for the facts that minima and maxima may not exist. When the
action sets are finite, however, the latter always exist.
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since the LHS expression is only a function of x1 and the RHS expression only a function of x2.

Next, note that the value of a game, whenever it exists (which certainly does if there exists

a saddle point), is unique. Hence, if there exist another saddle-point solution, say (x̂1, x̂2), then

L(x̂1, x̂2) = L∗. Moreover, these multiple saddle points are orderly interchangeable, that is the pairs

(x∗1, x̂2) and (x̂1, x
∗
2) are also in saddle-point equilibrium. This property that saddle-point equilibria

enjoy do not extend to multiple Nash equilibria (for nonzero-sum games): multiple Nash equilibria

are generally not interchangeable, and further they do not lead to the same values for the Players’

cost functions, the implication being that when players switch from one equilibrium to another,

some players may benefit from that switch (in terms of reduction in cost) while others may see an

increase in their costs. Further, if the players pick their actions randomly from the set of multiple

Nash equilibria of the game, then the resulting N -tuple of actions may not be in Nash equilibrium.

Now coming back to the zero-sum game, if there is no value, which essentially means that the

upper and lower values are not equal, in which case the former is strictly higher than the latter:

min
x1∈X1

max
x2∈X2

L(x1, x2) > max
x2∈X2

min
x1∈X1

L(x1, x2) ,

then a saddle point does not exist. We then say in this case that the zero-sum game does not have

a saddle point in pure strategies. This opens the door for looking for a mixed-strategy equilibrium.

A mixed strategy is for each player a probability distribution over his action set, which we denote

by pi for Player i. This argument also extends to the general N -player game, which may not have a

Nash equilibrium in pure strategies (actions, in this case). In search of a mixed-stragy equilibrium,

Li is replaced by its expected value taken with respect to the mixed strategy choices of the players,

which we denote for Player i by Ji(p1, . . . , pN ). Nash equilibrium over mixed strategies is then

introduced as before, with just Ji’s replacing Li’s, and pi’s replacing xi’s, and pi ∈ Pi, where Pi

is the set of all probability distributions on Xi (we do not bring Ω into the picture here, assuming

that the constraint sets are rectangular). If Xi is finite, then pi will be a probability vector, taking

values in the probability simplex determined by Xi. In either case, the N-tuple (p∗1, . . . , p
∗
N ) is in

(mixed-strategy) Nash equilibrium (MSNE) if

Ji(p∗i , p
∗
−i) ≤ Ji(pi, p∗−i) , ∀ pi ∈ Pi . (4)

This readily leads, in the case of zero-sum games, as a special case, to the following definition of a

saddle point in mixed strategies: A pair (p∗1, p
∗
2) constitutes a saddle point in mixed strategies (or a
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mixed-strategy saddle-point equilibrium) (MSSPE), if

J(p∗1, p2) ≤ J(p∗1, p
∗
2) ≤ J(p1, p

∗
2) , ∀ (p1, p2) ∈ P .

where J(p1, p2) = Ep1,p2 [L(x1, x2)], and P := P1 × P2. Here J∗ = J(p∗1, p
∗
2) is the value of the

zero-sum game in mixed strategies.

2.2 Security strategies

If there is no Nash equilibrium in pure strategies, and the players do not necessarily want to adopt

mixed strategies, an alternative approach is for each player to pick that pure strategy which will

safeguard her losses under worst scenarios. This will entail each player essentially playing a zero-

sum game, minimizing her cost function against collective maximization of all other players. A

strategy (or an action, in this case) that provides a loss ceiling for a player is known as a security

strategy for that player. Assuming again rectangular action product sets, security strategy xsi ∈ Xi

for Player i is defined through the relationship

sup
x−i∈X−i

Li(xsi , x−i) = inf
xi∈Xi

sup
x−i∈X−i

Li(xi, x−i) =: L̄i

where the “sup” could be replaced with “max” if the action sets are finite. Note that, the RHS

value, L̄i, is the upper value of the zero-sum game played by Player i. Also note that even if the

security strategies of the players, say xs := {xsi , i ∈ N}, are unique, then this N-tuple would not

necessarily constitute an equilibrium in any sense. In the actual play, the player will actually end

up doing better than just safeguarding their losses, since Li(xs) ≤ L̄i for all i ∈ N .

The notion of a security strategy could naturally be extended to also mixed strategies. Using

the earlier notation, psi ∈ Pi would be a mixed security strategy for Player i if

sup
p−i∈P−i

Ji(psi , p−i) = inf
pi∈Pi

sup
p−i∈P−i

Ji(pi, p−i) =: J̄i

Remark. If the original game is a two-player zero-sum game, and the upper and lower values are

equal, then security strategies for the players will have to be in SPE. If the upper and lower values

are not equal in pure strategies, but are in mixed strategies, then mixed security strategies for the

players will have to be in MSPE.
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2.3 Strategic equivalence

Strategic equivalence is a useful property (observation) that facilitates study of non-cooperative

equilibria of nonzero-sum games (NZSGs). Let us now make the simple observation that given

an N -player NZSG of the type introduced in this lecture, if two operations are applied to the

loss function of a player, positive scaling and translation which does not depend on the action

variable of that player, this being so for every player, then the set of NE of the resulting NZSG is

identical to the set of NE of the original game. In view of this property, we say that the two games

are strategically equivalent. In mathematical terms, if L̃i’s are the cost functions of the players

in the transformed game, then we have, for some constants αi > 0, i ∈ N , and some functions

βi(x−i), i ∈ N ,

L̃i(xi, x−i) = αi Li(xi, x−i) + βi(x−i) , i ∈ N .

Now note that, if for a given NZSG, there exist αi’s and βi’s of the types above, such that L̃i

is independent of i, that is the transformed NZSG features the same cost function, say L̃, for all

players, then we have a single objective game, or equivalently a team problem. Any NE of this

transformed game (which is a team) is a person-by-person optimal solution of the team problem.

That is, if x∗i , i ∈ N is one such solution, we have

L̃(xi,∗ x∗−i) = min
xi∈Xi

L̃(xi, x∗−i) , ∀ i ∈ N

which is not as strong as the globally minimizing solution for L̃:

L̃(xi,∗ x∗−i) = min
xi∈Xi

min
x−i∈X−i

L̃(xi, x∗−i) .

Clearly, the latter implies the former, but not vice versa. Consider, for example, the two-player

game where each player has two possible actions, for which L̃ admits the matrix representation

L̃ =

(
0 1
1 1

)
(5)

where Player 1 is the row player, and Player 2 the column player (and both are minimizers). The

south-east entry (row 2, column 2) is clearly a person-by-person optimal solution (NE), but is not

the globally minimum one, which is the north-west entry (row 1, column 1) (which is of course

also a person-by-person optimal solution). Of course, if the players were to cooperate, they would

unquestionably pick the latter, but since this is a non-cooperative game, they are not allowed to
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correlate their choices. With the entries as above, however, the chances of them ending up at the

global minimum are very high, because neither one would end up worse than the inferior NE if they

stick to the first row and first column (even if one player inadvertently deviates). But this is not

the whole story, because it would be misleading to make the mutual benefit argument by working

on the transformed game. Consider now the following two-player, two-action NZSG, where again

Player 1 is the row player, and Player 2 the column player:

L1 =

(
99 1
100 1

)
, L2 =

(
0 1
1 1

)
(6)

This game has two pure-strategy NE, (row 1, column 1) and (row 2, column 2), the same as

the game L̃. In fact it is easy to see that the two games are strategically equivalent (subtract 99

from the first column of L1). But now, Player 1 would prefer the south-west entry (that is what

was inferior in the transformed game), which shows that that are perils in jumping to conclusions

based on a transformed game.

When this all comes handy, however, is when the transformed game as a team problem can be

shown to have a unique person-by-person optimal solution, which is also the globally optimal team

solution. We will later see games with structures where this would happen. Then, there would be

no ambiguity in the selection of the unique NE.

For a given NZSG, if there exists a strategically equivalent team problem, then we say that the

original game is team like. There could also be situations when a game is strategically equivalent to

a zero-sum team problem, that is there exists a proper subset of N , say N1, such that for i ∈ N1, L̃i

is independent of i, say L̃, and for j 6∈ N1, L̃j ≡ −L̃. This means that there exists a strategically

equivalent game where players in N1 form a team, playing against another team comprised of all

players outside N1. In particular, if N = 2, we have every NE of the original game equal to the

SPE of the transformed strategically equivalent ZSG.
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3 Lecture 3: Finite games, and existence and computation of NE

3.1 Zero-sum finite games and the Minimax Theorem

Let us first consider two-player zero-sum finite games, or equivalently matrix games. For any such

game we have to specify the cardinality of action sets X1 and X2 (card (X1) and card (X2)), and

the objective function L(x1, x2) defined on the product of these finite sets. As per our earlier

convention, Player 1 is the minimizer and Player 2 the maximizer. Let card (X1) = m and card

(X2) = n, that is the minimizer has m choices and the maximizer has n choices, and let the elements

of X1 and X2 be ordered according to some (could be arbitrary) convention. We can equivalently

associate an m × n matrix A with this game, whose entries are the values of L(x1, x2), following

the same ordering as that of the elements of the action sets, that is ij’th entry of A is the value of

L(x1, x2) when x1 is the i’th element of X1 and x2 is the j’th element of X2. Player 1’s choices are

then the rows of the matrix A and Player 2’s are its columns.

It is easy to come of with example matrix games where a saddle point does not exist in pure

strategies, with perhaps the simplest one being the game known as Matching Pennies, where

A =

(
1 −1
−1 1

)
, (7)

and each entry is cost to Player 1 (minimizer), and payoff to Player 2 (maximizer). Here there is no

row-column combination at which the players would not have an incentive to deviate and improve

their returns.

The next question is whether there exists a saddle point in mixed strategies. Assume that

Player 1 now picks row 1 and row 2 with equal probability 1
2 . Then, regardless of whether Player 2

picks column 1 or column 2, she will face the same expected cost of 0. Hence, in response to this

equal probability choice of Player 1, Player 2 is indifferent between the two actions available to her;

she could pick column 1, or column 2, or any probability mix between the two. Likewise, if Player 2

picks column 1 and column 2 with equal probability 1
2 , this time Player 1 faces an expected cost

of 0 regardless of her choice. In view of this, the mixed strategy pair
(
p∗1 = (1

2 ,
1
2), p∗2 = (1

2 ,
1
2)
)

is a

MSSPE, and in fact is the unique one. The SP value in mixed strategies is 0.

To formalize the above, let A be an m × n matrix representing the finite ZSG, and as before

let p1 and p2 be the probability vectors for Players 1 and 2, respectively (both column vectors, and

note that in this case p1 is of dimension m and p2 is of dimension n, and components of each are
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nonnegative and add up to 1). We can then rewrite the expected cost function as

J(p1, p2) = p′1Ap2 .

By the minimax theorem, due to John von Neumann (1928), J indeed admits a saddle point, which

means that the matrix game A has a saddle point in mixed strategies, that is there exists a pair

(p∗1, p
∗
2) such that for all other probability vectors p1 and p2, of dimensions m and n, respectively,

the following pair of saddle-point inequalities hold:

p∗1
′Ap2 ≤ p∗1

′Ap∗2 ≤ p′1Ap∗2 (8)

The quantity p∗1
′Ap∗2 is the value of the game in mixed strategies. This result is now captured in

the following Minimax Theorem.

Theorem 1 Every finite two-person zero-sum game has a saddle point in mixed strategies.

Proof (outline): The proof uses the alternating hypotheses lemma in matrix theory, which says

that given the matrix A as above, either there exists y ∈ IRm, y ≥ 0, such that y′A ≤ 0, or there

exists z ∈ IRn, z ≥ 0, such that Az ≥ 0. Details can be found in ([1], p. 26). �

3.2 Neutralization and domination

A mixed strategy that assigns positive probability to every action of a player is known as an inner

mixed strategy. A MSSPE where both strategies are inner mixed is known as an inner MSSPE, or

a completely mixed MSSPE. Note that if (p∗1, p
∗
2) is an inner MSSPE, then p′1Ap

∗
2 is independent of

p1 on the m-dimensional probability simplex, and p′2A
′p∗1 is independent of p2 on the n-dimensional

probability simplex. The implication is that in an inner MSSPE all the players do is to neutralize

each other, and the solution would be the same if their roles were reversed (that is, Player 1 the

maximizer, and Player 2 the minimizer). This suggests an obvious computational scheme for solving

for the MSSPE, which involves solving linear algebraic equations for p1 and p2, of course provided

that MSSPE is inner.

Now, if MSSPE is not inner but is proper mixed, that is it is not a pure-strategy SPE, then a

similar neutralization will hold in a lower dimension. For example, if (p∗1, p
∗
2) is a MSSPE where

some components of p∗2 are zero, then p∗1 will neutralize only the actions of Player 2 corresponding to

the remaining components of p∗2 (which are positive), with the expected payoff for Player 2 (which is
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minus the cost) corresponding to the non-neutralized actions being no smaller than the neutralized

ones. In this case, whether a player is a minimizer or a maximizer does make a difference. The

following game, which is an expanded version of Matching Pennies, where Player 2 has a third

possible action illustrates this point:

A =

(
1 −1 0
−1 1 −1

)
(9)

Here, the MSSPE is
(
p∗1 = (1

2 ,
1
2), p∗2 = (1

2 ,
1
2 , 0)

)
, where Player 1 neutralizes only the first two

actions of Player 2, with the expected cost of the third action being −1
2 , lower than 0, and hence

Player 2, being the maximizer, would not put any positive weight on it. Note that in this game

it does make a difference whether a player is a minimizer or a maximizer, because if we reverse

the roles (now Player 1 is the maximizer, and Player 2 the minimizer), the SP value in mixed

strategies is no longer 0, but is −1
3 , with the MSSPE being

(
p∗1 = (2

3 ,
1
3), p∗2 = (0, 1

3 ,
2
3)
)
. Player 2

ends up not putting positive probability to the first column, which is dominated by the third

column. Domination can actually be used to eliminate columns and/or rows which will not affect

the MSSPE, and this will lead to reduction in the size of the game (and hence make computation of

MSSPE more manageable). MSSPE of a reduced ZS matrix game (reduced through domination) is

also an MSSPE of the original ZSG (with appropriate lifting to the higher dimension, by assigning

eliminated columns or rows zero probability), but in this process some mixed SP strategies may

also be eliminated. This, however, is not a major issue because the MSSPE value is unique. If only

strictly dominated rows and columns are eliminated,2 then all mixed SP strategies are preserved

(see, [1, 4]).

3.3 Off-line computation of MSSPE

We have seen in the section above that inner MSSPE can be computed using the idea of neutraliza-

tion and solving linear algebraic equations. The same method can in principle be applied to MSSPE

that are not inner, but then one has to carry out an enumeration by setting some components of

the probability vectors to zero, and looking for neutralization in a reduced dimension—a process

which converges because MSSPE exists by the minimax theorem. In this process, domination can
2We say that a row strictly dominates another row if the difference between the two vectors (first one minus the

second one) has all negative entries. Likewise, a column strictly dominates another column if the difference has all
positive entries.
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be used (as discussed above) to eliminate some rows or columns, which would sometimes lead to a

(reduced) game with an inner MSSPE.

Yet another approach to computation of MSSPE is a graphical one, which however is practical

only when one of the players has only two possible actions ([1], pp. 29-31). And yet another

off-line computational method is to use the powerful tool of linear programming (LP). One can

actually show that there is a complete equivalence between a matrix game and an LP. The following

proposition captures this result, a proof of which can be found in [1].

Proposition 1 Given a ZS matrix game described by the m×n matrix A, let B be another matrix

game (strategically equivalent to A), obtained from A by adding an appropriate positive constant to

make all its entries positive. Let Vm(B) denote the SP value of B in mixed strategies. Introduce

the two LPs:3

Primal LP: max y′1m such that B′y ≤ 1n , y ≥ 0

Dual LP: min z′1n such that Bz ≥ 1m , z ≥ 0,

with their optimal values (if they exist) denoted by Vp and Vd, respectively. Then:

(i) Both LPs admit solutions, and Vp = Vd = 1/Vm(B).

(ii) If (y∗, z∗) solves matrix game B, y∗/Vm(B) solves the primal LP, and z∗/Vm(B) solved the

dual LP.

(iii) If ỹ∗ solves the primal LP, and z̃∗ solves the dual LP, the pair (ỹ∗/Vp, z̃∗/Vd) constitutes a

MSSPE for the matrix game B, and hence for A, and Vm(B) = 1/Vp.

3.4 Nonzero-sum finite games and Nash’s Theorem

We now move on to N-player NZS finite games, and study the Nash equilibrium (NE), introduced

in Lecture 2. As in the case of ZSGs, it is easy to come up with examples of games which do not

admit NE in pure strategies. The question then is whether there is a counterpart of the minimax

theorem in this case, which guarantees existence of NE in mixed strategies. This is indeed the

case—a result established by John Nash (1951)[17], and captured in the following theorem.

Theorem 2 Every finite N -player nonzero-sum game has a Nash equilibrium in mixed strategies.

Proof (outline): We provide here an outline of the proof for the two-player case. Extension to the

N -player case follows similar lines. In the two-player case, the game is known as a bi-matrix game,
3The notation 1m below stands for the m-dimensional column vector whose entries are all 1’s.
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characterized by two m × n matrices, A = {aij} and B = {bij}, where A’s entries are the cost to

Player 1, and B’s entries are the cost to Player 2 (both players are minimizers). Player 1 has m

actions) and Player 2 has n actions. Let p1 = y be a mixed strategy for Player 1, and p2 = z be a

mixed strategy for Player 2, which belong to the simplices Y and Z, respectively. Then, expected

costs for the players can be written as

J1 = y′Az =
∑∑

yiaijzj and J2 = y′Bz =
∑∑

yibijzj

Introduce the functions ψ1
k, k = 1, . . . ,m, and ψ2

` , ` = 1, . . . , n by

ψ1
k(y, z) := J1(y, z)−

∑
j

akjzj , ψ2
` (y, z) := J2(y, z)−

∑
i

bi`yi ,

and let c1
k(y, z) := max{ψ1

k(y, z), 0} , c2
` (y, z) := max{ψ2

` (y, z), 0}, and note that both c1
k(·, ·) and

c2
` (·, ·) are continuous on Y × Z, since ψ1

k and ψ2
` are. Now, introduce the transformations

ȳk =
yk + c1

k(y, z)
1 +

∑
i c

1
i (y, z)

, z̄` =
z` + c2

` (y, z)
1 +

∑
j c

2
j (y, z)

,

and note that ȳ ∈ Y and z̄ ∈ Z. The above induces a continuous map, T , from Y × Z into itself,

that is (
ȳ
z̄

)
= T (y, z) (10)

The proof proceeds by showing that if (y∗, z∗) is a MSNE of the bi-matrix game, then it is a fixed

point of T, and conversely any fixed point of T (which exists, using Brouwer’s fixed point theorem;

see [1]),4 is a MSNE of the bi-matrix game. The first part follows by noting that ψ1
k(y
∗, z∗) ≤ 0,∀k,

and ψ2
` (y
∗, z∗) ≤ 0,∀`, and hence that c1

k(y
∗, z∗) = c2

` (y
∗, z∗) = 0, and therefore ((y∗)′ (z∗)′)′ =

T (y∗, z∗). And in the other direction it is a proof by contradiction. �

Note that clearly the minimax theorem follows from this one since zero-sum games are special

cases of nonzero-sum games. The main difference between the two, however, is that in zero-sum

games the value is unique (even though there may be multiple saddle-point solutions), whereas in

genuine nonzero-sum games the expected cost N -tuple to the players under multiple Nash equilibria

need not be the same. In zero-sum games, multiple equilibria have the ordered interchangeability

property, whereas in nonzero-sum games they do not, as we have discussed in Lecture 2. As an
4Brouwer’s theorem says that a continuous mapping, f , of a closed, bounded, convex subset (S) of a finite-

dimensional space into itself (that is, S) has a fixed point, that is a p ∈ S such that f(p) = p.
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illustrative example, consider the Battle of the Sexes game, where a husband and wife are faced

with the decision of choosing between going to a concert and going to a soccer game, where the

former is preferred by her and the latter by him. They also prefer being together at one of these

events over going their separate ways. Two bi-matrix games that capture this scenario are (and

they are strategically equivalent):

Game 1 :

(
(2, 1) (0, 0)
(0, 0) (1, 2)

)
Game 2 :

(
(1, 0) (−1,−1)

(−1,−1) (0, 1)

)
(11)

Here wife is the row player, and husband is the column player, and they are both utility maximizers.

The first listed choice for both of them is Concert (C), and the second listed choice is Soccer (S).

The ordered payoff (2, 1), for example, means that her payoff is 2 and his is 1.

Since these two games are strategically equivalent, they admit the same set of equilibria (but

not the values). There are two pure-strategy NE, (C.C) and (S, S), with corresponding payoff

pairs (2, 1) and (1, 2) for Game 1, but also a MSNE, ((2/3, 1/3), (1/3, 2/3)), with a corresponding

expected payoff pair of (2/3, 2/3) for Game 1. And these multiple NE are not interchangeable.

The notions of inner mixed equilibria, neutralization, and domination introduced earlier in the

context of SPE and MSSPE equally apply here, and particularly the inner MSNE also has the

neutralization property and can be solved using algebraic equations. These equations, however,

will not be linear unless N = 2, that is the NZSG is a bi-matrix game. In two-player NZSGs, a

counterpart of the LP equivalence exists, but this time it is a bi-linear program, as captured in the

following proposition; for a proof, see [1], pp. 96-97.

Proposition 2 For a bi-matrix game (A,B), where players are minimizers, a pair (y∗, z∗) consti-

tutes a MSNE if, and only if, there exists a pair of real numbers (p∗, q∗) such that the quadruple

(y∗, z∗, p∗, q∗) solves the bi-linear program:

min
y,z,p,q

[
y′AZ + y′Bz + p+ q

]
such that

Az ≥ −p1m , B′y ≥ −q1n , y ≥ 0 , z ≥ 0 , y′1m = 1 , z′1n = 1 .

3.5 On-line computation of MSSPE and MSNE: Fictitious play

In the discussion of the computation of MSNE as well as MSSPE we have so far focused on off-line

methods, where the assumption was that the players have access to the entire game parameters
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(including other players’ payoff or cost matrices). This however may not always be possible, which

then begs the question as to whether it would be possible for the players to end up at a MSSPE

or MSNE by following a process where each observes others’ actions in a repetition of the game,

and builds probabilistic beliefs (empirical probabilities) on other players’ moves. Such a process is

known as a fictitious play (FP). We say that the process converges in beliefs to equilibrium (MSSPE

or MSNE, as the case may be) if the sequence of beliefs converges to an equilibrium. We further

say that a game has the fictitious play property (FPP) if every fictitious play process converges in

beliefs to equilibrium.

For some historical background, the fictitious play process was first suggested by Brown

(1949)[28] as a mechanism to compute MSNE of a finite NZSG. Robinson(1950)[29] then proved

that every two-player ZSG has the FPP. Miyasawa (1961)[30] proved (using a particular tie-breaking

rule) that every two-player 2 × 2 bi-matrix game has the FPP. Shapley (1964)[32] constructed an

example of a 3×3 two-player bi-matrix game which does not have the FPP. Thirty-two years later,

Monderer and Shapley (1996)[31] proved the FPP for games with identical interests. A stochas-

tic extension of FP, where each player’s payoff function includes an additional entropy term to

randomize her actions, were discussed recently by Shamma and Arslan( 2004, 2005)[33, 34].

Let us now be more precise regarding the FPP, and restrict the discussion to bi-matrix games,

represented by (A,B), where the players are maximizers. Let us assume that at times k = 0, 1, 2, . . .,

the players pick some actions, according to some rule, and they observe each other’s past actions,

and based on the history build empirical probabilities using the frequency of occurrences. Let

v2(i, k) be a zero-one variable, which takes the value one if Player 2 chooses her action i at time k,

and otherwise it is zero. If z̃(k) denotes the empirical probability vector Player 1 constructs at time

k based on actions of Player 2 up to (and including) time k, then we have the natural relationship

z̃i(k + 1) =
1

k + 1

k∑
`=0

v2(i, `) , i = 1, . . . , n,

which can be written as a first-order difference equation

z̃i(k + 1) =
k

k + 1
z̃i(k) +

1
k + 1

v2(i, k) , i = 1, . . . , n . (12)

Likewise, we can have a recursion for Player 2’s empirical probability on Player 1:

ỹj(k + 1) =
k

k + 1
ỹj(k) +

1
k + 1

v1(j, k) , j = 1, . . . ,m . (13)
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Now, v2(i, k) and v1(j, k) are generated by each player maximizing her expected payoff given the

empirical probability associated with the other player, namely v1(j, k) = 1 if the j’th entry of

the vector Az̃(k) is maximum. Of course in general the maximizing integer will not be unique,

in which case some random selection will have to be made from among the maximizing integers.

An alternative is to add a softening entropy term to the maximand, carry out the maximization

over probabilities, and then pick the action according to the maximizing probability distribution.

Specifically, Player 1 maximizes at time k the function

U1(y) = y′Az̃(k) + τ1H(y) , H(y) := −
m∑
j=1

yj log(yj)

where τ1 > 0 is some parameter, and H is the entropy function. Since entropy is a strictly concave

function of y, U1(y) is strictly concave, being maximized over the closed simplex Y ; hence it has a

unique maximum. Denote this maximizing solution by β1(z̃(k)), which is a probability vector for

each z̃(k). The expression for β1 actually turns out to be:

β1(z̃) = σ(Az̃/τ1)

where σ is the logit or soft max function, mapping a Euclidean space(in this case of dimension m)

into the appropriate probability simplex (in this case Y ), whose i’th component is given by

(σ(x))i = exi/
m∑
j=1

exj .

Now choose the action at time k, say a1(k), in the support set of β1(z̃(k)) and randomly, with the

property that E[a1(k)] = β1(z̃(k)); we write this relationship as

a1(k) = rand(β1(z̃(k)))

where “rand” stands for the randomizer function. Similarly for Player 2,

a2(k) = rand(β2(ỹ(k))) , β2(ỹ(k)) = arg max
z∈Z

[ỹ(k)′Bz + τ2H(z),

where β2 admits the closed-form expression β2(ỹ) = σ(B′z̃/τ2). Now, in view of this, taking

averages in (12) and (13), we arrive at the vector recursions

z̃(k + 1) =
k

k + 1
z̃(k) +

1
k + 1

β2(ỹ(k)) , (14)
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ỹ(k + 1) =
k

k + 1
ỹ(k) +

1
k + 1

β1(ỹ(k)) . (15)

which are the updates of the empirical frequencies, based on the players’ observations of their

actions over the course of repetitions of the game. If τ1 = τ2 = 0, then we have the standard

(classical) FP, but when they are taken to be positive we have the stochastic FP, which rewards

randomization and hence leads to unique mixed-strategy responses. If these parameters are taken

to be small but positive, then they can be viewed as capturing random perturbations in the entries

of the payoff matrices.

To obtain convergence proofs, it is useful to work with continuous, differential equation versions

of the recursions (14) and (15) (known as continuous-time FP), which are obtained by letting the

time that elapses between two successive updates vanish: 5

˙̃y(t) = −ỹ(t) + β1(z̃(t)) and ˙̃z(t) = −z̃(t) + β2(ỹ(t)) ,

If these converge (that is if the coupled systems are asymptotically stable), then the limit point,

say (y∗, z∗) is a fixed point of

y = β1(z) , z = β2(y)

which is also a NE of the game with utility functions

U1(y, z) = y′Az + τ1H(y) , U2(y, z) = y′Bz + τ2H(y) ,

and for sufficiently small τ1 and τ2, they constitute an approximation to the MSNE of the bi-

matrix game (A,B). It has been shown by Shamma and Arslan (2004)[33] using Lyapunov stability

techniques that under some non-singularity conditions, if we have either a zero-sum game (A = −B),

or an identical interest game (A=B), or a bi-matrix game with either m = 2 or n = 2, convergence

takes place, that is

lim
t→∞

(y(t)− β1(z(t))) = 0 and lim
t→∞

(z(t)− β2(y(t))) = 0 ,

It should be noted, however, that this does not necessarily imply that the original discrete-time

iteration converges almost surely. Further recent work on this topic can be found in [34], [35], [36],

as well as [37] which discusses applications to security games.

5Here we have reversed the order of appearance.
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4 Lecture 4: Games in extensive form

If players act in a game more than once, and at least one player has information (complete or

partial) on past actions of other players, then we are in the realm of dynamic games (as mentioned

earlier), for which a complete description (in finite games) involves a tree structure where each

node is identified with a player along with the time when she acts, and branches emanating from

a node show the possible moves of that particular player. A player, at any point in time, could

generally be at more than one node—which is a situation that arises when the player does not have

complete information on the past moves of other players, and hence may not know with certainty

which particular node she is at at any particular time. This uncertainty leads to a clustering of

nodes into what is called information sets for that player. A precise definition of extensive form of

a dynamic game now follows.

Definition 1 Extensive form of an N -person nonzero-sum finite game without chance moves is a

tree structure with

(i) a specific vertex indicating the starting point of the game,

(ii) N cost functions, each one assigning a real number to each terminal vertex of the tree, where

the ith cost function determines the loss to be incurred to Pi,

(iii) a partition of the nodes of the tree into N player sets,

(iv) a subpartition of each player set into information sets {ηij}, such that the same number

branches emanate from every node belonging to the same information set and no node follows

another node in the same information set. �

What players decide on within the framework of the extensive form is not their actions, but

their strategies, that is what action they should take at each information set. They then take

specific actions (or actions are executed on their behalf), dictated by the strategies chosen as well

as the progression of the game (decision) process along the tree. A precise definition now follows.

Definition 2 Let N i denote the class of all information sets of Pi, with a typical element desig-

nated as ηi. Let U iηi denote the set of alternatives of Pi at the nodes belonging to the information
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set ηi. Define U i = ∪U iηi, where the union is over ηi ∈ N i. Then, a strategy γi for Pi is a mapping

from N i into U i, assigning one element in U i for each set in N i, and with the further property that

γi(ηi) ∈ Ui
ηi for each ηi ∈ N i. The set of all strategies of Pi is called his strategy set (space), and

it is denoted by Γi. �

Let J i(γ1, . . . , γN ) denote the loss incurred to Pi when the strategies γ1 ∈ Γ1, . . . , γN ∈ ΓN

are adopted by the players. This construction leads to what is known as the normal form of the

dynamic game, which in a sense is no different from the matrix forms we have seen in the earlier

lectures. In particular, for a finite game with a finite duration (that is players act only a finite

number of times), the number of elements in each Γi is finite, and hence the game can be viewed as

a matrix game, of the type considered earlier. In this normal form, the concept of Nash equilibrium

(NE) is introduced in exactly the same way as in static games, with now the actions variables

replaced by strategies. Hence we have:6

Definition 3 An N -tuple of strategies γ∗ := {γ1∗, γ2∗, . . . , γN∗} with γi∗ ∈ Γi, i ∈ N constitutes a

noncooperative (Nash) equilibrium solution for an N -person nonzero-sum finite game in extensive

form, if the following N inequalities are satisfied for all γi ∈ Γi, i ∈ N :7

J1∗ := J i(γi∗, γ−i∗) ≤ J i(γi, γ−i∗)

The N -tuple of quantities {J1∗, . . . ,JN∗} is known as a Nash equilibrium outcome of the nonzero-

sum finite game in extensive form. �

I emphasize the word a in the last sentence of the preceding definition, since Nash equilibrium

solution could possibly be non-unique, with the corresponding set of Nash values being different.

This then leads to a partial ordering in the set of all Nash equilibrium solutions.

As in the case of static (matrix) games, pure-strategy NE may not exist in dynamic games

also. This leads to the introduction of mixed strategies, which are defined (quite analogously to

the earlier definition) as probability distributions on Γi’s, that is for each player as a probability
6Even though the discussion in this lecture uses the framework of N-player non-cooperative games with NE as the

solution concept, it applies as a special case to two-player zero-sum games, by taking J1 = −J2 and noting that in
this case NE becomes SPE.

7Using the earlier convention, the notation γ−i stands for the collection of all players’ strategies, except the i’th
one.
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distribution on the set of all her pure strategies; denote such a collection for Pi by Γ̄i. A MSNE is

then defined in exactly the same way as before. Again, since in normal form a finite dynamic game

with a finite duration (I will call such games finite-duration multi-act finite games) can be viewed

as a matrix game, there will always exist a MSNE by Nash’s theorem:

Proposition 3 Every N -person nonzero-sum finite-duration multi-act finite game in extensive

form admits a Nash equilibrium solution in mixed strategies (MSNE).

A MSNE may not be desirable in a multi-act game, because it allows for a player to correlate

her choices across different information sets. A behavioral strategy, on the other hand, allows

a player to assign independent probabilities to the set of actions at each information set (that

is independent across different information sets); it is an appropriate mapping whose domain of

definition is the class of all the information sets of the player. By denoting the behavioral strategy

set of Pi by Γ̂i, and the average loss incurred to Pi as a result of adoption of the behavioral strategy

N -tuple {γ̂1 ∈ Γ̂1, . . . , γ̂N ∈ Γ̂N} by Ĵ(γ̂1, . . . , γ̂N ), the definition of a Nash equilibrium solution in

behavioral strategies (BSNE) may be obtained directly from Definition 3 by replacing γi, Γi and

J i with γ̂i, Γ̂i and Ĵ i, respectively. A question of interest now is whether a BSNE is necessarily

also a MSNE. The following proposition settles that.

