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Preface

These notes were developed to accompany the corresponding course in the Network Math-
ematics Graduate Programme at the Hamilton Institute. The purpose of the course is to
introduce some basic concepts and results in the analysis and control of linear and nonlin-
ear dynamical systems. There is a lot more material in these notes than can be covered in
twenty hours. However, the extra material should prove useful to the student who wants to
pursue a specific topic in more depth. Sections marked with an asterisk will not be covered.
Although proofs are given for most of the results presented here, they will not be covered in
the course.
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Chapter 1

Introduction

The purpose of this course is to introduce some basic concepts and tools which are useful
in the analysis and control of dynamical systems. The concept of a dynamical system is
very general; it refers to anything which evolves with time. A communication network is a
dynamical system. Vehicles (aircraft, spacecraft, motorcycles, cars) are dynamical systems.
Other engineering examples of dynamical systems include, metal cutting machines such as
lathes and milling machines, robots, chemical plants, and electrical circuits. Even civil
engineering structures such as bridges and skyscrapers are examples; think of a structure
subject to strong winds or an earthquake. The concept of a dynamical system is not restricted
to engineering; non-engineering examples include plants, animals, yourself, and the economy.

A system interacts with its environment via inputs and outputs. Inputs can be considered
to be exerted on the system by the environment whereas outputs are exerted by the system
on the environment. Inputs are usually divided into control inputs and disturbance inputs.
In an aircraft, the deflection of a control surface such as an elevator would be considered a
control input; a wind gust would be considered a disturbance input. An actuator is a physical
device used for the implementation of a control input. Some examples of actuators are: the
elevator on an aircraft; the throttle twistgrip on a motorcycle; a valve in a chemical plant.

Outputs are usually divided into performance outputs and measured outputs. Performance
outputs are those outputs whose behavior or performance you are interested in, for example,
heading and speed of an aircraft. The measured outputs are the outputs you actually mea-
sure, for example, speed of an aircraft. Usually, all the performance outputs are measured.
Sensors are the physical devices used to obtain the measured outputs. Some examples of
sensors are: altimeter and airspeed sensor on an aircraft; a pressure gauge in a chemical
plant.

A fundamental concept is describing the behavior of a dynamical system is the state of
the system. A precise definition will be given later. However, a main desirable property of
a system state is that the current state uniquely determines all future states, that is, if one
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knows the current state of the system and all future inputs then, one can predict the future
state of the system.

Feedback is a fundamental concept in system control. In applying a control input to a
system the controller usually takes into account the behavior of the system; the controller
bases its control inputs on the measured outputs of the plant (the system under control).
Control based on feedback is called closed loop control. The term open loop control is usually
used when one applies a control input which is pre-specified function of time; hence no
feedback is involved.

The state space description of an input-output system usually involves a time variable t
and three sets of variables:

• State variables: x1, x2, · · · , xn

• Input variables: u1, u2, · · · , um

• Output variables: y1, y2, · · · , yp

In a continuous-time system, the time-variable t can be any real number. For discrete-time
systems, the time-variable only takes integer values, that is, . . . ,−2,−1, 0, 1, 2, . . ..

For continuous-time systems, the description usually takes the following form

ẋ1 = F1(x1, x2, · · · , xn, u1, u2, · · · , um)
ẋ2 = F2(x1, x2, · · · , xn, u1, u2, · · · , um)

...
ẋn = Fn(x1, x2, · · · , xn, u1, u2, · · · , um)

(1.1)

and
y1 = H1(x1, x2, · · · , xn, u1, u2, · · · , um)
y2 = H2(x1, x2, · · · , xn, u1, u2, · · · , um)

...
yp = Hp(x1, x2, · · · , xn, u1, u2, · · · , um)

(1.2)

where the overhead dot indicates differentiation with respect to time. The first set of equa-
tions are called the state equations and the second set are called the output equations.

For discrete-time systems, the description usually takes the following form

x1(k+1) = F1(x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , um(k))
x2(k+1) = F2(x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , um(k))

...
xn(k+1) = Fn(x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , um(k))

(1.3)

and
y1 = H1(x1, x2, · · · , xn, u1, u2, · · · , um)
y2 = H2(x1, x2, · · · , xn, u1, u2, · · · , um)

...
yp = Hp(x1, x2, · · · , xn, u1, u2, · · · , um)

(1.4)
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The first set of equations are called the state equations and the second set are called the
output equations.
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1.1 Ingredients

Dynamical systems
Linear algebra
Applications
MATLAB (including Simulink)

1.2 Some notation

Sets : s ∈ S
ZZ represents the set of integers
IR represents the set of real numbers
C represents the set of complex numbers
Functions: f : S → T

1.3 MATLAB

Introduce yourself to MATLAB

%matlab

>> lookfor

>> help

>> quit

Learn the representation, addition and multiplication of real and complex numbers
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Chapter 2

State space representation of
dynamical systems

In this section, we consider a bunch of simple physical systems and demonstrate how one
can obtain a state space mathematical models of these systems. We begin with some linear
examples.

2.1 Linear examples

2.1.1 A first example

Figure 2.1: First example

Consider a small cart of mass m which is constrained to move along a horizontal line.
The cart is subject to viscous friction with damping coefficient c; it is also subject to an input
force which can be represented by a real scalar variable u(t) where the real scalar variable t
represents time. Let the real scalar variable v(t) represent the velocity of the cart at time t;
we will regard this as the output of the cart. Then, the motion of the cart can be described
by the following first order ordinary differential equation (ODE):

mv̇(t) = −cv(t) + u

Introducing the state x := v results in

ẋ = ax + bu

y = x

where a := −c/m < 0 and b := 1/m.
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2.1.2 The unattached mass

Consider a small cart of mass m which is constrained to move without friction along a
horizontal line. It is also subject to an input force which can be represented by a real scalar
variable u(t). Let q(t) be the horizontal displacement of the cart from a fixed point on its
line of motion; we will regard y = q as the output of the cart.

Figure 2.2: The unattached mass

Application of Newton’s second law to the unattached mass illustrated in Figure 2.2 results
in

mq̈ = u

Introducing the state variables,

x1 := q and x2 := q̇,

yields the following state space description:

ẋ1 = x2

ẋ2 = u/m

y = x1

2.1.3 Spring-mass-damper

Consider a system which can be modeled as a simple mechanical system consisting of a body
of mass m attached to a base via a linear spring of spring constant k and linear dashpot
with damping coefficient c. The base is subject to an acceleration u which we will regard
as the input to the system. As output y, we will consider the force transmitted to the mass
from the spring-damper combination. Letting q be the deflection of the spring, the motion
of the system can be described by

m(q̈ + u) = −cq̇ − kq −mg

and y = −kq − cq̇ where g is the gravitational acceleration constant. Introducing x1 := q
and x2 := q̇ results in the following state space description:

ẋ1 = x2

ẋ2 = −(k/m)x1 − (c/m)x2 − u− g

y = −kx1 − cx2 .
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Figure 2.3: Spring-mass-damper with exciting base

Figure 2.4: A simple structure

2.1.4 A simple structure

Consider a structure consisting of two floors. The scalar variables q1 and q2 represent
the lateral displacement of the floors from their nominal positions. Application of Newton’s
second law to each floor results in

m1q̈1 + (c1 + c2)q̇1 + (k1 + k2)q1 − c2q̇2 − k2q2 = u1

m2q̈2 − c2q̇1 − k2q1 + c2q̇2 + k2q2 = u2

Here u2 is a control input resulting from a force applied to the second floor and u1 is a
disturbance input resulting from a force applied to the first floor. We have not considered
any outputs here.
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2.2 Nonlinear examples

2.2.1 A first nonlinear system

Recall the first example, and suppose now that the friction force on the cart is due to
Coulomb (or dry) friction with coefficient of friction µ > 0. Then we have

Figure 2.5: A first nonlinear system

mv̇ = −µmg sgm (v) + u

where

sgm (v) :=




−1 if v < 0

0 if v = 0
1 if v > 0

and g is the gravitational acceleration constant of the planet on which the block resides.
With x := v we obtain

ẋ = −α sgm (x) + bu

y = x

and α := µg and b = 1/m.
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2.2.2 Planar pendulum

Consider a planar rigid body which is constrained to rotate about a horizontal axis which
is perpendicular to the body. Here the input u is a torque applied to the pendulum and the
output is the angle θ that the pendulum makes with a vertical line.

Figure 2.6: Simple pendulum

The motion of this system is governed by

Jθ̈ + Wl sin θ = u

where J > 0 is the moment of inertia of the body about its axis of rotation, W > 0 is the
weight of the body and l is the distance between the mass center of the body and the axis
of rotation. Introducing state variables

x1 := θ and x2 := θ̇

results in the following nonlinear state space description:

ẋ1 = x2

ẋ2 = −a sin x1 + b2u

y = x1

where a := Wl/J > 0 and b2 = 1/J .

2.2.3 Attitude dynamics of a rigid body

The equations describing the rotational motion of a rigid body are given by Euler’s equations
of motion. If we choose the axes of a body-fixed reference frame along the principal axes of
inertia of the rigid body with origin at the center of mass, Euler’s equations of motion take
the simplified form

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω3ω1

I3ω̇3 = (I1 − I2)ω1ω2
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Figure 2.7: Attitude dynamics of a rigid body

where ω1, ω2, ω3 denote the components of the body angular velocity vector with respect
to the body principal axes, and the positive scalars I1, I2, I3 are the principal moments of
inertia of the body with respect to its mass center.

2.2.4 Body in central force motion

Figure 2.8: Body in central force motion

r̈ − rω2 + g(r) = 0
rω̇ + 2ṙω = 0

For the simplest situation in orbit mechanics ( a “satellite” orbiting YFHB)

g(r) = µ/r2 µ = GM

where G is the universal constant of gravitation and M is the mass of YFHB.
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2.2.5 Double pendulum on cart

Consider the the double pendulum on a cart illustrated in Figure 2.9. The motion of this
system can be described by the cart displacement y and the two pendulum angles θ1, θ2.
The input u is a force applied to the cart. Application of your favorite laws of mechanics
results in the following equations of motion:

y

m0

u

m1
m2

θ1

θ2

P1
P2

Figure 2.9: Double pendulum on cart

(m0 + m1 + m2)ÿ −m1l1 cos θ1 θ̈1 −m2l2 cos θ2 θ̈2 + m1l1 sin θ1θ̇
2
1 + m2l2 sin θ2θ̇

2
2 = u

−m1l1 cos θ1 ÿ + m1l
2
1θ̈1 + m1l1g sin θ1 = 0

−m2l2 cos θ2 ÿ + m2l
2
2θ̈2 + m2l2g sin θ2 = 0
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2.2.6 Two-link robotic manipulator

u1

q
1

q
2

u2

lc
1

lc
2

Payload

g^

Figure 2.10: A simplified model of a two link manipulator

The coordinates q1 and q2 denote the angular location of the first and second links relative
to the local vertical, respectively. The second link includes a payload located at its end. The
masses of the first and the second links are m1 and m2, respectively. The moments of inertia
of the first and the second links about their centers of mass are I1 and I2, respectively. The
locations of the center of mass of links one and two are determined by lc1 and lc2, respectively;
l1 is the length of link 1. The equations of motion for the two arms are described by:

m11q̈1 + m12 cos(q1−q2)q̈2 + c1 sin(q1−q2)q̇2
2 + g1 sin(q1) = u1

m21 cos(q1−q2)q̈1 + m22q̈2 + c2 sin(q1−q2)q̇2
1 + g2 sin(q2) = u2

where

m11 = I1 + m1lc
2
1 + m2l

2
1 , m12 = m21 = m2l1lc2 , m22 = I2 + m2lc

2
2

g1 = −(m1lc1 + m2l1)g , g2 = −m2lc2g
c1 = m2l1lc2 , c2 = −m2l1lc2
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2.3 Discrete-time examples

All the examples considered so far are continuous-time examples. Now we consider discrete-
time examples; here the time variable k is an integer, that is, · · · ,−2,−1, 0, 1, 2, · · · . Some-
times, a discrete-time system results from the discretization of a continuous-time system (see
first example) and sometimes it arises naturally (see second example).

2.3.1 The discrete unattached mass

Here we consider a discretization of the unattached mass of Section 2.1.2 described by

mq̈ = u .

Suppose that the input to this system is given by a zero order hold as follows:

u(t) = ud(k) for kT ≤ t < (k+1)T

where k is an integer, that is, k = . . . ,−2,−1, 0, 1, 2 . . . and T > 0 is some specified time
interval; we call it the sampling time. Thus the input to the system is constant over each
sampling interval [kT, (k+1)T ).

Suppose we sample the state of the system at integer multiples of the sampling time and
let

x1(k) = q(kT ) x2(k) := q̇(kT )

for every integer k. Note that, for any k and any t with kT ≤ t ≤ (k+1)T we have

q̇(t) = q̇(kT ) +

∫ t

kT

q̈(τ) dτ = x2(k) +

∫ t

kT

1

m
u(k) dt = x2(k) +

t−kT

m
u(k) .

Hence,

x2(k+1) = q̇((k+1)T ) = x2(k) +
T

m
u(k)

and

x1(k+1) = q((k+1)T ) = q(kT ) +

∫ (k+1)T

kT

q̇(t) dt = x2(k) +

∫ (k+1)T

kT

x2(k) +
t−kT

m
u(k) dt

= x1(k) + Tx2(k) +
T 2

2m
u(k) .

Thus, the sampled system is described by the two first order linear difference equations:

x1(k+1) = x1(k) + Tx2(k) + T 2

2m
u(k)

x2(k+1) = x2(k) + T
m

u(k)

and the output equation:

y(k) = x1(k)

This is a discrete-time state space description.
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2.3.2 Additive increase multiplicative decrease (AIMD) algorithm
for resource allocation

Consider a resource such as a communications router which is serving n users and has a

w1

w1

wn

R
e
s
o
u
r
c
e

C

1

n

2

users

maximum capacity of c. Ideally, we would like the resource to be fully utilized at all times.
Each user determines how much capacity it will request without knowledge of the usage of
the other users. How does each user determine its use of the resource? One approach is
to use an additive increase multiplicative decrease (AIMD) algorithm. In this approach, each
user increases its use of the resource linearly with time (additive increase phase) until it is
notified that the resource has reached maximum capacity. It then (instantaneously) reduces
its usage to a fraction of its usage at notification (multiplicative decrease phase). It again
starts to increase its usage linearly with time.

To describe AIMD, let wi(t) ≥ 0 represent the i-th users share of the resource capacity at
time t. Each user increases its share linearly with time until the resource reaches maximum
capacity c. When maximum capacity is reached, we refer to this as a congestion event.
Suppose we number the congestion events consecutively with index k = 1, 2, · · · and let tk
denote the time at which the k-th congestion event occurs. Then.

w1(tk) + w2(tk) + · · ·+ wn(tk) = c

Suppose that immediately after a congestion event, each user i decreases its share of the
resource to βi times its share at congestion where

0 < βi < 1 .

This is the multiplicative decrease phase of the algorithm. If t+k represents a time immediately
after the k-th congestion event then,

wi(t
+
k ) = βiwi(tk)

Following the multiplicative decrease of its share after a congestion event, each user i increases
its share linearly in time at a rate αi > 0 until congestion occurs again, that is,

wi(t) = βiwi(tk) + αi(t− tk)

for tk < t ≤ tk+1. This is the additive increase phase of the algorithm.
Let Tk be the time between the k-th congestion event and congestion event k + 1. Then

Tk = tk+1 − tk and
wi(tk+1) = βiwi(tk) + αiTk

14



Abusing notation and letting wi(k) = wi(tk), the AIMD algorithm is described by

wi(k+1) = βiwi(k) + αiTk for i = 1, · · · , n (2.1)

where the inter-congestion time Tk is determined by the congestion condition

w1(k+1) + · · ·+ wn(k+1) = c

Using this, (2.1) and
w1(k) + · · ·+ wn(k) = c

results in
(1−β1)w1(k) + · · ·+ (1−βn)wn(k) = (α1 + · · ·+ αn)Tk

Solving the above equation for Tk and substitution into (2.1) results in

wi(k+1) = βiwi(k) + γi(1−β1)w1(k) + · · ·+ γi(1−βn)wn(k) (2.2)

for i = 1, · · · , n. where

γi :=
αi

α1 + · · ·+ αn

.

Note that
γ1 + · · ·+ γn = 1 . (2.3)

Not also that the above system is described by n first order difference equations.
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2.4 General representation

2.4.1 Continuous-time

With the exception of the discrete-time examples, all of the preceding systems can be de-
scribed by a bunch of first order ordinary differential equations of the form

ẋ1 = F1(x1, x2, . . . , xn, u1, u2, . . . , um)
ẋ2 = F2(x1, x2, . . . , xn, u1, u2, . . . , um)

...
ẋn = Fn(x1, x2, . . . , xn, u1, u2, . . . , um)

Such a description of a dynamical system is called a state space description; the real scalar
variables, xi(t) are called the state variables; the real scalar variables, ui(t) are called the
input variables and the real scalar variable t is called the time variable. If the system has
outputs, they are described by

y1 = H1(x1, . . . , xn, u1, . . . , um)
y2 = H2(x1, . . . , xn, u1, . . . , um)

...
yp = Hp(x1, . . . , xn, u1, . . . , um)

where the real scalar variables, yi(t) are called the output variables
When a system has no inputs or the inputs are fixed at some constant values, the system

is described by

ẋ1 = f1(x1, x2, . . . , xn)
ẋ2 = f2(x1, x2, . . . , xn)

...
ẋn = fn(x1, x2, . . . , xn)

Limitations of the above description. The above description cannot handle

Systems with delays.
Systems described by partial differential equations.

16



Higher order ODE descriptions

Single equation. (Recall the spring-mass-damper system.) Consider a dynamical system
described by a single nth- order differential equation of the form

F (q, q̇, . . . , q(n), u) = 0

where q(t) is a real scalar and q(n) := dnq
dtn

. To obtain an equivalent state space description,
we proceed as follows.

(a) First solve for the highest order derivative q(n) of q as a function of q, q̇, . . . , q(n−1) and u
to obtain something like:

q(n) = a(q, q̇, . . . , q(n−1), u)

(b) Now introduce state variables,

x1 := q

x2 := q̇
...

xn := q(n−1)

to obtain the following state space description:

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = a(x1, x2, . . . , xn, u)

17



Multiple equations. (Recall the simple structure and the pendulum cart system.) Con-
sider a dynamical system described by N scalar differential equations in N scalar variables:

F1(q1, q̇1, . . . , q
(n1)
1 , q2, q̇2, . . . , q

(n2)
2 , . . . , qN , q̇N , . . . , q

(nN )
N , u1, u2, . . . , um ) = 0

F2(q1, q̇1, . . . , q
(n1)
1 , q2, q̇2, . . . , q

(n2)
2 , . . . , qN , q̇N , . . . , q

(nN )
N , u1, u2, . . . , um ) = 0

...

FN(q1, q̇1, . . . , q
(n1)
1 , q2, q̇2, . . . , q

(n2)
2 , . . . , qN , q̇N , . . . , q

(nN )
N , u1, u2, . . . , um ) = 0

where t, q1(t), q2(t), . . . , qN(t) are real scalars. Note that q
(ni)
i is the highest order derivative

of qi which appears in the above equations. To obtain an equivalent state space description,
we proceed as follows.

(a) Solve for the highest order derivatives, q
(n1)
1 , q

(n2)
2 , . . . , q

(nN )
N of q1, · · · , qN which appear

in the differential equations to obtain something like:

q
(n1)
1 = a1( q1, q̇1, . . . q

(n1−1)
1 , q2, q̇2, . . . , q

(n2−1)
2 , . . . , qN , q̇N , . . . , q

(nN−1)
N , u1, u2, . . . , um )

q
(n2)
2 = a2( q1, q̇1, . . . q

(n1−1)
1 , q2, q̇2, . . . , q

(n2−1)
2 , . . . , qN , q̇N , . . . , q

(nN−1)
N , u1, u2, . . . , um )

...

q
(nN )
N = aN( q1, q̇1, . . . q

(n1−1)
1 , q2, q̇2, . . . , q

(n2−1)
2 , . . . , qN , q̇N , . . . , q

(nN−1)
N , u1, u2, . . . , um )

If one cannot uniquely solve for the above derivatives, then one cannot obtain a unique state
space description

(b) As state variables, consider each qi variable and its derivatives up to but not including
its highest order derivative. One way to do this is as follows. Let

x1 := q1 x2 := q̇1 . . . xn1 := q
(n1−1)
1

xn1+1 := q2, xn1+2 := q̇2 . . . xn1+n2 := q
(n2−1)
2

...

xn1+...+nN−1+1 := qN xn1+...+nN−1+2 := q̇N . . . xn := q
(nN−1)
N

where

n := n1 + n2 + . . . + nN
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to obtain

ẋ1 = x2

ẋ2 = x3

...

ẋn1−1 = xn1

ẋn1 = a1(x1, x2, . . . , xn, u1, u2, . . . , um)

ẋn1+1 = xn1+2

...

ẋn1+n2 = a2(x1, x2, . . . , xn, u1, u2, . . . , um)
...

ẋn = aN(x1, x2, . . . , xn, u1, u2, . . . , um)

Example 1

q̈1 + q̇2 + 2q1 = 0

−q̈1 + q̇1 + q̇2 + 4q2 = 0

The highest order derivatives of q1 and q2 appearing in these equations are q̈1 and q̇2, respec-
tively.

Solving for q̈1 and q̇2, we obtain

q̈1 = −q1 +
1

2
q̇1 + 2q2

q̇2 = −q1 − 1

2
q̇1 − 2q2 .