Proposition 4 Every BSNE of an N -person nonzero-sum multi-act game also constitutes a Nash

equilibrium in the larger class of mixed strategies (that is a MSNE).

Proof. Let γ̂∗ := {γ̂1∗ ∈ Γ̂1, . . . , γ̂N∗ ∈ Γ̂N} denote an N -tuple of behavioral strategies stipulated

to be in Nash equilibrium, and let Γ̄i denote the mixed-strategy set of Pi, i ∈ N. Since Γ̂i ⊂ Γ̄i,

we clearly have γ̂i∗ ∈ Γ̄i, for every i ∈ N. Assume, to the contrary, that γ̂∗ is not a MSNE; then

this implies that there exists at least one i (say, i = N , without any loss of generality) for which

the corresponding inequality of 8

Ĵ i(γ̂i∗, γ̂−i∗) ≤ Ĵ i(γ̂i, γ̂−i∗) , ∀γ̂i ∈ Γ̂i , ∀i ∈ N

is not satisfied for all γ̄i ∈ Γ̄i. In particular, there exists a γ̄N ∈ Γ̄N such that

ĴN∗ > ĴN (γ̂1∗; . . . ; γ̂N−1∗; γ̄N ) ∆= F ∗. (i)

8Here, by an abuse of notation, we take Ĵ i to denote the average loss to Pi under also mixed-strategy N -tuples.
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Now, abiding by our standard convention, let ΓN denote the pure-strategy set of PN , and consider

the quantity

F (γN ) ∆= ĴN (γ̂1∗; . . . ; γ̂N−1∗; γN )

defined for each γN ∈ ΓN . (This is well defined since ΓN ⊂ Γ̂N .) The infimum of this quantity

over ΓN is definitely achieved (say, by γN∗ ∈ ΓN ), since ΓN is a finite set. Furthermore, since Γ̄N

is comprised of all probability distributions on ΓN ,

inf
Γ̄N

F (γN ) = inf
ΓN

F (γN ) = F (γN∗).

We therefore have

F ∗ = F (γN∗), (ii)

and also the inequality

ĴN∗ > F (γN∗)

in view of (i). But this is impossible since ĴN∗ = inf Γ̂N F (γN ) and ΓN ⊂ Γ̂N , thus completing the

proof of the proposition. �

Even though MSNE exists in all finite-duration multi-act finite games, there is no guarantee

that BSNE will exist. One can in fact construct games where a BSNE will not exist, but it is also

possible to impose structures on a game such that BSNE will exist; for details see [1].

Given multi-act games which are identical in all respects except in the construction of the infor-

mation sets, one can introduce a partial ordering among them depending on the relative richness

of their strategy sets (induced by the information sets). One such ordering is introduced below,

followed by a specific result that it leads to.

Definition 4 Let I and II be two N -person multi-act nonzero-sum games with fixed orders of play,

and with the property that at the time of her act each player has perfect information concerning the

current level of play, that is, no information set contains nodes of the tree belonging to different

levels of play. Further let ΓiI and ΓiII denote the strategy sets of Pi in I and II, respectively. Then,

I is informationally inferior to II if ΓiI ⊆ ΓiII for all i ∈ N , with strict inclusion for at least one i. �

Proposition 5 Let I and II be two N -person multi-act nonzero-sum games as introduced in Defi-

nition 4, so that I is informationally inferior to II. Then,
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(i) any NE for I is also a NE for II,

(ii) if {γ1, . . . , γN} is a NE for II so that γi ∈ ΓiI for all i ∈ N , then it is also a NE for I.

Proof. We will prove this for the case when each player acts only once; extension to the more

general multi-act game follows similar lines. (i) If γ∗ ∈ ΓNI } constitutes a NE for I, then inequalities

J i∗ := J i(γi∗, γ−i∗) ≤ J i(γi, γ−i∗)

are satisfied for all γi ∈ ΓiI , i ∈ N . But, since ΓiI ⊆ ΓiII , i ∈ N , we clearly also have γi ∈ ΓiII ,

i ∈ N . Now assume, to the contrary, that {γ1∗, . . . , γN∗} is not a NE solution of II. Then, this

implies that there exists at least one i (say, i = N , without any loss of generality) for which the

corresponding inequality above is not satisfied for all γi ∈ ΓiII . In particular, there exists γ̃N ∈ ΓNII

such that

JN∗ > JN (γ−N∗, γ̃N ). (i)

Now, the N -tuple of strategies {γ1∗, . . . , γN−1∗, γ̃N} leads to a unique path of action, and con-

sequently to a unique outcome, in the single-act game II. Let us denote the information set of

PN , which is actually traversed by this path, by η̃NII , and the specific element (node) of η̃NII , in-

tercepted by ñN . Let us further denote the information set of PN in the game I, which includes

the node ñN , by η̃NI . Then, there exists at least one element in ΓNI (say, γ̄N ) with the property

γ̄N (η̃NI ) = γ̃N (η̃NII). If this strategy replaces γ̃N on the RHS of inequality (i), the value of JN

clearly does not change, and hence we equivalently have

JN∗ > JN (γ1∗, . . . , γN−1∗, γ̄N ).

But this inequality contradicts the initial hypothesis that the N -tuple {γ1∗, . . . , γN∗} was in Nash

equilibrium for the game I. This then completes the proof of part (i).

(ii) Part (ii) of the proposition can be proven analogously. �

An important conclusion to be drawn from the result above is that dynamic games will generally

admit a plethora of NE, because for a given game the NE of all inferior games will also constitute

NE of the original game, and these are generally not even partially orderable—which arises due

to informational richness. We call such occurrence of multiple NE informational non-uniqueness,

which is a topic that will be revisited later.
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5 Lecture 5: Refinements on Nash equilibrium

As we have seen in previous lectures, finite NZSGs will generally have multiple NE, in both pure

and mixed strategies, and these equilibria are generally not interchangeable, with each one leading

to a different set of equilibrium cost values or payoff values to the players, and they are not strictly

ordered. We will also see in later lectures, when we discuss dynamic games that the presence

of of multiple NE is more a rule rather than an exception, with the multiplicity arising in that

case because of the informational richness of the underlying decision problem (in addition to the

structure of the players’ cost matrices). As a means of shrinking the set of Nash equilibria in a

rational way, refinement schemes have been introduced in the literature; we discuss in this lecture

some of those relevant to finite games.

To motivate the discussion, let us start with a two-player matrix game (A,B) where the players

are minimizers and have identical cost matrices (which is what we called a team problem earlier).

A = B =

P2
U 0 1
D 1 1

L R

P1 (16)

The game admits two pure-strategy Nash equilibria: (U,L) and (D,R). Note, however, that if we

perturb the entries of the two matrices slightly, and independently:

A+ ∆A =
P2

ε111 1 + ε112

1 + ε121 1 + ε122

P1; B + ∆B =
P2

ε211 1 + ε212

1 + ε221 1 + ε222

P1;

where εkij , i, j, k = 1, 2, are infinitesimally small (positive or negative) numbers, then (U,L) will

still retain its equilibrium property (as long as |εkij | < 1/2), but (D,R) will not. More precisely,

there will exist infinitely many perturbed versions of the original game for which (D,R) will not

constitute a Nash equilibrium. Hence, in addition to admissibility,9 (U,L) can be singled out in

this case as the Nash solution that is robust to infinitesimal perturbations in the entries of the cost

matrices.

Can such perturbations be induced naturally by some behavioral assumptions imposed on the

players? The answer is yes, as we discuss next. Consider the scenario where a player who intends

to play a particular pure strategy (out of a set of n possible alternatives) errs and plays with some
9A NE is said to be admissible if there is no other NE which yields better outcome for all players.
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small probability one of the other n− 1 alternatives. In the matrix game (16), for example, if both

players err with equal (independent) probability ε > 0, the resulting matrix game is (Aε, Bε), where

Aε = Bε =

P2
U ε(2− ε) 1− ε+ ε2

D 1− ε+ ε2 1− ε2
L R

P1

Note that for all ε ∈ (0, 1/2) this matrix game admits the unique Nash equilibrium (U,L), with a

cost pair of (ε(2 − ε), ε(2 − ε)), which converges to (0, 0) as ε ↓ 0, thus recovering one of the Nash

cost pairs of the original game. A Nash equilibrium solution that can be recovered this way is

known as a perfect equilibrium, which was first introduced in precise terms by Selten (1975)[38], in

the context of N -player games in extensive form.10 Given a game of perfect recall,11 denoted G,

the idea is to generate a sequence of games, G1,G2, . . . ,Gk, . . ., a limiting equilibrium solution of

which (in behavioral strategies, and as k →∞)12 is an equilibrium solution of G. If Gk is obtained

from G by forcing the players at each information set to choose every possible alternative with

positive probability (albeit small, for those alternatives that are not optimal), then the equilibrium

solution(s) of G that are recovered as a result of the limiting procedure above is (are) called perfect

equilibrium (equilibria).13 Selten (1975) has shown that every finite game in extensive form with

perfect recall (and as a special case in normal form) admits at least one perfect equilibrium, thus

making this refinement scheme a legitimate one.

The procedure discussed above, which amounts to “completely” perturbing a game with mul-

tiple equilibria, is one way of obtaining perfect equilibria; yet another one, as introduced by My-

erson (1978)[40], is to restrict the players to use completely mixed strategies (with some lower

positive bound on the probabilities) at each information set. Again referring back to the matrix

game (A,B) of (16), let the players’ mixed strategies be restricted to the class

γ̂1 =

{
U w.p. y
D w.p. 1− y ; γ̂2 =

{
L w.p. z
R w.p. 1− z

10Selten’s construction and approach also apply to static games of the types discussed heretofore, where slight
perturbations are made in the entries of the matrices, instead of at information sets.

11A game is one with perfect recall if all players recall their past moves—a concept that applies to games in extensive
form.

12As introduced in the previous lecture, behavioral strategy is a mixed strategy for each information set of a player
(in a dynamic game in extensive form). When the context is static games, it is identical with mixed strategy.

13This is also called “trembling hand equilibrium”, as the process of erring at each information set is reminiscent of
a “trembling hand” making unintended choices with small probability. Here, as k →∞, this probability of unintended
plays converges to zero.
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where ε ≤ y ≤ 1 − ε, ε ≤ z ≤ 1 − ε, for some (sufficiently small) positive ε. Over this class of

strategies, the average cost functions of the players will be

Ĵ1 = Ĵ2 = −yz + 1,

which admits (assuming that 0 ≤ ε < 1
2) a unique Nash equilibrium:

p1∗
ε = γ̂2∗

ε =

{
L w.p. 1− ε
R w.p. ε

; Ĵ1∗
ε = Ĵ2∗

ε = 1− (1− ε)2.

Such a solution is called an ε-perfect equilibrium (Myerson, 1978), which in the limit as ε ↓ 0 clearly

yields the perfect Nash equilibrium obtained earlier. Myerson in fact proves, for N -person games in

normal form, that every perfect equilibrium can be obtained as the limit of an appropriate ε-perfect

equilibrium, with the converse statement also being true. More precisely, letting yi denote a mixed

strategy for Player i, and Y i the simplex of probabilities, we have:

Proposition 6 For an N -person finite game in normal form, a MSNE {yi∗ ∈ Y i, i ∈ N} is a

perfect equilibrium if, and only if, there exist some sequences {εk}∞k=1, {yiεk ∈
◦
Y i, i ∈ N}∞k=1 such

that

i) εk > 0 and limk→∞ εk = 0

ii) {yiεk , i ∈ N} is an εk-perfect equilibrium

iii) limk→∞ y
i
εk

= yi
∗
, i ∈ N .

Furthermore, a perfect equilibrium necessarily exists, and every perfect equilibrium is a NE. �

Even though perfect equilibrium provides a refinement of Nash equilibrium with some appealing

properties, it also carries some undesirable features as the following example of an identical cost

matrix game (due to Myerson (1978)) exhibits:

A = B =

P2
U 0 1 10
M 1 1 8
D 10 8 8

L M R

P1. (17)

Note that this is a matrix game derived from (16) by adding a completely dominated row and

a completely dominated column. It now has three Nash equilibria: (U,L), (M,M), (D,R), the
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first two of which are perfect equilibria, while the last one is not. Hence, inclusion of completely

dominated rows and columns could create additional perfect equilibria not present in the original

game—a feature that is clearly not desirable. To remove this shortcoming of perfect equilibrium,

Myerson (1978) introduced what is called proper equilibria, which corresponds to a particular con-

struction of the sequence of strategies used in Proposition 6. Proper equilibrium is defined as in

Proposition 6, with only the εk-perfect equilibrium in ii) replaced by the notion of εk-proper equi-

librium to be introduced next. Toward this end, let J̄ i(j; yε) denote the average cost to Pi when

he uses his j’th strategy (such as j’th column or row of the matrix) in the game and all the other

players use their mixed strategies ykε , k ∈ N , k 6= i. Furthermore, let yi,jε be the probability at-

tached to his j’th strategy under the mixed strategy yiε. Then, the N -tuple {yiε, i ∈ N} is said to

be in ε-proper equilibrium if the strict inequality

J̄ i(j; yε) > J̄ i(k; yε)

implies that yi,jε ≤ ε yi,kε , this being so for every j, k ∈Mi,14 and every i ∈ N . In other words, an ε-

proper equilibrium is one in which every player is giving his better responses much more probability

weight than this worse responses (by a factor 1/ε), regardless of whether those “better” responses

are “best” or not. Myerson (1978)[40] proves that such an equilibrium necessarily exists, that is:

Proposition 7 Every finite N -player game in normal form admits at least one proper equilibrium.

Furthermore, every proper equilibrium is a perfect equilibrium (but not vice versa). �

Remark 1 Note that in the matrix game (17) there is only one proper equilibrium, which is (U,L),

the perfect equilibrium of (16). �

Another undesirable feature of a perfect equilibrium is that it is very much dependent on

whether the game is in extensive or normal form (whereas the Nash equilibrium property is form-

independent). As it has been first observed by Selten (1975)[38], and further elaborated on by

van Damme (1984)[41], a perfect equilibrium of the extensive form of a game need not be perfect in

the normal form, and conversely a perfect equilibrium of the normal form need not be perfect in the

extensive form. To remove this undesirable feature, van Damme (1984) (see also [42]) introduced
14Mi is the set of all pure strategies of Player 1, with corresponding labeling of positive integers.
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the concept of quasi-perfect equilibria for games in extensive form, and has shown that a proper

equilibrium of a normal form game induces a quasi-perfect equilibrium in every extensive form game

having this normal form. Quasi-perfect equilibrium is defined as a behavioral strategy combination

which prescribes at every information set a choice that is optimal against mistakes (“trembling

hands”) of the other players; its difference from perfect equilibrium is that here in the construction

of perturbed matrices each player ascribes “trembling hand” behavior to all other players (with

positive probability), but not to himself.

Other types of refinement have also been proposed in the literature, such as sequential equilibria

(Kreps and Wilson, 1982)[43], and strategic equilibria (Kohlberg and Mertens, 1986)[44], which we

do not further discuss here. None of these, however, are uniformly powerful, in the sense of shrinking

the set of Nash equilibria to the smallest possible set. We will revisit the topic of “refinement on

Nash equilibria” later in the context of infinite dynamic games and with emphasis placed on the

issue of time consistency. In the context of infinite dynamic games, Başar (1976)[39] introduced

stochastic perturbations in the system dynamics (“trembling dynamics”) to eliminate multiplicity

of Nash equilibria.
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6 Lecture 6: Correlated equilibria

One important message that should have come through in the lectures so far is that NE is generally

utterly inefficient, meaning that if the players had somehow correlated their choices of their actions,

or better had collaborated in their selections, they all would be able to do better (than any of the

NE) in terms of the outcome. In mathematical terms, NE is generally not Pareto-efficient, that

is using the notation of Lectures 2 and 3, if x∗ ∈ X is a NE, it would be possible to find another

N -tuple x̃ ∈ X such that Li(x̃) ≤ Li(x∗) for all i ∈ N , with strict inequality for at least one i.

The question now is how to improve the costs (or payoffs) to players while still preserving the

non-cooperative nature of the decision process. One way of doing this is through incentive strategies,

or mechanism designs, which will be discussed in a future lecture. Another one is correlating the

choices of the players through some signaling mechanisms, which leads to the notion of correlated

equilibrium (CE) which is what I cover in this lecture.

First, let me start with an example scenario. Consider the situation faced by two drivers when

they meet at an intersection (simultaneously). If both proceed, then that will lead to collision,

and hence result in extreme cost to both drivers. If both yield, then they lose some time, which

entails some cost, whereas if one yields and the other one proceeds, then the one that yields incurs

some cost and the one that proceeds receives positive payoff. This can be modeled as a two-player

2× 2 bi-matrix game, of the type below (where the first row and first column correspond to Cross

(C), and the second row and the second column correspond to Yield (Y), and both players are

minimizers):

Intersection Game :

(
(10, 10) (−5, 0)
(0,−5) (1, 1)

)
(18)

The game admits two pure-strategy NE, (C, Y ) and (Y,C), and one MSNE,
(
(3

8 ,
5
8), (3

8 ,
5
8)
)
. The

costs to the players (drivers) under the two pure-strategy NE are (−5, 0) and (0,−5), respectively,

and under the MSNE (expected cost) (5
8 ,

5
8). Note that both pure-strategy NE are uniformly

better than the MSNE for both players, and therefore so is any convex combination of the two:

(−5λ,−5(1−λ)), λ ∈ [0, 1]. Any pair in this convex combination can be achieved through correlated

randomization, but the question is how such outcomes (or even better ones) can be attained through

non-cooperative play. How can a randomization device be installed without any enforcement?
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Of course, an obvious answer is to install a traffic light, which would function as a randomization

device which with a certain probability would tell the players whether to cross or yield. Note that

such a signal would help the players to correlate their actions. For example, if the traffic light

tells with probability 0.55 cross to Player 1 (green light), and yield to Player 2 (red light); with

probability 0.4 the other way around; and with the remaining probability (0.05) both players to

yield, then the resulting expected cost pair is (−2.7,−1.95). Note that these expected costs add

up to −4.65, which is somewhat worse than any convex combination of the two pure-strategy NE

(where the sum is −5), but it is a safe outcome and can only be achieved through correlation.

Another noteworthy point is that actually the players do not have to obey the traffic light, but

once it is there it is to their advantage to use it as a signal to correlate their moves; in that sense

what this yields is an equilibrium, which is called a correlated equilibrium (CE). We now proceed

with a precise definition of CE for bi-matrix games.

Consider a bi-matrix game (A,B), where the matrices are m × n. Consider a randomization

device which with probability pij signals P1 to use row i and P2 to use column j. This generates

an m× n probability matrix

P = {pij}, pij ≥ 0,
∑
i

∑
j

pij = 1

which we call a correlated mixed strategy (CMS). Such a strategy is in equilibrium if whenever the

signal dictates P1 to use row i, his expected cost cannot be lower by using some other action, i.e.,

n∑
j=1

[
aijpij/

∑
`

pi`

]
≤

n∑
j=1

[
akjpij/

∑
`

pi`

]
∀k 6= i

which can equivalently be written as

n∑
j=1

(aij − akj) pij ≤ 0 ∀k 6= i . (19)

Likewise for P2, if j is the signal,

m∑
i=1

(bij − bi`) pij ≤ 0 ∀` 6= j . (20)

Definition 5 A correlated equilibrium (CE) for the bi-matrix game (A,B) is a correlated mixed

strategy P that satisfies (19) for all i = 1, . . . ,m, and (20) for all j = 1, . . . , n.
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Remark. If x is a mixed strategy for P1 and y is a mixed strategy for P2, then P = xy′ is a

correlated mixed strategy for the bi-matrix game. Note that in this case pij = xiyj . But this is

only a one-direction relationship, because not all correlated mixed strategies can be written this

way. Hence, the set of all correlated mixed strategies for the bi-matrix game is larger than the set

of all mixed strategy pairs. Furthermore, if (x∗, y∗) is a MSNE, then P ∗ = x∗y∗′ is a CE, which

then implies that CE always exists. �

Now, going back to the intersection game considered earlier, (19) and (20) lead to the set of

inequalities:

10p11 − 6p12 ≤ 0

−10p21 + 6p22 ≤ 0

10p11 − 6p21 ≤ 0

−10p12 + 6p22 ≤ 0

These have to be solved subject to the condition that elements of P are nonnegative and add up

to 1. There are several solutions; below are a selected few.

(i) p11 = 0, p12 = 0.55, p21 = 0.4, p22 = 0.05 (this is what we had earlier)

(i) p11 = 0, p12 = 0.5, p21 = 0.5, p22 = 0 (this one is efficient)

(iii) p11 = 0, p12 = 0.7, p21 = 0.3, p22 = 0 (this one is also efficient)

(iv) p11 = 0.1, p12 = 0.4, p21 = 0.3, p22 = 0.2 (dangerous and inefficient)

(v) p11 = 9
64 , p12 = 15

64 , p21 = 15
64 , p22 = 25

64 (dangerous and highly inefficient, is the MSNE)

(vi) p11 = 0, p12 = 1, p21 = 0, p22 = 0 (corresponds to pure-strategy NE)

(vii) p11 = 0, p12 = 0, p21 = 1, p22 = 0 (the other pure-strategy NE)

Note that in this game, it is not possible to do uniformly better than any convex combination

of the two pure-strategy NE. There are other examples, however, where one can. The following

bi-matrix game which has that property is due to Aumann:(
(0, 4) (5, 5)
(1, 1) (4, 0)

)
(21)

We will label the two actions of Player 1 (row player) as U (up) and D (down), and those of Player 2

as L (left) and R (right); both are minimizers.
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The game admits again two pure-strategy NE, (U,L) and (D,R), and one MSNE,(
(1

2 ,
1
2), (1

2 ,
1
2)
)
. The costs to the players under the two pure-strategy NE are (0, 4) and (4, 0),

respectively, and under the MSNE (expected cost) (5
2 ,

5
2).

Now let the randomization device have three equally likely states: E,F,G. Player 1 observes E

(perfectly), and Player 2 observes G (again perfectly). One can show that the following correlated

mixed strategy pair for the players is a CE:

Player 1 plays U when she observes E, and D otherwise

Player 2 plays R when she observes G, and L otherwise.

Let us now compute the expected costs when the players use the correlated mixed strategy above.

If E occurs, then the action pair is (U,L), leading to cost pair of (0, 4); if G occurs, the action

pair is (D,R), with resulting cost pair (4, 0); and finally if F occurs, the action pair is (D, L),

with corresponding cost (1, 1). Since the three events each occur with equal probability 1
3 , the

expected cost is
(

5
3 ,

5
3

)
, which is better (for both players) than any convex combination of the two

pure-strategy NE.
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7 Lecture 7: NE of infinite/continuous-kernel games

7.1 Formulation, existence and uniqueness

We now go back to the general class of N -player games introduced through (1), with Xi being

a finite-dimensional space (for example, mi-dimensional Euclidean space, IRmi), for i ∈ N ; Li a

continuos function on the product space X, which of course is also finite-dimensional (for example,

if Xi = IRmi , X can be viewed as IRm, where m :=
∑
i∈N mi); and the constraint set Ω a subset

of X. This class of games is known as continuous-kernel games with coupled constraints, and of

course if the constraints are not coupled, for example with each player having a separate constraint

set Ωi ⊂ Xi, this would also be covered as a special case. Now, further assume that Ω is closed,

bounded, and convex, and for each i ∈ N , Li(xi, x−i) is convex in xi ∈ Xi for every x−i ∈ ×j 6=iXj .

Then the basic result for such games is that they admit Nash equilibria in pure strategies (but the

equilibria need not be unique), as stated in the theorem below, due to Rosen (1965)[18].

Theorem 3 For the N -player nonzero-sum continuous-kernel game formulated above, with the

constraint set Ω a closed, bounded, and convex subset of IRm, and with Li(xi, x−i) convex in xi for

each x−i, and each i ∈ N , there exists a Nash equilibrium in pure strategies.

Proof. First introduce the function

L(x; v) :=
N∑
i=1

Li(x−i, vi),

and note that x is in NE if

L(x;x) ≤ L(x; v), ∀v ∈ X . (22)

Further note that under the hypotheses of the theorem, the function L(x; v) is jointly continuous

in x and v and is convex in v for every fixed x, with (x, v) ∈ X ×X. Introduce the reaction set for

the game :

Tx = {v ∈ X : L(x; v) ≤ L(x;w) ∀w ∈ X}

which, by the continuity and convexity properties of L cited above, is an upper semicontinuous

(usc) mapping15 that maps each point x in the convex and compact set X into a closed convex
15Let X and Y be two normed spaces (such as IRm and IRn), and f be a set-valued mapping of X into 2Y (the

set of all subsets of Y ). Then, f is upper semicontinuous at a point xo ∈ X, if for any sequence {x(i)} converging to
xo, and any sequence {y(i)} ∈ f(x(i))} converging to yo, we have yo ∈ f(xo). f is usc if it is usc at each point of X.
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subset of X. Then, by the Kakutani fixed point theorem,16 there exists a point x∗ ∈ X such that

x∗ ∈ Tx∗, or equivalently that it minimizes L(x∗; v) over v ∈ X. Such a point indeed constitutes a

NE, because if it does not then this would imply that for some i ∈ N there would be a x̄i ∈ Xi(x∗−i)

such that

Li(x∗−i, x̄i) < Li(x∗) ,

which would in turn imply (by adding Lj(x∗) to both sides and summing over j ∈ N , j 6= i) the

strict inequality

L(x∗; x̄) < L(x∗;x∗), x̄
∆= (x∗−i, x̄i) ,

contradicting the initial hypothesis that x∗ minimizes L(x∗; v) over v ∈ X. �

Remark. If the constraint sets are decoupled, and Li(xi, x−i) is strictly convex in xi ∈ Ωi, then

there is an alternative proof for Theorem 3 which uses Brouwer’s fixed-point theorem. Under the

given hypotheses, it follows from Weirstrass theorem and strict convexity that the minimization

problem

min
xi∈Ωi

Li(xi, x−i)

admits a unique solution for each x−i, this being so for each i ∈ N , that is, there exists a unique

map Ti : Ωi → Ω−i,17 such that the solution to the minimization problem is

xi = Ti(x−i) , i ∈ N (23)

Furthermore, Ti is continuous on Ω−i. Clearly, every pure-strategy NE has to provide a solution to

(23), and vice versa. Stacking these maps, there exists a corresponding continuous map T : Ω→ Ω,

whose components are the Ti’s, and (23) is equivalent to x = T (x), which is a fixed-point equation.

Since T is a continuous mapping of Ω into itself, and Ω is a closed and bounded subset of a finite-

dimensional space (and thus compact), by Brouwer’s fixed-point theorem T has a fixed point, and

hence a NE exists. �

For the special class of 2-person ZSGs structured the same way as the NZSG of Theorem 3, a

similar result clearly holds (as a special case), implying the existence of a SPE (in pure strategies).
16This fixed point theorem says that if S is a compact subset of IRn, and f is an usc function which assigns to

each x ∈ S a closed and convex subset of S, then there exists x ∈ S such that x ∈ f(x).
17Ti is known as the reaction function (or response function) of Player i to other players’ actions.
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Note that in this case the single objective function (L ≡ L1 ≡ −L2) to be minimized by Player 1 and

maximized by Player 2, is convex in x1 and concave in x2, in view of which such zero-sum games

are known as convex-concave games. Even though convex-concave games could admit multiple

saddle-point solutions, they are ordered interchangeable, and the values of the games are unique

(which is not the case for multiple Nash equilibria in genuine nonzero-sum games, as we have also

seen earlier). Now, if the convexity-concavity is replaced by strict convexity-concavity (for ZSGs),

then the result can be sharpened as below, which however has no a counterpart for Nash equilibria

in genuine nonzero-sum games.

Theorem 4 For a two-person zero-sum game on closed, bounded and convex finite-dimensional

action sets Ω1 × Ω2, defined by the continuous kernel L(x1, x2), let L(x1, x2) be strictly convex in

x1 for each x2 ∈ Ω2 and strictly concave in x2 for each x1 ∈ Ω1. Then, the game admits a unique

pure-strategy SPE.

Proof. Existence of SPE is a direct consequence of Theorem 3. Furthermore, by strict convexity and

strict concavity, there can be no SPE outside the class of pure strategies. Hence only uniqueness

within the class of pure strategies remains to be proven, which, however, follows readily from the

interchangeability property of multiple SPs, in view of strict convexity/concavity. �

If the structural assumptions of Theorem 3 do not hold, then a pure-strategy Nash equilibrium

may not exist, but there may exist one in mixed strategies. Mixed strategy (MS) for a player (say,

Player i) is a probability distribution on that player’s action set, which we take to be a closed and

bounded subset, Ωi, of Xi = IRmi , and denote a MS of Player i by pi, and the set of all probability

distribution on Ωi by Pi. NE, then, is defined by the N -tuple of inequalities (4), using the expected

values of Li’s given mixed strategies of all the players, which we denote by Ji as in Lecture 2. The

following theorem now states the basic result on existence of MSNE in continuous-kernel games.

Theorem 5 For the N -player continuous-kernel NZSG formulated above, with the constrained

action set Ωi for Player i a closed and bounded subset of IRmi, and with Li(xi, x−i) continuous on

Ω = Ω1 × · · · × ΩN , for each i ∈ N , there exists a MSNE, (p∗1, . . . , p
∗
N ), satisfying (4).

Proof. A proof of this theorem can be found in Owen (1974)[19]. The underlying idea is to make

the kernels Li discrete so as to obtain an N -person matrix game that suitably approximates the
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original game in the sense that a MSNE of the latter (which exists by Nash’s theorem) is arbitrarily

close to a mixed equilibrium solution of the former. Compactness of the action spaces ensures that

a limit to the sequence of solutions obtained for approximating finite matrix games exists. �

As a special case of Theorem 5 we now have:

Corollary 7.1 Every continuous-kernel 2-player ZSG with compact action spaces has a MSSPE. �

I conclude this section with an example of a zero-sum game whose cost functional is continuous

but not convex-concave, and which has a MSSPE.

Example. Consider the two-person ZSG on the square [0, 2] × [0, 2] characterized by the kernel

L = (x1 − x2)2. It can readily be verified that the upper value is 1 and the lower value is 0, and

hence a pure-strategy SPEdoes not exist. In the extended class of mixed strategies, however, a

candidate SP solution is

x∗1 = 1 w.p. 1; x∗2 =

{
0 w.p. 1

2
2 w.p. 1

2 .

It can readily be verified that this pair of strategies indeed provides a MSSPE. �

Remark. As in the case of finite (matrix) games, the existence of a pure-strategy NE does

not preclude existence of also a genuine MSNE,18 and all such (multiple) NE are generally non-

interchangeable, unless the game is a ZSG or is strategically equivalent to one. �

7.2 Stability and computation

We have seen in the previous section that when the cost functions of the players are strictly convex

in a continuous-kernel NZSG, then the NE is completely characterized by the solution of a fixed-

point equation, namely (23). Since solutions of fixed-point equations can be obtained recursively

(under some condition), this brings up the possibility of computing the NE recursively, using the

iteration

xi(k + 1) = Ti(x−i(k)), k = 0, 1, . . . , i ∈ N (24)

where k stands for times of updates by the players. Note that this admits an on-line computation

interpretation for the underlying game, where each player needs to know only the most recent
18The qualifier genuine is used here to stress the point that mixed strategies in this statement are not pure strategies

(even though pure strategies are indeed special types of mixed strategies, with all probability weight concentrated on
one point).
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actions of the other players (and not their cost functions) and her own reaction function Ti (for

which only the individual cost function of the player is needed). Hence, this recursion entails a

distributed computation with little information on the parameters of the game, and lumping all

players’ actions together, and writing (24) as

x(k + 1) = T (x(k)), k = 0, 1, . . . ,

we note that the sequence generated converges for all possible initial choices, x(0) = x0, if T is a

contraction from X into itself.19 As an immediate byproduct, we also have uniqueness of the NE.

The recursion above is not the only way one can generate a sequence converging to its fixed point.

But before I discuss other possibilities, let me make a digression and talk about a classification of

NE based on such recursions, provided by the notion of “stability” of the solution(s) of the fixed

point equation. This discussion will then immediately lead to other possible recursions (for N > 2).

For the sake of simplicity in the initial discussion, let us consider the two-player case (because in

this case there is only one type of recursion for the fixed-point equation, as will be clear later).

Given a NE (and assuming that the players are at the NE point), consider the following sequence

of moves: (i) One of the players (say P1) deviates from his corresponding equilibrium strategy,

(ii) P2 observes this and minimizes his cost function in view of the new strategy of P1, (iii) P1

now optimally reacts to that (by minimizing his cost function), (iv) P2 optimally reacts to that

optimum reaction, etc. Now, if this infinite sequence of moves converges back to the original NE

solution, and this being so regardless of the nature of the initial deviation of P1, we say that the

NE is stable. If convergence is valid only under small initial deviations, then we say that the NE

is locally stable. Otherwise, the NE is said to be unstable. A NZSG can of course admit more than

one locally stable equilibrium solution, but a stable NE solution has to be unique.

The notion of stability, as introduced above for two-person games, brings in a refinement to

the concept of NE, which finds natural extensions to the N -player case. Essentially, we have to

require that the equilibrium be “restorable” under any rational re-adjustment scheme when there

is a deviation from it by any player. For N > 2 this will depend on the specific scheme adopted,

which brings us to the following formal definition of a stable Nash equilibrium.

19This follows from Banach’s contraction mapping theorem. If T maps a normed space X into itself, it is a
contraction if there exists α ∈ [0, 1) such that ‖T (x)− T (y)‖ ≤ α‖x− y‖, ∀x, y ∈ X.
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Definition 6 A NE x∗i , i ∈ N , is (globally) stable with respect to an adjustment scheme S if it can

be obtained as the limit of the iteration:

x∗i = lim
k→∞

xi
(k), (25)

xi
(k+1) = arg min

xi∈Ωi
Li(x

(Sk)
−i , xi), xi

(0) ∈ Ωi, i ∈ N (26)

where the superscript Sk indicates that the precise choice of x(Sk)
−i depends on the re-adjustment

scheme selected. �

One possibility for the scheme above is x(Sk)
−i = x

(k)
−i , which corresponds to the situation where the

players update (re-adjust) their actions simultaneously, in response to the most recently determined

actions of the other players. Yet another possibility is

x
(Sk)
−i =

(
x1

(k+1), . . . , xi−1
(k+1), xi+1

(k), . . . , xN
(k)
)

where the players update in an predetermined (in this case numerical) order. A third possibility is

x
(Sk)
−i =

(
x1
mi1,k , . . . , xi−1

(mii−1,k), xi+1
(mii+1,k), . . . , xN

(miN,k)
)

where mi
j,k is an integer-valued random variable, satisfying the bounds:

max(0, k − d) ≤ mi
j,k ≤ k + 1, j 6= i, j ∈ N , i ∈ N ;

which corresponds to a situation where Pi receives action update information from Pj at random

times, with the delay not exceeding d time units.

Clearly, if the iteration of Definition 6 converges under any one of the re-adjustment schemes

above (or any other re-adjustment scheme where a player receives update information from every

other player infinitely often), then the NE is unique. Every unique NE, however, is not necessarily

stable, nor is a NE that is stable with respect to a particular re-adjustment scheme is necessarily

stable with respect to some other scheme. Hence stability is generally given with some qualification

(such as “stable with respect to scheme S” or “with respect to a given class of schemes”), except

when N = 2, in which case all schemes (with at most a finite delay in the transmission of update

information) lead to the same condition of stability, as one then has the simplified recursions

xi
(rk+1,i) = T̃i(xi(rk,i)), k = 0, 1, . . . ; i = 1, 2

where r1,i, r2,i, r3,i, . . . denote the time instants when Pi receives new action update information

from Pj, j 6= i, i, j = 1, 2.
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8 Lecture 8: Hierarchical finite games and Stackelberg equilibria

The Nash equilibrium solution concept that we have heretofore studied in these Notes provides a

reasonable noncooperative equilibrium solution for nonzero-sum games when the roles of the players

are symmetric, that is to say, when no single player dominates the decision process. However, there

are yet other types of noncooperative decision problems wherein one of the players has the ability

to enforce his strategy on the other player(s), and for such decision problems one has to introduce

a hierarchical equilibrium solution concept. Following the original work of H. von Stackelberg

(1934)[20], the player who holds the powerful position in such a decision problem is called the

leader, and the other players who react (rationally) to the leader’s decision (strategy) are called the

followers. There are, of course, cases of multiple levels of hierarchy in decision making, with many

leaders and followers; but for purposes of brevity and clarity in exposition I will first confine the

discussion here to hierarchical decision problems which incorporate two players (decision makers)

— one leader and one follower.

8.1 Stackelberg equilibria in pure strategies

To set the stage to introduce the hierarchical (Stackelberg) equilibrium solution concept, let us first

consider the bimatrix game (A,B) displayed (under our standard convention) as

A =

P2
L 0S1 2 3/2S2

M 1 1N 3
R -1 2 2

L M R

P1, B =

P2
L −1S1 1 −2/3S2

M 2 0N 1
R 0 1 -1/2

L M R

P1 (27)

This bimatrix game clearly admits a unique NE in pure strategies, which is {M,M}, with the

corresponding outcome being (1, 0). Let us now stipulate that the roles of the players are not

symmetric and P1 can enforce his strategy on P2. Then, before he announces his strategy, P1 has

to take into account possible responses of P2 (the follower), and in view of this, he has to decide

on the strategy that is most favorable to him. For the decision problem whose possible cost pairs

are given as entries of A and B, above, let us now work out the reasoning that P1 (the leader)

will have to go through. If P1 chooses L, then P2 has a unique response (that minimizes his cost)

which is L, thereby yielding a cost of 0 to P1. If the leader chooses M , P2’s response is again

unique (which is M), with the corresponding cost incurred to P1 being 1. Finally, if he picks R,
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P2’s unique response is also R, and the cost to P1 is 2. Since the lowest of these costs is the first

one, it readily follows that L is the most reasonable choice for the leader (P1) in this hierarchical

decision problem. We then say that L is the Stackelberg strategy of the leader (P1) in this game,

and the pair {L,L} is the Stackelberg solution with P1 as the leader. Furthermore, the cost pair

(0,−1) is the Stackelberg (equilibrium) outcome of the game with P1 as the leader. It should be

noted that this outcome is actually more favorable for both players than the unique Nash outcome

— this latter feature, however, is not a rule in such games. If, for example, P2 is the leader in

the bimatrix game (27), then the unique Stackelberg solution is {L,R} with the corresponding

outcome being (3/2,−2/3) which is clearly not favorable for P1 (the follower) when compared with

his unique Nash cost. For P2 (the leader), however, the Stackelberg outcome is again better than

his Nash outcome.

The Stackelberg equilibrium (SE) solution concept introduced above within the context of the

bimatrix game (27) is applicable to all two-person finite games in normal form, but provided that

they exhibit one feature which was inherent to the bimatrix game (27) and was used implicitly

in the derivation: the follower’s response to every strategy of the leader should be unique. If this

requirement is not satisfied, then there is ambiguity in the possible responses of the follower and

thereby in the possible attainable cost levels of the leader. As an explicit example to demonstrate

such a decision situation, consider the bimatrix game

A =

P2
L 0 1 3
R 2 2 -1

L M R

P1, B =

P2
L 0 0 1
R -1 0 -1

L M R

P1 (28)

and with P1 acting as the leader. Here, if P1 chooses (and announces) L, P2 has two optimal

responses L and M , whereas if P1 picks R, P2 again has two optimal responses, L and R. Since this

multiplicity of optimal responses for the follower results in a multiplicity of cost levels for the leader

for each one of his strategies, the Stackelberg solution concept introduced earlier cannot directly

be applied here. However, this ambiguity in the attainable cost levels of the leader can be resolved

if we stipulate that the leader’s attitude is toward securing his possible losses against the choices of

the follower within the class of his optimal responses, rather than toward taking risks. Then, under

such a mode of play, P1’s secured cost level corresponding to his strategy L would be 1, and the

one corresponding to R would be 2. Hence, we declare γ1∗ = L as the unique Stackelberg strategy
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of P1 in the bimatrix game of (28), when he acts as the leader.20 The corresponding Stackelberg

cost for P1 (the leader) is J1∗ = 1. It should be noted that, in the actual play of the game, P1

could actually end up with a lower cost level, depending on whether the follower chooses his optimal

response γ2 = L or the optimal response γ2 = M . Consequently, the outcome of the game could be

either (1, 0) or (0, 0), and hence we cannot talk about a unique Stackelberg equilibrium outcome

of the bimatrix game (28) with P1 acting as the leader. Before concluding our discussion on this

example, we finally note that the admissible Nash outcome of the bimatrix game (28) is (−1,−1)

which is more favorable for both players than the possible Stackelberg outcomes given above.

We now provide a precise definition for the Stackelberg solution concept introduced above within

the context of two bimatrix games, so as to encompass all two-person finite games of the single-act

and multi-act type which do not incorporate any chance moves. For such a game, let Γ1 and Γ2

again denote the pure-strategy spaces of P1 and P2, respectively, and J i(γ1, γ2) denote the cost

incurred to Pi corresponding to a strategy pair {γ1 ∈ Γ1, γ2 ∈ Γ2}. Then, we have

Definition 7 In a two-person finite game, the set R2(γ1) ⊂ Γ2 defined for each γ1 ∈ Γ1 by

R2(γ1) = {ξ ∈ Γ2 : J2(γ1, ξ) ≤ J2(γ1, γ2), ∀γ2 ∈ Γ2} (29)

is the optimal response (rational reaction) set of P2 to the strategy γ1 ∈ Γ1 of P1. �

Definition 8 In a two-person finite game with P1 as the leader, a strategy γ1 ∈ Γ1 is called a

Stackelberg equilibrium strategy for the leader, if

max
γ2∈R2(γ1∗)

J1(γ1∗, γ2) = min
γ1∈Γ1

max
γ2∈R2(γ1)

J1(γ1, γ2) ∆= J1∗. (30)

The quantity J1∗ is the Stackelberg cost of the leader. If, instead, P2 is the leader, the same

definition applies with only the superscripts 1 and 2 interchanged. �

Theorem 6 Every two-person finite game admits a Stackelberg strategy for the leader.

Proof. Since Γ1 and Γ2 are finite sets, and R2(γ1) is a subset of Γ2 for each γ1 ∈ Γ1, the result

readily follows from (30). �
20Of course, the “strategy” here could also be viewed as an “action” if what we have is a static game, but since

we are dealing with normal forms here (which could have an underlying extensive form description) we will use the
term “strategy” throughout, to be denoted by γi for Pi, and the cost to Pi will be denoted by J i.
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Remark 2 The Stackelberg strategy for the leader does not necessarily have to be unique. But

nonuniqueness of the equilibrium strategy does not create any problem here (as it did in the case

of Nash equilibria), since the Stackelberg cost for the leader is unique. �

Remark 3 If R2(γ1) is a singleton for each γ1 ∈ Γ1, then there exists a mapping T 2 : Γ1 → Γ2

such that γ2 ∈ R2(γ1) implies γ2 = T 2γ1. This corresponds to the case when the optimal response

of the follower (which is T 2) is unique for every strategy of the leader, and it leads to the following

simplified version of (30) in Definition 8:

J1(γ1∗, T 2γ1∗) = min
γ1∈Γ1

J1(γ1, T 2γ1) ∆= J1∗. (31)

Here J1∗ is no longer only a secured equilibrium cost level for the leader (P1), but it is the cost

level that is actually attained. �

From the follower’s point of view, the equilibrium strategy in a Stackelberg game is any optimal

response to the announced Stackelberg strategy of the leader. More precisely,

Definition 9 Let γ1∗ ∈ Γ1 be a Stackelberg strategy for the leader (P1). Then, any element

γ2∗ ∈ R2(γ1∗) is an optimal strategy for the follower (P2) that is in equilibrium with γ1∗. The

pair {γ1∗, γ2∗} is a Stackelberg solution for the game with P1 as the leader, and the cost pair

(J1(γ1∗, γ2∗), J2(γ1∗, γ2∗)) is the corresponding Stackelberg equilibrium outcome. �

Remark 4 In the preceding definition, the cost level J1(γ1∗, γ2∗) could in fact be lower than the

Stackelberg cost J1∗ — a feature which has already been observed within the context of the bimatrix

game (28). However, if R2(γ1∗) is a singleton, then these two cost levels have to coincide. �

For a given two-person finite game, let J1∗ again denote the Stackelberg cost of the leader (P1),

and J1
N denote any Nash equilibrium cost for the same player. We have already seen within the

context of the bimatrix game (28) that J1∗ is not necessarily lower than J1
N , in particular, when

the optimal response of the follower is not unique. The following proposition now provides one

sufficient condition under which the leader never does worse in a “Stackelberg game” than in a

“Nash game”.
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Proposition 8 For a given two-person finite game, let J1∗ and J1
N be as defined before. If R2(γ1)

is a singleton for each γ1 ∈ Γ1, then

J1∗ ≤ J1
N .

Proof. Under the hypothesis of the proposition, assume to the contrary that there exists a Nash

equilibrium solution {γ1◦ ∈ Γ1, γ
2◦ ∈ Γ2} whose corresponding cost to P1 is lower than J1∗, i.e.

J1∗ > J1(γ1◦, γ2◦). (i)

Since R2(γ1) is a singleton, let T 2 : Γ2 → Γ1 be the unique mapping introduced in Remark 3.

Then, clearly, γ2◦ = T 2γ1◦, and if this is used in (i), together with the RHS of (31), we obtain

min
γ1∈Γ1

J1(γ1, T 2γ1) = J1∗ > J1(γ1◦, T 2γ1◦),

which is a contradiction. �

Remark 5 One might be tempted to think that if a nonzero-sum game admits a unique Nash

equilibrium solution and a unique Stackelberg strategy (γ1∗) for the leader, and further if R2(γ1∗)

is a singleton, then the inequality of Proposition 8 still should hold. This, however, is not true as

the following bimatrix game demonstrates

A =

P2
L 0S1 1
R −1N 2

L R

P1, B =

P2
L 0S1 2
R 1N 1

L R

P1.

Here, there exists a unique Nash equilibrium solution, as indicated, and a unique Stackelberg

strategy γ1∗ = L for the leader (P1). Furthermore, the follower’s optimal response to γ1∗ = L is

unique (which is γ2 = L). However, 0 = J1∗ > J1
N = −1. This counterexample indicates that the

sufficient condition of Proposition 8 cannot be relaxed any further in any satisfactory way. �

8.2 Stackelberg equilibria in mixed and behavioral strategies

The motivation behind introducing mixed strategies in the investigation of saddle-point equilibria

and Nash equilibria was that such equilibria do not always exist in pure strategies, whereas within

the enlarged class of mixed strategies one can ensure existence of noncooperative equilibria. In the
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case of the Stackelberg solution of two-person finite games, however, an equilibrium always exists

(cf. Theorem 6), and thus, at the outset, there seems to be no need to introduce mixed strategies.

Besides, since the leader dictates his strategy on the follower, in a Stackelberg game, it might at

first seem to be unreasonable to imagine that the leader would ever employ a mixed-strategy. Such

an argument, however, is not always valid, and there are cases when the leader can actually do

better (in the average sense) with a proper mixed strategy, than the best he can do within the

class of pure strategies. As an illustration of such a possibility, consider the bi-matrix game (A,B)

displayed below:

A =

P2
L 1 0
R 0 1

L R

P1, B =

P2
L 1/2 1
R 1 1/2

L R

P1. (32)

If P1 acts as the leader, then the game admits two pure-strategy Stackelberg equilibrium solutions,

which are {L,L}, and {R,R}, the Stackelberg outcome in each case being (1, 1/2). However, if the

leader (P1) adopts the mixed strategy which is to pick L and R with equal probability 1/2, then

the average cost incurred to P1 will be equal to 1/2, quite independent of the follower’s (pure or

mixed) strategy. This value J̄1 = 1/2 is clearly lower than the leader’s Stackelberg cost in pure

strategies, which can further be shown to be the unique Stackelberg cost of the leader in mixed

strategies, since any deviation from (1/2, 1/2) for the leader results in higher values for J̄1, by

taking into account the optimal responses of the follower.

The preceding result then establishes the significance of mixed strategies in the investigation of

Stackelberg equilibria of two-person nonzero-sum games, and demonstrates the possibility that a

proper mixed-strategy Stackelberg solution could lead to a lower cost level for the leader than the

Stackelberg cost level in pure strategies. To introduce the concept of mixed-strategy Stackelberg

equilibrium in mathematical terms, we take the two-person nonzero-sum finite game to be in normal

form (without any loss of generality) and associate with it a bi-matrix game (A,B). Abiding by

the earlier notation and terminology, let Y and Z denote the mixed-strategy spaces of P1 and P2,

respectively, with their typical elements denoted by y and z. Then, we have:

Definition 10 For a bi-matrix game (A,B), the set

R̄2(y) = {z◦ ∈ Z : y′Bz◦ ≤ y′Bz, ∀z ∈ Z} (33)
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is the optimal response (rational reaction) set of P2 in mixed strategies to the mixed strategy y ∈ Y

of P1. �

Definition 11 In a bi-matrix game (A,B) with P1 acting as the leader, a mixed strategy y∗ ∈ Y

is called a mixed Stackelberg equilibrium strategy for the leader if

max
z∈R̄2(y∗)

y∗′Az = inf
y∈Y

max
z∈R̄2(y)

y′Az
∆= J̄1∗. (34)

The quantity J̄1∗ is the Stackelberg cost of the leader in mixed strategies. �

It should be noted that the “maximum” in (34) always exists since, for each y ∈ Y , y′Az is

continuous in z, and R2(y) is a closed and bounded subset of Z (which is a finite dimensional

simplex). Hence, J̄1∗ is a well-defined quantity. The “infimum” in (34), however, cannot always be

replaced by a “minimum”, unless the problem admits a mixed Stackelberg equilibrium strategy for

the leader. The following example now demonstrates the possibility that a two-person finite game

might not admit a mixed-strategy Stackelberg strategy even though J̄1∗ < J1∗.

Example. Consider the following modified version of the bi-matrix game of (32):

A =

P2
L 1 0
R 0 1

L R

P1, B =

P2
L 1/2 1
R 1 1/3

L R

P1.

With P1 as the leader, this bi-matrix game also admits two pure-strategy Stackelberg equilibria,

which are {L,L} and {R,R}, the Stackelberg cost for the leader being J1∗ = 1. Now, let the leader

adopt the mixed strategy y = (y1, (1− y1))′, under which J̄2 is

J̄2(y, z) = y′Bz =
(
−7

6
y1 +

2
3

)
z1 +

2
3
y1 +

1
3
,

where z = (z1, (1 − z1))′ denotes any mixed strategy of P2. Then, the mixed-strategy optimal

response set of P2 can readily be determined as

R̄2(y) =


{z = (1, 0)} if y1 > 4/7
{z = (0, 1)} if y1 < 4/7
Z if y1 = 4/7.

Hence, for y1 > 4/7, the follower chooses “column 1” with probability 1, and this leads to an average

cost of J̄1 = y1 for P1. For y1 < 4/7, on the other hand, P2 chooses “column 2” with probability
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1, which leads to an average cost level of J̄1 = (1 − y1) for P1. Then, clearly, the leader will

prefer to stay in this latter region; in fact, if he employs the mixed strategy y = (4/7− ε, 3/7 + ε)′

where ε > 0 is sufficiently small, his realized average cost will be J̄1 = 3/7 + ε, since then P2 will

respond with the unique pure-strategy γ2 = R. Since ε > 0 can be taken as small as possible, we

arrive at the conclusion that J̄1∗ = 3
7 < 1 = J1∗. In spite of this fact, the leader does not have a

mixed Stackelberg strategy since, for the only candidate y◦ = (4/7, 3/7), R̄2(y◦) = Z, and therefore

maxz∈R̄2(y◦) y
◦′Az = 4/7 which is higher than J̄1∗. �

The preceding example thus substantiates the possibility that a mixed Stackelberg strategy

might not exist for the leader, but he can still do better than his pure Stackelberg cost J1∗ by

employing some sub-optimal mixed strategy (such as the one y = (4/7− ε, 3/7 + ε)′ in the example,

for sufficiently small ε > 0). In fact, whenever J̄1∗ < J1∗, there will always exist such an approxi-

mating mixed strategy for the leader. If J̄1∗ = J1∗, however, it is, of course, reasonable to employ

the pure Stackelberg strategy which always exists by Theorem 6. The following proposition now

verifies that J̄1∗ < J1∗ and J̄1∗ = J1∗ are the only two possible relations we can have between J̄1∗

and J1∗; in other words, the inequality J̄1∗ > J1∗ never holds.

Proposition 9 For every two-person finite game, we have

J̄1∗ ≤ J1∗. (35)

Proof. Let Y0 denote the subset of Y consisting of all one-point distributions. Analogously, define

Z0 as comprised of one-point distributions in Z. Note that Y0 is equivalent to Γ1, and Z0 is

equivalent to Γ2. Then, for each y ∈ Y0

min
z∈Z

y′Bz = min
z∈Z0

y′Bz

since any minimizing solution in Z can be replaced by an element of Z0. This further implies that,

for each y ∈ Y0, elements of R̄2(y) are probability distributions on R2(y), where the latter set is

defined by (33) with Z replaced by Z0. Now, since Y0 ⊂ Y ,

J̄1∗ = min
y∈Y

max
z∈R̄2(y)

y′Az ≤ min
y∈Y0

max
z∈R̄2(y)

y′Az,

and further, because of the cited relation between R̄2(·) and R2(·), the latter quantity is equal to

min
y∈Y0

max
z∈R2(y)

y′Az
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which, by definition, is J1∗, since R2(y) is equivalent to the pure-strategy optimal response set of

the follower, as defined by (29). Hence, J̄1∗ ≤ J1∗. �

Computation of a mixed-strategy Stackelberg equilibrium (whenever it exists) is not as straight-

forward as in the case of pure-strategy equilibria, since the spaces Y and Z are not finite. The

standard technique is first to determine the minimizing solution(s) of

min
z∈Z

y′Bz

as functions of y ∈ Y . This will lead to a decomposition of Y into subsets (regions), on each of

which a reaction set for the follower is defined. (Note that in the analysis of the previous example,

Y has been decomposed into three regions.) Then, one has to minimize y′Az over y ∈ Y , subject

to the constraints imposed by these reaction sets, and under the stipulation that the same quantity

is maximized on these reaction sets whenever they are not singletons. This brute-force approach

also provides approximating strategies for the leader, whenever a mixed Stackelberg solution does

not exist, together with the value of J̄1∗.

If the two-person finite game under consideration is a dynamic game in extensive form, then

it is more reasonable to restrict attention to behavioral strategies. Stackelberg equilibrium within

the class of behavioural strategies can be introduced as in Definitions 10 and 11, by replacing the

mixed strategy sets with the behavioral strategy sets. Hence, using the earlier terminology and

notation, we have the following counterparts of Definitions. 10 and 11, in behavioral strategies:

Definition 12 Given a two-person finite dynamic game with behavioral-strategy sets (Γ̂1, Γ̂2) and

average cost functions (Ĵ1, Ĵ2), the set

R̂2(γ̂1) = {γ̂2◦ ∈ Γ̂2 : Ĵ2(γ̂1, γ̂2◦) ≤ Ĵ2(γ̂1, γ̂2), ∀γ̂2 ∈ Γ̂2}, (36)

is the optimal response (rational reaction) set of P2 in behavioral strategies to the behavioral

strategy γ̂1 ∈ Γ̂1 of P1. �

Definition 13 In a two-person finite dynamic game with P1 acting as the leader, a behavioral

strategy γ̂1∗ ∈ Γ̂1 is called a behavioral Stackelberg equilibrium strategy for the leader if

sup
γ̂2∈R̄2(γ̂1∗)

Ĵ1(γ̂1∗, γ̂2) = inf
γ̂1∈Γ̂1

sup
γ̂2∈R̂2(γ̂1)

Ĵ1(γ̂1, γ̂2) ∆= Ĵ1∗. (37)

The quantity Ĵ1∗ is the Stackelberg cost of the leader in behavioral strategies. �
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9 Lecture 9: Continuous-kernel games and Stackelberg equilibria

This lecture is on the Stackelberg solution of static NZSGs when the number of alternatives available

to each player is not a finite set and the cost functions are described by continuous kernels. For the

sake of simplicity and clarity in exposition, the focus will be on two-person static games. A variety

of possible extensions of the Stackelberg solution concept to N -person static games with different

levels of hierarchy can be found in [1].

Here, I use a slightly different notation than in Lecture 7, with ui ∈ U i denoting the action

variable of Pi (instead of xi ∈ Ωi), where his action set U i is assumed to be a subset of an

appropriate metric space (such as Xi). The cost function J i of Pi is defined as a continuous

function on the product space U1 × U2. Then we can give to following general definition of a

Stackelberg equilibrium solution, (SES) which is the counterpart of Definition 8 for infinite games.

Definition 14 In a two-person game, with P1 as the leader, a strategy u1∗ ∈ U1 is called a

Stackelberg equilibrium strategy for the leader if

J1∗ ∆= sup
u2∈R2(u1∗ )

J1(u1∗ , u2) ≤ sup
u2∈R2(u1)

J1(u1, u2) (38)

for all u1 ∈ U1. Here, R2(u1) is the rational reaction set of the follower as introduced in (29). �

Remark 6 If R2(u1) is a singleton for each u1 ∈ U1, in other words, if it is described completely

by a reaction curve T2 : U1 → U2, then inequality (38) in the above definition can be replaced by

J1∗ ∆= J1(u1∗ , T2(u1∗)) ≤ J1(u1, T2(u1)) (39)

for all u1 ∈ U1. �

If a SES exists for the leader, then the LHS of inequality (38) is known as the leader’s Stackelberg

cost, and is denoted by J1∗ . A more general definition for J1∗ is, in fact,

J1∗ = inf
u1∈U1

sup
u2∈R2(u1)

J1(u1, u2), (40)

which also covers the case when a Stackelberg equilibrium strategy does not exist. It follows from

this definition that the Stackelberg cost of the leader is a well-defined quantity, and that there will

always exist a sequence of strategies for the leader which will insure him a cost value arbitrarily

close to J1∗ . This observation brings us to the following definition of ε Stackelberg strategies.
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Definition 15 Let ε > 0 be a given number. Then, a strategy u1∗
ε ∈ U1 is called an ε Stackelberg

strategy for the leader (P1) if

sup
u2∈R2(u1∗

ε )

J1(u1∗
ε , u

2) ≤ J1∗ + ε.

�

The following two properties of ε Stackelberg strategies now readily follow.

Property 1. In a two-person game, let J1∗ be a finite number. Then, given an arbitrary ε > 0,

an ε Stackelberg strategy necessarily exists. �

Property 2. Let {u1∗
εi } be a given sequence of ε Stackelberg strategies in U1, and with εi > εj

for i < j and limj→∞ εj = 0. Then, if there exists a convergent subsequence {u1∗
εik
} in U1 with its

limit denoted as u1∗ , and further if supu2∈R2(u1) J
1(u1, u2) is a continuous function of u1 in an open

neighborhood of u1∗ ∈ U1, u1∗ is a Stackelberg strategy for P1. �

The equilibrium strategy of the follower, in a Stackelberg game, would be any strategy that

constitutes an optimal response to the one adopted (and announced) by the leader. Mathematically

speaking, if u1∗ (respectively, u1∗
ε ) is adopted by the leader, then any u2 ∈ R2(u1), (respectively,

u2 ∈ R2(u1∗
ε ) will be referred to as an optimal strategy for the follower that is in equilibrium with

the Stackelberg (respectively, ε Stackelberg) strategy of the leader. This pair is referred to as a

Stackelberg (respectively, ε Stackelberg) solution of the two-person game with P1 as the leader (see

Definition 9). The following theorem now provides a set of sufficient conditions for two-person

NZSGs to admit a SES.

Theorem 7 Let U1 and U2 be compact metric spaces, and J i be continuous on U1 ×U2, i = 1, 2.

Further let there exist a finite family of continuous mappings l(i) : U1 → U2, indexed by a parameter

i ∈ I
∆= {1, . . . ,M}, so that R2(u1) = {u2 ∈ U2 : u2 = l(i)(u1), i ∈ I}. Then, the two-person

nonzero-sum static game admits a Stackelberg equilibrium solution.

Proof. It follows from the hypothesis of the theorem that J1∗ , as defined by (40), is finite. Hence,

by Property 1, a sequence of Stackelberg strategies exists for the leader, and it admits a convergent

subsequence whose limit lies in U1, due to compactness of U1. Now, since R2(·) can be constructed

from a finite family of continuous mappings (by hypothesis),

sup
u2∈R2(u1)

J1(u1, u2) = max
i∈I

J1(u1, l(i)(u1)),
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and the latter function is continuous on U1. Then, the result follows from Property 2. �

Remark 7 The assumption of Theorem 7 concerning the structure of R2(·) imposes some severe

restrictions on J2; but such an assumption is inevitable as the following example demonstrates.

Take U1 = U2 = [0, 1], J1 = −u1u2 and J2 = (u1 − 1
2)u2. Here, R2(·) is determined by a mapping

l(·) which is continuous on the half-open intervals [0, 1
2), (1

2 , 1], but is multivalued at u1 = 1
2 . The

Stackelberg cost of the leader is clearly J1∗ = −1
2 , but a Stackelberg strategy does not exist because

of the “infinitely multivalued” nature of l. �

When R2(u1) is a singleton for every u1 ∈ U1, the hypothesis of Theorem 7 can definitely be

made less restrictive. One such set of conditions is provided in the following corollary to Theorem 7

under which there exists a unique l which is continuous.

Corollary 9.1 Every two-person nonzero-sum continuous-kernel game on the square, for which

J2(u1, ·) is strictly convex for all u1 ∈ U1 and P1 acts as the leader, admits a SES. �

It should be noted that the SES for a two-person game exists under a set of sufficiency conditions

which are much weaker than those required for existence of Nash equilibria. It should further

be noted, however, that the statement of Theorem 7 does not also rule out the existence of a

mixed-strategy Stackelberg solution which might provide the leader with a lower average cost. We

have already observed occurrence of such a phenomenon within the context of matrix games, in

the previous lecture, and we now investigate to what extent such a result could remain valid in

continuous-kernel games.

If mixed strategies are also allowed, then permissible strategies for Pi will be probability mea-

sures µi on the space U i. Let us denote the collection of all such probability measures for Pi by

M i. Then, the quantity replacing J i will be the average cost function

J̄ i(µ1, µ2) =
∫
U1

∫
U2

J i(u1, u2) dµ1(u1) dµ2(u2), (41)

and the reaction set R2 will be replaced by

R̄2(µ1) ∆= {µ̂2 ∈M2 : J̄2(µ1, µ̂2) ≤ J̄2(µ1, µ2),∀µ2 ∈M2}. (42)

Hence, we have:
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Definition 16 In a two-person game with P1 as the leader, a mixed strategy µ1∗ ∈M1 is called a

mixed Stackelberg equilibrium strategy for the leader if

J̄1∗ ∆= sup
µ2∈R̄2(µ1∗ )

J̄1(µ1∗ , µ2) ≤ sup
µ2∈R̄2(µ1)

J̄1(µ1, µ2)

for all µ1 ∈ M1, where J̄1∗ is known as the average Stackelberg cost of the leader in mixed

strategies. �

Proposition 10

J̄1∗ ≤ J1∗ (43)

Proof. Since M i also includes all one-point measures, we have (by an abuse of notation) U i ⊂M i.

Then, for each u1 ∈ U1, considered as an element of M i,

inf
µ2∈M2

J̄2(u1, µ2) ≡ inf
µ2∈M2

∫
U2
J2(u1, u2) dµ2(u2)

= inf
u2∈U2

J2(u1, u2),

where the last equality follows since any infimizing sequence in M2 can be replaced by a subsequence

of one-point measures. This implies that, for one point measures in M1, R̄2(µ1) coincides with the

set of all probability measures defined on R2(u1). Now, since M1 ⊃ U1,

J̄1∗ = inf
M1

sup
R̄2(µ1)

J̄1(µ1, µ2) ≤ inf
U1

sup
R̄2(µ1)

J̄1(µ1, µ2),

and because of the cited relation between R̄2(µ1) and R2(u1), the last expression can be written as

inf
U1

sup
R2(u1)

J1(u1, u2) = J1∗ .

�

We now show, by a counter-example, that, even under the hypothesis of Thm 7, it is possible

to have strict inequality in (43).

(Counter-) Example. Consider a two-person continuous-kernel game with U1 = U2 = [0, 1], and

with cost functions

J1 = ε(u1)2 + u1
√
u2 − u2; J2 = (u2 − (u1)2)2,
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where ε > 0 is a sufficiently small parameter. The unique Stackelberg solution of this game, in pure

strategies, is u1∗ = 0, u2∗ = (u1)2, and the Stackelberg cost for the leader is J1∗ = 0. We now show

that the leader can actually do better by employing a mixed strategy.

First note that the follower’s unique reaction to a mixed strategy of the leader is u2 = E[(u1)2]

which, when substituted into J̄1, yields the expression

J̄1 = εE[(u1)2] + E[u1]
√
{E[(u1)2]} − E[(u1)2].

Now, if the leader uses the uniform probability distribution on [0, 1], his average cost becomes

J̄1 =
ε− 1

3
+

1
2

√
1
3

which clearly indicates that, for ε sufficiently small, J̄1∗ < 0 = J1∗ . �

The preceding example has displayed the fact that even Stackelberg games with strictly convex

cost functionals may fail to admit only pure-strategy solutions, and the mixed Stackelberg solution

may in fact be .21 However, if we further restrict the cost structure to be quadratic, then only

pure-strategy Stackelberg equilibria will exist.

Proposition 11 Consider the two-person nonzero-sum game with U1 = IRm1, U2 = IRm2, and

J i =
1
2
ui
′
Riiiu

i + u1′Riiju
j +

1
2
uj .′Rijju

j + ui
′
rii + uj

′
rij ; i, j = 1, 2, i 6= j,

where Riii > 0, Riii, R
i
ij, R

i
jj are appropriate dimensional matrices, and rii, r

i
j are appropriate

dimensional vectors. This “quadratic” game can only admit a pure-strategy Stackelberg solution,

with either P1 or P2 as the leader.