Introducing state variables x1 := q1, x2 := q̇1, and x3 = q2 we obtain the following state
space description:

ẋ1 = x2

ẋ2 = −x1 +
1

2
x2 + 2x3

ẋ3 = −x1 − 1

2
x2 − 2x3

2.4.2 Discrete-time

Recall the AIMD algorithm of Section 2.3.2. The general discrete-time system is described
by a bunch of first order difference equations of the form:

x1(k + 1) = F1(x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , um(k))

x2(k + 1) = F2(x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , um(k))
...

xn(k + 1) = Fn(x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , um(k))
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The real scalar variables, xi(k), i = 1, 2, . . . , n are called the state variables; the real scalar
variables, ui(k), i = 1, 2, . . . , m are called the input variables and the integer variable k is
called the time variable. If the system has outputs, they are described by

y1 = H1(x1, . . . , xn, u1, . . . , um)
y2 = H2(x1, . . . , xn, u1, . . . , um)

...
yp = Hp(x1, . . . , xn, u1, . . . , um)

where the real scalar variables, yi(k), i = 1, 2, . . . , p are called the output variables
When a system has no inputs or the inputs are fixed at some constant values, the system

is described by

x1(k + 1) = f1(x1(k), x2(k), . . . , xn(k))
x2(k + 1) = f2(x1(k), x2(k), . . . , xn(k))

...
xn(k + 1) = fn(x1(k), x2(k), . . . , xn(k))

Higher order difference equation descriptions

One converts higher order difference equation descriptions into state space descriptions in a
similar manner to that of converting higher order ODE descriptions into state space descrip-
tions; see Example 2.3.1.

20



2.4.3 Exercises

Exercise 1 Consider a system described by a single nth-order linear differential equation of
the form

q(n) + an−1q
(n−1) + . . . a1q̇ + a0q = 0

where q(t) ∈ IR and q(n) := dnq
dtn

. By appropriate definition of state variables, obtain a first
order state space description of this system.

Exercise 2 By appropriate definition of state variables, obtain a first order state space
description of the following systems.

(i) The ‘simple structure’

(ii) The ‘body in central force motion’

(iii)

q̈1 + q1 + 2q̇2 = 0

q̈1 + q̇2 + q2 = 0

where q1, q2 are real scalars.

Exercise 3 By appropriate definition of state variables, obtain a first order state space
description of the following systems where q1 and q2 are real scalars.

(i)

2q̈1 + q̈2 + sin q1 = 0

q̈1 + 2q̈2 + sin q2 = 0

(ii)

q̈1 + q̇2 + q3
1 = 0

q̇1 + q̇2 + q3
2 = 0

Exercise 4 By appropriate definition of state variables, obtain a first order state space
description of the following systems where q1, q2 are real scalars.

(i)

2q̈1 + 3q̈2 + q̇1 − q2 = 0

q̈1 + 2q̈2 − q̇2 + q1 = 0

21



(ii)

...
q2 +2q̇1 + q2 − q1 = 0

q̈2 + q̇1 − q2 + q1 = 0

Exercise 5 By appropriate definition of state variables, obtain a first order state space
description of the following systems where q1, q2 are real scalars.

(i)

3q̈1 − q̈2 + 2q̇1 + 4q2 = 0

−q̈1 + 3q̈2 + 2q̇1 − 4q2 = 0

(ii)

3q̈1 − q̇2 + 4q2 − 4q1 = 0

−q̈1 + 3q̇2 − 4q2 + 4q1 = 0

Exercise 6 Obtain a state-space description of the following single-input single-output sys-
tem with input u and output y.

q̈1 + q̇2 + q1 = 0

q̈1 − q̇2 + q2 = u

y = q̈1

Exercise 7 Consider the second order difference equation

q(k+2) = q(k+1) + q(k)

Obtain the solution corresponding to

q(0) = 1, q(1) = 1

and k = 0, 1, . . . , 10. Obtain a state space description of this system.

Exercise 8 Obtain a state space representation of the following system:

q(k+n) + an−1q(k+n−1) + . . . + a1q(k+1) + a0q(k) = 0

where q(k) ∈ IR.
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2.5 Vectors

When dealing with systems containing many variables, the introduction of vectors for system
description can considerably simplify system analysis and control design.

2.5.1 Vector spaces and IRn

A scalar is a real or a complex number. The symbols IR and C represent the set of real
and complex numbers, respectively. In this section, all the definitions and results are given
for real scalars. However, they also hold for complex scalars; to get the results for complex
scalars, simply replace ‘real’ with ‘complex’ and IR with C.

Consider any positive integer n. A real n-vector x is an ordered n-tuple of real numbers,
x1, x2, . . . , xn. This is usually written as x = (x1 , x2 , · · · , xn) or

x =




x1

x2
...

xn


 or x =




x1

x2
...

xn




The real numbers x1, x2, . . . , xn are called the scalar components of x and xi is called the
i-th component. The symbol IRn represents the set of ordered n-tuples of real numbers.

Addition

The addition of any two real n-vectors x and y yields another real n-vector x + y which is
defined by:

x + y =




x1

x2
...

xn


 +




y1

y2
...

yn


 :=




x1 + y1

x2 + y2
...

xn + yn




Zero element of IRn:

0 :=




0
0
...
0




Note that we are using the same symbol, 0, for a zero scalar and a zero vector.

The negative of a vector:

−x :=




−x1

−x2
...

−xn
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Properties of addition

(a) (Commutative). For each pair x, y in IRn,

x + y = y + x

(b) (Associative). For each x, y, z in IRn,

(x + y) + z = x + (y + z)

(c) There is an element 0 in IRn such that for every x in IRn,

x + 0 = x

(d) For each x in IRn, there is an element −x in IRn such that

x + (−x) = 0

Scalar multiplication.

The multiplication of an element x of IRn by a real scalar α yields an element of IRn and is
defined by:

αx = α




x1

x2
...

xn


 :=




αx1

αx2
...

αxn




Properties of scalar multiplication

(a) For each scalar α and pair x, y in IRn

α(x + y) = αx + αy

(b) For each pair of scalars α, β and x in IRn,

(α + β)x = αx + βx

(c) For each pair of scalars α, β, and x in IRn,

α(βx) = (αβ)x

(d) For each x in IRn,

1x = x
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Vector space

Consider any set V equipped with an addition operation and a scalar multiplication oper-
ation. Suppose the addition operation assigns to each pair of elements x, y in V a unique
element x + y in V and it satisfies the above four properties of addition (with IRn replaced
by V). Suppose the scalar multiplication operation assigns to each scalar α and element x in
V a unique element αx in V and it satisfies the above four properties of scalar multiplication
(with IRn replaced by V). Then this set (along with its addition and scalar multiplication)
is called a vector space. Thus IRn equipped with its definitions of addition and scalar mul-
tiplication is a specific example of a vector space. We shall meet other examples of vectors
spaces later. An element x of a vector space is called a vector. A vector space with real
(complex) scalars is called a real (complex) vector space.

As a more abstract example of a vector space, let V be the set of continuous real-valued
functions which are defined on the interval [0,∞); thus, an element x of V is a function
which maps [0,∞) into IR, that is, x : [0,∞) −→ IR. Addition and scalar multiplication are
defined as follows. Suppose x and y are any two elements of V and α is any scalar, then

(x + y)(t) = x(t) + y(t)

(αx)(t) = αx(t)

Subtraction in a vector space is defined by:

x− y := x + (−y)

Hence in IRn,

x− y =




x1

x2
...

xn


 −




y1

y2
...

yn


 =




x1 − y1

x2 − y2
...

xn − yn




2.5.2 IR2 and pictures

An element of IR2 can be represented in a plane by a point or a directed line segment.
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2.5.3 Derivatives

Suppose x(·) is a function of a real variable t where x(t) is an n-vector. Then

ẋ :=
dx

dt
:=




dx1

dt

dx2

dt

...

dxn

dt




=




ẋ1

ẋ2

...

ẋn




2.5.4 MATLAB

Representation of real and complex vectors
Addition and substraction of vectors
Multiplication of a vector by a scalar
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2.6 Vector representation of dynamical systems

Recall the general descriptions (continuous and discrete) of dynamical systems given in
Section 2.4. We define the state (vector) x as the vector with components, x1, x2, · · · , xn,
that is,

x :=




x1

x2
...

xn


 .

If the system has inputs, we define the input (vector) u as the vector with components,
u1, u2, · · · , um, that is,

u :=




u1

u2
...

um


 .

If the system has outputs, we define the output (vector) y as the vector with components,
y1, y2, · · · , yp, that is,

y :=




y1

y2
...
yp


 .

We introduce the vector valued functions F and H defined by

F (x, u) :=




F1(x1, x2, . . . , xn, u1, u2, · · · , um)
F2(x1, x2, . . . , xn, u1, u2, · · · , um)

...
Fn(x1, x2, . . . , xn, u1, u2, · · · , um)




and

H(x, u) :=




H1(x1, x2, . . . , xn, u1, u2, · · · , um)
H2(x1, x2, . . . , xn, u1, u2, · · · , um)

...
Hp(x1, x2, . . . , xn, u1, u2, · · · , um)




respectively.

Continuous-time systems. The general representation of a continuous-time dynamical
system can be compactly described by the following equations:

ẋ = F (x, u)
y = H(x, u)

(2.4)
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where x(t) is an n-vector, u(t) is an m-vector, y(t) is a p-vector and the real variable t is
the time variable. The first equation above is a first order vector differential equation and is
called the state equation. The second equation is called the output equation.

When a system has no inputs of the input vector vector is constant, it can be described
by

ẋ = f(x) .

A system described by the above equations is called autonomous or time-invariant because
the right-hand sides of the equations do not depend explicitly on time t. For the first part
of the course, we will only concern ourselves with these systems.

However, one can have a system containing time-varying parameters. In this case the
system might be described by

ẋ = F (t, x, u)

y = H(t, x, u)

that is, the right-hand sides of the differential equation and/or the output equation depend
explicitly on time. Such a system is called non-autonomous or time-varying. We will look at
them later.

Other systems described by higher order differential equations Consider a system
described by

ANy(N) + AN−1y
(N−1) + · · ·+ A0y = BMu(M) + BM−1u

(M−1) + · · ·+ B0u

where y(t) is a p-vector, u(t) is an m-vector, N ≥ M , and the matrix AN is invertible. When
M = 0, we can obtain a state space description with

x =




y
...

y(N−1)




When M ≥ 1, we will see later how to put such a system into the standard state space form
(2.4).

Discrete-time systems. The general representation of a continuous-time dynamical sys-
tem can be compactly described by the following equations:

x(k + 1) = F (x(k), u(k))
y(k) = H(x(k), u(k))

(2.5)

where x(k) is an n-vector, u(k) is an m-vector, y(k) is a p-vector and the integer variable k
is the time variable. The first equation above is a first order vector difference equation and
is called the state equation. The second equation is called the output equation. A system
described by the above equations is called autonomous or time-invariant because the right-
hand sides of the equations do not depend explicitly on time k.
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However, one can have a system containing time-varying parameters. In this case the
system might be described by

x(k + 1) = F (k, x(k), u(k))

y(k) = H(k, x(k), u(k))

that is, the right-hand sides of the differential equation and/or the output equation depend
explicitly on time. Such a system is called non-autonomous or time-varying.
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2.7 Solutions and equilibrium states : continuous-time

2.7.1 Equilibrium states

Consider a system described by
ẋ = f(x) (2.6)

A solution or motion of this system is any continuous function x(·) satisfying ẋ(t) = f(x(t))
for all t.

An equilibrium solution is the simplest type of solution; it is constant for all time, that is,
it satisfies

x(t) ≡ xe

for some fixed state vector xe. The state xe is called an equilibrium state. Since an equilibrium
solution must satisfy the above differential equation, all equilibrium states must satisfy the
equilibrium condition:

f(xe) = 0

or, in scalar terms,
f1(x

e
1, x

e
2, . . . , x

e
n) = 0

f2(x
e
1, x

e
2, . . . , x

e
n) = 0

...
fn(xe

1, x
e
2, . . . , x

e
n) = 0

Conversely, if a state xe satisfies the above equilibrium condition, then there is a solution
satisfying x(t) ≡ xe; hence xe is an equilibrium state.

Example 2 Spring mass damper. With u = 0 this system is described by

ẋ1 = x2

ẋ2 = −(k/m)x1 − (c/m)x2 − g .

Hence equilibrium states are given by:

xe
2 = 0

−(k/m)xe
1 − (c/m)xe

2 − g = 0

Hence
xe = 0 =

( −mg/k//0
)

This system has a single equilibrium state.

Example 3 The unattached mass. With u = 0 this system is described by

ẋ1 = x2

ẋ2 = 0 .

Hence

xe =

(
xe

1

0

)

where xe
1 is arbitrary. This system has an infinite number of equilibrium states.
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Example 4 Pendulum. With u = 0, this system is described by

ẋ1 = x2

ẋ2 = −a sin x1 .

The equilibrium condition yields:

xe
2 = 0 and sin(xe

1) = 0 .

Hence, all equilibrium states are of the form

xe =

(
mπ
0

)

where m is an arbitrary integer. Physically, there are only two distinct equilibrium states

xe =

(
0
0

)
and xe =

(
π
0

)

Higher order ODEs

F (q, q̇, . . . , q(n)) = 0

An equilibrium solution is the simplest type of solution; it is constant for all time, that is, it
satisfies

q(t) ≡ qe

for some fixed scalar qe. Clearly, qe must satisfy

F (qe, 0, . . . , 0) = 0 (2.7)

For the state space description of this system introduced earlier, all equilibrium states
are given by

xe =




qe

0
...
0




where qe solves (2.7).

Multiple higher order ODEs
Equilibrium solutions

qi(t) ≡ qe
i , i = 1, 2, . . . , N

Hence
F1(q

e
1, 0, . . . , qe

2, 0, . . . , . . . , qe
N , . . . , 0 ) = 0

F2(q
e
1, 0, . . . , qe

2, 0, . . . , . . . , qe
N , . . . , 0 ) = 0

...
FN(qe

1, 0, . . . , qe
2, 0, . . . , . . . , qe

N , . . . , 0 ) = 0

(2.8)
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For the state space description of this system introduced earlier, all equilibrium states
are given by

xe =




qe
1

0
...
qe
2

0
...
...

qe
N
...
0




where qe
1, q

e
2, . . . , q

e
N solve (2.8).

Example 5 Central force motion in inverse square gravitational field

r̈ − rω2 + µ/r2 = 0
rω̇ + 2ṙω = 0

Equilibrium solutions

r(t) ≡ re , ω(t) ≡ ωe

Hence,

ṙ, r̈, ω̇ = 0

This yields
−re(ωe)2 + µ/(re)2 = 0

0 = 0

Thus there are infinite number of equilibrium solutions given by:

ωe = ±
√

µ/(re)3

where re is arbitrary. Note that, for this state space description, an equilibrium state corre-
sponds to a circular orbit.

2.7.2 Exercises

Exercise 9 Find all equilibrium states of the following systems

(i) The first nonlinear system.

(ii) The attitude dynamics system.

(iii) The two link manipulator.
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2.7.3 Controlled equilibrium states

Consider now a system with inputs described by

ẋ = F (x, u) (2.9)

Suppose the input is constant and equal to ue, that is, u(t) ≡ ue. Then the resulting system
is described by

ẋ(t) = F (x(t), ue)

The equilibrium states xe of this system are given by F (xe, ue) = 0. This leads to the
following definition.

A state xe is a controlled equilibrium state of the system, ẋ = F (x, u), if there is a constant
input ue such that

F (xe, ue) = 0

Example 6 (Controlled pendulum)

ẋ1 = x2

ẋ2 = − sin(x1) + u

Any state of the form

xe =

(
xe

1

0

)

is a controlled equilibrium state. The corresponding constant input is ue = sin(xe
1).

2.8 Solutions and equilibrium states: discrete-time

2.8.1 Equilibrium states

Consider a discrete-time system described by

x(k + 1) = f(x(k)) . (2.10)

A solution of (2.10) is a sequence
(

x(0), x(1), x(2), . . .
)

which satisfies (2.5).

Example 7 Simple scalar nonlinear system

x(k + 1) = x(k)2

Sample solutions are:

(0, 0, 0, . . .)
(−1, 1, 1, . . .)
(2, 4, 16, . . . )
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Equilibrium solutions and states

x(k) ≡ xe

f(xe) = xe

In scalar terms,

f1(x
e
1, x

e
2, . . . , x

e
n) = xe

1

f2(x
e
1, x

e
2, . . . , x

e
n) = xe

2

...

fn(xe
1, x

e
2, . . . , x

e
n) = xe

m

Example 8 Simple scalar nonlinear system

x(k + 1) = x(k)2

All equilibrium states are given by:
(xe)2 = xe

Solving yields
xe = 0, 1

Example 9 The discrete unattached mass

xe
1 + Txe

2 = xe
1

xe
2 = xe

2

xe =

(
xe

1

0

)

where xe
1 is arbitrary.

Example 10 (AIMD algoritm) Recalling (2.2) we see that an equilibrium share vector
w must satisfy

wi = βiwi + γi(1−β1)w1 + · · ·+ γi(1−βn)wn for i = 1, · · · , n . (2.11)

Letting

ηi =
(1−βi)w1

γi

above equations simplify to

ηi = γ1η1 + · · ·+ γnηn for i = 1, · · · , n .

Thus every solution must satisfy

ηi = K for i = 1, · · · , n .
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for some K. Since γ1 + · · ·+ γn = 1, it should be K can be any real number. Hence

wi =
γiK

1−βi

for i = 1, · · · , n .

Considering w1 + · · ·+ wn = c, the constant K is uniquely given by

K =
c

γ1

1−β1
+ · · ·+ γn

1−βn

.

2.8.2 Controlled equilibrium states

Consider now a system with inputs described by

x(k+1) = F (x(k), u(k)) (2.12)

Suppose the input is constant and equal to ue, that is, u(k) ≡ ue. Then the resulting system
is described by

x(k+1) = F (x(k), ue)

The equilibrium states xe of this system are given by xe = F (xe, ue). This leads to the
following definition.

A state xe is a controlled equilibrium state of the system, x(k+1) = F (x(k), u(k)), if there
is a constant input ue such that

F (xe, ue) = xe
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2.9 Numerical simulation

2.9.1 MATLAB

>> help ode23

ODE23 Solve differential equations, low order method.

ODE23 integrates a system of ordinary differential equations using

2nd and 3rd order Runge-Kutta formulas.

[T,Y] = ODE23(’yprime’, T0, Tfinal, Y0) integrates the system of

ordinary differential equations described by the M-file YPRIME.M,

over the interval T0 to Tfinal, with initial conditions Y0.

[T, Y] = ODE23(F, T0, Tfinal, Y0, TOL, 1) uses tolerance TOL

and displays status while the integration proceeds.

INPUT:

F - String containing name of user-supplied problem description.

Call: yprime = fun(t,y) where F = ’fun’.

t - Time (scalar).

y - Solution column-vector.

yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.

t0 - Initial value of t.

tfinal- Final value of t.

y0 - Initial value column-vector.

tol - The desired accuracy. (Default: tol = 1.e-3).

trace - If nonzero, each step is printed. (Default: trace = 0).

OUTPUT:

T - Returned integration time points (column-vector).

Y - Returned solution, one solution column-vector per tout-value.

The result can be displayed by: plot(tout, yout).

See also ODE45, ODEDEMO.
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>> help ode45

ODE45 Solve differential equations, higher order method.

ODE45 integrates a system of ordinary differential equations using

4th and 5th order Runge-Kutta formulas.

[T,Y] = ODE45(’yprime’, T0, Tfinal, Y0) integrates the system of

ordinary differential equations described by the M-file YPRIME.M,

over the interval T0 to Tfinal, with initial conditions Y0.

[T, Y] = ODE45(F, T0, Tfinal, Y0, TOL, 1) uses tolerance TOL

and displays status while the integration proceeds.

INPUT:

F - String containing name of user-supplied problem description.

Call: yprime = fun(t,y) where F = ’fun’.

t - Time (scalar).

y - Solution column-vector.

yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.

t0 - Initial value of t.

tfinal- Final value of t.

y0 - Initial value column-vector.

tol - The desired accuracy. (Default: tol = 1.e-6).

trace - If nonzero, each step is printed. (Default: trace = 0).

OUTPUT:

T - Returned integration time points (column-vector).

Y - Returned solution, one solution column-vector per tout-value.

The result can be displayed by: plot(tout, yout).

See also ODE23, ODEDEMO.

2.9.2 Simulink

Simulink is part of Matlab. In Simulink, one describes a system graphically. If one has a
Simulink model of a system there are several useful Matlab operations which can be applied
to the system, for example, one may readily find the equilibrium state of the system.
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2.10 Exercises

Exercise 10 Obtain a state-space description of the following system.
...
q 1 + q̇2 + q1 = 0

q̈1 − q̇2 + q2 = 0

Exercise 11 Recall the ‘two link manipulator’ example in the notes.

(i) By appropriate definition of state variables, obtain a first order state space description
of this system.

(ii) Find all equilibrium states.

(iii) Numerically simulate this system using MATLAB. Use the following data and initial
conditions:

m1 l1 lc1 I1 m2 l2 lc2 I2 mpayload

kg m m kg.m2 kg m m kg.m2 kg

10 1 0.5 10/12 5 1 0.5 5/12 0

q1(0) =
π

2
; q̇1(0) = 0

q2(0) =
π

4
; q̇2(0) = 0

Exercise 12 Recall the two pendulum cart example in the notes.

(a) Obtain all equilibrium configurations corresponding to u = 0.

(b) Consider the following parameter sets

m0 m1 m2 l1 l2 g

P1 2 1 1 1 1 1
P2 2 1 1 1 0.99 1
P3 2 1 0.5 1 1 1
P4 2 1 1 1 0.5 1

and initial conditions,

y θ1 θ2 ẏ θ̇1 θ̇2

IC1 0 −10◦ 10◦ 0 0 0
IC2 0 10◦ 10◦ 0 0 0
IC3 0 −90◦ 90◦ 0 0 0
IC4 0 −90.01◦ 90◦ 0 0 0
IC5 0 100◦ 100◦ 0 0 0
IC6 0 100.01◦ 100◦ 0 0 0
IC7 0 179.99◦ 0◦ 0 0 0
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Simulate the system using the following combinations:

P1 : IC1, IC2, IC3, IC4, IC5, IC6, IC7

P2 : IC1, IC2, IC3, IC5.IC7

P3 : IC1, IC2, IC5, IC7

P4 : IC1, IC2, IC3, IC4, IC5, IC6, IC7
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Chapter 3

Linear time-invariant (LTI) systems

To discuss linear systems, we need matrices. In this section we briefly review some properties
of matrices. All the definitions and results of this section are stated for real scalars and
matrices. However, they also hold for complex scalars and matrices; to obtain the results for
the complex case, simply replace ‘real’ with ‘complex’ and IR with C.