Proof. Without any loss of generality take P1 as the leader, and assume, to the contrary, that the

game admits a mixed-strategy Stackelberg solution, and denote the leader’s optimal mixed strategy

by µ1∗ . Furthermore, denote the expectation operation under µ1∗ by E[·]. If the leader announces

this mixed strategy, then the follower’s reaction is unique and is given by

u2 = −R2
22
−1
R2

21E[u1]−R2
22
−1
r2

2.

21In retrospect, this should not be surprising since for the special case of zero-sum games (without pure-strategy
saddle points) we have already seen that the minimizer could further decrease his guaranteed expected cost by playing
a mixed strategy; here however it holds even if J1 6≡ −J2.
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By substituting this in J̄1∗ = E[J1], we obtain

J̄1∗ =
1
2
E[u1′R1

11u
1] + E[u1]′KE[u1] + E[u1]′k + c,

where

K
∆=

1
2
R2

21
′
R2

22
−1
R2

11R
2
22−1R2

21 −R1
12R

2
22
−1
R2

21

k
∆= r1

1 −R2
21
′
R2

22
−1
r1

2 −R2
22
−1
r2

2 +R2
21
′
R2

22
−1
R1

22R
2
22
−1
r2

2

c
∆=

1
2
r2

2
′
R2

22
−1
R1

22R
2
22
−1
r2

2 − r2
2
′
R2

22
−1
r1

2.

Now, applying the Cauchy-Schwarz inequality on the first term of J̄1∗ , we further obtain the bound

J̄1∗ ≥ 1
2
E[u1]′R1

11E[u1] + E[u1]′KE[u1] + E[u1]′k + c (i)

which depends only on the mean value of u1. Hence

J1∗ = inf
U1

{
1
2
u1′R1

11u
1 + u1′Ku1 + u1′k + c

}
≤ J̄1∗ .

This implies that enlargement of the strategy space of the leader, so as also to include mixed

strategics, does not yield him any better performance. In fact, since E[u1′u1] > E[u1]′E[u1],

whenever the probability distribution is not one-point, it follows that the inequality in (i) is actually

strict for the case of a proper mixed strategy. This then implies that, outside the class of pure-

strategies, there can be no Stackelberg solution. �
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10 Lecture 10: Quadratic games: Deterministic and stochastic

This lecture presents explicit expressions for the Nash, saddle-point, and Stackelberg equilibrium

solutions of static nonzero-sum games in which the cost functions of the players are quadratic in

the decision variables — the so-called quadratic games. The action (strategy) spaces will be taken

as appropriate dimensional Euclidean spaces, but the results are also equally valid (under the right

interpretation) when the strategy spaces are taken as infinite-dimensional Hilbert spaces. In that

case, the Euclidean inner products will have to be replaced by the inner product of the underlying

Hilbert space, and the positive definiteness requirements on some of the matrices will have to be

replaced by strong positive definiteness of the corresponding self-adjoint operators. This lecture

will also include some discussion on iterative algorithms for the computation of Nash equilibria in

the quadratic case.

10.1 Deterministic games

A general quadratic cost function for Pi, which is strictly convex in his action variable, can be

written as

J i =
1
2

N∑
j=1

N∑
k=1

uj
′
Rijku

k +
N∑
j=1

rij
′
uj + ci, (44)

where uj ∈ U j = IRmj is the mj-dimensional action variable of Pj, Rijk is an (mj×mk)-dimensional

matrix with Riii > 0, rij is an mj-dimensional vector and ci is a constant. Without loss of generality,

we may assume that, for j 6= k, Rijk = Rikj
′, since if this were not the case, the corresponding two

quadratic terms could be written as

uj
′
Rijku

k + uk
′
Rikju

j = uj
′
(
Rijk+Rikj

′

2

)
uk + uk

′
(
Rijk+Rikj

′

2

)
uj (45)

and redefining Rijk as (Rijk + Rijk
′)/2, a symmetric matrix could be obtained. By an analogous

argument, we may take Rijj to be symmetric, without any loss of generality.

Quadratic cost functions are of particular interest in game theory, firstly because they constitute

second-order approximation to other types of nonlinear cost functions, and secondly because games

with quadratic cost or payoff functions are analytically tractable, admitting, in general, closed-

form equilibrium solutions which provide insight into the properties and features of the equilibrium

solution concept under consideration.
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To determine the NE solution in strictly convex quadratic games, we differentiate J i with

respect to ui (i ∈ N ), set the resulting expressions equal to zero, and solve the set of equations

thus obtained. This set of equations, which also provides a sufficient condition because of strict

convexity, is

Riiiu
i +

∑
j 6=i

Riiju
j + rii = 0 (i ∈ N ), (46)

which can be written in compact form as

Ru = −r (47)

where

R
∆=



R1
11 R1

12 · · · R1
1N

R2
12 R2

22 · · · R2
2N

· · ·
· · ·
· · ·

RN1N RN2N · · · RNNN


(48)

u′
∆= (u1, u2, . . . , uN ). (49)

r′
∆= (r1

1, r
2
2, . . . , r

N
N ). (50)

This then leads to the following result.

Proposition 12 The quadratic N -player nonzero-sum static game defined by the cost functions

(44) and with Riii > 0, admits a Nash equilibrium solution if, and only if, (47) admits a solution,

say u∗; this Nash solution is unique if the matrix R defined by (48) is invertible, in which case it

is given by

u∗ = −R−1r. (51)

�

Remark 8 Since each player’s cost function is strictly convex and continuous in his action variable,

quadratic nonzero-sum games of the type discussed above cannot admit a Nash equilibrium solution

in mixed strategies. Hence, in strictly convex quadratic games, the equilibrium analysis can be

confined to the class of pure strategies. �
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We now investigate the stability properties of the unique Nash solution of quadratic games,

where the notion of stability was introduced in Lecture 7. Taking N = 2, and directly specializing

recursion (24) to the quadratic case (with the obvious change in notation, and in a sequential

update mode), we arrive at the following iteration :

u1(k+1) = C1u
2(k) + d1, u2(k+1) = C2u

1(k+1) + d2, k = 0, 1, . . . (52)

with an arbitrary starting choice u2(0), where

Ci = −(Riii)
−1Riij , di = −(Riii)

−1rii, j 6= i, i, j = 1, 2.

This iteration corresponds to the sequential (Gauss-Seidel) update scheme where P1 responds to

the most recent past action of P2, whereas P2 responds to the current action of P1. The alternative

to this is the parallel (Jacobi) update scheme where (52) is replaced by22

u1(k+1) = C1u
2(k) + d1, u2(k+1) = C2u

1(k) + d2, k = 0, 1, . . . (53)

starting with arbitrary initial choices (u1(0)
, u2(0)) Then, the question of stability of the Nash

solution (51), with N = 2, reduces to the question of stability of the fixed point of either (52) or

(53). Note that, apart from a relabeling of indices, stability of these two iterations is equivalent to

the stability of the single iteration:

u1(k+1) = C1C2u
1(k) + C1d2 + d1.

Since this is a linear difference equation, a necessary and sufficient condition for it to converge (to

the actual Nash strategy of P1) is that the eigenvalues of the matrix C1C2, or equivalently those

of C2C1 should be in the unit circle, i.e.

ρ(C1C2) ≡ ρ(C2C1) < 1 (54)

where ρ(A) is the spectral radius of the matrix A.

Note that the condition of stability is considerably more stringent than the condition of existence

of a unique Nash equilibrium, which is

det(I − C1C2) 6= 0. (55)
22This one corresponds to (24).
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The question we address now is whether, in the framework of Gauss-Seidel or Jacobi iterations,

this gap between (54) and could be (55) shrunk or even totally eliminated, by allowing players to

incorporate memory into the iterations. While doing this, it would be desirable for the players to

need to know as little as possible regarding the reaction functions of each other (note that no such

information is necessary in the Gauss-Seidel or Jacobi iterations given above).

To study this issue, consider the Gauss-Seidel iteration (52), but with a one-step memory for

(only) P1. Then, the “relaxed” algorithm will be (using the simpler notation u1(k) = uk, u2(k) = vk):

uk+1 = C1vk + d1 +A(uk − C1vk − d1)
vk+1 = C2uk+1 + d2

}
(56)

where A is a gain matrix, yet to be chosen. Substituting the second (for vk) into the first, we obtain

the single iteration

uk+1 = [C +A(I − C)]uk + (I −A)[d1 + C1d2]

where

C
∆= C1C2.

By choosing

A = −C(I − C)−1 (57)

where the required inverse exists because of (55), we obtain a finite-step convergence, assuming

that the true value of C2 is known to P1. If the true value of C2 is not known, but a nominal value

is given in a neighborhood of which the true value lies, the scheme (56) along with the choice (57)

for the nominal value, still leads to convergence (but not in a finite number of steps) provided that

the neighborhood is sufficiently small (see Başar, 1987) [22].

Now, if the original scheme is instead the parallel (Jacobi) scheme, then a one-step memory

for P1 will not be sufficient to obtain a finite-step convergence result as above. In this case we

replace (56) by

uk+1 = C1vk + d1 +B(uk−1 − C1vk − d2)
vk+1 = C2uk + d2

}
(58)

where B is another gain matrix. Note that here P1 uses, in the computation of uk+1, not uk but

rather uk−1. Now, substituting for vk from the second into the first equation of (58), we arrive at
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the iteration

uk+1 = [C +B(I − C)]uk−1 + (I −B)[d1 + C1d2],

which again shows finite-step convergence, with B chosen as

B = −C(I − C)−1. (59)

Again, there is a certain neighborhood of nominal C2 or equivalently of the nominal C, where the

iteration (58) is convergent.

In general, however, the precise scheme according to which P2 responds to P1’s policy choices

may not be common information, and hence one would like to develop relaxation-type algorithms

for P1 which would converge to the true equilibrium solution regardless of what particular scheme

P2 adopts (for example, Gauss-Seidel or Jacobi). Consider, for example, the scheme where P2’s

responses for different k are modeled by

vk+1 = C2uk+1−ik + d2, (60)

where ik ≥ 0 is an integer denoting the delay in the receipt of current policy information by P2

from P1. The choice ik = 0 for all k, would correspond to the Gauss-Seidel iteration, and the

choice ik = 1 for all k, to the Jacobi iteration — assuming that uk+1 is still determined according

to (52). An extreme case would be the totally asynchronous communication where {ik}k≥0 could

be any sequence of positive integers. Under the assumptions that P1 communicates new policy

choices to P2 infinitely often, and he uses the simple (“nonrelaxed”) iteration

uk+1 = C1vk + d1, (61)

it is known from the work of Chazan and Miranker (1969) [21] that such a scheme converges if, and

only if,

ρ(|C|) < 1 (62)

where |C| is the matrix derived from C by multiplying all its negative entries by -1.

This condition can be improved upon, however, by incorporating relaxation terms in (61), such

as

uk+1 = αuk + (1− α)C1vk + (1− α)d1 (63)
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where α is some scalar. The condition for convergence of any asynchronously implemented version

of (60) and (63) in this case is

ρ(Ā(α)) < 1 (64)

where

Ā(α) :=

(
|α|I |(1− α)C1|
|C2| 0

)
. (65)

Clearly, there is a value of α 6= 0 for which (64) requires a less stringent condition (on C1 and C2)

than (62). For example, if C1 and C2 are scalars, and α = 1
2 , (64) dictates

C1C2 < 4

while (62) requires that C1C2 < 1.

From a game theoretic point of view, each of the iteration schemes discussed above corresponds

to a game with a sufficiently large number of stages and with a particular mode of play among the

players. Moreover, the objective of each player is to minimize a kind of an average long horizon

cost, with costs at each stage contributing to this average cost. Viewing this problem overall as a

multi-act NZSG, we observe that the behavior of each player at each stage of the game is rather

“myopic”, since at each stage the players minimize their cost functions only under past information,

and quite in ignorance of the possibility of any future moves. If the possibility of future moves is also

taken into account, then the rational behavior of each player at a particular stage could be quite

different. Such myopic decision making could make sense, however, if the players have absolutely

no idea as to how many stages the game comprises, in which case there is the possibility that at any

stage a particular player could be the last one to act in the game. In such a situation, risk-aversing

players would definitely adopt “myopic” behavior, minimizing their current cost functions under

only the past information, whenever given the opportunity to act.

Two-person zero-sum games

Since ZSGs are special types of two-person NZSGs with J1 = −J2 (P1 minimizing and P2 maxi-

mizing), in which case the NE solution concept coincides with the concept of SPE, a special version

of Proposition 12 will be valid for quadratic zero-sum games. To this end, we first note that the
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relation J1 = −J2 imposes in (44) the restrictions

R1
12
′ = −R2

21, R
2
11 = −R1

11, R
1
22 = −R2

22, r
2
1 = −r1

1, r
1
2 = −r2

2, c1 = −c2,

under which matrix R defined by (48) can be written as

R =

(
R1

11 R1
12

−R1
12
′
R2

22

)
which has to be nonsingular for existence of a saddle point. Since R can also be written as the sum

of two matrices

R =

(
R1

11 0
0 R2

22

)
+

(
0 R1

12

−R1
12
′ 0

)
the first one being positive definite and the second one skew-symmetric, and since eigenvalues of

the latter are always imaginary, it readily follows that R is a nonsingular matrix. Hence we arrive

at the conclusion that quadratic strictly convex-concave zero-sum games admit unique saddle-point

equilibrium in pure strategies.

Corollary 10.1 The strictly convex-concave quadratic zero-sum game

J =
1
2
u1′R1

11u
1 + u1′R1

12u
2 − 1

2
u2′R2

22u
2 + u1′r1

1 + u2′r1
2 + c1;

R1
11 > 0, R2

22 > 0,

admits a unique saddle-point equilibrium in pure strategies, which is given by

u1∗ = −[R1
11 +R1

12(R2
22)−1R1

12
′]−1[r1

1 +R1
12(R2

22)−1r1
2],

u2∗ = [R2
22 +R1

12
′(R1

11)−1R1
12]−1[r1

2 +R1
12
′(R1

11)−1r1
1].

�

Remark 9 The positive-definiteness requirements on R1
11 and R2

22 in Corollary 10.1 are necessary

and sufficient for the game kernel to be strictly convex-strictly concave, but this structure is clearly

not necessary for the game to admit a saddle point. If the game is simply convex-concave (that is,

if the matrices above are nonnegative definite, with a possibility of zero eigenvalues), then a SPE

will still exist provided that the upper and lower values are bounded.23 If the quadratic game is

not convex-concave, however, then either the upper or the lower value (or both) will be unbounded,

implying that a saddle point will not exist. �
23For a convex-concave quadratic game, the upper value will not be bounded if, and only if, there exists a v ∈ IRm2

such that v′R2
22v = 0 while v′r12 6= 0. A similar result also applies to the lower value.

64



Team problems

Yet another special class of NZSGs are the team problems in which the players (or equivalently,

members of the team) share a common objective. Within the general framework, this corresponds

to the case J1 ≡ J2 ≡ · · · ≡ JN
∆= J , and the objective is to minimize this cost function over all

ui ∈ U i, i = 1, . . . , N . The resulting solution N -tuple (u1∗ , u2∗ , . . . , uN
∗
) is known as the team-

optimal solution. The NE solution, however, corresponds to a weaker solution concept in team

problems (as we have already seen), the so-called person-by-person (pbp) optimality. In a two-

member team problem, for example, a pbp optimal solution (u1∗ , u2∗) dictates satisfaction of the

pair of inequalities

J(u1∗ , u2∗) ≤ J(u1, u2∗), ∀u1 ∈ U1,

J(u1∗ , u2∗) ≤ J(u1∗ , u2), ∀u2 ∈ U2,

whereas a team-optimal solution (u1∗ , u2∗) requires satisfaction of a single inequality

J(u1∗ , u2∗) ≤ J(u1, u2), ∀u1 ∈ U1, u2 ∈ U2.

A team-optimal solution always implies pbp optimality, but not vice versa. Of course, if J is

quadratic and strictly convex on the product space U1 × · · · × UN , then a unique pbp optimal

solution exists, and it is also team-optimal.24 However, for a cost function that is strictly convex

only on individual spaces U i, but not on the product space, this latter property may not be true.

Consider, for example, the quadratic cost function

J = (u1)2 + (u2)2 + 10u1u2 + 2u1 + 3u2

which is strictly convex in u1 and u2, separately. The matrix corresponding to R defined by (48) is(
2 10
10 2

)
which is clearly nonsingular. Hence a unique pbp optimal solution will exist. However, a team-

optimal solution does not exist since the said matrix (which is also the Hessian of J) has one positive

and one negative eigenvalue. By cooperating along the direction of the eigenvector corresponding

to the negative eigenvalue, the members of the team can make the value of J as small as possible.

In particular, taking u2 = −2
3u

1 and letting u1 → +∞, drives J to −∞.
24This result may fail to hold true for team problems with strictly convex but nondifferentiable kernels.
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The Stackelberg solution

We now elaborate on the SESs of quadratic games of type (44) but with N = 2, and P1 acting

as the leader. We first note that since the quadratic cost function J i is strictly convex in ui, by

Proposition 11 we can confine our investigation of an equilibrium solution to the class of pure

strategies. Then, to every announced strategy u1 of P1, the follower’s unique response will be as

given by (46) with N = 2, i = 2:

u2 = −(R2
22)−1[R2

21u
1 + r2

2]. (66)

Now, to determine the Stackelberg strategy of the leader, we have to minimize J1 over U1 and

subject to the constraint imposed by the reaction of the follower. Since the reaction curve gives

u2 uniquely in terms of u1, this constraint can best be handled by substitution of (66) in J1 and

by minimization of the resulting functional (to be denoted by J̃1) over U1. To this end, we first

determine J̃1:

J̃1(u1) =
1
2
u1′R1

11u
1 +

1
2

[R2
21u

1 + r2
2]′(R2

22)−1R1
22(R2

22)−1[R2
21u

1 + r2
2]

−u1′R1
21(R2

22)−1[R2
21u

1 + r2
2] + u1′r1

1

−[R2
21u

1 + r2
2]′(R2

22)−1r1
2 + c1.

For the minimum of J̃1 over U1 to be unique, we have to impose a strict convexity condition on J̃1.

Because of the quadratic structure of J̃1, this condition amounts to having the coefficient matrix

of the quadratic term in u1 positive definite, which is

R1
11 +R2

21
′(R2

22)−1R1
22(R2

22)−1R2
21 −R1

21(R2
22)−1R2

21

−R2
21
′(R2

22)−1R1
21
′
> 0.

(67)

Under this condition, the unique minimizing solution can be obtained by setting the gradient of J̃1

equal to zero, which yields

u1∗ = −[R1
11 +R2

21(R2
22)−1R1

22(R2
22)−1R2

21 −R1
21(R2

22)−1R2
21

−R2
21
′(R2

22)−1R1
21
′]−1[R2

21
′(R2

22)−1R1
22R

1
22(R2

22)−1r2
2

−R1
21(R2

22)−1r2
2 + r1

1 −R2
21
′(R2

22)−1r1
2].

(68)

Proposition 13 Under condition (67), the two-person version of the quadratic game (44) admits

a unique Stackelberg strategy for the leader, which is given by (68). The follower’s unique response

is then given by (66). �
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Remark. A sufficient condition for condition (67) is strict convexity of J1 on the product space

U1 × U2. �

10.2 Stochastic games

We now discuss stochastic static games with quadratic cost functions, for only the case N = 2.

Stochasticity will enter the game through the cost functions of the players, as weights on the terms

linear the action variables. Accordingly, the quadratic cost functions will be given by (where we

differentiate between players using subscripts instead of superscripts):

L1(u1, u2; ξ1, ξ2) =
1
2
u′1R11u1 + u′1R12u2 + u′1ξ1

L2(u1, u2; ξ1, ξ2) =
1
2
u′2R22u2 + u′2R21u1 + u′2ξ2

where Rii are positive definite, and ξi’s are random vectors of appropriate dimensions. P1 and P2

do not have access to the values of these random vectors, but they measure another pair of random

vectors, y1 (for P1) and y2 (for P2), which carry some information on ξi’s. We assume that all four

random variables have bounded first and second moments, and their joint distribution is common

information to both players.

P1 uses y1 in the construction of her policy and subsequently action, where we denote her

policy variable (strategy) by γ1, so that u1 = γ1(y1). Likewise we introduce γ2 as the strategy for

P2, so that u2 = γ2(y2). These policy variables have no restrictions imposed on them other than

measurability and that Ui’s should have bounded first and second moments. Let Γ1 and Γ2 be the

corresponding spaces where γ1 and γ2 belong. Then for each γi ∈ Γi, i = 1, 2, using u1 = γ1(y1) and

u2 = γ2(y2) in L1 and L2, and taking expectation over the statistics of the four random variables,

we arrive at the normal form of the game (in terms of the strategies), captured by the expected

costs:

J1(γ1, γ2) = E[L1(γ1(y1), γ2(y2); ξ1, ξ2)]

J2(γ1, γ2) = E[L2(γ1(y1), γ2(y2); ξ1, ξ2)]

We are looking for a NE in Γ1 × Γ2, where NE is defined in the usual way.

Using properties of conditional expectation, for fixed γ2 ∈ Γ2, there exists a unique γ1 ∈ Γ1

that minimizes J1(γ1, γ2) over Γ1. This unique solution is given by

γ1(y1) = R−1
11 [R12E [γ2(y2)|y1] + Eξ1|y1]] =: T1(γ2)(y1)
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which is the unique response by P1 to a strategy of P2. Likewise, P2’s response to P1 is unique:

γ2(y2) = R−1
22 [R21E [γ1(y1)|y2] + Eξ2|y2]] =: T2(γ1)(y2)

Hence, in the policy space, we will be looking for fixed point of

γ1 = T1(γ2) , γ2 = T2(γ1)

and substituting the second one into the first, we have

γ1 = (T1 ◦ T2) (γ1)

where T1 ◦ T2 is the composite map. This will admit a unique solution if T1 ◦ T2 is a contraction

(note that Γ1 is a Banach space).

Now, writing out this fixed point equation

γ1(y) = R−1
11 R12R

−1
22 R21E [E [γ1(y1)|y2] |y1] +R−1

11 R12R
−1
22 E[ξ2|y1]−R−1

11 E[ξ1|y1]

=: T̃1(γ1)(y1) +R−1
11 R12R

−1
22 E[ξ2|y1]−R−1

11 E[ξ1|y1]

Hence, T1 ◦ T2 is a contraction if, and only if, T̃1 is, and since conditional expectation is a non-

expansive mapping, it follows that the condition for existence of NE (and its stability) is exactly

the one obtained in the previous section for the deterministic game, that is,

ρ(C1C2) = ρ(R−1
11 R12R

−1
22 R21) < 1

In this case, the recursion

γ
(k+1)
1 = (T1 ◦ T2)(γ(k)

1 )

will converge for all γ(0)
1 ∈ Γ1. Note that if this sequence converges, so does the one generated by

γ
(k+1)
1 = T1(γ(k)

2 ) , γ
(k+1)
2 = T2(γ(k)

1 )

for all γ(0)
i ∈ Γi, i = 1, 2. And the limit is the unique NE.

If the four random vectors are jointly Gaussian distributed, then the unique NE will be affine in

y1 (for P1) and y2 (for P2), which follows from properties of Gaussian random variables, by taking

γ
(0)
i = 0. Further results on this class of stochastic games with N > 2, and when the players do

not agree on a common underlying statistics for the uncertainty, can be found in [45].

68



11 Lecture 11: Dynamic infinite games: Nash equilibria

In this lecture, I discuss the Nash equilibria of dynamic infinite games, which are also known as

discrete-time games. After a precise formulation of such games, the informational non-uniqueness

feature is discussed in detail through an example game before stating some general results. Also,

derivation of the open-loop and closed-loop feedback NE is outlined.

11.1 General formulation

I start with a general definition.

Definition 17 An N -person discrete-time deterministic infinite dynamic game25 of prespecified

fixed duration involves:

(i) An index set N = {1, . . . ,N} called the players’ set.

(ii) An index set K = {1, . . . ,K} denoting the stages of the game, where K is the maximum

possible number of moves a player is allowed to make in the game.

(iii) An infinite set X with some topological structure, called the state set (space) of the game, to

which the state of the game (xk) belongs for all k ∈ K and k = K + 1.

(iv) An infinite set U ik with some topological structure, defined for each k ∈ K and i ∈ N , which

is called the action (control) set of Pi at stage k. Its elements are the permissible actions uik

of Pi at stage k.

(v) A function fk : X × U1
k × · · · × UNk → X, defined for each k ∈ K, so that

xk+1 = fk(xk, u1
k, . . . ,u

N
k ), k ∈ K (i)

for some x1 ∈ X which is called the initial state of the game. The difference equation (i)

is called the state equation of the dynamic game, describing the evolution of the underlying

decision process.

(vi) A set Y i
k with some topological structure, defined for each k ∈ K and i ∈ N , and called the

observation set of Pi at stage k, to which the observation yik of Pi belongs at stage k.

25Also known as an “N -person deterministic multi-stage game.”
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(vii) A function hik : X → Y i
k , defined for each k ∈ K and i ∈ N , so that

yik = hik(xk), k ∈ K, i ∈ N ,

which is the state-measurement (-observation) equation of Pi concerning the value of xk.

(viii) A finite set ηik, defined for each k ∈ K and i ∈ N as a subcollection of

{y1
1, . . . ,y

1
k; y

2
1, . . . ,y

2
k; . . . ; y

N
1 , . . . ,y

N
k ;u1

1, . . . ,u
1
k−1;u2

1, . . . , u
2
k−1; . . . ;uN1 , . . . ,u

1
k−1}, which de-

termines the information gained and recalled by Pi at stage k of the game. Specification of

ηik for all k ∈ K characterizes the information structure (pattern) of Pi, and the collection

(over i ∈ N ) of these information structures is the information structure of the game.

(ix) A set N i
k, defined for each k ∈ K and i ∈ N as an appropriate subset of {(Y 1

1 × · · · × Y 1
k )×

· · · × (Y N
1 × · × Y N

k )× (U1
1 × · · · ×U1

k−1) × · · · × (UN1 × · · · ×UNk−1)}, compatible with ηik. N i
k

is called the information space of Pi at stage k, induced by his information ηik.

(x) A prespecified class Γik of mappings γik : N i
k → U ik which are the permissible strategies of Pi at

stage k. The aggregate mapping γi = {γi1, γi2, . . . ,γiK} is a strategy for Pi in the game, and

the class Γi of all such mappings γi so that γik ∈ Γik, k ∈ K, is the strategy set (space) of Pi.

(xi) A functional Li : (X×U1
1×· · ·×UN1 )×(X×U1

2×· · ·×UN2 ) × · · ·×(X×U1
K×, . . . ,×UNK )→ IR

defined for each i ∈ N , and called the cost functional of Pi in the game of fixed duration. �

The preceding definition of a deterministic discrete-time infinite dynamic game is clearly not

the most general one that could be given, first because the duration of the game need not be fixed,

but be a variant of the players’ strategies, and second because a “quantitative” measure might not

exist to reflect the preferences of the players among different alternatives. In other words, it is

possible to relax and/or modify the restrictions imposed by items (ii) and (xi) in Definition 17,

and still retain the essential features of a dynamic game. A relaxation of the requirement of (ii)

would involve introduction of a termination set Λ ⊂ X × {1, 2, . . .}, in which case we say that the

game terminates, for a given N -tuple of strategies, at stage k, if k is the smallest integer for which

(xk, k) ∈ Λ.26 Such a more general formulation clearly also covers fixed duration game problems in
26It is, of course, implicit here that xk is determined by the given N -tuple of strategies, and the strategies are

defined as in Definition 17, but by taking K sufficiently large.
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which case Λ = X×{K} where K denotes the number of stages involved. A modification of (xi), on

the other hand, might for instance involve a “qualitative” measure (instead of the “quantitative”

measure induced by the cost functional), thus giving rise to the so-called qualitative games (as

opposed to “quantitative games ” covered by Definition 17). Any qualitative game (also called

game of kind) can, however, be formulated as a quantitative game (also known as game of degree)

by assigning a fixed cost of zero to paths and strategies leading to preferred states, and positive

cost to the remaining paths and strategies. For example, in a two-player game, if P1 wishes to

reach a certain subset Λ of the state set X after K stages and P2 wishes to avoid it, we can choose

L1 =

{
0 if xK+1 ∈ Λ
1 otherwise

, L1 =

{
0 if xK+1 ∈ Λ
−1 otherwise

and thus consider it as a zero-sum quantitative game.

Now, returning to Definition 17, we note that it corresponds to an extensive form description

of a dynamic game, since the evolution of the game, the information gains and exchanges of the

players throughout the decision process, and the interactions of the players among themselves

are explicitly displayed in such a formulation. It is, of course, also possible to give a normal

form description of such a dynamic game, which in fact readily follows from Definition 17. More

specifically, for each fixed initial state x1 and for each fixed N -tuple permissible strategies {γi ∈

Γi; i ∈ N} the extensive form description leads to a unique set of vectors {uik ≡ γik(η
i
k), xk+1; i ∈

N , k ∈ K} because of the causal nature of the information structure and because the state evolves

according to a difference equation. Then, substitution of these quantities into Li(i ∈ N ) clearly

leads to a unique N -tuple of numbers reflecting the corresponding costs to the players. This

further implies existence of a composite mapping J i : Γ1 × · · · × ΓN → IR, for each i ∈ N , which

is also known as the cost functional of Pi (i ∈ N ). Hence, the permissible strategy spaces of the

players (i.e. Γ1, . . . ,ΓN ) together with these cost functions (J1, . . . ,JN ) constitute the normal form

description of the dynamic game for each fixed initial state vector x1.

It should be noted that, under the normal form description, there is no essential difference

between infinite discrete-time dynamic games and finite games (the complex structure of the former

being disguised in the strategy spaces and the cost functionals), and this permits us to adopt all

the noncooperative equilibrium solution concepts (SPE, NE, SES) introduced earlierdirectly in the

present framework.
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Before concluding our discussion on the ingredients of a discrete-time dynamic game as presented

in Definition 17 we now finally classify possible information structures that will be encountered in

the following chapters, and also introduce a specific class of cost functions — the so-called stage-

additive cost functions.

Definition 18 In an N -person discrete-time deterministic dynamic game of prespecified fixed du-

ration, we say that Pi’s information structure is

(i) open-loop (OL) pattern if ηik = {x1}, k ∈ K,

(ii) closed-loop perfect state information (CLPS) pattern if ηik = {x1, . . . ,xk}, k ∈ K,

(iii) closed-loop imperfect state information (CLIS) pattern if ηik = {yi1, . . . ,yik}, k ∈ K,

(iv) memoryless perfect state information (MPS) pattern if ηik = {x1, xk}, k ∈ K,

(v) feedback (perfect state) information (FB) pattern if ηik = {xk}, k ∈ K,

(vi) feedback imperfect state information (FIS) pattern if ηik = {yik}, k ∈ K,

(vii) one-step delayed CLPS (1DCLPS) pattern if ηik = {xi, . . . ,xk−1}, k ∈ K, k 6= 1,

(viii) one-step delayed observation sharing (1DOS) pattern if ηik = {y1, . . . ,yk−1, y
i
k}, k ∈ K, where

yj
∆= {y1

j , y
2
j , . . . ,y

N
j }. �

Definition 19 In an N -person discrete-time deterministic dynamic game of prespecified fixed

duration (i.e. K stages), Pi’s cost functional is said to be stage-additive if there exist gik :

X ×X × U1
k × · · · × UNk → IR, (k ∈ K) so that

Li(u1, . . . ,uN ) =
K∑
k=1

gik(xk+1, u
1
k, . . . ,u

N
k , xk), (69)

where

uj = (uj1
′
, . . . ,ujK

′
)′.

Furthermore, if Li(u1, . . . ,uN ) depends only on xK+1 (the terminal state), then we call it a terminal

cost functional. �
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Remark 10 It should be noted that every stage-additive cost functional can be converted into a

terminal cost functional, by introducing an additional variable zk (k ∈ K) through the recursive

relation

zk+1 = zk + gk(fk(xk, u1
k, . . . ,u

N
k ), u1

k, . . . ,u
N
k , xk), z1 = 0,

and by adjoining zk to the state vector xk as the last component. Denoting the new state vector

as x̃k
∆= (x′k, zk)

′, the stage-additive cost functional (69) can then be written as

Li(u1, . . . ,uN ) = (0, . . . ,0, 1)x̃K+1

which is a terminal cost functional. �

11.2 Informational non-uniqueness

This section is devoted to an elaboration on the occurrence of “informationally nonunique” Nash

equilibria in discrete-time dynamic games, and to a general discussion on the interplay between in-

formation patterns and existence-uniqueness properties of noncooperative equilibria in such games.

First, we consider, in some detail, a scalar three-person dynamic game which admits uncountably

many Nash equilibria, and which features several important properties of infinite dynamic games.

Then, we discuss these properties in a general context.