3.1 Matrices

An m× n matrix A is an array of scalars consisting of m rows and n columns.

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn








︸ ︷︷ ︸
n columns

m rows

The scalars aij are called the elements of A. If the scalars are real numbers, A is called a
real matrix. The set of real m× n matrices is denoted by IRm×n

Recall that we can do the following things with matrices.

Matrix addition: A + B

Multiplication of a matrix by a scalar: αA

Zero matrices: 0

Negative of the matrix A: −A

One can readily show that IRm×n with the usual definitions of addition and scalar mul-
tiplication is a vector space.

Matrix multiplication: AB
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Some properties:

(AB)C = A(BC) (associative)

In general AB 6= BA (non-commutative)

A(B + C) = AB + AC

(B + C)A + BA + CA

A(αB) = αAB

(αA)B = αAB

Identity matrix in IRn×n:

I :=




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 = diag (1, 1, . . . , 1)

AI = IA = A

Inverse of a square (n = m) matrix A: A−1

AA−1 = A−1A = I

Some properties:

(αA)−1 =
1

α
A−1

(AB)−1 = B−1A−1

Transpose of A: AT

Some properties:

(A + B)T = AT + BT

(αA)T = αAT

(AB)T = BT AT

Determinant of a square matrix A : Associated with any square matrix A is a scalar called
the determinant of A and is denoted by det A.
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Some properties:

det(AB) = det(A) det(B)

det(AT ) = det(A)

Note that, in general,

det(A + B) 6= det(A) + det(B)

det(αA) 6= α det(A)

The following fact provides a very useful property of determinants.

Fact: A square matrix is invertible iff its determinant is non-zero.

Exercise 13 Compute the determinant and inverse of the following matrix.

(
cos θ sin θ

− sin θ cos θ

)

Exercise 14 Prove that if A is invertible then,

det(A−1) =
1

det(A)

MATLAB

Representation of real and complex matrices
Addition and multiplication of matrices
Multiplication of a matrix by a scalar
Matrix powers
Transpose of a matrix
Inverse of a matrix

>> help zeros

ZEROS All zeros.

ZEROS(N) is an N-by-N matrix of zeros.

ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.

ZEROS(SIZE(A)) is the same size as A and all zeros.

>> help eye

EYE Identity matrix.

EYE(N) is the N-by-N identity matrix.

EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1’s on

the diagonal and zeros elsewhere.
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EYE(SIZE(A)) is the same size as A.

>> help det

DET Determinant.

DET(X) is the determinant of the square matrix X.

>> help inv

INV Matrix inverse.

INV(X) is the inverse of the square matrix X.

A warning message is printed if X is badly scaled or

nearly singular.

Exercise 15 Determine which of the following matrices are invertible. Obtain the inverses
of those which are. Check your answers using MATLAB.

(a)

(
1 1
0 1

)
(b)

(
1 1
1 1

)
(c)

(
0 1
0 0

)
(d)

(
0 1
1 0

)

Exercise 16 Determine which of the following matrices are invertible. Using MATLAB,
check your answers and determine the inverse of those that are invertible.

(a)




1 1 0
0 0 1
1 0 0


 (b)




1 0 1
1 0 1
1 0 1


 (c)




0 1 0
1 0 1
0 1 0




Powers and polynomials of a matrix

Suppose A is a square matrix. We can define powers of a matrix as follows:

A0 := I

A1 := A

A2 := AA
...

Ak+1 := AAk

We can also define polynomials of a matrix as follows. If

p(s) = a0 + a1s + a2s
2 + . . . + amsm

where a0, . . . , am are scalars, then,

p(A) := a0I + a1A + a2A
2 + . . . + amAm
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Exercise 17 Compute p(A) for the following polynomial-matrix pairs. Check your answers
using MATLAB.

(a)

p(s) = s3 − 3s2 + 3s− 1 A =




1 1 1
0 1 1
0 0 1




(b)

p(s) = s2 − 3s A =




1 1 1
1 1 1
1 1 1




(c)

p(s) = s3 + s2 + s + 1 A =




1 1 0
1 1 1
0 1 1




(d)

p(s) = s3 − 2s A =




0 1 0
1 0 1
0 1 0
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3.2 Linear time-invariant systems

3.2.1 Continuous-time

A continuous-time, linear time-invariant (LTI) input-output system can be described by

ẋ = Ax + Bu
y = Cx + Du

where the n-vector x(t) is the state vector at time t, the m-vector u(t) is the input vector at
time t, and the p-vector y(t) is the output vector at time t. The n×n matrix A is sometimes
called the system matrix. The matrices B, C, and D have dimensions n × m, p × n, and
p×m, respectively. In scalar terms, this system is described by:

ẋ1 = a11x1 + . . . + a1nxn + b11u1 + . . . + b1mum

...

ẋn = an1x1 + . . . + annxn + bn1u1 + . . . + bnmum

and

y1 = c11x1 + . . . + c1nxn + d11u1 + . . . + d1mum

...

yp = cp1x1 + . . . + cpnxn + dp1u1 + . . . + dpmum .

A system with no inputs is described by

ẋ = Ax . (3.1)

Example 11 The unattached mass

A =

(
0 1
0 0

)
, B =

(
0

1/m

)
, C =

(
1 0

)
, D = 0 .

Example 12 Spring-mass-damper

A =

(
0 1

−k/m −c/m

)
, B =

(
0

−1

)
, C =

( −k −c
)
, D = 0 .

Other systems. It should be mentioned that the results of this section and most of these
notes only apply to finite-dimensional systems, that is, systems whose state space is finite-
dimensional. As an example of a system not included here, consider a system with a time
delay T described by

q̇(t) = A0q(t) + A1q(t−T ) + Bu(T )

y(t) = Cq(t) + Du(t)

As another example, consider any system described by a partial differtial equation, for
example

∂2q

∂t2
+ k2 ∂4q

∂η4
= 0 .
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3.2.2 Discrete-time

A discrete-time linear time-invariant (LTI) input-output system can be described by

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where the n-vector x(k) is the state vector at time k, the m-vector u(k) is the input vector
at time k, and the p-vector y(k) is the output vector at time k. The n × n matrix A is
sometimes called the system matrix. The matrices B, C, and D have dimensions n × m,
p× n, and p×m, respectively.
In scalar terms:

x1(k+1) = a11x1(k) + . . . + a1nxn(k) + b11u1(k) + . . . + b1mum(k)
...

xn(k+1) = an1x1(k) + . . . + annxn(k) + bn1u1(k) + . . . + bnmum(k)

and

y1 = c11x1 + . . . + c1nxn + d11u1 + . . . + d1mum

...

yp = cp1x1 + . . . + cpnxn + dp1u1 + . . . + dpmum

A system with no inputs is described by

x(k+1) = Ax(k) . (3.2)

Example 13 The discrete unattached mass

A =

(
1 T
0 1

)
, B =

(
T 2/2m
T/m

)
, C =

(
1 0

)
, D = 0 .

Example 14 AIMD This is a system with no inputs and

A =




β1 + γ1(1− β1) γ1(1− β2) · · · γ1(1− βn)
γ2(1− β1) β2 + γ2(1− β2) · · · γ2(1− βn)

...
. . .

...
γn(1− β1) γn(1− β2) · · · βn + γn(1− βn)
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3.3 Linearization about an equilibrium solution

In this section we present systematic procedures for approximating a nonlinear system by a
linear system. These procedures rely heavily on derivatives.

3.3.1 Derivative as a matrix

Consider an m-vector-valued function f of an n-vector variable x. Suppose that each of the
partial derivatives, ∂fi

∂xj
(x∗) exist and are continuous about some x∗.

The derivative of f (Jacobian of f) at x∗ is the following m× n matrix:

Df(x∗) =
∂f

∂x
(x∗) :=




∂f1

∂x1
(x∗) ∂f1

∂x2
(x∗) . . . ∂f1

∂xn
(x∗)

∂f2

∂x1
(x∗) ∂f2

∂x2
(x∗) . . . ∂f2

∂xn
(x∗)

...
...

...

∂fm

∂x1
(x∗) ∂fm

∂x2
(x∗) . . . ∂fm

∂xn
(x∗)




.

So,

Df(x∗)ij =
∂fi

∂xj

(x∗) ,

that is, the ij-th element of Df is the partial derivative of fi with respect to xj. Sometimes
Df is written as ∂f

∂x
.

Example 15 If

f(x) =




x1x2

cos(x1)
ex2


 .

then

Df(x) =




x2 x1

− sin(x1) 0
0 ex2


 .

Some properties:

D(f + g) = Df + Dg
D(αf) = αDf (α is a constant scalar)

(Constant function:) f(x) ≡ c Df(x) = 0
(Linear function:) f(x) = Ax Df(x) = A

All linearization is based on the following fundamental property of the derivative. If x∗

and x are any two vectors and x is ‘close’ to x∗, then

f(x) ≈ f(x∗) +
∂f

∂x
(x∗)(x− x∗)
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This says that, near x∗, the function can be approximated by a linear function plus a constant
term.

3.3.2 Linearization of continuous-time systems

Consider a continuous-time system described by

ẋ = F (x, u)

y = H(x, u) (3.3)

and suppose xe is an equilibrium state corresponding to a constant input ue; hence,

F (xe, ue) = 0 .

Let ye be the corresponding constant output, that is,

ye = H(xe, ue) .

Sometimes we call the triple (xe, ue, ye) a trim condition of the system. Introducing the
perturbed state δx, the perturbed input δu and the perturbed output δy defined by

δx := x− xe, δu := u− ue, δx := u− ue,

the system can also be described by

δẋ = F (xe+δx, ue+δu)

δy = H(xe+δx, ue+δu)−H(xe, ue)
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Define now the following derivative matrices:

∂F

∂x
(xe, ue) :=

(
∂Fi

∂xj

(∗)
)

=




∂F1

∂x1
(∗) ∂F1

∂x2
(∗) . . . ∂F1

∂xn
(∗)

∂F2

∂x1
(∗) ∂F2

∂x2
(∗) . . . ∂F2

∂xn
(∗)

...
...

...

∂Fn

∂x1
(∗) ∂Fn

∂x2
(∗) . . . ∂Fn

∂xn
(∗)




∂F

∂u
(xe, ue) :=

(
∂Fi

∂uj

(∗)
)

=




∂F1

∂u1
(∗) ∂F1

∂u2
(∗) . . . ∂F1

∂um
(∗)

∂F2

∂u1
(∗) ∂F2

∂u2
(∗) . . . ∂F2

∂um
(∗)

...
...

...

∂Fn

∂u1
(∗) ∂Fn

∂u2
(∗) . . . ∂Fn

∂um
(∗)




∂H

∂x
(xe, ue) :=

(
∂Hi

∂xj

(∗)
)

=




∂H1

∂x1
(∗) ∂H1

∂x2
(∗) . . . ∂H1

∂xn
(∗)

∂H2

∂x1
(∗) ∂H2

∂x2
(∗) . . . ∂H2

∂xn
(∗)

...
...

...

∂Hp

∂x1
(∗) ∂Hp

∂x2
(∗) . . . ∂Hp

∂xn
(∗)




∂H

∂u
(xe, ue) :=

(
∂Hi

∂uj

(∗)
)

=




∂H1

∂u1
(∗) ∂H1

∂u2
(∗) . . . ∂H1

∂um
(∗)

∂H2

∂u1
(∗) ∂H2

∂u2
(∗) . . . ∂H2

∂um
(∗)

...
...

...

∂Hp

∂u1
(∗) ∂Hp

∂u2
(∗) . . . ∂Hp

∂um
(∗)




where ∗ = (xe, ue). When x is ‘close’ to xe and u is ‘close’ to ue, that is, when δx and δu are
‘small’,

F (xe+δx, ue+δu) ≈ F (xe, ue) +
∂F

∂x
(xe, ue)δx +

∂F

∂u
(xe, ue)δu

=
∂F

∂x
(xe, ue)δx +

∂F

∂u
(xe, ue)δu
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and

H(xe+δx, ue+δu) ≈ H(xe, ue) +
∂H

∂x
(xe, ue)δx +

∂H

∂u
(xe, ue)δu

Hence

δẋ ≈ ∂F

∂x
(xe, ue)δx +

∂F

∂u
(xe, ue)δu

δy ≈ ∂H

∂x
(xe, ue)δx +

∂H

∂u
(xe, ue)δu

This leads to the following definition:

The linearization of system (3.3) about (xe, ue):

δẋ = A δx + B δu
δy = C δx + D δu

(3.4)

where

A =
∂F

∂x
(xe, ue) , B =

∂F

∂u
(xe, ue) , C =

∂H

∂x
(xe, ue) , D =

∂H

∂u
(xe, ue) .

Example 16 (Simple pendulum.) The linearization of this system about any (xe, ue) is
given by (3.4) with

A =

(
0 1

− cos(xe
1) 0

)
B =

(
0
1

)
C =

(
1 0

)
D = 0

For eqm. state

xe =

(
0
0

)

we obtain

A =

(
0 1
−1 0

)

For eqm. state

xe =

(
π
0

)

we obtain

A =

(
0 1
1 0

)
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3.3.3 Implicit linearization

This is the way to go when starting from a higher order ODE description.

It is usually easier to first linearize and then obtain a state space description than vice-versa.

For a single equation,
F (q, q̇, . . . , q(n), u) = 0

linearization about an equilibrium solution q(t) ≡ qe corresponding to constant input u(t) ≡
ue is defined by:

∂F

∂q
(∗)δq +

∂F

∂q̇
(∗)δq̇ + . . . +

∂F

∂q(n)
(∗)δq(n) +

∂F

∂u
(∗)δu = 0

where (∗) = (qe, 0, 0, . . . , 0), δq = q − qe and δu = u− ue.

For multiple equations, see next example.

Example 17 Orbit mechanics

r̈ − rω2 + µ/r2 = 0

rω̇ + 2ṙω = 0

Linearization about equilibrium solutions corresponding to constant values re, ωe of r and
ω, respectively, results in:

δr̈ − (ωe)2δr − (2reωe)δω − (2µ/(re)3)δr = 0

ω̇eδr + reδω̇ + +2ωeδṙ + 2ṙeδω = 0

Using the relationship
(ωe)2 = µ/(re)3

we obtain

δr̈ − 3(ωe)2δr − (2reωe)δω = 0

reδω̇ + 2ωeδṙ = 0

Introducing state variables:

x1 := δr, x2 := δṙ x3 := δω

we obtain a LTI system with system matrix

A =




0 1 0
3(ωe)2 0 2reωe

0 −2ωe/re 0
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Example: vehicle lateral dynamics

Consider a vehicle moving in a horizonal plane. We can describe the motion of this vehicle
with the velocity v̄ of its center of gravity (CG) and its yaw rate ψ̇. The velocity of the mass
center can be described by its magnitude v (the speed of the CG) and the vehicle sideslip
angle β which is the angle between v̄ and the vehicle. We will use these three variables to
describe the state of the vehicle. As inputs we consider the steering angle δ of the front
wheels and the braking and acceleration forces Ffx and Frx on the front and rear wheels of
the vehicle.

Application of Newton’s second law to the vehicle mass center results in

mv̇ = Frx cos β + Fry sin β + Ffx cos(β−δ) + Ffx sin(β−δ) (3.5a)

mv(β̇ + ψ̇) = −Frx sin β + Fry cos β − Ffx sin(β−δ) + Fry cos(β−δ) (3.5b)

where Ffx, Frx are the longitudinal forces on the front and rear wheels due to braking and
acceleration; Ffy, Fry are the lateral forces on the front and rear wheels. Considerations of
angular momentum yield

Jzψ̈ = a(Ffy cos δ + Ffx sin δ)− bFry (3.6)

where Jz is the moment of inertia of the vehicle about the vertical line through its CG, and
a, b are the distances between the mass center and the front and rear of the vehicle.

The lateral force Fry depends on the rear sideslip angle αr which is the angle between
the rear tires and the velocity of the rear of the vehicle. The lateral force Ffy depends on
the front sideslip angle αf which is the angle between the front tires and the velocity of the
front of the vehicle. Kinematical considerations yield the following relationships:

tan αr = tan β − bψ̇

v cos β
(3.7a)

tan(αf + δ) = tan β +
aψ̇

v cos β
(3.7b)

Assuming the lateral forces are zero for zero sideslip angles, and considering Frx = Ffx =
δ = 0, the vehicle has an equilibrium with β = ψ̇ = αr = αf = 0 and v an arbitrary constant.

Linearization of the nonlinear equations about these equilibrium conditions results in

δv̇ = a

mv(β̇ + ψ̇) = −Cαfαf − Cαrαr

Jzψ̈ = −aCαfαf + bCαrαr

αr = β − bψ̇

v

αf = β +
aψ̇

v
− δ

where a = (Frx + Ffx)/m and

Cαf = −dFyf

dαf

and Cαr = −dFyr

dαr
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are the front and rear “axle stiffnesses”.
Notice that the dynamics of δv can be decoupled from that of (β, ψ̇). With x = (β, ψ̇)

and u = δ, the lateral vehicle dynamics can be described by ẋ = Ax + Bu where

A =




−(Cαf+Cαr)

mv

bCαr−aCαf

mv2 − 1

bCαr−aCαf

Jz
−a2Cαf+b2Cαr

Jzv


 , B =




Cαf

mv

aCαf

Jz


 (3.8)
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3.3.4 Linearization of discrete-time systems

Consider a discrete-time system described by

x(k+1) = F (x(k), u(k))

y(k) = H(x(k), u(k)) (3.9)

and suppose xe, ue, ye is a trim condition, that is,

F (xe, ue) = xe

H(xe, ue) = ye

The linearization of system (3.9) about (xe, ue):

δx(k+1) = Aδx(k) + B δu(k)
δy(k) = C δx(k) + D δu(k)

(3.10)

where

A =
∂F

∂x
(xe, ue) , B =

∂F

∂u
(xe, ue) , C =

∂H

∂x
(xe, ue) , D =

∂H

∂u
(xe, ue) .

Example 18 Simple scalar nonlinear system

x(k+1) = x(k)2

We have xe = 0, 1. For xe = 0:
δx(k+1) = 0

For xe = 1:
δx(k+1) = 2δx(k)
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Exercises

Exercise 18 Consider the two-degree-of-freedom spring-mass-damper system described by

mq̈1 + C(q̇1 − q̇2) + K(q1 − q2) + cq̇1 + kq1 = 0

mq̈2 + C(q̇2 − q̇1) + K(q2 − q1) + cq̇2 + kq2 = 0

Obtain an A-matrix for a state space description of this system.

Exercise 19 Linearize each of the following systems about the zero equilibrium state.

(i)

ẋ1 = (1 + x2
1)x2

ẋ2 = −x3
1

(ii)

ẋ1 = sin x2

ẋ2 = (cos x1)x3

ẋ3 = ex1x2

Exercise 20

(a) Obtain all equilibrium states of the following system:

ẋ1 = 2x2(1− x1)− x1

ẋ2 = 3x1(1− x2)− x2

(b) Linearize the above system about the zero equilibrium state.

Exercise 21 For each of the following systems, linearize about each equilibrium solution
and obtain the system A-matrix for a state space representation of these linearized systems.

(a)
q̈ + (q2 − 1)q̇ + q = 0 .

where q(t) is a scalar.

(b)
q̈ + q̇ + q − q3 = 0

where q(t) is a scalar.

(c)

(M + m)q̈ + ml θ̈ cos θ −ml θ̇2 sin θ + kq = 0

mlq̈ cos θ + ml2 θ̈ + mgl sin θ = 0

where q(t) and θ(t) are scalars.

(d)
q̈ + 0.5q̇|q̇|+ q = 0 .

where q(t) is a scalar.
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Exercise 22

(a) Obtain all equilibrium solutions of the following system:

(cos q1)q̈1 + (sin q1)q̈2 + (sin q2)q̇
2
1 + sin q2 = 0

−(sin q1)q̈1 + (cos q1)q̈2 + (cos q2)q̇
2
2 + sin q1 = 0

(b) Linearize the above system about its zero solution.

Exercise 23 (Simple pendulum in drag)

Figure 3.1: Pendulum in drag

Recall the simple pendulum in drag whose motion is described by

mlθ̈ + κV (lθ̇ − w sin θ) + mg sin θ = 0

where

V =

√
l2θ̇2 + w2 − 2lw sin(θ)θ̇ with κ =

ρSCD

2

and
g is the gravitational acceleration constant of the earth,
S is the reference area associated with the ball,
CD is the drag coefficient of the ball,
ρ is the air density.

(a) Obtain the equilibrium values θe of θ.

(b) Linearize the system about θe.

(c) Obtain an expression for the A matrix for a state space representation of the linearized
system.

(d) Compare the behavior of the nonlinear system with that of the linearized system for the
following parameters.

l = 0.1 m m = 10 grams g = 9.81 m/s2

CD = 0.2 S = .01 m2 ρ = 0.3809 kg/m3
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Consider the following cases:

θe w (m/s)
0 0
0 5
0 15
0 20

180◦ 20

Illustrate your results with time histories of δθ in degrees. Comment on your results.
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Chapter 4

Transfer functions

4.1 ←− Transfer functions ←−
4.1.1 The Laplace transform

A state space description of an input-output system can be regarded as a time-domain
description. For linear time-invariant systems, transfer functions provide another way of
describing input-output systems; this description is sometimes called a frequency domain
description.

To discuss transfer functions of continuous-time systems, we need the Laplace transform.
Suppose f is a function of time t. Then the Laplace transform of f , which we denote by f̂ or
L(f), is a function of a complex variable s and is defined by

f̂(s) = L(f)(s) =

∫ ∞

0

e−stf(t)dt . (4.1)

Note that f(t) could be a scalar, a vector or a matrix.
We will need the following very useful relationship:

L(ḟ)(s) = sf̂(s)− f(0) (4.2)

The following example illustrates the use of the above relationship.