Consider a scalar three-person two-stage linear-quadratic dynamic game in which each player

acts only once. The state equation is given by

x3 = x2 + u1 + u2; x2 = x1 + u3, (70)

and the cost functionals are defined as

L1 = (x3) + (u1)2; L2 = −L3 = −(x3)2 + 2(u2)2 − (u3)2. (71)

In this formulation, ui is the scalar unconstrained control variable of Pi (i = 1, 2, 3), and x1 is

the initial state whose value is known to all players. P1 and P2, who act at stage 2, have also

access to the value of x2 (i.e. the underlying information pattern is CLPS (or, equivalently, MPS)

for both P1 and P2), and their permissible strategies are taken as twice continuously differentiable

mappings from IR× IR into IR. A permissible strategy for P3, on the other hand, is any measurable
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mapping from IR into IR. This, then, completes description of the strategy spaces Γ1, Γ2 and Γ2

(for P1, P2 and P3, respectively), where we suppress the subindices denoting the corresponding

stages since each player acts only once.

Now, let {γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3} denote any noncooperative (Nash) equilibrium solution

for this three-person nonzero-sum dynamic game. Since Li is strictly convex in ui (i = 1, 2), a set

of necessary and sufficient conditions for γ1 and γ2 to be in equilibrium (with γ3 ∈ Γ3 fixed) is

obtained by differentiation of Li with respect to ui (i = 1, 2), thus leading to

x̄2(γ3) + 2γ1(x̄2, x1) + γ2(x̄2, x1) = 0

−x̄2(γ3)− γ1(x̄2, x1) + γ2(x̄2, x1) = 0

where

x̄2
∆= x̄2(γ3) = x1 + γ3(x1).

Solving for γ1(x̄2, x1) and γ2(x̄2, x1) from the foregoing pair of equations, we obtain

γ1(x̄2, x1) = −2
3
x̄2 (72)

γ2(x̄2, x1) =
1
3
x̄2 (73)

which are the side conditions on the equilibrium strategies γ1 and γ2, and which depend on the

equilibrium strategy γ3 of P3. Besides these side conditions, the Nash equilibrium strategies of

P1 and P2 have no other natural constraints imposed on them. To put it in other words, every

Nash equilibrium strategy for P1 will be a closed-loop representation of the open-loop value (72),

and every Nash equilibrium strategy for P2 will be a closed-loop representation of (73).

To complete the solution of the problem, we now proceed to stage one. Since {γ1, γ2, γ3}

constitutes an equilibrium triple, with {u1 = γ1(x2, x1), u2 = γ2(x2, x1)} substituted into L3 the

resulting cost functional of P3 (denoted as L̃3) should attain a minimum at u3 = γ3(x1); and

since γ1 and γ2 are twice continuously differentiable in their arguments, this requirement can be

expressed in terms of the relations

d

du3
L̃3(γ3(x1)) = x3(1 + γ1

x2
+ γ2

x2
)− 2γ2

x2
γ2 + γ3(x1) = 0
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d2

(du3)2
L̃3(γ3(x1)) = (1 + γ1

x2
+ γ2

x2
)2 + x3(γ1

x2x2
+ γ2

x2x2
)− 2(γ2

x2
)2

−2γ2
x2x2

γ2 + 1 > 027

where we have suppressed the arguments of the strategies. Now, by utilizing the side conditions

(72)-(73) in the above set of relations, we arrive at a simpler set of relations which are, respectively,

2
3

[x1 + γ3(x1)][1 + γ1
x2

(x̄2, x1)] + γ3(x1) = 0 (74)

[1 + γ1
x2

(x̄2, x1) + γ2
x2

(x̄2, x1)]2 − 2
3
x̄2γ

1
x2x2

(x̄2, x1)− 2[γ2
x2

(x̄2, x1)]2 + 1 > 0, (75)

where x̄2 is again defined as

x̄2 = x1 + γ3(x1). (76)

These are the relations which should be satisfied by an equilibrium triple, in addition to (72) and

(73). The following proposition summarizes the result.

Proposition 14 Any triple {γ1∗ ∈ Γ1, γ2∗ ∈ Γ2, γ3∗ ∈ Γ3} that satisfies (72)-(73) and (74)-(75),

and also possesses the additional feature that (74) with γ1 = γ1∗ and γ2 = γ∗2 admits a unique

solution γ3 = γ3∗, constitutes a Nash equilibrium solution for the nonzero-sum dynamic game

described by (70)-(71).

Proof This result follows from the derivation outlined prior to the statement of the proposi-

tion. Uniqueness of the solution of (74) for each pair {γ1∗, γ2∗} is imposed in order to insure that

the resulting γ3∗ is indeed a globally minimizing solution for L̃3. �

We now claim that there exists an uncountable number of triplets that satisfy the requirements

of Proposition 14. To justify this claim, and to obtain a set of explicit solutions, we consider the

class of γ1 and γ2 described as

γ1(x2, x1) = = −2
3
x2 + p[x2 − x̄2(γ3)]

γ2(x2, x1) = =
1
3
x2 + q[x2 − x̄2(γ3)],

27Here, we could of course also have nonstrict inequality (i.e. ≥) in which case we also have to look at higher-order
derivatives of L̃3. We avoid this by restricting our analysis at the outset only to those equilibrium triples {γ1, γ2, γ3}
which lead to an L̃3 that is locally strictly convex at the solution point.
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where p and q are free parameters. These structural forms for γ1 and γ2 clearly satisfy the side

conditions (72) and (73), respectively. With these choices, (74) can be solved uniquely (for each p,

q) to give

γ3(x1) = −[(2 + 6p)/(11 + 6p)]x1, p 6= −11/6,

with the existence condition (75) reading(
2
3

+ p

)2

+ 2pq − q2 +
7
9
> 0. (77)

The scalar x̄2 is then given by

x̄2 = [9/(11 + 6p)]x1.

Hence,

Proposition 15 The set of strategies

γ1∗(x2, x1) = −2
3
x2 + p{x2 − [9/(11 + 6p)]x1}

γ2∗(x2, x1) =
1
3
x2 + q{x2 − [9/(11 + 6p)]x1}

γ3∗(x1) = −[(2 + 6p)/(11 + 6p)]x1

constitutes a Nash equilibrium solution for the dynamic game described by (70)-(71), for all values

of the parameters p and q satisfying (77) and with p 6= −11/6. The corresponding equilibrium costs

of the players are

J1∗ = 2[6/(11 + 6p)]2(x1)2

J2∗ = −J3∗ = −[(22 + 24p+ 36p2)/(11 + 6p)2](x1)2.

�

Several remarks and observations are in order here, concerning the Nash equilibrium solutions

presented above.

(1) The nonzero-sum dynamic game of this section admits uncountably many Nash equilibrium

solutions, each one leading to a different equilibrium cost triple.
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(2) Within the class of linear strategies, Proposition 15 provides the complete solution to the

problem, which is parametrized by p and q.

(3) The equilibrium strategy of P3, as well as the equilibrium cost values of all three players,

depend only on p (not on q), whereas the existence condition (77) involves both p and q.

There is indeed an explanation for this: the equilibrium strategies of P1 and P2 are in fact

representations of the open-loop values (72)-(73) on appropriate trajectories. By choosing a

specific representation of (72), P1 influences the cost functional of P3 and thereby the opti-

mization problem faced by him. Hence, for each different representation of (72), P3 ends up,

in general, with a different solution to his minimization problem, which directly contributes

to nonuniqueness of Nash equilibria. For P2, on the other hand, even though he may act

analogously—i.e. choose different representations of (73)—these different representations do

not lead to different minimizing solutions for P3 (but instead affect only the existence of a

minimizing solution) since L2 ≡ −L3, i.e. P2 and P3 have completely conflicting goals (see

the next remark for further clarification). Consequently, γ3∗(x1) is independent of q, but the

existence condition explicitly depends upon q. (This is true also for nonlinear representations,

as it can be seen from (74) and (75).)

(4) If P1 has access to only x2 (and not to x1), then, necessarily, p = 0, and both P1 and P3

have unique equilibrium strategies which are {γ1∗(x2) = −2
3x2, γ

3∗(x1) = −(2/11)x1}. (This

is true also within the class of nonlinear strategies.) Furthermore, the equilibrium cost values

are also unique (simply set p = 0 in J i∗, i = 1, 2, 3, in Proposition 15). However, the existence

condition (77) still depends on q, since it now reduces to q2 < 11/9. The reason for this is that

P2 has still the freedom of employing different representations of (73), which affects existence

of the equilibrium solution but not the actual equilibrium state trajectory, since P2 and

P3 are basically playing a zero-sum game (in which case the equilibrium (i.e. saddle-point)

solutions are interchangeable).

(5) By setting p = q = 0 in Proposition 15, we obtain the unique feedback Nash equilibrium

solution of the dynamic game under consideration (which exists since p = 0 6= 11/6, and (77)

is satisfied).

(6) Among the uncountable number of Nash equilibrium solutions presented in Proposition 15,

77



there exists a subsequence of strategies which brings P1’s Nash cost arbitrarily close to zero

which is the lowest possible value L1 can attain. Note, however, that the corresponding cost

for P3 approaches (x1)2 which is unfavorable to him.

Before concluding this section, it is worthy to note that the linear equilibrium solutions presented

in Proposition 15 are not the only ones that the dynamic game under consideration admits, since

(74) will also admit nonlinear solutions. To obtain an explicit nonlinear equilibrium solution, we

may start with a nonlinear representation of (72), for instance

γ1(x2, x1) = −2
3
x2 + p[x2 − x̄2(γ3)]2,

substitute it into (74), and solve for a corresponding γ3(x1), checking at the same time satisfaction

of the second order condition (75). Such a derivation (of nonlinear Nash solutions in a linear-

quadratic game) can be found in [46].

We had already seen appearance of “informationally non-unique” Nash equilibria in finite multi-

act nonzero-sum dynamic games, which was mainly due to the fact that an increase in information

to one or more players leaves the Nash equilibrium obtained under the original information pattern

unchanged, but it also creates new equilibria (cf. Proposition 5). In infinite games, the underlying

reason for occurrence of informationally non-unique Nash equilibria is essentially the same (though

much more intricate), and a counterpart of Proposition 5 can be verified. Toward this end we first

introduce the notion of “informational inferior” in such dynamic games.

Definition 20 Let I and II be two N -person K-stage infinite dynamic games which admit precisely

the same extensive form description except the underlying information structure (and, of course,

also the strategy spaces whose descriptions depend on the information structure. Let ηiI (respectively,

ηiII) denote the information pattern of Pi in the game I (respectively, II), and let the inclusion

relation ηiI ⊆ ηiII imply that whatever Pi knows at each stage of game I he also knows at the

corresponding stages of game II, but not necessarily vice versa. Then, I is informationally inferior

to II if ηiI ⊆ ηiII for all i ∈ N , with strict inclusion for at least one i. �

Proposition 16 Let I and II be two N -person K-stage infinite dynamic games as introduced in

Definition 20, so that I is informationally inferior to II. Furthermore, let the strategy spaces of the
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players in the two games be compatible with the given information patterns and the constraints (if

any) imposed on the controls, so that ηiI ⊆ ηiII implies ΓiI ⊆ ΓiII, i ∈ N . Then,

(i) any Nash equilibrium solution for I is also a Nash equilibrium solution for II,

(ii) if {γ1, . . . ,γN} is a Nash equilibrium solution for II such that γi ∈ ΓiI for all i ∈ N , then it is

also a Nash equilibrium solution for I.

Proof Let {γi∗; i ∈ N} constitute a Nash equilibrium solution for I. Then, by definition,

J1(γ1∗, γ2∗, . . . ,γN∗) ≤ J1(γ1, γ2∗, . . . ,γN∗), ∀γ1 ∈ Γ1
I ;

therefore, P1 minimizes J1(·, γ2∗, . . . ,γN∗) over Γ1
I , with the corresponding solution being γ1∗ ∈ Γ1

I .

Now consider minimization of the same expression over Γ1
II (⊇ Γ1

I ) which reflects an increase

in deterministic information concerning the values of state. But, since we have a deterministic

optimization problem, the minimum value of J1(γ1, γ2∗, . . . ,γN∗) does not change with an increase

in information. Hence,

min
γ1∈Γ1

II

J1(γ1, γ2∗, γN∗) = J1(γ1∗, γ2∗, . . . ,γN∗);

and furthermore since γ1∗ ∈ Γ1
II we have the inequality

J1(γ1∗, γ2∗, . . . ,γN∗) ≤ J1(γ1, γ2∗, . . . ,γN∗), ∀γ1 ∈ Γ1
II.

Since P1 was an arbitrary player in this discussion, it follows in general that

J i(γ1∗, . . . ,γi∗, . . . ,γN∗) ≤ J i(γ1∗, . . . ,γi−1∗, γi, γi+1∗, . . . ,γN∗)

∀γi ∈ ΓiII (i ∈ N )

which verifies (i) of Proposition 16. Proof of (ii) is along similar lines. �

Since there corresponds at least one informationally inferior game (viz. a game with an open-

loop information structure) to every multi-stage game with CLPS information, the foregoing result

clearly provides one set of reasons for existence of “informationally non-unique” Nash equilibria

in infinite dynamic games (as Proposition 5 did for finite dynamic games). However, this is not

yet the whole story, as it does not explain occurrence of uncountably many equilibria in such
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games. What is really responsible for this is the existence of uncountably many representations of

a strategy under dynamic information. To elucidate somewhat further, consider the scalar three-

person dynamic game of this section. We have already seen that, for each fixed equilibrium strategy

γ3 of P3, the equilibrium strategies of P1 and P2 have unique open-loop values given by (72) and

(73), respectively, but they are otherwise free. We also know that there exist infinitely many closed-

loop representations of such open-loop policies [1]; and since each one has a different structure, this

leads to infinitely many equilibrium strategies for P3, and consequently to a plethora of Nash

equilibria.

11.3 Open-loop and closed-loop feedback NE

The message of the previous section was that in formulating dynamic games and seeking NE

for them, one has to make sure that informational non-uniqueness is avoided, particularly the

occurrence of infinitely many NE. One way of doing that would be to disallow the players to receive

dynamic information (such as state information) correlated with the actions of the players in the

past; the open-loop (OL) information structure does that, but in many applications it may be too

restrictive. Another way would be to refine the concept of NE in the spirit of the perfectness concept

of Lecture 5. This could be done by perturbing the state dynamics by a sequence of independent

random variables having full support probability measures on the state space, obtaining the NE

of the resulting stochastic nonzero-sum dynamic game (NZSDG), then letting the intensity of the

stochastic perturbations vanish, and see which of the infinitely many NE would survive this process.

The resulting NE of the NZSDG would be the perfect one, which is also called robust. If all players

have access to perfect state information, including memory, then another refinement would be to

require that the NE of the original NZSDG also constitutes NE to any forward time-truncated

one; such a NE is called a strongly time consistent one or one that is sub-game perfect. For this

closed-loop information structure, robustness to vanishing stochastic perturbations actually leads

to sub-game perfectness, and the resulting NE is called closed-loop feedback (CLFB). Strong time

consistency captures here the property that if at any point in time any one of the players does not

play according to the stipulated NE, the strategies are still in NE for the remaining portion of the

game. A NE in general does not have such a strong property; it is only weakly time consistent,

meaning that at any point in time, as long as the players have stuck by their NE policies in the
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past, there is no incentive for them to change their policies for the future [51].

In this section, we discuss the derivation of OL and CLFB NE for the class of NZSDGs formu-

lated earlier in the Lecture. The former is weakly time consistent, whereas the latter is strongly

time consistent.

11.3.1 Open-loop Nash equilibrium

One method of obtaining the OL NE solution(s) of the class of discrete-time games formulated is to

view them as static infinite games and directly apply the results of Lecture 7. Toward this end we

first note that it is possible to express Li solely as functions of {uj ; j ∈ N} and the initial state x1

whose value is known a priori, where uj is defined as the aggregate control vector (uj
′

1 , u
j′

2 , . . . ,u
j′

K)′.

This then implies that, to every given set of functions {fk, gik; k ∈ K}, there corresponds a unique

function L̃i : X ×U1× · · · ×UN → IR, which is the cost functional of Pi, i ∈ N. Here, U j denotes

the aggregate control set of Pj, compatible with the requirement that if uj ∈ U j then ujk ∈ U
j
k ,

∀k ∈ K, and the foregoing construction leads to a normal form description of the original game,

which is no different from the class of infinite games treated in Lecture 7. Therefore, to obtain the

open-loop Nash equilibria, we simply have to minimize L̃i(x1, u
1, . . . ,ui−1, ·, ui+1, . . . ,uN ) over U i,

for each i ∈ N, and then determine the intersection point(s) of the resulting reaction curves. In

particular, if L̃i(x1, u
1, . . . ,uN ) is continuous on U1× · · · ×UN , strictly convex in ui, and further if

U i are closed, bounded and convex, an open-loop Nash equilibrium (in pure strategies) exists.

Such an approach can sometimes lead to quite unwieldy expressions, especially if the number

of stages in the game is large. An alternative derivation which partly removes this difficulty is the

one that utilizes techniques of optimal control theory, by making explicit use of the stage-additive

nature of the cost functionals and the specific structure of the extensive form description of the

game, as provided by the state equation. There is in fact a close relationship between derivation

of OL NE and the problem of solving (jointly) N optimal control problems, which can readily be

observed from the inequalities defining the NE since each one of them describes an optimal control

problem whose structure is not affected by the remaining players control vectors. Exploring this

relationship a little further, we arrive at the following result.

Theorem 8 For an N -person discrete-time infinite dynamic game, let

(i) fk(·, u1
k, . . . ,u

N
k ) be continuously differentiable on IRn (k ∈ K)
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(ii) gik(·, u1
k, . . . ,u

N
k , ·) be continuously differentiable on IRn × IRn (k ∈ K, i ∈ N).

Then, if {γi∗(x1) = ui∗; i ∈ N} provides an open-loop Nash equilibrium solution and {x∗k+1; k ∈ K}

is the corresponding state trajectory, there exists a finite sequence of n-dimensional (costate) vectors

{pi2, . . . ,piK+1} for each i ∈ N such that the following relations are satisfied:

x∗k+1 = fk(x∗k, u
1∗
k , . . . ,u

N∗
k ), x∗1 = x1 (78)

γi∗k (x1) ≡ arg min
ui
k
∈U i

k

H i
k(p

i
k+1, u

1∗
k , . . . ,u

i−1∗
k , uik, u

i+1∗
k , . . . ,uN∗k , x∗k) (79)

pik =
∂

∂xk
fk(x∗k, u

1∗
k , . . . ,u

N∗
k )′

[
pik+1 +

(
∂

∂xk+1
gik(x

∗
k+1, u

1∗
k , . . . ,

uN∗k , x∗k

)′]
+
[
∂

∂xk
gik(x

∗
k+1, u

1∗
k , . . . ,u

N∗
k , x∗k)

]′
;

piK+1 = 0, i ∈ N, k ∈ K,

(80)

where

H i
k(pk+1, u

1
k, . . . ,u

N
k , xk)

∆= gik(fk(xk, u
1
k, . . . ,u

N
k ), u1

k, . . . ,u
N
k , xk)

+pi
′
k+1fk(xk, u

1
k, . . . ,u

N
k ); k ∈ K, i ∈ N.

(81)

Every such Nash equilibrium solution is weakly time consistent.

Proof Consider the NE inequality for Pi, which says that γi∗(x1) ≡ ui∗ minimizes

Li(u1∗, . . . ,ui−1∗, ui, ui+1∗, . . . ,uN∗) over U i subject to the state equation

xk+1 = fk(xk, u1∗
k , . . . ,u

i−1∗
k , uik, u

i+1∗
k , . . . ,uN∗k ), k ∈ K.

But this is a standard optimal control problem for Pi since uj∗ (j ∈ K, j 6= i) are open-loop controls

and hence do not depend on ui. The result, then, follows directly from the minimum principle for

discrete-time control systems [27]. �

Theorem 8 thus provides a set of necessary conditions (solvability of a set of coupled two-point

boundary value problems) for the OL NE solution to satisfy; in other words, it produces candidate

equilibrium solutions. In principle, one has to determine all solutions of this set of equations and

further investigate which of these candidate solutions satisfy the original set of NE inequalities.

If some further restrictions are imposed on fk and gik (i ∈ N, k ∈ K) so that the resulting cost

functional L̃i (defined earlier, in this subsection) is convex in ui for all uj ∈ U j , j 6= i, j ∈ K,
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the latter phase of verification can clearly be eliminated, since then every solution set of (78)-(80)

constitutes an OL NE solution. A specific class of problems for which this can be done, and the

conditions involved expressed explicitly in terms of the parameters of the game, is the class of

so-called “affine-quadratic” games which we first formally introduce below.

Definition 21 An N -person discrete-time infinite dynamic game is of the affine-quadratic type if

U ik = IRm
i (i ∈ N, k ∈ K), and 28

fk(xk+1, u
1
k, . . . ,u

N
k ) = Akxk +

∑
i∈N

biku
i
k + ck (82)

gik(xk+1, u
1
k, . . . ,u

N
k , xk) =

1
2

x′k+1Q
i
k+1xk+1 +

∑
j∈N

uj
′

k R
ij
k u

j
k

 (83)

where Ak, Bk, Qik+1 Rijk are matrices of appropriate dimensions, Qik+1 is symmetric, Riik > 0,

ck ∈ IRn is a fixed vector sequence, and k ∈ K, i ∈ N.

An affine-quadratic game is of the linear quadratic type if ck ≡ 0. �

Theorem 9 For an N -person affine-quadratic dynamic game with Qik+1 ≥ 0 (i ∈ N, k ∈ K), let

Λk, M i
k+1 (k ∈ K, i ∈ N) be appropriate dimensional matrices defined by

Λk = I +
∑
i∈N

Bi
k[R

ii
k ]−1Bi′

kM
i
k+1 (84)

M i
k = Qik +A′kM

i
k+1Λ−1

k Ak; M i
K+1 = QiK+1. (85)

If the matrices Λk (k ∈ K), thus recursively defined, are invertible, the game admits a unique OL

NE solution given by

γi∗k (x1) ≡ ui∗k = −[Riik ]−1Bi′
k [M i

k+1Λ−1
k Akx

∗
k + ξik], (k ∈ K, i ∈ N) (86)

where {x∗k+1; k ∈ K} is the associated state trajectory determined from

x∗k+1 = Λ−1
k [Akx∗k + ηk]; x∗1 = x1, (87)

28The stagewise cost functions gik can also to be taken to depend on xk instead of xk+1, but we prefer here the
present structure (without any loss of generality) for convenience in the analysis to follow.
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and ξik, ηk are defined by

ξik = M i
k+1Λ−1

k ηk +mi
k+1 , (88)

ηk = ck −
∑
j∈N

Bi
k[R

ii
k ]−1Bi′

km
i
k+1 , (89)

with mi
k recursively generated by

mi
k = A

′
k[m

i
k+1 +M i

k+1Λ−1
k ηk] , mi

K+1 = 0, i ∈ N, k ∈ K. (90)

Proof Since Qk+1 ≥ 0, Riik > 0, L̃i(x1, u
1, . . . ,uN ) is a strictly convex function of ui for all

uj ∈ IRmjK (j 6= i, j ∈ N) and for all x1 ∈ IRn. Therefore, every solution set of (78)-(80) provides

an OL NE. Hence, the proof will be completed if we can show that (86) is the only candidate

solution. First note that

H i
k =

1
2

Akxk + ck +
∑
j∈N

Bj
ku

j
k

′Qik+1

Akxk + ck +
∑
j∈N

Bj
ku

j
k


+

1
2

∑
j∈N

uj
′

k R
ij
k u

j
k + pi

′
k+1

Akxk + ck +
∑
j∈N

Bj
ku

j
k

 ,
and since Qik+1 ≥ 0, Riik > 0, minimization of this “Hamiltonian” over uik ∈ IRmi yields the unique

relation

ui∗k = −[Riik ]−1Bi′
k [pik+1 +Qik+1x

∗
k+1], (i)

where

x∗k+1 = Akx
∗
k + ck +

∑
i∈N

Bi
ku

i∗
k ; x∗1 = x1. (ii)

Furthermore, the costate (difference) equation in (80) reads

pik = A′k[p
i
k+1 +Qik+1x

∗
k+1]; piK+1 = 0. (iii)

Let us start with k = K, in which case (i) becomes

ui∗K = −[RiiK ]−1Bi′
KM

i
K+1x

∗
K+1, (iv)

and if both sides are first premultiplied by Bi
K and then summed over i ∈ N we obtain, by also

making use of (ii) and (84),

x∗K+1 −AKx∗K = (I − ΛK)x∗K+1 + cK
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which further yields the unique relation

x∗K+1 = Λ−1
K [AKx∗K + cK ]

which is precisely (87) for k = K. Substitution of this relation into (iv) then leads to (86) for

k = K.

We now prove by induction that the unique solution set of (i)-(iii) is given by (86)-(87) and

pik = A
′
k[M

i
k+1x

∗
k+1 +mi

k+1] (i ∈ N, k ∈ K). Let us assume that this is true for k = l + 1 (already

verified for l = K − 1) and prove its validity for k = l.

First, using the solution pil+1 = A
′
l+1[M i

l+2x
∗
l+2 + mi

l+2] in (i) with k = l, we obtain, after

several algebraic manipulations,

ui∗l = −[Riil ]−1Bi′
l [M i

l+1x
∗
l+1m

i
l+1]. (v)

Again, premultiplying this expression by Bi
l , and summing it over i ∈ N leads to, also in view of

(ii), (84), and (89),

x∗l+1 = Λ−1
l [Alx∗l + ηl]

which is (87). If this relation is used in (v), we obtain the unique control vectors (86), for k = l,

and if it is further used in (iii) we obtain, in view of (90),

pil = A′l[M
i
l+1x

∗
l+1 +mi

l+1] .

This then closes the induction argument, and thereby completes the proof of the theorem. �

Remark 11 An alternative derivation for the OL NE solution of the affine-quadratic game is

(as discussed earlier in this subsection in a general context) to convert it into a standard static

quadratic game and then to make use of the available results on such games (cf. Proposition 13).

By backward recursive substitution of the state vector from the state equation into the quadratic

cost functionals, it is possible to bring the cost functional of Pi into the structural form as given by

(44), which further is strictly convex in ui = (ui
′

1 , . . . ,u
i′
K)′ because of assumptions Qik ≥ 0, Riik > 0,

(k ∈ K).29 Consequently, each player has a unique reaction curve, and the condition for existence

29The condition Qik+1 ≥ 0 is clearly sufficient (along with Riik > 0) to make L̃i strictly convex in ui, but is by no
means necessary. It can be replaced by weaker conditions (which ensure convexity) under which the statements of
Theorem 9 and this remark are still valid; for details, see [1].
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of a unique NE becomes equivalent to the condition for unique intersection of these reaction curves

(cf. Proposition 12). The existence condition of Theorem 9, i.e. nonsingularity of Λk, (k ∈ K), is

precisely that condition, but expressed in a different (more convenient, recursive) form. �

11.3.2 Closed-loop feedback Nash equilibrium

The imposition of sub-game perfectness or strong time consistency for NE solution directly leads to

a recursive derivation which involves solutions of static N -person nonzero-sum games at every stage

of the dynamic game. As a direct consequence of sub-game perfectnes, the feedback equilibrium

solution depends only on xk at stage k, and dependence on x1 is only at stage k = 1.30 By utilizing

these properties, we readily arrive at the following theorem.

Theorem 10 For an N -person discrete-time infinite dynamic game, the set of strategies

{γ1∗
k (xk); k ∈ K, i ∈ N} provides a feedback Nash equilibrium solution if, and only if, there exist

functions V i(k, ·): IRn → IR, k ∈ K, i ∈ N, such that the following recursive relations are satisfied:

V i(k, x) = minui
k
∈Ui

k
gik(f̃

i∗
k (x, uik), γ

1∗
k (x), . . . ,γi−1∗

k (x), uik, γ
i+1∗
k (x)

. . . , γN∗k (x), x) + V i(k + 1, f̃ i∗k (x, uik)]

= gik(f̃
i∗
k (x, γi∗k (x)), γ1∗

k (x), . . . ,γN∗k (x), x)
+V i(k + 1, f̃ i∗k (x, γi∗k (x)); V i(K + 1, x) = 0, i ∈ N,

(91)

where

f̃ i∗k (x, uik)
∆= fk(x, γ1∗

k (x), . . . ,γi−1∗
k (x), uik, γ

i+1∗
k (x), . . . ,γN∗k (x)).

Every such equilibrium solution is strongly time consistent, and the corresponding Nash equilibrium

cost for Pi is V i(1, x1).

Proof Let us start with the truncated game which has only one stage to go. Since we are

looking for a NE for that game which is valid for all γik ∈ Γik, i ∈ N, k ≤ K − 1, this necessarily

implies that the NE property will have to hold for all values of state xk which are reachable by

utilization of some combination of these strategies. Let us denote that subset of IRn by XK . Then,

the corresponding set of Nash inequalities becomes equivalent to the problem of seeking Nash

equilibria of an N -person static game with cost functionals

giK(fK(xK , u1
K , . . . ,u

N
K), u1

K , . . . ,u
N
K , xK), i ∈ N, (i)

30This statement is valid also under the “closed-loop perfect state” information pattern. Note that the feedback
equilibrium solution retains its equilibrium property also under the feedback information pattern.
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which should be valid for all xK ∈ XK . This is precisely what (91) says for k = K, with a set of

associated Nash equilibrium controls denoted by {γi∗K(xK); i ∈ N} since they depend explicitly on

xK ∈ XK , but not on the past values of the state (including the initial state x1). Now, with these

strategies substituted into (i), and looking into a 2-stage truncated game, a similar argument (as

above) leads to the conclusion that we now have to solve a static Nash game with cost functionals

V i(K,xK) + giK−1(xK , u1
K−1, . . . ,u

N
K−1, xK−1), i ∈ N,

where

xK = fK−1(xK−1, u
1
K−1, . . . ,u

N
K−1),

and the Nash solution has to be valid for all xK−1 ∈ XK−1 (where XK−1 is the counterpart

of XK at stage k = K − 1). Here again, we observe that the Nash equilibrium controls can

only be functions of xK−1, and (91) with k = K − 1 provides a set of necessary and sufficient

conditions for {γi∗K−1(xK−1): i ∈ N} to solve this static Nash game. The theorem then follows

from a standard induction argument. Note that the “strong time consistency” property of the

feedback Nash equilibrium, and the expression for the corresponding cost for each player, are direct

consequences of the recursive nature of the construction of the solution. �

The following corollary, which is the counterpart of Theorem 9 in the case of feedback Nash

equilibrium, now follows as a special case of Theorem 10.

Preliminary Notation for Corollary 11.1. Let P ik (i ∈ N, k ∈ K) be appropriate dimen-

sional matrices satisfying the set of linear matrix equations

[Riik +Bi′
kZ

i
k+1B

i
k]P

i
k +Bi′

kZ
i
k+1

∑
j∈N
j 6=i

Bj
kP

j
k = Bi′

kZ
i
k+1Ak, i ∈ N, (92)

where Zik (i ∈ N) are obtained recursively from

Zik = F ′kZ
i
k+1Fk +

∑
j∈N

P j
′

k R
ij
k P

j
k +Qik; Z

i
K+1 = QiK+1, i ∈ N, (93)

and

Fk
∆= Ak −

∑
i∈N

Bi
kP

i
k, k ∈ K. (94)
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Furthermore, let αik ∈ IRmi (i ∈ N, k ∈ K) be vectors satisfying the set of linear equations:

[Riik +Bi′
kZ

i
k+1B

i
k]α

i
k +Bi′

kZ
i
k+1

∑
j∈N
j 6=i

Bj
kα

j
k = Bi′

k (ζik+1 + Zik+1ck), i ∈ N, (95)

where ζik (i ∈ N) are obtained recursively from

ζik = F ′k(ζ
i
k+1 + Zik+1βk) +

∑
j∈N

P j
′

k R
ij
k α

j
k; ζ

i
K+1 = 0, i ∈ N, (96)

and

βk
∆= ck −

∑
j∈N

Bj′

k α
j
k, k ∈ K. (97)

Finally, let nik ∈ IR (i ∈ N, k ∈ K) be generated by

nik = nik+1 +
1
2
|βk|2Zi

k+1
+ ζi

′
k+1βk +

1
2

∑
j∈N
|αjk|

2
Rij
k

, niK+1 = 0. (98)

Corollary 11.1 An N -person affine-quadratic dynamic game (cf. Definition 21) with Qik+1 ≥

0 (i ∈ N, k ∈ K) and Rijk ≥ 0 (i, j ∈ N, j 6= i, k ∈ K) admits a unique feedback Nash equilibrium

solution if, and only if, (92) and (95) admit unique solution sets {P i∗k ; i ∈ N, k ∈ K} and {αi∗k ; i ∈

N, k ∈ K}, respectively, in which case the equilibrium strategies are given by

γi∗k (xk) = −P i∗k xk − αi∗k (k ∈ K, i ∈ N), (99)

and the corresponding feedback Nash equilibrium cost for each player is:

J i(γ1∗, . . . , γN∗) = V i(1, x1) =
1
2
|x1|2Zi1 + ζi

′
1 x1 + ni1, (i ∈ N). (100)

Proof Starting with k = K in the recursive equation (91), we first note that the functional to

be minimized (for each i ∈ N) is strictly convex, since RiiK +Bi′
KQ

i
K+1B

i
K > 0. Then, the first order

necessary conditions for minimization are also sufficient and therefore we have (by differentiation)

the unique set of equations

−[RiiK +Bi′
KQ

i
K+1B

i
K ]γi∗K(xK)−Bi′

KQ
i
K+1

∑ j∈N
j 6=i B

j
Kγ

j∗
K (xk)

= Bi′
KQ

i
K+1[AKxK + cK ]; i ∈ N

which readily leads to the conclusion that any set of Nash equilibrium strategies at stage k = K

has to be affine in xK . Therefore, by substituting γi∗K = −P iKxK − αiK (i ∈ N) into the foregoing
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equation, and by requiring it to be satisfied for all possible xK , we arrive at (92) and (95) for k = K.

Further substitution of this solution into (91) for k = K leads to V i(K,x) = 1
2x
′(ZiK − QiK)x +

ζi
′
Kx + nK ; that is, V i(K, ·) has a quadratic structure at stage k = K. Now, if this expression is

substituted into (91) with k = K − 1, and the outlined procedure is carried out for k = K − 1, and

this so (recursively) for all k ≥ K − 1, one arrives at the conclusion that

(i) V i(k, x) = 1
2x
′(Zik−Qik)x+ ζi

′
k x+nk is the unique solution of the recursive equation (91) under

the hypothesis of the corollary and by noting that Zik ≥ 0 (i ∈ N, k ∈ K), and

(ii) the minimization operation in (91) leads to the unique solution (99) under the condition of

unique solvability of (92) and (95).

The expression for the cost, (100) follows directly from the expression derived for the “cost-to-

go” V i(k, x). This, then, completes verification of Corollary 11.1. �

Remark 12 The result of Corollary 11.1 as well as the verification given above extends readily

to more general affine-quadratic dynamic games where the cost functions of the players contain

additional terms that are linear in xk, that is with gi in (83) replaced by

gik(xk+1, u
1
k, . . . ,u

N
k , xk) =

1
2

(x′k+1[Qik+1xk+1 + 2lik+1] +
∑
j∈N

uj
′

k R
ij
k u

j
k),

where lik+1 (k ∈ K) is a known sequence of n-dimensional vectors for each i ∈ N. Then, the

statement of Corollary 11.1 remains intact, with only the equation (96) that generates ζik now

reading:

ζik = F ′k(ζ
i
k+1 + Zik+1βk) +

∑
j∈N

P j
′

k R
ij
k α

j
k + lk; ζiK+1 = lK+1, i ∈ N,

and the cost-to-go functions admitting the compatibly modified form

V i(k, x) =
1
2
x′(Zik −Qik)x+ (ζik − lik)′x+ nk, i ∈ N.

�

Remark 13 The “nonnegative definiteness” requirements imposed on Qk+1 and Rijk (i, j ∈ N, j 6=

i; k ∈ K) are sufficient for strict convexity of the functionals to be minimized in (91), but they are
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by no means necessary. A set of less stringent (but more indirect) conditions would be

Riik +Bi′
kZ

i
k+1B

i
k > 0 (i ∈ N, k ∈ K),

under which the statement of Corollary 11.1 still remains valid. Furthermore, it follows from the

proof of Corollary 11.1 that, if (92) admits more than one set of solutions, every such set constitutes

a feedback Nash equilibrium solution, which is also strongly time consistent. �

Remark 14 It is possible to give a precise condition for the unique solvability of the sets of

equations (92) and (95) for P ik and αik (i ∈ N, k ∈ K), respectively. The said condition (which is

the same for both) is the invertability of matrices Φk, k ∈ K, which are composed of block matrices,

with the iith block given as Riik + Bi′
kZ

i
k+1B

i
k and the ijth block as Bi′

kZ
i
k+1B

j
k, where i, j ∈ N,

j 6= i. �
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12 Lecture 12: Dynamic Stackelberg games: Incentive strategies
and mechanism design

12.1 Deterministic incentives

The idea of declaring a reward (or punishment) for a decision maker P1 according to his particular

choice of action in order to induce a certain ‘desired’ behavior on the part of another decision maker

P2 is known as an incentive (or in case of the punishment, as a threat). Mathematical formulation

and analysis of such decision problems bear strong connections with the theory of Stackelberg games

presented earlier, which is what we will be discussing in this section, for deterministic scenarios.

Counterparts of these results in the stochastic case will be presented in the next section. Following

the earlier convention, we call, in the above scenario, P1 the leader and P2 the follower. Then, the

action outcome desired by the leader is:

(u1t , u2t) = arg min
u1∈S1,u2∈S2

L1(u1, u2). (101)

The incentive problem can now be stated as: find a γ1 ∈ Γ1, where Γ1 is an admissible subclass of

all mappings from S2 into S1, such that

arg min
u2

L2(γ1(u2), u2) = u2t , (102)

γ1(u2t) = u1t . (103)

Note that (102) and (103) require choosing a set of m1 scalar functions which together map S2 into

S1 so as to satisfy m1 +m2 equations. If this set of m1 functions has m1 +m2 or more parameters

then we might in general accomplish this by choosing the parameters appropriately.

Incentive problems do arise in real life decision making. Think of P1 as a government and of

P2 as a citizen. The income tax which P2 has to pay is a fraction (say k) of his income (before

taxation) u2. The amount of money that the government receives is u1 = ku2. It is up to P2

how hard to work and thus how much money to earn. The incentive here is u1 = γ1(u2) = ku2.

The government will choose k so as to achieve certain goals, but it cannot choose its own income,

u1, directly. In reality, the γ1-functions will often be nonlinear, but that does not take away the

incentive phenomenon.

Example. Consider L1 = (u1)2 +(u2)2 and L2 = (u1−1)2 +(u2−1)2, where the ui are scalars. By

inspection, u1t = u2t = 0. Consider the choice u1 = ku2, with k approaching ∞ if necessary, as a
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possible incentive mechanism for P1. The idea is that any choice of u2 6= 0 will make L2 approach

∞ if k →∞ and thus force P2 to choose u2 arbitrarily close to u2t in his own interest. However, by

substituting u1 = ku2 into L2, it is easily shown that the minimizing action is u2 = (k+1)/(k2 +1)

and consequently u1 = (k2 + k)/(k2 + 1). Thus u2 approaches u2t = 0 and u1 approaches 1 (which

is different from u1t) as k approaches ∞ and hence (103) is violated. Consequently ‘infinite threat’

as just described is not generally feasible. Besides, such a threat may not be credible in practice.

Let us now consider an incentive γ1 of the form

u1 = γ1(u2) = u1t + g(u2, u2t), (104)

where g is a function which satisfies g(u2t , u2t) = 0. With this restriction on g, equation (103) is

automatically satisfied. Let us try the linear function g = k(u2 − u2t). Equation (102) reduces to

(k+1)/(k2 +1) = 0 and hence k must be equal to −1. Graphically, the incentive u1 = ku2 = −u2 is

a line through the team solution (u1t , u2t) and has only this point in common with the set of points

(u1, u2) defined by L2(u1, u2) ≤ L2(u1t , u2t). By announcing the γ1-function, P1 ensures that the

solution (u1, u2) will lie on the line u1 = −u2 in the (u1, u2) plane, independent of the action of

P2. Being rational, P2 will choose that point on this line which minimizes his cost function; such a

choice is u2 = 0. The relationship of this with the derivation of the Stackelberg solution discussed

earlier should be clear now. Particularly, any (nonlinear, continuous or discontinuous) incentive

policy u1 = γ1(u2) which passes through the point characterized by the team solution and has

only this point in common with the set just described, will lead to the team solution for P1. If we

restrict ourselves to linear incentives, then the solution is unique in this example.

This example exhibits yet another feature. Note that with k = −1,

L2(ku2, u2) = 2(u2)2 + 2 = L1(u1t , u2) + 2.

In other words, by this choice of incentive, the objectives of both players are identical (apart from a

constant), thus fulfilling the old adagium ‘if you wish other people to behave in your own interest,

then make them see things your way’. In general making the cost functions identical by the choice

of an appropriate γ1-function will be too strong a requirement. A weaker form, however, which

also leads to the team solution, is

arg min
u2

L2(γ1(u2), u2) = arg min
u2

L1(u1t , u2), (105)
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where it is assumed that γ1 is of the form as described by (104). �

Definition 22 The incentive problem, as defined in this section, is (linearly) incentive controllable,

if there exists a (linear) γ1-function such that (102) and (103) are satisfied. �

Of course, not all problems are incentive controllable. What can P1 achieve in problems that are

not incentive controllable? The method to be employed to answer this question will be described

in the context of an example, given below. It should then be clear how the method would apply to

more elaborate problems.

Example. Consider L1 = (u1−4)2 +(u2−4)2 and L2 = (u1)2 +(u2−1)2, where the ui are scalars;

u1 ∈ S1 = [0, 3] and u2 ∈ S2 = [0, 6]. The team solution in this case is: u1t = 3, u2t = 4, and

L1(u1t , u2t) = 2. The worst possible outcome for P2, even if he minimizes his cost function with

respect to his own decision variable, is

min
u2∈S2

[ max
u1∈S1

L2(u1, u2)].

This occurs for u2 = 1, u1 = 3 (call this point A in the plane), and L2(3, 1) = 9. Whatever choice

P1 makes for γ1, the cost for P2 will never be higher than 9. If P1 chooses u1 = γ1(u2) = 3

on the interval [0, 6], then the outcome becomes u2 = 1, u1 = 3, (point A), and the costs for

P1 and P2 become 9 and 10, respectively. This, however, is not optimal for P1. He should

instead consider minu1 L1 subject to L2 ≤ 9. (We will refer to the region defined by this inequality

constraint as shaded region in the discussion below.) The solution of this minimization problem

is u1 = 12/5, u2 = 13/3 (call this point B in the plane). Now, any γ1-curve, in the rectangle

0 ≤ u1 ≤ 3, 0 ≤ u2 ≤ 6, which has only the points A and B with the shaded region in common,

would lead to a nonunique choice for P2; he might either choose u2 = 1 or u2 = 13/3. Both choices

lead to L2 = 9. The costs for P1 are respectively 9 and 4 for these choices. Therefore, P1 will

choose a γ1 function as just described, with one exception; it will have a little ‘dip’ in the shaded

area near point B, such that the choice of P2 will be unique again. (A possible choice is: γ1(u2) = 3

for 0 ≤ u2 < 13/3 − ε, where ε > 0 and γ1(u2) = 12/5 for 13/3 − ε ≤ u2 ≤ 6.) The outcome will

now be a point u1, u2 near point B, just within the shaded area. P1 can keep his costs arbitrarily

close to 4 (but not equal to 4). �
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Extensions of the foregoing analysis are possible in different directions, such as the multi-stage

problems or problems with multiple hierarchies; another possibility is the many-followers case; these

extensions can be found in [1].

12.2 Stochastic incentives

We start with two examples (two related games) and then proceed with some general results.

Example. Consider the 2-stage scalar stochastic dynamic game described by the state equations

x2 = x1 − u2 + θ1

x3 = x2 − u1 + θ2

}
(106)

and cost functionals

L1 = (x3)2 + 2(u1)2 + (u2)2

L2 = (x3)2 + (u2)2.

Here, θ1 and θ2 are taken as independent random variables with mean zero and variances σ1 and σ2,

respectively. The leader (P1) acts at stage 2 and has access to both x1 and x2, while the follower

(P2) acts at stage 1 and has only access to x1. We approach this problem within the context of

SES after bringing it to normal form.

If γi ∈ Γi denotes a general strategy of Pi (i = 1, 2), the expected (average) cost functional of

P2 can be written as

J2(γ1, γ2) = E{[x2 − γ1(x2, x1) + θ2]2 + [γ2(x1)]2}

= E{[x2 − γ1(x2, x1)]2 + [γ2(x1)]2}+ σ2

which has to be minimized over γ2 ∈ Γ2, to determine the optimal response of P2 to γ1 ∈ Γ1.

Because of some difficulties involved in working with a general γ1, we restrict the investigation here

to a subclass of strategies in Γ1 which are affine in x2, that is, to strategies of the form31

γ1(x2, x1) = αx2 + βx1 (107)

where α and β are free parameters which are yet to be determined. They will, in general, be

dependent on x1 which is, though, known a priori by both players.
31The apparent linear structure of the second term below is adopted for the sake of convenience in the analysis to

follow; it could also have been taken as a single function β.
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Under the structural restriction (107), J2 admits a unique minimum, thus leading to the optimal

response strategy (for the follower)

γ2◦(x1) =
(1− α)(1− α− β)

1 + (1− α)2
x1 (108)

which explicitly depends on the parameters α and β that characterize the leader’s strategy. To

determine their optimal values, we now substitute (107)-(108) into J1(γ1, γ2), together with the

corresponding values of x3 and x2 from (106), to obtain the function F given below, which has to

be minimized over α ∈ IR, β ∈ IR for fixed x1:

F (α, β) =

{
[1− α− β]2

1 + (1− α)2
+

2[α+ 2β − αβ]2

[1 + (1− α)2]2

}
x2

1 + [(1− α)2 + α2]σ1 + σ2.

Let us now note that

(i) F is jointly continuous in (α, β), F (α, β) ≥ 0 ∀(α, β) ∈ IR × IR, and F (α, β) → ∞ as

|α|, |β| → ∞. Therefore, we can restrict our search for a minimum on IR2 to a closed and

bounded subset of IR2, and consequently there exists (by the Weierstrass theorem at least

one pair (α∗, β∗) that minimizes F for any given pair (x1, σ1).

(ii) The optimum pair (α∗, β∗) depends on (x1, σ1), but not on σ2, and it cannot be expressed an-

alytically as a function of (x1, σ1). Hence, for each fixed (x1, σ1), F (α, β) has to be minimized

numerically.

(iii) With (α∗, β∗) determined as above, the linear-in-x2 strategy γ1∗(x2, x1) = α∗(x1)x2+β∗(x1)x1

is only a suboptimal Stackelberg strategy for the leader, since he may possibly achieve a better

performance by announcing a strategy outside the “linear-in-x2” class.

�

We now ask the question: What if the leader has also access to the follower’s past control

actions, in addition to the state information based on which these actions were obtained? In this

enlarged information structure, a given strategy of the leader will have multiple representations,

thus opening the possibility of enforcement of a team solution (to the leader’s advantage) by

selecting an appropriate representation of the team-optimal strategy (of the leader). To illustrate

this line of thought now, let us revisit the previous example, but with this enlarged information

structure:
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Example (continued). Consider the 2-stage scalar stochastic dynamic game example analyzed,

but with the enlarged information structure that allows P1 to have access to u2, in addition to x1

and x2. Note that since u2 depends only on x1, this enlarged information structure carries the same

statistical information as the earlier one for each fixed (pure) policy of the follower; however, as we

will see shortly, the informational redundancy that it generates will bring a substantial advantage

to the leader.

In the spirit of the analysis of the example in the previous section for the deterministic case, let

us first determine the best performance the leader would achieve if the follower were cooperating

with him (in the minimization of the leader’s expected cost function). The associated team problem

is :

J t
∆= J1(γ1t , γ2t) = min

γ1∈Γ1
min
γ2∈Γ2

J1(γ1, γ2)

where

J1(γ1, γ2) = E{[x2 − γ1(x2, x1) + θ2]2 + 2[γ1(x2, x1)]2 + [γ2(x1)]2}

Here, the cost shows dependence on u2 = γ2(x1) not only directly, but also through x2 as given by

(106), which has to be taken into account in the minimization. Furthermore, the strategy spaces

Γ1 and Γ2 are taken as before, since the additional knowledge of u2 for P1 does not help in further

reducing the minimum team cost J t. Now, this team problem is in fact a standard LQ stochastic

control problem, and its solution can readily be obtained as:

γ1t(x2, x1) =
1
3
x2, γ2t(x1) =

5
14
x1 (109)

which is the unique minimizing pair in Γ1 × Γ2. It is not, however, unique in the enlarged strategy

space for the leader, as (for example) the following parametrized strategy also constitutes an optimal

solution, along with γ2t given above, for every α ∈ IR:

γ1
α(x2, x1, u

2) =
1
3
x2 + α(u2 − 5

14
x1). (110)

This in fact characterizes the complete class of linear (in x2, x1, u
2) optimal strategies, but of

course there are also nonlinear ones—all leading to the same (minimum) expected value for the

leader. We will refer to all these “minimum expected cost achieving” strategies representations of

γ1t under the team-optimal solution (γ1t , γ2t). This is a rich family of strategies, among which

we seek one with the additional property that if the follower instead minimizes his own expected
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cost function, then the strategy in Γ2 that achieves this minimum is still γ2t . The corresponding

strategy (representation) for the leader would then clearly constitute a global Stackelberg solution,

leading to the best possible performance for him.

Let us now conduct the search in the family of linear representations (110), which leads to the

quadratic optimization problem:

min
γ2∈Γ2

E{[x2 − γ1
α(x2, x1, u

2) + θ2]2 + [u2]2},

where

x2 = x1 − u2 + θ1.

Since x1 is independent of θ1 and θ2, which have zero mean, this problem is equivalent to the

following deterministic optimization problem:32

min
v∈ IR

{[(2
3

)(x1 − v)− α(v − 5
14
x1)]2 + v2}

where we have written v for u2, to simplify the notation. Now, a simple optimization shows that for

the value of α = 8/27, this optimization problem admits the unique solution v = (5/14)x1 ≡ γ2t(x1),

and hence the policy pair

γ1(x2, x1, u
2) =

1
3
x2 +

8
27

(u2 − 5
14
x1), γ2(x1) =

5
14
x1

provides a SES. This is in fact the unique such solution in the linear class. �

Stochastic decision problems of the type above, where the leader is allowed to have access to

past actions of the follower are known as stochastic incentive problems. In these incentive problems,

the information structure may not always be nested (for the leader), as in the example above,

where the leader has access to all the information that the follower has access to (plus more). If,

for instance, the leader has only access to x2 and u2, then we have a problem with a nonnested

information structure, to which the methodology presented above does not apply, since the dynamic

information for the leader no longer exhibits redundancy. Discussion of such problems, where the

follower possesses private information not known to the leader, is beyond the scope of our coverage

here; see Ho, Luh and Olsder (1982) and Başar (1984, 1989a)). For stochastic incentive problems
32This equivalence holds as far as its optimum solution goes (which is what we seek), but not for the corresponding

minimum values.
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with nested information, however, the methodology used in the Example can be developed into a

general procedure as briefly discussed below for a special class of such problems.

Consider a two-person stochastic incentive problem with cost functions L1(u1, u2; θ) and

L1(u1, u2; θ), for P1 (leader) and P2 (follower), respectively, where θ is some random vector with

a known distribution function. Let y1 = h1(θ) be the measurement of P1 on θ, and y2 = h2(θ) be

P2’s measurement, with the property that what P2 knows is also known by P1 (but not necessarily

vice versa).33 Let Γi be the set of all measurable policies of the form ui = γi(yi), i = 1, 2, and Γ̂1

be the set of all measurable policies of the form u1 = γ1(y1, u2). Introduce the pair of policies

(γ1t , γ2t) ∆= arg min
γ1∈Γ1,γ2∈Γ2

Eθ{L1(γ1(h1(θ)), γ2(h2(θ)), θ)}

assuming that the underlying team problem admits a minimizing solution. Then, a representation

of the leader’s strategy γ1t under the pair above is an element of Γ̂1, say γ̂1, with the property

γ̂1(h1(θ), γ2t(h2(θ))) = γ1t(h1(θ)), a.s.34 (111)

The following result now readily follows:

Proposition 17 For the stochastic incentive decision problem with nested information as formu-

lated above, the pair (γ̂1, γ2t) constitutes a global Stackelberg solution, leading to the best possible

outcome for the leader. Equivalently, if a strategy γ̂1 ∈ Γ̂1 exists satisfying (111), the stochastic

decision problem is incentive controllable.35 �

Remark 15 For the special class of LQG problems, where the decision variables (u1, u2) belong

to finite-dimensional Euclidean spaces, θ is a Gaussian random vector, h1 and h2 are linear, and L1

is jointly quadratic in the triple (u1, u2, θ), strictly convex in (u1, u2) for each θ, the team-optimal

policies γ1t and γ2t exist, are unique and linear in y1 and y2, respectively (see any standard book

in stochastic control. If, furthermore, L2 is also a quadratic function, then except for some isolated

cases one can restrict the search to linear representations of γ1t :

γ̂1(y1, u2) = γ1t(y1) + P [u2 − γ2t(y2)] (112)
33In mathematical terms, this requirement can be stated as the sigma-field generated by y1 including the sigma-field

generated by y2.
34The equality should hold for almost all values of θ, under its assumed distribution function.
35The terminology we have used here is the natural counterpart (in the stochastic case) of the one introduced in

Definition 22 for deterministic incentive problems.
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where P is a matrix of appropriate dimensions. Now, invoking the condition (111) one can obtain

an equation for P , whose solution (when used in (112)) leads to a linear incentive policy. This then

makes the decision problem linear incentive controllable; for details see (Başar, 1979d). �

The development above does not cover (even in the LQG framework) the most general class of

dynamic nested stochastic incentive problems, because the measurements of the decision makers

have been taken to be static—not depending on the past actions. If the leader’s measurement at

stage k depends on the past actions of the follower (u2
` , ` < k), then the approach discussed above

can easily be adjusted to apply to such multi-stage problems too. If, however, the follower also

has access to the leader’s past control actions, then because of the nestedness of the information

structure for the leader (which does not allow for the follower to have access to all measurements of

the leader) the associated dynamic team problem becomes what is called a nonclassical stochastic

control problem, for which no general theory exists. Issues such as learning, inference, and filtering

become of relevance then, whose treatment requires background in stochastic processes, information

theory and control, much beyond the level of our coverage here.
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13 Lecture 13: Differential games

Continuous-time infinite dynamic games, also known as differential games in the literature, consti-

tute a class of decision problems wherein the evolution of the state is described by a differential

equation and the players act throughout a time interval. Hence, as a counterpart of Definition 17,

we can formulate such games of prespecified fixed duration as follows:

Definition 23 A quantitative N -person differential game of prespecified fixed duration involves

the following.

(i) An index set N = {1, . . . ,N} called the players’ set.

(ii) A time interval [0, T ] which is specified a priori and which denotes the duration of the evolution

of the game.

(iii) An infinite set S0 with some topological structure, called the trajectory space of the game.

Its elements are denoted as {x(t), 0 ≤ t ≤ T} and constitute the permissible state trajectories

of the game. Furthermore, for each fixed t ∈ [0, T ], x(t) ∈ S0, where S0 is a subset of a

finite-dimensional vector space, say IRn.

(iv) An infinite set U i with some topological structure, defined for each i ∈ N and which is called

the control (action) space of Pi, whose elements {ui(t), 0 ≤ t ≤ T} are the control functions

or simply the controls of Pi. Furthermore, there exists a set Si ⊆ IRmi(i ∈ N ) so that, for

each fixed t ∈ [0, T ], ui(t) ∈ Si.

(v) A differential equation

dx(t)
dt

= f(t, x(t), u1(t), . . . ,uN (t)), x(0) = x0, (113)

whose solution describes the state trajectory of the game corresponding to the N -tuple of

control functions {ui(t), 0 ≤ t ≤ T} (i ∈ N ) and the given initial state x0.

(vi) A set-valued function ηi(·) defined for each i ∈ N as

ηi(t) = {x(s), 0 ≤ s ≤ εit}, 0 ≤ εit ≤ t, (114)
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where εit is nondecreasing in t, and ηi(t) determines the state information gained and recalled

by Pi at time t ∈ [0, T ]. Specification of ηi(·) (in fact, εit in this formulation) characterizes the

information structure (pattern) of Pi, and the collection (over i ∈ N ) of these information

structures is the information structure of the game.

(vii) A sigma-field N i
t , in S0, generated for each i ∈ N by the cylinder sets {x ∈ S0, x(s) ∈ B}

where B is a Borel set in S0 and 0 ≤ s ≤ εt. N i
t , t ≥ t0, is called the information field of Pi.

(viii) A prespecified class Γi of mappings γi : [0, T ]×S0 → Si, with the property that ui(t) = γi(t, x)

is N i
t -measurable (i.e. it is adapted to the information field N i

t ). Γi is the strategy space of

Pi and each of its elements γi is a permissible strategy for Pi.

(ix) Two functionals qi : S0 → IR, gi : [0, T ] × S0 × S1 × · · · × SN → IR defined for each i ∈ N ,

so that the composite functional

Li(u1, . . . ,uN ) =
∫ T

0
gi(t, x(t), u1(t), . . . ,uN (t)) dt+ qi(x(T )) (115)

is well defined 36 for every uj(t) = γj(t, x), γj ∈ Γj(j ∈ N ), and for each i ∈ N . Li is the

cost functional of Pi in the differential game of fixed duration. �

A differential game, as formulated above, is yet not well-defined unless we impose some addi-

tional restrictions on some of the terms introduced. In particular, we have to impose conditions on

f and Γi(i ∈ N ), so that the differential equation (113) admits a unique solution for every N -tuple

{ui(t) = γi(t, x), i ∈ N}, with γi ∈ Γi. A nonunique solution to (113) is clearly not allowed

under the extensive form description of a dynamic game, since it corresponds to nonunique state

trajectories (or game paths) and thereby to a possible nonuniqueness in the cost functions for a

single N -tuple of strategies. We now provide below in Thm 11 a set of conditions under which this

uniqueness requirement is fulfilled. But first we list down some information structures within the

context of deterministic differential games, as a counterpart of Definition 18.

Definition 24 In an N -person continuous-time deterministic dynamic game (differential game)

of prespecified fixed duration [0, T ], we say that Pi’s information structure is

(i) open-loop (OL) pattern if ηi(t) = {x0}, t ∈ [0, T ],
36This term will be made precise in the sequel.
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(ii) closed-loop perfect state (CLPS) pattern if

ηi(t) = {x(s), 0 ≤ s ≤ t}, t ∈ [0, T ],

(iii) ε-delayed closed-loop perfect state (εDCLPS) pattern if

ηi(t) =

{
{x0}, 0 ≤ t ≤ ε
{x(s), 0 ≤ s ≤ t− ε}, ε < t

where ε > 0 is fixed,

(iv) memoryless perfect state (MPS) pattern if ηi(t) = {x0, x(t)}, t ∈ [0, T ],37

(v) feedback (perfect state) (FB) pattern if ηi(t) = {x(t)}, t ∈ [0, T ]. �

Theorem 11 Within the framework of Definition 23, let the information structure for each player

be any one of the information patterns of Definition 24. Furthermore, let S0 = Cn[0, T ]. Then, if

(i) f(t, x, u1, . . . ,tN ) is continuous in t ∈ [0, T ] for each x ∈ S0, i ∈ N ,

(ii) f(t, x, u1, . . . ,uN ) is uniformly Lipschitz in x, u1, . . . ,uN ; i.e. for some k > 0,38

|f(t, x, u1, . . . ,uN )− f(t, x̄, ū1, . . . ,ūN )|

≤ k max
0≤t≤T

{|x(t)− x̄(t)|+
∑
i∈N
|ui(t)− ūi(t)|},

x(·), x̄(·) ∈ Cn[0, T ];ui(·), ūi(·) ∈ U i (i ∈ N ),

(iii) for γi ∈ Γi (i ∈ N ), γi(t, x) is continuous in t for each x(·) ∈ Cn[0, T ] and uniformly Lipschitz

in x(·) ∈ Cn[0, T ],

the differential equation (113) admits a unique solution (i.e. a unique state trajectory for every

γi ∈ Γi (i ∈ N ), so that ui(t) = γi(t, x), and furthermore this unique trajectory is continuous.

Proof It follows from a standard result on the existence of unique continuous solutions to

differential equations. �

The SPE, NE, and SES concepts introduced earlier for finite games are equally valid for

(continuous-time) differential games if we bring them into equivalent normal form. To this end, we
37Note that (iv) and (v) are not covered by (114) in Definition 23.
38|v| denotes here the Euclidean norm for the vector v.
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start with the extensive form description of a differential game, as provided in Definition 23 and

under the hypotheses of Theorem 11, and for each fixed N -tuple of strategies {γi ∈ Γi; i ∈ N} we

obtain the unique solution of the functional differential equation

dx(t)
dt

= f(t, x(t), γ1(t, x), . . . ,γN (t, x)), x(0) = x0,

and determine the corresponding action (control) vectors ui(·) = γi(·, x), i ∈ N . Substitution of

these into (115), together with the corresponding unique state trajectory, thus yields an N -tuple

of numbers {Li; i ∈ N}, for each choice of strategies by the players — assuming of course that

functions gi (i ∈ N ) are integrable, so that (115) are well-defined. Therefore, we have mappings

J i : Γ1 × · · · × ΓN → IR (i ∈ N ) for each fixed initial state vector x0, which we call the cost

functional of Pi in a differential game in normal form. These cost functionals, together with the

strategy spaces {Γi, i ∈ N} of the players, then constitute the equivalent normal form description

of the differential game, which is the right framework to introduce noncooperative equilibrium

solution concepts, as we have done earlier for other classes of dynamic games.

13.1 Open-loop Nash equilibrium

The results to be described in this subsection are counterparts of those obtained for the discrete-

time version; and in order to display this relationship explicitly, we shall present them here in

the same order as their counterparts in Lecture 11. We therefore first have the counterpart of

Theorem 8 in the continuous time.

Theorem 12 For an N -person differential game of prescribed fixed duration [0, T ], let

(i) f(t, ·, u1, . . . ,uN ) be continuously differentiable on IRn, ∀t ∈ [0, T ],

(ii) gi(t, ·, u1, . . . ,uN ) and qi(·) be continuously differentiable on IRn, ∀t ∈ [0, T ], i ∈ N.

Then, if {γi∗(t, x0) = ui∗(t); i ∈ N} provides an open-loop Nash equilibrium solution, and

{x∗(t), 0 ≤ t ≤ T} is the corresponding state trajectory, there exist N costate functions

pi(·)[0, T ]→ IRn, i ∈ N, such that the following relations are satisfied:

ẋ∗(t) = f(t, x∗(t), u1∗(t), . . . ,uN∗(t)); x∗(0) = x0 (116)

γi∗(t, x0) ≡ ui∗(t)arg min
ui∈Si

H i(t, pi(t), x∗(t), u1∗(t), . . . ,

. . . , ui−1∗(t), ui, ui+1∗(t), . . . ,uN∗(t))
(117)
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ṗi
′
(t) = − ∂

∂x
H i(t, pi(t), x∗, u1∗(t), . . . ,uN∗(t))

pi
′
(T ) =

∂

∂x
qi(x∗(T )), i ∈ N,

(118)

where

H i(t, p, x, u1, . . . ,uN ) ∆= gi(t, x, u1, . . . ,uN ) + pi
′
f(t, x, u1, . . . ,uN ),

t ∈ [0, T ], i ∈ N.

Every such Nash equilibrium solution is weakly time consistent.

Proof Follows the same lines as in the proof of Theorem 8, but now the minimum principle

for continuous-time control systems is used [27]. �

Remark 16 One class of differential games for which the necessity condition of Theorem 12 is

satisfied is that with weakly coupled players, that is one with the following state equation and cost

functions (taking N=2, without any loss of generality):

ẋ1(t) = f1(t, x1(t), u1(t)) + εf12(t, x2(t)); x1(0) = x10

ẋ2(t) = f2(t, x2(t), u2(t)) + εf21(t, x1(t)); x2(0) = x20
(119)

and cost functionals

Li(u1, u2; ε) =
∫ T

0
[gii(t, xi(t), ui(t)) + εgij(t, xj(t), uj(t))] dt

+qii(xi(T )) + εqij(xj(T )); j 6= i, i, j = 1, 2,
(120)

where ε is a sufficiently small scalar. Under some appropriate convexity (on gij ’s) and differentia-

bility conditions, it can be shown (see Srikant and Başar, 1992) [52] that there exists an ε0 > 0

such that for all ε ∈ (−ε0, ε0), the differential game admits a unique OL NE solution that is stable

with respect to Gauss-Seidell or Jacobi iterations (see Definition 14 for terminology). This solution

can be obtained by expanding the state and control corresponding to the OL NE solution in power

series in terms of ε,

x∗(t; ε) =
∞∑
k=0

x(k)(t)εk, ui∗(t; ε) =
∞∑
k=0

u
(k)
i (t)εk,

substituting these into (116)-(118), along with a similar expansion for pi(t), and solving for the

different terms x(k) and u
(k)
i , k = 0, 1, . . ., iteratively. It turns out that u(0)

i (i = 1, 2) are the

(open-loop) optimal controls associated with the decoupled optimal control problems:

ẋi = fi(t, xi, ui(t)), xi(0) = xi0

Li(ui) =
∫ T

0
gii(t, xi(t), ui(t)) dt+ qii(xi(T )); i = 1, 2,

104



and x(0) is the corresponding state trajectory, with x(0) = (x(0)′

1 , x
(0)′

2 )′. For k ≥ 1, u(k)
1 and u(k)

2 are

obtained by solving some appropriate linear-quadratic optimal control problems (see, Srikant and

Başar, 1991) [53]). Hence this approach decomposes the original two-player differential game into

two nonlinear optimal control problems (the zeroth order problems) and a sequence of iteratively

constructed linear-quadratic control problems. Halting this iteration at the k’th step yields an

εk-approximate open-loop Nash equilibrium solution. �

As indicated earlier, Theorem 12 provides a set of necessary conditions for the OL NE solution to

satisfy, and therefore it can be used to generate candidate solutions. For the special class of “affine-

quadratic” differential games, however, a unique candidate solution can be obtained in explicit

terms, which can further be shown to be an OL NE solution under certain convexity restrictions

on the cost functionals of the players:

Definition 25 An N -person differential game of fixed prescribed duration is of the affine-quadratic

type if Si = IRmi (i ∈ N) and

f(t, x, u1, . . . ,uN ) = A(t)x+ sumi∈NB
i(t)ui + c(t)

gi(t, x, u1, . . . ,uN ) =
1
2

(x′Qi(t)x+ sumj∈Nu
j′Rij(t)uj)

qi(x) =
1
2
x′Qifx,

where A(·), Bi(·), Qi(·), Rij(·) are matrices of appropriate dimensions, c(·) is an n-dimensional

vector, all defined on [0, T ], and with continuous entries (i, j ∈ N). Furthermore Qif , Q
i(·) are

symmetric, and Rii(·) > 0 (i ∈ N).