Example 19 Consider f(t) = eat where a is any scalar. Since f satisfies

ḟ = af

and f(0) = 0, we obtain that
sf̂(s)− 1 = af̂(s) .

Hence, as expected, f̂(s) = 1/(s− a).
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4.1.2 Transfer functions

Consider now the LTI system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

along with the initial condition
x(0) = x0 .

Taking the Laplace transform of the state equation results in

sx̂(s)− x0 = Ax̂(s) + Bû(s)

which can be rewritten as
(sI − A)x̂(s) = x0 + Bû(s)

where x̂ and û are the Laplace transforms of x and u, respectively, Whenever the matrix
sI − A is invertible, the above equation may be uniquely solved for x̂ yielding

x̂(s) = (sI − A)−1x0 + (sI − A)−1Bû(s) .

Taking the Laplace transform of the above output equation yields

ŷ(s) = Cx̂(s) + Dû(s)

where ŷ is the Laplace transform of y. Using the expression for x̂ now results in

ŷ(s) = C(sI − A)−1x0 + Ĝ(s)û(s)

where the transfer function (matrix) Ĝ(s) is defined by

Ĝ(s) = C(sI − A)−1B + D

Zero initial conditions response. Suppose that x(0) = 0. Then, the relationship be-
tween the Laplace transform of the input û and the Laplace transform of the output ŷ is
given by the simple relationship

ŷ = Ĝû

Sometimes this is represented by

ŷ ←− Ĝ ←− û

For a SISO system, we obtain that, for û 6= 0,

Ĝ =
ŷ

û
.

Thus, for a SISO system, the transfer function is the ratio of the Laplace transform of
the output to the Laplace transform of the input all initial conditions are zero.
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Example 20

ẋ(t) = −x(t) + u(t)

y(t) = x(t)

Here

Ĝ(s) = C(sI − A)−1 + D =
1

s + 1

Example 21 Unattached mass

ẋ1 = x2

ẋ2 = u

y = x1

Here

A =

(
0 1
0 0

)
B =

(
0
1

)
C =

(
1 0

)
D = 0

Hence

Ĝ(s) = C(sI − A)−1B

=
1

s2

Exercise 24 Show that the transfer function of

ẋ1 = x2

ẋ2 = −α0x1 − α1x2 + u

y = β0x1 + β1x2

is given by

Ĝ(s) =
β1s + β0

s2 + α1s + α0

Exercise 25 Show that the transfer function of

ẋ1 = −α0x2 + β0u
ẋ2 = x1 −α1x2 + β1u
y = x2

is given by

Ĝ(s) =
β1s + β0

s2 + α1s + α0
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MATLAB

>> help ss2tf

SS2TF State-space to transfer function conversion.

[NUM,DEN] = SS2TF(A,B,C,D,iu) calculates the transfer function:

NUM(s) -1

H(s) = -------- = C(sI-A) B + D

DEN(s)

of the system:

.

x = Ax + Bu

y = Cx + Du

from the iu’th input. Vector DEN contains the coefficients of the

denominator in descending powers of s. The numerator coefficients

are returned in matrix NUM with as many rows as there are

outputs y.

Example 22 MIMO (Multi-input multi-output) B&B Consider the system illustrated in
Figure 4.1 which has two inputs and two outputs. Its motion can be described by

Figure 4.1: B&B

mq̈1 = k(q2 − q1) + u1

mq̈2 = −k(q2 − q1) + u2

y1 = q1

y2 = q2

With x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2, we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 B =




0 0
0 0

1/m 0
0 1/m




C =

(
1 0 0 0
0 1 0 0

)
D = 0
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Hence

Ĝ(s) = C(sI − A)−1B + D

=




ms2+k
ms2(ms2+2k)

k
ms2(ms2+2k)

k
ms2(ms2+2k)

ms2+k
ms2(ms2+2k)




Note that the above calculation requires one to invert the 4× 4 matrix sI − A

• We can also compute Ĝ(s) as follows. Taking the Laplace transform of the original second
order differential equations with zero initial conditions, we get

ms2q̂1 = −k(q̂1 − q̂2) + û1

ms2q̂2 = k(q̂1 − q̂2) + û2

ŷ1 = q̂1

ŷ2 = q̂2

hence,

(
ms2 + k −k
−k ms2 + k

)(
q̂1

q̂2

)
=

(
û1

û2

)

Solving, yields

ŷ =

(
q̂1

q̂2

)
=

1

∆(s)

(
ms2 + k k

k ms2 + k

)(
û1

û2

)

∆(s) = ms2(ms2 + 2k)

So,

Ĝ(s) =




ms2+k
ms2(ms2+2k)

k
ms2(ms2+2k)

k
ms2(ms2+2k)

ms2+k
ms2(ms2+2k)




Using this second method, the matrix to be inverted was only 2× 2.

MATLAB

>> help ss2tf

SS2TF State-space to transfer function conversion.

[NUM,DEN] = SS2TF(A,B,C,D,iu) calculates the transfer function:

NUM(s) -1

H(s) = -------- = C(sI-A) B + D

DEN(s)
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of the system:

.

x = Ax + Bu

y = Cx + Du

from the iu’th input. Vector DEN contains the coefficients of the

denominator in descending powers of s. The numerator coefficients

are returned in matrix NUM with as many rows as there are

outputs y.

See also ltimodels, ss and tf.

Rational transfer functions.

A scalar valued function of a complex variable is rational if it can be expressed as the ratio
of two polynomials. It is proper if the order of the numerator polynomial is less than or
equal to the order of the denominator polynomial. It is strictly proper if the order of the
numerator polynomial is strictly less than that of the denominator polynomial. A matrix
valued function of a complex variable is rational, proper or strictly proper if each element of
the matrix function is respectively rational, proper or strictly proper.

Example 23
Ĝ(s) = s

s2+1
rational, strictly proper

Ĝ(s) = s2

s2+1
rational, proper

Ĝ(s) = s3

s2+1
rational, not proper

Ĝ(s) = e−s

s2+1
not rational

We now demonstrate the following result:

The transfer function of a finite-dimensional LTI system is always rational and proper.

The above result follows from the fact that every element Ĝij of the transfer function of
a finite dimensional LTI system can be expressed as

Ĝij =
Nij

∆
(4.3)

where ∆(s) = det(sI−A) is called the characteristic polynomial of A. It is a monic polynomial
of order n. A monic polynomial is one whose coefficient of its highest order term is one.
Thus

det(sI − A) = sn + αn−1s
n−1 + · · ·+ α1s + α0
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for some scalars α0, · · · , αn−1. The order of the polynomial N̂ij is at most n. It is less than
n if D is zero.

To demonstrate the above fact, recall that the inverse of an invertible n × n matrix M
can be expressed as

M−1 =
1

det(M)
adj (M)

where each element of the matrix adj (M) is equal to ± the determinant of an (n−1)× (n−1)
submatrix of M . Hence (sI − A)−1 can be expressed as

(sI − A)−1 =
1

det(sI − A)
adj (sI − A)

where each element of the matrix adj (sI−A) is equal to± the determinant of an (n−1)×(n−1)
submatrix of sI −A. Hence, if A is n× n, then each element of adj (sI −A) is a polynomial
in s whose degree is at most n− 1. Also, det(sI − A) is a polynomial of order n.

From the above form of (sI − A)−1 it follows that if

Ĝ(s) = C(sI − A)−1B

where A is n× n, then

Ĝ(s) =
1

∆(s)
N(s)

where ∆ is the n-th order characteristic polynomial of A , that is, ∆(s) = det(sI − A) and
each element Nij of N is a polynomial of order less than or equal to n−1. So,

Ĝij =
Nij

∆

that is, each element Ĝij of Ĝ is a rational function (ratio of two polynomials) and is strictly
proper (order of numerator strictly less than order of denominator). When each element of
Ĝ is rational and strictly proper, we say that Ĝ is rational and strictly proper.

If
Ĝ(s) = C(sI − A)−1B + D

then

Ĝ(s) =
1

∆(s)
N(s)

where each element Nij of N is a polynomial of order less than or equal to n. So, each

element of Ĝ is a rational function and is proper (order of numerator less than or equal to
order of denominator). When each element of Ĝ is rational and proper, we say that Ĝ is
rational and proper.

So, we see that if Ĝ is the transfer function of a finite-dimensional LTI system then, Ĝ
is rational and proper. Is the converse true? That is, is every proper rational Ĝ the transfer
function of some finite-dimensional system and if so, what is(are) the system(s). This is
answered in the next section.
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Invariance of transfer function under state transformations. The transfer function
of a linear time-invariant system describes the input output behavior of the system when all
initial conditions are zero. Hence, it should be independent of the state variables used in a
state space description of the system. We now demonstrate this explicitly.

Suppose Ĝ is the transfer function of a system described by

ẋ = Ax + Bu

y = Cx + Du

Then Ĝ(s) = C(sI − A)−1B + D. Consider any state transformation

x = Tξ

where T is square and invertible. Then, the system can also be described by

ξ̇ = Āξ + B̄u

y = C̄ξ + D̄u

with
Ā = T−1AT B̄ = T−1B
C̄ = CT D̄ = D

It can be readily verified that

C̄(sI − Ā)−1B̄ + D̄ = C(sI − A)−1B + D

that is, the transfer function matrix is unaffected by a state transformation.

Systems described by higher order differential equations. Consider a system de-
scribed by

Aly
(l) + Al−1y

(l−1) + · · ·+ A0y = Blu
(l) + Bl−1u

(l−1) + · · ·+ B0u

where the input u(t) is an m-vector, the output y(t) is a p-vector, l ≥ 1, and the matrix Al

is invertible. How do we put such a system into state space form? By taking the Laplace
transform of the above equation and considering zero initial values for y, ẏ, · · · , y(l−1) and
u, u̇, · · · , u(l−1), we obtain

[slAl + sl−1Al−1 + · · ·+ A0]ŷ(s) = [slBl + sl−1Bl−1 + · · ·+ B0]û(s)

Hence ŷ(s) = Ĝ(s)û(s) where

Ĝ(s) = [slAl + sl−1Al−1 + · · ·+ A0]
−1[slBl + sl−1Bl−1 + · · ·+ B0]

To obtain a state space description of the system under consideration, we could look for
matrices A, B, C, D such that Ĝ(s) = C(sI − A)−1B + D. We consider this problem in a
later section.

66



General input-output systems. Consider any linear input-output system described by

y(t) =

∫ t

0

G(t− τ)u(τ) dτ

where G is Laplace transformable. Then,

ŷ = Ĝû

where Ĝ is the Laplace transform of G.

Example 24

ẋ(t) = −x(t) + u(t− 1)

y(t) = x(t)

Taking Laplace transform with x(0) = 0 yields

sx̂(s) = −x̂(s) + e−sû(s)

ŷ(s) = x̂(s)

Hence ŷ(s) = Ĝ(s)û(s) with

Ĝ(s) =
e−s

s + 1

Exercise 26 What is the transfer function of the following system?