An affine-quadratic game is of the linear quadratic type if c ≡ 0. �

Theorem 13 For an N -person affine-quadratic differential game with Qi(·) ≥ 0, Qif ≥ 0 (i ∈ N),

let there exist a unique solution set {M i; i ∈ N} to the coupled matrix Riccati differential equations

Ṁ i +M iA+A′M i +Qi −M i∑
j∈NBj(Rjj)−1Bj′M j = 0;

M i(T ) = Qif (i ∈ N).
(121)

Then, the differential game admits a unique open-loop Nash equilibrium solution given by

γi∗(t, x0) ≡ ui∗(t) = −Rii(t)−1Bi′(t)[M i(t)x∗(t) +mi(t)] (i ∈ N) (122)
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where {mi(·), i ∈ N} solve uniquely the set of linear differential equations:

ṁi +A′mi +M ic−M i∑
j∈NBj(Rjj)−1Bj′mj = 0;
mi(T ) = 0 (i ∈ N),

(123)

and x∗(·) denotes the (Nash) equilibrium state trajectory, generated by

x∗(t) = Φ(t, 0)x0 +
∫ t

0
Φ(t, σ)η(σ) dσ

d
dt

Φ(t, σ) = F (t)Φ(t, σ); Φ(σ, σ) = I

F (t) ∆= A−
∑
i∈NBiRii

−1
Bi′M i(t),

η(t) ∆= c(t)−
∑
i∈NBiRii

−1
Bi′mi(t).

(124)

Proof For the affine-quadratic differential game, and in view of the additional restrictions

Qi(·) ≥ 0, Qif ≥ 0, Li(u1, . . . ,uN ) is a strictly convex function of ui(·) for all permissible control

functions uj(·) (j 6= i, j ∈ N) and for all x0 ∈ IRn. This then implies that Theorem 12 is also a

sufficiency result and every solution set of the first order conditions provides an open-loop Nash

solution. We, therefore, now show that the solution given in Theorem 13 is the only candidate

solution.

First note that the Hamiltonian is

H i(t, p, x, u1, . . . ,uN ) =
1
2

(x′Qix+
∑
j∈N

uj
′
Rijuj) + pi

′
(Ax+ c+

∑
j∈N

Bjuj)

whose minimization with respect to ui(t) ∈ IRmi yields the unique relation

ui∗(t) = −Rii(t)−1Bi(t)′pi(t), i ∈ N. (i)

Furthermore, the costate equations are

ṗi = −Qix∗ −A′pi; pi(T ) = Qifx(T ) (i ∈ N),

and the optimal state trajectory is given by

ẋ∗ = Ax∗ + c−
∑
i∈N

BiRii
−1
Bi′pi; x∗(0) = x0. (ii)

This set of differential equations constitutes a two-point boundary value problem, the solution of

which can be written, without any loss of generality, as {pi(t) = M i(t)x∗(t)+mi(t), i ∈ N;x∗(t), t ∈

[0, T ]} where M i(·) are (n × n)-dimensional matrices and mi(·) are n-dimensional vectors. Now,
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substituting pi = M ix∗ + mi (i ∈ N) into the costate equations, we arrive at the conclusion that

M i (i ∈ N) and mi (i ∈ N) should then satisfy (121) and (123), respectively. The expressions for

the open-loop Nash strategies follow readily from (i) by substituting pi = M ix∗ +mi, and likewise

the associated state trajectory (124) follows from (ii). �

13.2 Closed-loop feedback Nash equilibrium

In order to eliminate informational nonuniqueness in the derivation of Nash equilibria under dy-

namic information (specifically under the MPS and CLPS patterns) we refine the Nash solution

concept further, by requiring it to be strongly time consistent or sub-game perfect. Such a consid-

eration leads to the concept of a “feedback Nash equilibrium solution” which is introduced below.

Definition 26 For an N -person differential game of prescribed fixed duration [0, T ] and with mem-

oryless perfect state (MPS) or closed-loop perfect state (CLPS) information pattern, an N -tuple of

strategies [γi∗ ∈ Γi; i ∈ N}39 constitutes a feedback Nash equilibrium solution if there exist func-

tionals V i(·, ·) defined on [0, T ]× IRn and satisfying the following relations for each i ∈ N:

V i(T, x) = qi(x)

V i(t, x) =
∫ T

t
gi(s, x∗(s), γ1∗(s, ηs), . . . ,γi∗(s, ηs), . . . ,γN∗(s, ηs)) ds

+qi(x∗(T ))

≤
∫ T

t
gi(s, xi(s), γ1∗(s, ηs), . . . ,γi−1∗(s, ηs), γi(s, ηs),

γi+1∗(s, ηs), . . . , γN∗(s, ηs)) ds+ qi(xi(T )), ∀γi ∈ Γi, x ∈ IRn

(125)

where, on the interval [t, T ],

ẋi(s) = f(s, xi(s), γ1∗(s, ηs), . . . ,γi−1∗(s, ηs), γi(s, ηs),
γi+1∗(s, ηs), . . . , γN∗(s, ηs)); xi(t) = x

ẋ∗(s) = f(s, x∗(s), γ1∗(s, ηs), . . . ,γi∗(s, ηs), . . . ,γN∗(s, ηs)); x∗(t) = x

(126)

and ηs, stands for either the data set {x(s), x0} or {x(σ), σ ≤ s}, depending on whether the infor-

mation pattern is MPS or CLPS. �

One salient feature of the concept of feedback Nash equilibrium (FNE) solution introduced

above is that if an N -tuple {γi∗; i ∈ N} provides a FNE to an N -person NZS differential game with

39Here Γi is chosen to be compatible with the associated information pattern.
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duration [0, T ], its restriction to the time interval [t, T ] provides a FNE to the same differential

game defined on the shorter time interval [t, T ], with the initial state taken as x(t), and this being

so for all 0 ≤ t ≤ T ; hence, a FNE is strongly time consistent. An immediate consequence of

this observation is that, under either MPS or CLPS information pattern, feedback Nash equilibrium

strategies will depend only on the time variable and the current value of the state, but not on

memory (including the initial state x0). It is not difficult to see that FNE is indeed a NE.

If the value functions V i (i ∈ N) are continuously differentiable in both arguments, then N

partial differential equations, related to the Hamilton-Jacobi-Bellman (HJB) equation of optimal

control, replace (125):

Theorem 14 . For an N -person NZS differential game of prescribed fixed duration [0, T ], and

under either MPS or CLPS information pattern, an N -tuple of strategies {γi∗ ∈ Γi; i ∈ N} provides

a FNE if there exist functions V i : [0, T ] × IRn → IR, i ∈ N, satisfying the partial differential

equations

−∂V
i(t, x)
∂t

= minui∈Si

[
∂V i(t, x)

∂x
f̃ i∗(t, x, ui) + g̃i∗(t, x, ui)

]

=
∂V i(t, x)

∂x
f̃ i∗(t, x, γi∗(t, x)) + g̃i∗(t, x, γi∗(t, x))

V i(T, x) = qi(x), i ∈ N,

(127)

where

f̃ i∗(t, x, ui) ∆= f(t, x, {γ∗−i(t, x), ui)})

g̃i∗(t, x, ui) ∆= gi(t, x, {γ∗−i(t, x), ui)})

{γ∗−i(t, x), ui)} ∆= γ1∗(t, x), . . . ,γi−1∗(t, x), ui, γi+1∗(t, x), . . . ,γN∗(t, x).

Every such equilibrium solution is strongly time consistent, and the corresponding Nash equilibrium

cost for Pi is V i(0, x0).

For the class of N -person affine-quadratic differential games (cf. Definition 25), it is possible to

obtain an explicit solution for (127), which is quadratic in x. This also readily leads to a set of

FNE strategies which are expressible in closed-form.
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Corollary 13.1 For an N -person affine-quadratic differential game with Qi(·) ≥ 0, Qif ≥ 0,

Rij(·) ≥ 0 (i, j ∈ N, i 6= j) let there exist a set of matrix valued functions Zi(·) ≥ 0, i ∈ N,

satisfying the following N coupled matrix Riccati differential equations:

Żi + ZiF̃ + F̃ ′Zi +
∑
j∈N ZjBjRjj

−1
RijRjj

−1
Bj′Zj +Qi = 0;

Zi(T ) = Qif ,
(128)

where

F̃ (t) ∆= A(t)−
∑
i∈N

Bi(t)Rii(t)−1Bi(t)′Zi(t). (129)

Then, under either the MPS or CLPS information pattern, the differential game admits a feedback

Nash equilibrium solution, affine in the current value of the state, given by

γi∗(t, x) = −Rii(t)−1Bi(t)′[Zi(t)x(t) + ζi(t)], (i ∈ N), (130)

where ζi (i ∈ N) are obtained as the unique solution of the coupled linear differential equations

ζ̇i + F̃ ′ζi +
∑
i∈N

ZjBjRjj
−1
RijRjj

−1
Bj′ζj + Ziβ = 0; ζi(T ) = 0, (131)

with

β
∆= c−

∑
j∈N

BiRii
−1
Bi′ζi. (132)

The corresponding values of the cost functionals are

J i∗ = V i(0, x0) =
1
2
x′0Z

i(0)x0 + x′0ζ
i(0) + ni(0), (i ∈ N), (133)

where ni(·) (i ∈ N) are obtained from

ṅi + β′ζi +
1
2

∑
j∈N

ζjBjRjj
−1
RijRjj

−1
Bj′ζj = 0; ni(T ) = 0, (134)

Proof Simply note that, under the condition of solvability of the set of matrix Riccati

differential equations (128), the partial differential equation (127) admits a solution in the form

V i(t, x) = 1
2x
′Zi(t)x + x′ζi(t) + ni(t) (i ∈ N) with the corresponding minimizing controls being

given by (130). The “nonnegative definiteness” requirement imposed on Zi(·) is a consequence

of the fact that V i(t, x) ≥ 0 ∀x ∈ IRn, t ∈ [0, T ], this latter feature being due to the eigenvalue

restrictions imposed a priori on Qi(·), Qif and Rij(·). Finally, the corresponding “Nash” values for

the cost functionals follow from the definition of V (t, x) (see equation (125)). �
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Remark 17 The foregoing corollary provides only one set of FNE strategies for the affine-quadratic

game under consideration, and it does not attribute any uniqueness feature to this solution set.

However, in view of the discrete-time counterpart of this result (cf. Corollary 11.1), one would

expect the solution to be unique under the condition that (128) admits a unique solution set; but,

in order to verify this, one has to show that it is not possible to come up with other (possibly

nonlinear) solutions that satisfy (125), and hitherto this has remained an unresolved problem.

What can be shown, though, is uniqueness of FNE when the players are restricted at the outset to

affine memoryless strategies. �

Remark 18 As in the case of Remark 12, the result above extends readily to more general affine-

quadratic dynamic games where the cost functions of the players contain additional terms that are

linear in x, that is with gi and qi in Definition 25 replaced, respectively, by

gi =
1
2

x′[Qi(t)x+ 2li(t)] +
∑
j∈N

uj
′

k R
ij
k u

j
k

 ; qi =
1
2
x′(Qifx+ 2lif ),

where li(·) is a known n-dimensional vector-valued function, continuous on [0, T ], and lif is a fixed

n-dimensional vector, for each i ∈ N. Then, the statement of the Corollary as well its derivation

remain intact, with only the differential equation (131) that generates ζi(·) now reading:

ζ̇i + F̃ ′ζi +
∑
j∈N

ZjBjRjj
−1
RijRjj

−1
Bj′ζj + Ziβ + li = 0; ζi(T ) = lif .

�

Remark 19 For general nonlinear-nonquadratic differential games wherein the players are weakly

coupled through the system equation as well as the cost functions, the features observed in Re-

mark 16 for the OL NE can also be derived for the CLFB NE, but now we have to use the sufficiency

result of Theorem 14. Again confining ourselves to the two-player case, we take the system equation

and the cost functions, as well as the expansion of the state to be in the same structural form as in

Remark 16, and only replace the expansion for ui(t; ε) by a similar expansion for the FB strategy:

γi∗(t, x; ε) =
∞∑
k=0

γ
(k)
i (t, x)εk.

Invoking a similar expansion on V i,

V i∗(t, x; ε) =
∞∑
k=0

V
(k)
i (t, x)εk,
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it can be shown (see, Srikant and Başar, 1991) [53]) that V (0)
i (i = 1, 2), the zeroth order terms,

satisfy decoupled Hamilton-Jacobi-Bellman equations (associated with the optimal control problems

obtained by setting ε = 0), and the higher order terms, V (k)
i , k ≥ 1, involve simple cost evaluations

subject to some state equation constraints. Furthermore, the higher order feedback strategies,

γ
(k)
i , k ≥ 1, are obtained from linear equations. More explicitly, for the zeroth order we have:

− ∂

∂t
V

(0)
i (t, x) = min

ui∈Si

[
∂

∂xi
V

(0)
i (t, x1, x2)fi(t, xi, ui) + gii(t, xi, ui)

]

=
∂

∂xi
V

(0)
i (t, x1, x2)fi(t, xi, γ

(0)
i (t, x)) + gii(t, xi, γ

(0)
i (t, x))

V
(0)
i (T, x) = qii(xi), i = 1, 2, (135)

and to first order V (0)
i satisfies:

− ∂

∂t
V

(1)
i (t, x) =

∂

∂xi
V

(1)
i fi(t, xi, γ

(0)
i (t, x)) +

∂

∂xi
V

(0)
i fij(xj)

=
∂

∂xj
V

(1)
i fj(t, xj , γ

(0)
j (t, x)) + gij(t, xj , γ

(0)
j (t, x))

V
(1)
i (T, x) = qij(xj), j 6= i, i, j = 1, 2,

(136)

and γ
(1)
i is obtained from the linear equation

∂

∂ui
fi(t, xi, γ

(0)
i (t, x))

[
∂

∂t
V

(1)
i (t, x)

]′
+

∂

∂xi
V

(0)
i fi(t, xi, γ

(0)
i (t, x))γ(1)

i (t, x) (137)

+
∂

∂xi
V

(0)
i fij(xj) +

∂2

∂ui
gii(t, xi, γ

(0)
i (t, x))γ(1)

i (t, x)) = 0, i, j = 1, 2. (138)

Note that (135) is the Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal control

problem obtained by setting ε = 0 in the the differential game with weakly coupled players, and

hence γ(0)
i is the feedback representation of the open-loop policy u(0)

i obtained in Remark 16, on a

common zeroth order trajectory x
(0)
i . Hence, to zeroth order, there exists a complete equivalence

between open-loop and feedback Nash equilibrium solutions in weakly coupled differential games—

as in the case of optimal control. For higher order terms, however, no such correspondence exists in

nonzero-sum differential games, which is one explanation for the nonequivalence of the equilibrium

trajectories under different information structures—a feature we have observed throughout these

Notes. �
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14 Lecture 14: Stochastic differential games: Nash equilibrium

This lecture deals with a class of stochastic differential games, and derivation of NE in that context.

It also introduces a different type of cost function not discussed heretofore in these Notes, that of

exponentiated integral; these are known as risk-sensitive problems. The lecture will follow the

contents of the following paper:

T. Başar, “Nash equilibria of risk-sensitive nonlinear stochastic differential games,”

J. Optimization Theory and Applications, 100(3):479-498, March 1999.

The paper is reproduced below in its entirety as far as its content goes, starting with its abstract.

Abstract. We consider in this paper a class of risk-sensitive stochastic nonzero-sum differential

games with parameterized nonlinear dynamics and parameterized cost functions. The parametriza-

tion is such that if all or some of the parameters are set equal to some nominal values, then the

differential game either becomes equivalent to a risk-sensitive stochastic control (RSSC) problem,

or decouples into several independent RSSC problems, which in turn are equivalent to a class of

stochastic zero-sum differential games. This framework allows us to study the sensitivity of the

Nash equilibrium (NE) of the original stochastic game to changes in the values of these parameters,

and to relate the NE (which is generally difficult to compute, and establish existence and unique-

ness for – at least directly) to solutions of RSSC problems, which are relatively easier to obtain. It

also allows us to quantify the sensitivity of solutions to RSSC problems (and thereby to nonlinear

H∞-control problems) to unmodelled subsystem dynamics controlled by multiple players.

14.1 Introduction

Most formulations of stochastic control, team, and stochastic differential game problems have been

of the risk-neutral type, where the cost functions to be minimized are the expected values of stage

additive loss functions. Not all behavior, however, can be captured by risk-neutral cost functions

— a dictum that has its roots in the statistical decision theory literature of the 1950’s. One way of

capturing “risk-seeking” or “risk-averse” behavior is to exponentiate a stage additive loss function

positively or negatively before expectation, which has first found its way into the control literature

through the works of Jacobson [54] and Whittle [55, 56] who have dealt primarily with linear-
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quadratic models. This last decade of the twentieth century has witnessed a revival of interest

in risk-sensitive formulations of control problems in both linear and nonlinear frameworks, with

the main driving force being the established relationship between risk-sensitive stochastic control

and a class of H∞ control (worst-case design) problems. For some representative papers on this

relationship, which manifests itself in different forms depending on the structure of the problem at

hand, and on more recent work that takes this relationship further in different directions, we can

cite [57, 58, 59, 60, 61, 62, 63].

Our objective in this paper is to take this line of research a step further, and lift it to the level

of nonzero-sum stochastic differential games where each player has a different risk-sensitive cost

function with a possibly different risk-sensitivity index, and where the optimality concept is that

of Nash equilibrium. We do this by providing a set of sufficient conditions for risk-sensitive Nash

equilibrium to satisfy, and by establishing connections with other risk-sensitive stochastic control

problems or risk-neutral stochastic differential games, either directly or as appropriate limits. In

addition, we develop a computational scheme for Nash equilibria of “weakly-coupled” or “almost-

team” stochastic differential games.

Problem formulation is given in the next section, which is followed by the treatment of risk-

sensitive stochastic control problems (as a special case) in Section 14.3. Section 14.4 first presents

sufficient conditions for the existence of risk-sensitive Nash equilibria, and subsequently specializes

these conditions to a few limiting cases, for which there exist recursive computational schemes. The

paper ends with the concluding remarks of Section 14.5.

14.2 Problem Formulation

We consider the class of two-player stochastic differential games whose n-dimensional state evolves

according to the Itô stochastic differential equation

dx(t) = f(t, x(t), u1(t), u2(t); ξ) dt+
√
εD(t, x(t); ξ) db(t), x(0) = x0, (139)

where ui(t) ∈ Ui is the control input determined by Player i (i = 1, 2), with Ui being a subset

of the pi-dimensional Euclidean space, IRpi ; {b(t), t ≥ 0} is a standard m-dimensional Brownian

motion process, with b(0) = 0 with probability 1; and ξ and ε are small positive parameters which

will play a role in the analysis to be carried out later in Section 14.4. The control processes

{u1(t), t ≥ 0}, {u2(t), t ≥ 0} are adapted to the sigma-field generated by x(t), t ≥ 0, with the
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underlying probability space being the triplet (Ω,F ,P). Let the state-feedback control law (policy)

of Player i be denoted by µi ∈Mi, so that ui(t) = µi(t;x(t)).

The cost functional to be minimized by Player i is Ji(µi, µj ; 0, x0; ζ), j 6= i, i, j = 1, 2, ζ :=

(ε, ξ; δ1, δ2), where

Ji(µi, µj ; t, x; ζ) = δi logE
{

exp
1
δi

[qi(x(tf ); ξ) +
∫ tf

t
gi(s, xs, uis, ujs; ξ)ds]

}
, (140)

where δi > 0 is the risk-sensitivity index40 for Player i, and x = x(t). This cost functional is known

as the risk-sensitive cost functional or the exponentiated integral cost.

We assume the following standard regularity conditions on f , q1, q2, g1, g2 D, µ1 and µ2, for a

finite horizon [0, tf ]:

(i) f , g1 and g2 are C1 in (t, x, u1, u2) ∈ [0, tf ]× IRn × U1 × U2, q1 and q2 are C2 in x ∈ IRn, and

both qi and gi, i = 1, 2, are nonnegative;

(ii) Entries of the matrix D are C2 in (t, x) ∈ [0, tf ]× IRn for each ξ ≥ 0, and DD′ > 0;

(iii) f , fx, gi, gix, i = 1, 2, are uniformly bounded on [0, tf ]× IRn × U1 × U2, and qi, qix, i = 1, 2,

are uniformly bounded on [0, tf ]× IRn×.41

(iv) U1 and U2 are closed and bounded;

(v) µi : [0, tf ]× IRn → Ui is piecewise continuous in t and Lipschitz continuous in x, i = 1, 2.

Now, equipped with the state dynamics (139) and cost functionals (140), we seek a noncooper-

ative Nash equilibrium (µ∗1, µ
∗
2), satisfying the pair of inequalities [1]:

Ji(µ∗i , µ
∗
j ; 0, x0; ζ) ≤ Ji(µi, µ∗j ; 0, x0; ζ), ∀µi ∈Mi, j 6= i, i, j = 1, 2; (141)

or the stronger version (strongly time-consistent equilibrium):

Ji(µ∗i , µ
∗
j ; t, x; ζ) ≤ Ji(µi, µ∗j ; t, x; ζ), ∀x ∈ IRn, t ∈ [0, tf ), µi ∈Mi, j 6= i, i, j = 1, 2. (142)

Three limiting cases are of interest here:
40In the literature this terminology is used sometimes for the reciprocal of this quantity.
41The notation gix stands for the partial derivative of the scalar-valued function gi with respect to its argument x.

This convention applies throughout the paper, also with respect to the time variable t.
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(C1) Case when ε = 0. In this case the stochastic differential game degenerates to a deterministic

differential game, where the exponentiation of the integral cost loses its significance. If,

however, ε and δi go to zero at the same rate (leading to the so-called large deviation limit),

then exponentiation still plays an important role, as we will see shortly.

(C2) Case when ξ = 0. The parameter ξ is a weak-coupling parameter, so that

f(t, x, u1, u2; 0) = [f̃ ′1(t, x, u1) f̃ ′2(t, x2, u2)]′ (143)

gi(t, x, ui, uj ; 0) = g̃i(t, xi, ui), i = 1, 2 (144)

qi(x; 0) = q̃(xi), i = 1, 2 (145)

D(t, x; 0) = [D̃′1(t, x1) D̃′2(t, x2)]′, with D̃1D̃
′
2 = 0, ∀(t, x) ∈ [0, tf ]× IRn, (146)

where dim(fi) = ni, n1 + n2 = n, and dim(D̃i) = ni ×m. Note that when ξ = 0, the orig-

inal two-player differential game decouples into two separate risk-sensitive stochastic control

(RSSC) problems, one for each player, with Player i controlling only an ni-dimensional state

dynamics.

(C3) Case when δ1 = δ2, q1 ≡ q2, and g1 ≡ g2. In this case, the game degenerates to a single

RSSC problem, this time of state dimension n.

In Section 14.4, we will study properties of the Nash equilibrium in the neighborhoods of the

limiting values above (such as, ξ = 0 and δ1 = δ2), which will reveal some structural features,

leading to a recursive computation of the Nash equilibrium.

This completes the formulation of the problem under consideration. We now turn, in the next

two sections, to detailed analyses of the differential game and its various limiting cases.

14.3 Risk-Sensitive Stochastic Control

Let us first consider the structurally simpler RSSC problem, which will provide useful insight into

the solution of the risk-sensitive nonzero-sum stochastic differential game (RS NZSDG). Clearly,

in the formulation of Section 14.2, letting u = (u1, u2) be a single composite control, q1 ≡ q2 =: q,

g1 ≡ g2 =: g, and δ1 = δ2 =: δ will convert the RS NZSDG into a RSSC problem, which is what

we first study here. In this development we will also suppress the dependences of f , q, and g on ξ.
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Following [57] and [7], let ψ(t;x) be the value function associated with

E

{
exp

1
δ

[q(x(tf )) +
∫ tf

t
g(s, x(s), u(s))ds]

}
,

that is,

ψ(t;x) = inf
µ∈M

E

{
exp

1
δ

[q(x(tf )) +
∫ tf

t
g(s, x(s), u(s))ds]

}
,

subject to (139), with x(t) = x, and u(s) = µ(s;x(s)), where µ stands for the composite control

law (µ1, µ2), and M stands for the composite policy space. Note that

V (t;x) := inf
µ∈M

J(µ; t, x) = δ logψ(t;x). (147)

Assumptions (i)-(v) imply that ψ(t;x) is C1 in t and C2 in x, so that it can be differentiated in the

Itô sense:

dψ(t;x) =
[
ψt(t;x) + ψx(t;x)f(t, x, u) +

ε

2
Tr[ψxxDD′]

]
dt.

This, together with the dynamic programming (DP) principle (Ref. 12):

inf
u∈U

{
dψ(t;x) +

1
δ
g(t, x, u) ψ(t;x) dt

}
= 0,

leads to the DP partial differential equation (PDE)

ψt(t;xt) +
ε

2
Tr[ψxxDD′] + inf

u∈U

{
ψx(t;x)f(t, x, u) +

1
δ
g(t, x, u)ψ(t;x)

}
= 0,

ψ(tf ;x) = exp
1
δ
q(x), (148)

which is a uniformly parabolic PDE (since DD′ > 0), and admits a unique bounded positive

solution. Now, in view of (147), we have

ψt =
1
δ
Vtψ, ψx =

1
δ
Vxψ, ψxx =

1
δ
Vxxψ +

1
δ2
V ′xVxψ.

Substituting these in (148), and dividing throughout by ψ/δ, leads to the Hamilton-Jacobi-Bellman

(HJB) equation for the RSSC problem:

−Vt(t;x) = inf
u∈U
{Vx(t;x)f(t, x, u) + g(t, x, u)}+

ε

2δ
∣∣D′V ′x(t;x)

∣∣2 +
ε

2
Tr[VxxDD′],

V (tf ;x) ≡ q(x).

(149)
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3.1. Affine-Quadratic Case. We now consider the special class of problems where the set U

is taken to be IRp,42 D is independent of x, the vector field f is affine in u, and the incremental

cost g is quadratic in u:

f(t, x, u) = f0(t, x) +B(t, x)u, (150)

g(t, x, u) = g0(t, x) + |u|2, (151)

This structure allows us to carry out the minimization in (149) explicitly, to lead to the following

HJB equation, where we have suppressed the dependence of V on t and x:

−Vt = Vx f0(t, x) + g0(t, x)− 1
4

[∣∣B′V ′x∣∣2 − 1
γ2

∣∣D′V ′x∣∣2]+
ε

2
Tr[VxxDD′],

V (tf ;x) ≡ q(x). (152)

Here the parameter γ is defined by

γ :=
√
δ/2ε,

and the optimizing control law is:

u∗(t) = µ∗(t;x) = −1
2
B′(t, x)V ′x(t;x), 0 ≤ t ≤ tf . (153)

This derivation has thus led to a sufficiency result, which says that if the HJB equation (152) admits

a C2 solution, then the control law given by (153) provides an optimal solution to the corresponding

RSSC problem.

3.2. LEQG Problem. Now, a further special case is the linear-exponential-quadratic-Gaussian

(LEQG) problem, where f0 in (150) is linear in x, and g0 in (151) and q are nonnegative quadratic

in x:

f0(t, x) = A(t)x; g0(t, x) = x′Q(t)x, Q(t) ≥ 0; q(x) = x′Qfx, Qf ≥ 0, (154)

where both A(·) and Q(·) have continuous entries. In this case, (152) admits an explicit solution

(whenever it exists), given by

V (t;x) = x′Z(t)x+ `ε(t), t ≥ 0 (155)
42This is not strictly a special case of the earlier formulation since there U was taken to be compact, but for the

affine-quadratic problems considered here the compactness assumption can be relaxed, and the earlier derivation can
be carried out without much difference from the one above.
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where Z(·) is the nonnegative definite solution of the (generalized) Riccati differential equation

(RDE):

Ż +A′Z + ZA+Q− Z
(
BB′ − 1

γ2
DD′

)
Z = 0, Z(tf ) = Qf , (156)

and `ε is given by

`ε(t) = ε

∫ tf

t
Tr[Z(s)D(s)D′(s)]ds. (157)

The optimal control policy is

u∗(t) = µ∗(t;x) = −B′(t)Z(t) x, 0 ≤ t ≤ tf . (158)

This solution to the LEQG problem was first given in [54], where it was also recognized that the

RDE (156) is precisely of the type that arises in two-player linear-quadratic deterministic zero-sum

differential games, which is known to have finite escape if γ is sufficiently small. Hence, if γ is

sufficiently small (which means that either δ is sufficiently small for fixed ε > 0 or ε is sufficiently

large for fixed δ > 0), then the LEQG problem will not have an optimal solution, and in fact the

expected cost will be infinite for all admissible control policies.

3.3. A Class of Stochastic Zero-Sum Differential Games. The relationship alluded to

above between the LEQG problem and a class of LQ zero-sum differential games in fact holds

at a much more general level, that involves the original nonlinear RSSC problem and a class of

stochastic zero-sum differential games.

Consider the two-player state dynamics described by the Itô stochastic differential equation:

dx(t) = f(t, x(t), u(t)) dt+Dw(t) dt+
√
εDdb(t), x(0) = x0, (159)

where u(t), t ≥ 0, as defined earlier, is the control input of Player 1, and w(t), t ≥ 0, is the control

input of Player 2, taking values in IRm. Both controls are adapted to the sigma-field generated by

x(t), t ≥ 0, and b(t) is a standard m-dimensional Brownian motion process as before. Consider the

risk-neutral cost function:

J̃(µ, ν; t, x(t) = x) = E

{
q(x(tf )) +

∫ tf

t
g(s, x(s), u(s)) ds− γ2

∫ tf

t
|w(s)|2ds

}
(160)
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to be minimized by Player 1 and maximized by Player 2, where ν : [0, tf ]× IRn → IRn is the state-

feedback control policy of Player 2, which is piecewise continuous in t and Lipschitz continuous in

x. Let

W (t;x) = inf
µ

sup
ν

J̃(µ, ν; t, x)

denote the upper-value function associated with this stochastic zero-sum differential game (ZSDG).

Then, if it is C1 in t and C2 in x, under assumptions (i)-(v) it satisfies the Hamilton-Jacobi-Isaacs

(HJI) equation:

inf
u∈U

sup
w∈ IRn

{
W t +W x(f +Dw) + g − γ2|w|2

}
+
ε

2
Tr[W xxDD

′] = 0, W (tf ;x) ≡ q(x).

Since the dependences on u and w above are separable, Isaacs condition holds [1], and hence the

upper-value function is in fact the value function (for the game), satisfying (after carrying out the

maximization with respect to w):

−Wt(t;x) = inf
u∈U
{Wx(t;x)f(t, x, u) + g(t, x, u)}

+
1

4γ2
|D′W ′x(t;x)|2 +

ε

2
Tr[Wxx(t;x)DD′], W (tf ;x) ≡ q(x). (161)

Note that this PDE is identical to (149), and hence the most general RSSC problem is equivalent to

a particular stochastic ZSDG, in the sense that the value function of the two problems are identical,

and the optimal control law in the RSSC problem is identical with the saddle-point controller of

Player 1 in the stochastic ZSDG. This equivalence also carries over to the deterministic case, which

for the ZSDG corresponds to simply setting ε = 0 (in (161), as well as in the state equation), while

for the RSSC problem it corresponds to letting δ → 0 as ε→ 0, at such a rate so that δ/2ε = γ2.43

14.4 RS-NZSDG: Nash Equilibrium and Its Series Expansion

Now returning to the risk-sensitive nonzero-sum differential game (RS NZSDG) of Section 14.2, we

first write down a natural counterpart of (149):

−Vit = inf
ui∈Ui

{
Vixf̄

i + ḡi
}

+
ε

2δi
|VixD|2 +

ε

2
Tr[VixxDD′], Vi(tf , x; ξ) ≡ qi(x; ξ). (162)

43Otherwise, simply letting ε = 0, will convert the RSSC problem to a purely deterministic one, where exponenti-
ation of the cost will be immaterial, and hence any connection with ZSDGs will be lost.
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where

f̄1 := f(t, x, u1, µ
∗
2(t;x); ξ) (163)

f̄2 := f(t, x, µ∗1(t;x), u2; ξ) (164)

ḡi := gi(t, x, ui, µ∗j (t;x); ξ), j 6= i, i, j = 1, 2, (165)

and (µ∗1, µ
∗
2) is a pair of candidate Nash equilibrium policies. We now immediately have the following

theorem.

Theorem 4.1. Consider the RS NZSDG formulated in Section 14.2, with ζ fixed. Assume that

there exists a pair (µ∗1, µ
∗
2) ∈M1 ×M2 such that

(i) the coupled pair of PDE’s (162) admits a unique pair of bounded nonnegative solutions,

V i(t, x; ζ), i = 1, 2;

(ii) µ∗i (t;x) minimizes Vixf̄ i + ḡi over Ui, i = 1, 2.

Then, the pair (µ∗1, µ
∗
2) is a Nash equilibrium solution, and

Ji(µ∗i , µ
∗
j ; t, x; ζ) ≡ Vi(t, x; ζ), i = 1, 2. (166)

Proof: If u2(t) = µ∗2(t;x(t)) is substituted into (139) and (140) with i = 1, then the HJB equation

of the resulting RSSC problem, which is (149), is precisely (162) with i = 1. Since this PDE admits

a solution by (i), and a control policy achieving the minimum in (162) is µ∗1 by (ii), it follows that

µ∗1 is in equilibrium with µ∗2, and V1 is the value function for Player 1. A similar argument applied

to Player 2 leads to the conclusion that µ∗2 is in equilibrium with µ∗1 and V2 is the value function

for Player 2. �

4.1. Relationship With a Risk-Neutral Game. We have seen in Section 14.3 that the

RSSC problem is equivalent to a particular worst-case stochastic control problem (or equivalently

a stochastic ZSDG) with a risk-neutral cost function. A question of interest is whether a similar

type of a game with risk-neutral cost function can be found for the risk-sensitive NZSDG of this

section. Indeed such a worst-case NZSDG exists, as elucidated below.
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Let us first modify the dynamics (139) to read:

dx(t) = f(t1x(t), u1(t), u2(t); ξ)dt+D(t, x(t); ξ)w(t)dt+
√
εD(t, x(t); ξ)db(t), x(0) = x0, (167)

where w(t), t ≥ 0, is an unknown additional input, which can be viewed as the control of a

third player, taken to be generated by a policy ν : [0, tf ]× IRn → IRm that is continuous in t and

Lipschitz continuous in x. The cost functional of Player i, i = 1, 2, is now taken as Li(µi, µj ; 0, x0; ζ),

j 6= i, j = 1, 2, where for each fixed t ∈ [0, tf ],

Li(µi, µj ; t, x; ζ) = sup
w=ν(·)

E

{
qi(x(tf ); ξ) +

∫ tf

t
[gi(s, x(s), ui(s), uj(s); ξ)− γ2

i |w(s)|2] ds
}
, (168)

where x(s), s ≥ t, is generated by (167) with x(t) = x, and

γi :=
√
δi/2ε. (169)

Note that Li is not an exponentiated cost function, but rather one that involves (causal) maxi-

mization of a risk-neutral cost function over the unknown input w. It is also to be noted that even

though there is a single disturbance input w to the state dynamics (167), the actual maximizing

choice in (168) will in general be different for different i; that is, we are not solving for a Nash

equilibrium in this three-player game. However, viewed as a two-player game, with individually

worst-case cost functions (168) for each of the two players, the Nash equilibrium is then well de-

fined, in exactly the same way as in (141), with of course Li replacing Ji. Letting (µ∗1, µ
∗
2) be such

an equilibrium, and introducing the following counterpart of Vi given by (166):

Wi(t, x; ζ) := Li(µ∗i , µ
∗
j ; t, x(t) = x; ζ), i, j = 1, 2, i 6= j, (170)

one can readily show, using the arguments of Section 14.3, that provided that Wi’s are C2 they

satisfy the coupled pair of PDEs:

−Wit = inf
ui∈Ui

{
Wixf̄

i + ḡi
}

+
ε

2δi
|WixD|2 +

ε

2
Tr[WixxDD

′], Wi(tf , x; ζ) ≡ qi(x; ξ), (171)

i = 1, 2,

where f̄ i, ḡi are defined as before (by (163)-(165)), and the minimum is achieved at ui(t) =

µi(t;x(t)), i = 1, 2. Note that (171) is identical with (162), and therefore any Nash equilibrium

solution of the RS NZSDG constitutes a Nash equilibrium for the stochastic DG formulated above,
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and vice versa. One limiting case of particular interest here is the following: Let γi > 0, i = 1, 2,

be fixed, and let ε → 0 in (171) (or equivalently in (162)) as well as in (167), which captures the

large deviation limit. The resulting coupled PDEs, in this limiting case, are:44

−Vit = inf
ui∈Ui

{
Vixf̄

i + ḡi
}

+
1

4γ2
i

|VixD|2, Vi(tf , x; ζ) ≡ qi(x; ξ), i = 1, 2. (172)

Each of these PDEs corresponds to a HJI equation that arises in deterministic nonlinear H∞ control

[7], meaning that the deterministic system

ẋ = f(t, x, µ∗1(t;x), µ∗2(t;x); ξ) +Dw; x0 = 0, (173)

satisfies under an output determined by the i-th criterion a disturbance attenuation level γi, i.e.,∫ tf

0
gi(t, x(t), µ∗i (t;x(t)), µ∗j (t;x(t)); ξ)dt ≤ γ2

i

∫ tf

0
|w(t)|2dt, i = 1, 2. (174)

Since this argument holds for both i = 1 and 2, the Nash equilibrium provides guaranteed levels of

disturbance attenuation with respect to two different outputs from the same disturbance input w.

As indicated earlier in Section 14.3, even for the case when there is a single player, (172) may not

admit a bounded solution for all γ > 0, and hence in (174) one is forced to restrict the pair (γ1, γ2)

to a region Γ ⊂ IR2, for the PDEs (172) to admit solutions (in the generalized, viscosity, sense).

We will call Γ the set of achievable performance levels for the multicriteria disturbance attenuation

problem with noncooperative controllers. This is related to (though is not identical with) joint

feasibility of risk sensitivity indices in the formulation of the RS NZSDG. For the most general

NZSDG, the restrictions on these indices (for the existence of a Nash equilibrium) will be coupled

and cannot be determined independently of each other, and therefore Γ will not be a rectangular

set. However, for weakly coupled games, that is when ξ > 0 is sufficiently small, a more transparent

characterization can be obtained — as the decoupling analysis presented next will exhibit.

4.2. Sequential Decoupling of the Nash Equilibrium Solution. We had mentioned

earlier that setting ξ = 0 in the system dynamics and the cost functionals decouples the original

RS NSZDG into two separate RSSC problems, and hence it would be of interest to see to what

extent the solutions to these RSSC problems provide a Nash equilibrium solution to the original
44This is only a formal limit, as (172) may not admit a smooth solution even though (171) does for every ε > 0. In

this case the solution will be interpreted in the viscosity sense [64].
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game, and what would the correction terms be like, when ξ is sufficiently small. Toward this end,

and to capture the weakly-coupled nature of the problem, we make the structural assumption that

f , qi’s, and gi’s are given by, for i = 1, 2,

f = (f ′1 f ′2)′, dim(fi) = ni (175)

fi = ai(xi) +Bi(xi)ui + ξ(aii(xi) + aij(xj)), j 6= i, j = 1, 2, (176)

gi = ci(xi) + |ui|2 + ξ(cii(xi) + cij(xj)), j 6= i, j = 1, 2, (177)

qi = ei(xi) + ξ(eii(xi) + eij(xj)), j 6= i, j = 1, 2, (178)

where x1 is the n1-dimensional first sub-vector of x, x2 is the n2-dimensional second sub-vector of

x, and we have suppressed the dependence on the time variable t in (175) and (177). We further

take D to be independent of ξ,45 and

D = [D′1 D′2]′, with D1D
′
2 = 0. (179)

Note that all this partitioning is consistent with (143)-(146).

Now, using this structure in (162) leads to the simplification (with j 6= i, i, j = 1, 2)

−Vit = inf
ui∈Ui

{Vixi [ai(xi) +Bi(xi)ui + ξ(aii(xi) + aij(xj))]

+ci(xi) + |ui|2 + ξ(cii(xi) + cij(xj))
}

+Vixj [aj(xj) +Bj(xj)µ∗j (t;x) + ξ(ajj(xj) + aji(xi))]

+
ε

2δi
|VixiDi|2 +

ε

2δi
|VixjDj |2 +

ε

2
Tr[VixixiDiD

′
i]

+
ε

2
Tr[VixjxjDjD

′
j ], Vi(tf , x; ξ) ≡ ei(xi) + ξ(eii(xi) + eij(xj)), (180)

45This assumption is not essential for the validity of the results to follow, but is made here for the sake of simplicity,
without much loss of conceptual generality.
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and the control that minimizes the right-hand side of (180) is

µ∗i (t, x; ξ) = −1
2
B′i(xi)V

′
ixi(t, x; ξ), i = 1, 2. (181)

Substituting this back into (180) finally leads to (suppressing all the arguments), for i = 1, 2,

−Vit = Vixiai −
1
4
|B′iV ′ixi |

2 + ci +
ε

2δi
|VixiDi|2 +

ε

2
Tr[VixixiDiD

′
i]

+ξ[Vixi(aii + aij) + cii + cij + Vixj (ajj + aji)]−
1
2
VixjBjB

′
jV
′
jxj + Vixjaj

+
ε

2δi
|VixjDj |2 +

ε

2
Tr[VixjxjDjD

′
j ], Vi(t, x; ξ) ≡ ei(xi) + ξ(eii(xi) + eij(xj)). (182)

We now assume that the solution of (182) admits a power series expansion around ξ = 0, which we

write as

Vi(t, x; ξ) = V
(0)
i (t, xi) + ξV

(1)
i (t, x) + ξ2V

(2)
i (t, x) + o(ξ2). (183)

Using this in (181) leads to a natural expansion of µ∗i in terms of ξ:

µ∗i (t, x; ξ) = µ
(0)
i (t, xi) + ξµ

(1)
i (t, x) + ξ2µ

(2)
i (t, x) + o(ξ2), (184)

where

µ
(k)
i (t, x) = −1

2
B′i(xi)V

(k)
ix2

(t, x)′, k = 0, 1, 2. (185)

Now, substituting (183) into (182), and equating like powers of ξ, leads to the following equations

for iterative computation of V (k)
i ’s:

Zeroth-order terms

−V (0)
it = V

(0)
ixi
ai −

1
4
|V (0)
ixi
Bi|2 +

ε

2δi
|V (0)
ixi
Di|2 +

ε

2
Tr[V (0)

ixixi
DiD

′
i] + ci(xi),

V
(0)
i (tf , x) ≡ ei(xi). (186)

First-order terms

−V (1)
it = V

(1)
ixi

[ai −
1
2
BiB

′
iV

(0)
ixi

′
+
ε

δi
DiD

′
iV

(0)
ixi

′
] + V

(0)
ixi

[aii(xi) + aij(xj)] + cii(xi)
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+cij(xj) + V
(1)
ixj

[aj −BjB′jV
(0)
ixj

′
] +

ε

2
Tr[V (1)

ixixi
DiD

′
i + V

(1)
ixjxj

DjD
′
j ],

V
(1)
i (tf , x) ≡ eii(xi) + eij(xj). (187)

Second-order terms

−V (2)
it = V

(2)
ixi

[ai −
1
2
BiB

′
iV

(0)
ixi

′
+
ε

δi
DiD

′
iV

(0)
ixi

′
] + V

(1)
ixi

[aii(xi) + aij(xj) +
ε

2δi
DiD

′
iV

(1)
ixi

′
]

+V (1)
ixj

[ajj(xj) + aji(xi) +
ε

2δi
DjD

′
jV

(1)
ixj

′
] + V

(2)
ixj

[aj −
1
2
BjB

′
jV

(0)
jxj

′
]

−1
2
V

(1)
ixj
BjB

′
jV

(1)′

ixj
− 1

4
|V (1)
ixi
Bi|2 +

ε

2
Tr[V (2)

ixixi
DiD

′
i + V

(2)
ixjxj

DjD
′
j ],

V
(2)
i (tf , x) ≡ 0.

(188)

Note that as to be expected the leading terms above (the zeroth order terms) provide solutions to

two independent RSSC problems, one for each player. It is important to notice here that V (0)
i , and

thereby µ(0)
i in (185), have only xi as their arguments, and not xj . For the higher-order correction

terms, however, the story is quite different. First, the PDEs satisfied by V
(1)
i and V

(2)
i are both

linear, and hence no restrictions are imposed on the ranges of feasible values for δi’s beyond those

imposed at the zeroth stage for existence of unique solutions to the zeroth order PDEs. Second,

both V
(1)
i and V

(2)
i depend, in general, not only on xi but also on xj , thus making the correction

terms in the control laws of each player depend on the entire state vector. This structure as well as

that of the feasibility set Γ becomes more transparent in the linear-quadratic case, where for j 6= i,

i, j = 1, 2,

ai(t, xi) = Ai(t)xi; aii(t, xi) = Aii(t)xi; aij(t, xj) = Aij(t)xj ; Bi(t, x) = Bi(t);

Di(t, x) = Di(t); ci(t, xi) = x′iQi(t)xi; cii(t, xi) = x′iQii(t)xi; cij(t, xj) = x′jQij(t)xj ;

ei(xi) = x′iQifxi; eii(xi) = x′iQiifxi; eij(xj) = x′jQijfxj ,

Qi(·) > 0, Qii ≥ 0, Qij(·) ≥ 0, Qif ≥ 0, Qiif ≥ 0, Qijf ≥ 0.

Under this structure, the solutions to (186), (187) and (188) are, respectively,

V
(0)
i (t, xi) = x′iZ

(0)
ii (t)xi + `

(0)
i (t), V (1)

i (t, x) = x′Z
(1)
ii x+ `

(1)
i (t), V (2)

i (t, x) = x′Z
(2)
i (t)x+ `

(2)
i (t),
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where Z(0)
ii ≥ 0 is of dimensions ni × ni, whereas Z(1)

i ≥ 0 are of dimensions n × n. The first-one

solves the generalized (game) Riccati differential equation:

−Ż(0)
ii = A′iZ

(0)
ii + Z

(0)
ii Ai − Z

(0)
ii

(
BiB

′
i −

2ε
δi
DiD

′
i

)
Z

(0)
i +Qi, Zii(0) = Qif (189)

which is of the type (156), and admits a unique nonnegative definite solution provided that δi :=√
δi/2ε is above a certain threshold. Z(1)

i and Z
(2)
i , on the other hand, satisfy some linear matrix

differential equations which always admit unique solutions provided that Z(0)
ii exist. Hence the set

Γ is in this case rectangular, and is determined solely by the existence condition of the zeroth-order

Riccati differential equation (189).

4.3. Perturbation Around a Common Risk-Sensitivity Index. We now focus on the role

played by the risk-sensitivity indices δ1 and δ2, and in particular the effect of a deviation (for one

player) from a common risk-sensitivity index for a nominal team problem. Toward this end, and

to obtain some explicit expressions for the controllers, we take

f = a(x) +B1(x)u1 +B2(x)u2 (190)

gi = c(x) + |u1|2 + |u2|2, qi = q(x) (191)

δ1 = δ, δ2 = δ + ∆δ. (192)

Under this structure, (162) reads:

−Vit = Vixa−
1
4
|B′iV ′ix|2 +

ε

2δi
|VixD|2 +

ε

2
Tr[VixDD′]

+c(x) +
1
4
|B′jV ′jx|2 −

1
2
VixBjB

′
jV
′
jx, Vi(tf , x; δ1, δ2) ≡ q(x), (193)

and the Nash equilibrium controllers are, for i = 1, 2,

µ∗i (t, x; δ1, δ2) = −1
2
B′i(x)V ′ix(t, x; δ1, δ2). (194)

Again let us assume a power series expansion around δ1 = δ2 = δ, with respect to δ2, of

Vi(t, x; δ1, δ2):

Vi(t, x; δ1, δ2) = V
(0)
i (t, x; δ) + V

(1)
i (t, x; δ)∆δ + V

(2)
i (t, x; δ)(∆δ)2 + o((∆δ)2) (195)
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which results, in view of (194), in a similar expansion for µi∗’s:

µi∗(t, x; δ1, δ2) = µ
(0)
i (t, x; δ) + µ

(1)
i (t, x; δ)∆δ + µ

(2)
i (t, x; δ)(∆δ)2 + o((∆δ)2) (196)

where

µ
(k)
i (t, x; δ) = −1

2
B′i(x)V (k)

ix (t, x; δ)′, i = 1, 2. (197)

Substitution of (195) into (193), and equating like powers of ∆δ, leads to:

Zeroth-order terms

V
(0)

1 (t, x; δ) ≡ V
(0)

2 (t, x; δ) =: V (0)(t, x; δ), (198)

where V (0) satisfies the HJB equation for the team problem:

−V (0)
t = V (0)

x a− 1
4
|B′1V (0)′

x |2 − 1
4
|B′2V (0)

x |2 + c(x) +
ε

2δ
|D′V (0)

x |2

+
ε

2
Tr[V (0)

xx DD
′],

V (0)(tf , x; δ) ≡ q(x). (199)

First-order terms

−V (1)
2t = V

(1)
2x

[
a− 1

2

(
B1B

′
1 +B2B

′
2 −

2ε
δ
DD′

)
V (0)′
x

]
+
ε

2
Tr[V (1)

2xxDD
′]− ε

2δ2
|V (0)
x D|2, V

(1)
2 (tf , x; δ) ≡ 0 (200)

V
(1)

1 (t, x; δ) ≡ 0. (201)

Second-order terms

−V (2)
1t = V

(2)
1x

[
a− 1

2

(
B1B

′
1 +B2B

′
2 −

2ε
δ
DD′

)
V (0)′
x

]
+

1
4
V

(1)
2x B2B

′
2V

(1)′

2x +
ε

2
Tr[V (2)

1xxDD
′], V

(2)
1 (tf , x; δ) ≡ 0 (202)

−V (2)
2t = V

(2)
2x

[
a− 1

2

(
B1B

′
1 +B2B

′
2 −

2ε
δ
DD′

)
V (0)′
x

]
− ε

δ2
V (0)
x DD′V

(1)′

2x −
1
4
V

(1)
2x B2B

′
2V

(1)′

2x +
ε

2δ
V

(1)
2x DD

′V
(1)′

2x

+
ε

2
Tr[V (2)

2xxDD
′] +

ε

2δ3
| V (0)

x D |2, V
(2)

2 (tf , x; δ) ≡ 0. (203)
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Note that again as to be expected the leading (zeroth-order) terms define a common RSSC

problem. There is no first-order correction to µ1 or V1, since both V
(1)

1 and µ
(1)
1 are zero, but

there are first-order corrections to µ2 and V2, with V
(1)

2 satisfying a linear differential equation.

The fact that V (1)
1 ≡ 0 is to be expected as the change in the value of δ2 has a more immediate

effect on Player 2’s optimum cost, than on Player 1’s. Regarding second-order correction terms,

however, both V
(2)

1 and V
(2)

2 are nonzero, and they are both obtained from solutions of linear

(though coupled) differential equations. Hence, no additional restrictions are imposed on δ through

these higher-order terms, and an iterative computation of all correction terms is again possible.

These features are better seen if we consider the special class of linear-quadratic RS NZSDGs,

where

a(x) = Ax, B1(x) = B1, B2(x) = B2 (204)

c(x) = x′Qx, Q ≥ 0; (205)

q(x) = x′Qfx, Qf ≥ 0; (206)

with all matrices, A, B1, B2, Q, being independent of x. Then, the zeroth-order Nash equilibrium

solution is

µ
(0)
i (t;x) = −B′iZ(0)(t)x, i = 1, 2, (207)

where Z(0) satisfies the RDE:

−Ż(0) = Z(0)A+A′Z(0) − Z(0)
[
B1B

′
1 +B2B

′
2 −

2ε
δ
DD′

]
Z(0) +Q, Z(0)(tf ) = Qf , (208)

which admits a unique nonnegative definite solution if either δ is sufficiently large or ε is sufficiently

small.

For i = 1, the first-order correction to (207) is zero, whereas for i = 2 the first-order correction

to the same is:

µ
(1)
2 (t, x) = −B′2Z

(1)
2 (t)x, (209)

where Z(1)
2 satisfies the Lyapunov differential equation:

−Ż(1)
2 = Z

(1)
2 F (0) + F (0)′Z

(1)
2 − 2ε

δ
Z(0)DD′Z(0), Z

(1)
2 (tf ) = 0 (210)
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where

F (0) := A−
(
B1B

′
1 +B2B

′
2 −

2ε
δ
DD′

)
Z(0). (211)

Finally, the second-order corrections to (207) are

µ
(2)
i (t, x) = −B′iZ

(2)
i (t)x, (212)

where Z(2)
1 and Z

(2)
2 satisfy

−Ż(2)
1 = Z

(2)
1 F (0) + F (0)′Z

(2)
1 + Z

(1)
2 B2B

′
2Z

(1)
2 , Z

(2)
1 (tf ) = 0 (213)

−Ż(2)
2 = Z

(2)
2 F (0) + F (0)′Z

(2)
2 − 2ε

δ2
[Z(0)DD′Z

(1)
1 + Z

(1)
2 DD′Z(0)]

−Z(1)
2

[
B2B

′
2 −

2ε
δ
DD′

]
Z

(1)
2 +

2ε
δ3
Z(0)DD′Z(0), Z

(2)
2 (tf ) = 0,

(214)

which are linearly coupled Lyapunov differential equations, and hence admit unique solutions.

Therefore, as long as the Riccati differential equation at the zeroth stage admits a nonnegative-

definite solution (which is guaranteed if the quantity γ =
√
δ/2ε exceeds a precomputable thresh-

old), the expansion exists and the controllers for both players can be constructed recursively to any

degree of accuracy.

14.5 Conclusions

In this paper, we have obtained a set of sufficient conditions for Nash equilibria of two-player

nonzero-sum nonlinear stochastic differential games with risk-sensitive performance indices, and

have established connections with stochastic games of the risk-neutral type. We have also studied

some limiting cases where either the risk-sensitive nonzero-sum differential game degenerates to a

single RSSC problem or decouples into two independent risk-sensitive stochastic control problems.

Furthermore, we have investigated small noise limits, where the game solution becomes asymptoti-

cally equivalent to that of a multi-criteria nonlinear H∞ control problem. In addition to providing

insight into the structure of the equilibrium solutions, these limiting cases also lead to sequential

computational schemes for the construction of Nash equilibria of the risk-sensitive nonzero-sum

differential game. The analysis further provides a quantification of the sensitivity of the optimal

solutions of risk-sensitive stochastic team problems with respect to unmodeled weak-coupling in the

system dynamics or unmodeled discrepancy in the risk-sensitivity indices among different players.
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Even though the paper has dealt with two-player nonzero-sum differential games only, both

the approach and the results find immediate extensions to the many-player case; this has not been

carried out here simply not to burden the development with additional notational complexity. For

a similar reason, we have also not included higher than second-order terms in the expansion of

the Nash equilibrium solution in terms of the small parameters, which can readily be carried out,

with also the system and the cost functions admitting such higher-order expansions. There are,

however, other extensions, which require substantial additional work, and stand out as promising

future research directions. Among these are:

(i) Extending the results of this paper to the infinite-horizon case;

(ii) Allowing in the problem formulation not only weak spatial coupling, but also fast-slow dy-

namics (as in [65, 66]);

(iii) Obtaining the counterparts of these results under other information structures, such as

sampled-data or imperfect state.
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15 Lecture 15: Stochastic differential games: Feedback Stackel-
berg equilibrium

I have so far discussed in the context of dynamic and differential games under mainly two types

of information structures (OL and CL), the solution concept of NE (and as a special case SPE),

but not the Stackelberg equilibrium concept (except in the context of incentive design), and in

this lecture I discuss the latter for not only deterministic but also stochastic dynamic/differential

games. I will focus on the solution concept of feedback Stackelberg equilibrium, which is different

from the Stackelberg equilibrium under CL FB information pattern, where the latter is not even

weakly time consistent, while the former is strongly time consistent (and this makes it appealing).

It is one where leadership is exercised stagewise (in a discrete-time format) or at each point in time

(in the continuous-time case), which makes its computation more manageable. I will also discuss

a game model where leadership could be time-varying, governed by the outcome of an exogenous

stochastic process.

The lecture will essentially be based on the contents of the book chapter:

[15-1] T. Başar and A. Haurie, “Feedback equilibria in differential games with structural and

modal uncertainties,” in J. B. Cruz, Jr., editor, Advances in Large Scale Systems, chapter 1, pp.

163–201. JAE Press Inc., Connecticut, May 1984.

A scanned reprint of this article has been attached.

The lecture will also cover some recent work on mixed leadership, when a player can act both

as a leader and a follower (by controlling different instrument variables); this will be based on the

journal paper:

[15-2] T. Başar, A. Bensoussan, and S.P. Sethi, “Differential games with mixed leadership: the

open-loop solution,” J. Applied Mathematics and Computation, 2010 (to appear).

A pre-print of this second paper has also been attached.
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16 Lecture 16: CDMA power control as an application of NZSG
theory

This lecture will cover the application of non-cooperative nonzero-sum game theory discussed in the

previous lectures in CDMA (code division multiple access) power control where the users control

their uplink power level in a non-cooperative way. Some pricing schemes will also be discussed in

this context. The presentation will be based on the contents of three journal papers:

[16-1] T. Alpcan, T. Başar, R. Srikant, and E. Altman, “CDMA uplink power control as a nonco-

operative game,” Wireless Networks, 8:659-670, 2002.

[16-2] T. Alpcan, T. Başar, and S. Dey, “A power control game based on outage probabilities for

multicell wireless data networks,” IEEE Transactions on Wireless Communications , 5(4):890-899,

April 2006.

[16-3] X. Fan, T. Alpcan, M. Arcak, T. J. Wen, and T. Başar, “A passivity approach to game-

theoretic CDMA power control,” Automatica , 42(11):1837-1847, November 2006.

Reprints of all three papers are attached.
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17 Lecture 17: Routing and flow control

This lecture will cover the application of non-cooperative nonzero-sum game theory discussed in

the previous lectures in routing and flow control in communication networks. The presentation will

be based on the contents of three journal papers:

[17-1] E. Altman and T. Başar, “Multi-user rate-based flow control,” IEEE Transactions on Com-

munications, 46(7):940-949, July 1998.

[17-2] E. Altman, T. Başar, and R. Srikant, “Nash equilibria for combined flow control and routing

in networks: Asymptotic behavior for a large number of users,” IEEE Trans. Automatic Control,

47(6):917-930, June 2002.

Reprints of both papers are attached.
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18 Lecture 18: Pricing of services as an application of hierarchical
game theory

This lecture will cover the application of hierarchical game theory and incentive design schemes

(including pricing) to the interaction between service providers and users in a networking environ-

ment. It will also introduce in this context large population games. The presentation will be based

on the contents of three papers:

[18-1] T. Başar and R. Srikant, “Revenue-maximizing pricing and capacity expansion in a many-

users regime,” Proc. IEEE Infocom 2002,Vol. 1, pp. 294-301, New York, New York, June 23-27,

2002

[18-2] H. Shen and T. Başar, “Optimal nonlinear pricing for a monopolistic network service provider

with complete and incomplete information,” IEEE J. on Selected Areas in Communications (JSAC)

Special Issue: Non-Cooperative Behavior in Networking , 25(6):1216-1223, June 2007.

[18-3] H. Shen and T. Başar, “Pricing under information asymmetry for a large population of

users,” Telecommunication Systems, 2010 (to appear).

Reprints of the first two papers and a preprint of the third one are attached.
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19 Lecture 19: Game-theoretic approach to network security

This lecture will be on the application of non-cooperative game theory and the fictitious play

algorithm to network security and intrusion detection. The presentation will be based on the

contents of three papers:

[19-1] T. Alpcan and T. Başar, “A game theoretic analysis of intrusion detection in access con-

trol systems,” Proc. IEEE Conference on Decision and Control (Dec 14-17, 2004; Nassau, The

Bahamas), pp. 1568-1573.

[19-2] K. C. Nguyen, T. Alpcan, and T. Başar, “Security games with decision and observation

errors,” Proc. 2010 American Control Conference (ACC 2010), Baltimore, Maryland, June 30 -

July 2, 2010.

[19-3] K. C. Nguyen, T. Alpcan, and T. Başar, “Fictitious play with time-invariant frequency

update for network security,” Proc 2010 IEEE Multi-Conference on Systems and Control (MSC

2010), Yokohama, Japan, September 8-10, 2010.

Reprints or pre-prints of these three papers are attached.

A comprehensive treatment of game-theoretic approach to security can be found in the forth-

coming book by Alpcan and Başar [37].
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20 Lecture 20: Auctioning divisible resources

This lecture will discuss the application of the Nash equilibrium concept in auctioning divisible

resources. The presentation will be based on the contents of three papers:

[20-1] R.T. Maheswaran and T. Başar, “Social welfare of selfish agents: motivating efficiency for

divisible resources,” Proc. IEEE Conference on Decision and Control (Dec 14-17, 2004; Nassau,

The Bahamas), pp. 1550-1555.

[20-2] R.T. Maheswaran and T. Başar, “On revenue generation when auctioning network re-

sources,” Proc. Joint 44th IEEE Conference on Decision and Control and European Control

Conference (CDC-ECC’05, Dec 12-15, 2005; Seville, Spain), pp. 7466-7471.

[20-3] R.T. Maheswaran and T. Başar, “Efficient signal proportional allocation (ESPA) mech-

anisms: Decentralized social welfare maximization for divisible resources,” IEEE J. on Selected

Areas in Communications (JSAC) Special Issue: Price-Based Access Control and Economics for

Communication Networks, 24(5):1000-1009, May 2006.

Reprints of the three papers are attached.
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21 Appendix: List of sixteen papers attached

[15-1] T. Başar and A. Haurie, “Feedback equilibria in differential games with structural and modal
uncertainties,” in J. B. Cruz, Jr., editor, Advances in Large Scale Systems, chapter 1, pp. 163–201.
JAE Press Inc., Connecticut, May 1984.

[15-2] T. Başar, A. Bensoussan, and S.P. Sethi, “Differential games with mixed leadership: the open-loop
solution,” J. Applied Mathematics and Computation, 2010 (to appear).

[16-1] T. Alpcan, T. Başar, R. Srikant, and E. Altman, “CDMA uplink power control as a noncooperative
game,” Wireless Networks, 8:659-670, 2002.

[16-2] T. Alpcan, T. Başar, and S. Dey, “A power control game based on outage probabilities for multicell
wireless data networks,” IEEE Transactions on Wireless Communications , 5(4):890-899, April 2006.

[16-3] X. Fan, T. Alpcan, M. Arcak, T. J. Wen, and T. Başar, “A passivity approach to game-theoretic
CDMA power control,” Automatica , 42(11):1837-1847, November 2006.

[17-1] E. Altman and T. Başar, “Multi-user rate-based flow control,” IEEE Trans. Communications,
46(7):940-949, July 1998.

[17-2] E. Altman, T. Başar, and R. Srikant, “Nash equilibria for combined flow control and routing in
networks: Asymptotic behavior for a large number of users,” IEEE Trans. Automat Control, 47(6):917-
930, June 2002.

[18-1] T. Başar and R. Srikant, “Revenue-maximizing pricing and capacity expansion in a many-users
regime,” Proc. IEEE Infocom 2002, Vol. 1, pp. 294-301, New York, New York, June 23-27, 2002

[18-2] H. Shen and T. Başar, “Optimal nonlinear pricing for a monopolistic network service provider with
complete and incomplete information,” IEEE J. Selected Areas in Communications (JSAC) Special
Issue: Non-Cooperative Behavior in Networking , 25(6):1216-1223, June 2007.

[18-3] H. Shen and T. Başar, “Pricing under information asymmetry for a large population of users,”
Telecommunication Systems, 2010 (to appear).

[19-1] T. Alpcan and T. Başar, “A game theoretic analysis of intrusion detection in access control systems,”
Proc. IEEE Conf Decision and Control (Dec 14-17, 2004; Nassau, The Bahamas), pp. 1568-1573.

[19-2] K. C. Nguyen, T. Alpcan, and T. Başar, “Security games with decision and observation errors,” Proc.
2010 American Control Conference (ACC 2010), Baltimore, Maryland, June 30 - July 2, 2010.

[19-3] K. C. Nguyen, T. Alpcan, and T. Başar, “Fictitious play with time-invariant frequency update for
network security,” Proc 2010 IEEE Multi-Conference on Systems and Control (MSC 2010), Yokohama,
Japan, September 8-10, 2010.

[20-1] R.T. Maheswaran and T. Başar, “Social welfare of selfish agents: motivating efficiency for divisible
resources,” Proc. IEEE Conf Decision and Control (Dec 14-17, 2004; Nassau, The Bahamas), pp.
1550-1555.

[20-2] R.T. Maheswaran and T. Başar, “On revenue generation when auctioning network resources,” Proc.
Joint 44th IEEE Conf Decision and Control and European Control Conference (CDC-ECC’05, Dec
12-15, 2005; Seville, Spain), pp. 7466-7471.
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[20-3] R.T. Maheswaran and T. Başar, “Efficient signal proportional allocation (ESPA) mechanisms: De-
centralized social welfare maximization for divisible resources,” IEEE J. on Selected Areas in Com-
munications (JSAC) Special Issue: Price-Based Access Control and Economics for Communication
Networks, 24(5):1000-1009, May 2006.
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[25] E. Altman and T. Başar, “Multi-user rate-based flow control,” IEEE Transactions on Communications,
46(7):940-949, July 1998.
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