ẋ1(t) = x2(t)

ẋ2(t) = u(t− 2)

y(t) = x1(t)

Exercise 27 Obtain the transfer function of the following system

ẋ(t) = −x(t) + 2x(t− h) + u(t)

y(t) = x(t)

4.1.3 Poles and zeros

Poles. Suppose Ĝ is a matrix valued function of a complex variable. A complex number
λ is defined to be a pole of Ĝ if for some element Ĝij of Ĝ,

lim
s→λ

Ĝij(s) = ∞ .

Example 25
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Ĝ(s) poles

1
s2+3s+2

-1, -2

s+1
s2+3s+2

-2




1
s

e−s

s+1

s2

s+1
s+1
s+2


 0, -1, -2

When Ĝ(s) = C(sI −A)−1B + D it should be clear that if λ is a pole of Ĝ then λ must
be an eigenvalue of A. However, as the following example illustrates, the converse is not
always true.

Example 26 If,

A =

(
0 1
1 0

)
B =

(
0
1

)
C =

( −1 1
)

D = 0 ,

then
det(sI − A) = s2 − 1

and

Ĝ(s) = C(sI − A)−1B =
s− 1

s2 − 1
=

1

s + 1
.

Here A has eigenvalues −1 and 1 whereas Ĝ only has a single pole at −1.

We say that a complex number λ is a pole of order m of a transfer function Ĝ if λ is a
pole of Ĝ and m is the smallest integer such that λ is not a pole of

(s− λ)mĜ .

Example 27 The transfer function

Ĝ(s) =
s + 1

(s− 3)(s + 4)2

has two poles: 3 and −4. The order of the pole at 3 is 1 whereas the order of the pole at −4
is 2.

Suppose λ1, λ2, · · · , λl are the poles of a rational transfer function Ĝ. Then, it should be
clear that we can express Ĝ as

Ĝ(s) =
1

d(s)
N(s) (4.4)

where
d(s) = (s− λ1)

m1(s− λ2)
m2 · · · (s− λl)

ml ,

with mi being the order of the pole λi, and N is a matrix with polynomial elements.
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Zeroes. Here, we only define zeroes for scalar-input scalar-output transfer functions. The
definition of zeroes for MIMO systems is much more complicated. We say that a complex
number η is a zero of a scalar-input scalar-output transfer function Ĝ if

Ĝ(η) = 0 . (4.5)

The significance of zeroes. Consider a general LTI SISO system described by

y(t) =

∫ t

0

G(t−τ)u(τ) dτ

Then, the transfer function Ĝ of this system is simply the Laplace transform of the impulse
response G, that is,

Ĝ(s) =

∫ ∞

0

e−stG(t) dt .

If we assume that the impulse response G converges to zero exponentially and s is not a pole
of Ĝ, then it can be shown that the steady-state response of this system to an input

u(t) = est

is given by the output

y(t) = Ĝ(s)est

So, we have the following conclusion:

If η is a zero of Ĝ then, the steady-state response of the system to the input u(t) = eηt is
zero.

Suppose that Ĝ is the transfer function of a system with a real impulse response that is,

Ĝ(s) =

∫ ∞

0

e−stG(t) dt

where G(t) is real. Using the property that e−s̄t = e−st, the realness of G(t) implies that
e−s̄tG(t) = e−stG(t) = e−stG(t); hence

Ĝ(s̄) =

∫ ∞

0

e−s̄tG(t) dt =

∫ ∞

0

e−stG(t) dt =

∫ ∞

0

e−stG(t) dt = Ĝ(s) ,

that is,

Ĝ(s̄) = Ĝ(s) . (4.6)

Let φ(s) be the argument of the complex number Ĝ(s), that is

Ĝ(s) = |Ĝ(s)|eφ(s) (4.7)

where φ(s) is real. We now show that the steady state response of this system to

u(t) = eαt sin(ωt) ,
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where α and ω are real numbers, is given by

y(t) = |Ĝ(s)|eαt sin(ωt+φ(s)) (4.8)

where s = α + ω. Thus the output has the same form as the input; the non-negative real
scalar |Ĝ(s)| can be regarded as the system gain at s and φ(s) is the system phase shift at s.

We also obtain the following conclusion:

If η = α + ω is a zero of Ĝ then, the steady-state response of the system to the input
u(t) = eαt sin(ωt) is zero.

We also see that the steady state response to a purely sinusoidal input

u(t) = sin(ωt)

is given by

y(t) = |Ĝ(ω)| sin(ωt+φ(ω)) (4.9)

To demonstrate the above result, we first note that u(t) = eαt sin(ωt) can be expressed
as u(t) = (est − es̄t)/(2) where s = α + ω. So, the corresponding steady state response is
given by

y(t) = [Ĝ(s)est + Ĝ(s̄)es̄t]/2 .

Since Ĝ(s) = Ĝ(s̄), we obtain that

y(t) = [Ĝ(s)est − Ĝ(s)est]/(2) = =
(
Ĝ(s)est

)
.

Noting that
Ĝ(s)est = |Ĝ(s)|eφ(s)eαteωt = |Ĝ(s)|eαte(ωt+φ(s)) ,

it now follows that
y(t) = |Ĝ(s)|eαt sin(ωt + φ(s)) .

Example 28 (Tuned vibration absorber.) Consider a mechanical system subject to a
sinusoidal disturbance input:

Mq̇ + Cq̇ + Kq = w(t)

where w(t) = A sin(ωt).
Attaching a vibration absorber to the system results in

Mq̈ + Cq̇ + Kq − k(η − q) = w (4.10)

mη̈ + k(η − q) = 0 . (4.11)

Taking the Laplace transform of the above equations yields:

(Ms2 + Cs + K + k)q̂ − kη̂ = ŵ (4.12)

(ms2 + k)η̂ − kq̂ = 0 . (4.13)
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Figure 4.2: Tuned vibration absorber

We see that q̂ = Ĝŵ where

Ĝ =
ms2 + k

∆(s)

and
∆(s) = (Ms2 + Cs + K + k)(ms2 + k)− k2 .

This transfer function has zeros at ±
√

k/m. if we choose

k/m = ω2

then the steady state response of q to w will be zero.

4.1.4 Discrete-time

The transfer function matrix for

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

is defined by
Ĝ(z) = C(zI − A)−1B + D

where z ∈ C.

4.1.5 Exercises

Exercise 28 (BB in Laundromat.) Consider

mφ̈1 −mΩ2φ1 + k
2
(φ1 − φ2) = b1u

mφ̈2 −mΩ2φ2 − k
2
(φ1 − φ2) = b2u

y = c1φ1 + c2φ2

For each of the following cases, obtain the system transfer function and its poles; consider
ω :=

√
k/m > Ω.
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(a)

b1 = 1 b2 = 0

c1 = 1 c2 = 0

(b) (Self excited.)

b1 = 1 b2 = −1

c1 = 1 c2 = 0

(c) (Mass center measurement.)

b1 = 1 b2 = 0

c1 = 1 c2 = 1

(d) (Self excited and mass center measurement.)

b1 = 1 b2 = −1

c1 = 1 c2 = 1

Comment on your results.
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4.2 Some transfer function properties

4.2.1 Power series expansion and Markov parameters

Suppose Ĝ is a transfer function for (A,B, C, D), that is Ĝ(s) = C(sI − A)−1B + D. Then
we will show that, for sufficiently large s, we have the following power series expansion:

Ĝ(s) = D +
∞∑

k=1

1

sk
CAk−1B = D +

1

s
CB +

1

s2
CAB +

1

s3
CA2B + · · · .

To see this recall that, for sufficiently large s,

(sI − A)−1 =
1

s
I +

1

s2
A +

1

s3
A2 + · · · .

The result follows from this. The coefficient matrices

D, CB, CAB, CA2B, · · ·

are called the Markov parameters of Ĝ.

4.2.2 More properties*

Recall that a transfer function Ĝ for a finite dimensional system must be rational and proper,
that is, it can be expressed as

Ĝ =
1

d
N

where d is a scalar valued polynomial and N is a matrix of polynomials whose degrees are
not greater than that of d. Without loss of generality, we consider d to be monic. Then we
can express d and N as

d(s) = sn + dn−1s
n−1 + · · ·+ d1s + d0

N(s) = snNn + sn−1Nn−1 + · · ·+ sN1 + N0

where d0, . . . , dn−1 are scalars and N0, . . . , Nn are constant matrices whose dimensions are
the same as those of Ĝ(s). We now show that Ĝ = 1

d
N is a transfer function for a system

(A,B,C,D) if and only if d satisfies

CAkd(A)B = 0 for k = 0, 1, 2, · · · . (4.14)

and

Nn = D

Nn−1 = CB + dn−1D

Nn−2 = CAB + dn−1CB + dn−2D
...

N0 = CAn−1B + dn−1CAn−2B + · · ·+ d1CB + d0D (4.15)
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To obtain the above result, we first use the power series expansion for Ĝ to obtain

1

d(s)
N(s) = D +

1

s
CB +

1

s2
CAB +

1

s3
CA2B + · · ·

Multiplying both sides by d(s) yields

snNn + sn−1Nn−1 + · · ·+ sN1 + N0

= [sn + dn−1s
n−1 + · · ·+ d1s + d0][D +

1

s
CB +

1

s2
CAB +

1

s3
CA2B + · · · ]

Since the coefficients of like powers of s on both sides of the equation must be equal, this
equation holds if and only if

Nn = D

Nn−1 = CB + dn−1D

Nn−2 = CAB + dn−1CB + dn−2D
...

N0 = CAn−1B + dn−1CAn−2B + · · ·+ d1CB + d0D

and

0 = CAnB + dn−1CAn−1B + · · ·+ d0CB

0 = CAn+1B + dn−1CAnB + · · ·+ d0CAB
...

0 = CAn+kB + dn−1CAn+k−1B + · · ·+ d0CAkB
...

Now note that the first set of equations above is the same as (4.15) while the second set is
equivalent to (4.14)

Suppose Ĝ is a transfer function for (A,B, C,D) and d is any polynomial for which
d(A) = 0. It follows immediately that (4.15) holds. Hence we can express Ĝ as Ĝ = 1

d
N

where the coefficients of N are computed from (4.14).

A proof of the Cayley Hamilton Theorem. Consider any square matrix A and let
Ĝ(s) = (sI − A)−1. The function Ĝ is the transfer function for the system with B = I,
C = I and D = 0. Hence Ĝ can be expressed as Ĝ = 1

d
N where d is the characteristic

polynomial of A. Considering k = 1 in (4.14), it now follows that d(A) = 0.

74



4.3 State space realization of transfer functions

Here we consider the following type of problem: Given a matrix valued function Ĝ of a
complex variable s, find constant matrices A,B,C, D (or determine that none exist) so that

Ĝ(s) = C(sI − A)−1B + D . (4.16)

When the above holds, we say that (A, B, C, D) is a finite-dimensional state space realization
of Ĝ.

Theorem 1 Suppose Ĝ is a matrix valued function of a complex variable. Then Ĝ has a
finite-dimensional state space realization if and only if Ĝ is rational and proper.

Proof: We have already seen the necessity of Ĝ being proper rational. We prove sufficiency
in the next two sections by demonstrating specific realizations.

Minimal realizations. It should be clear from Section 4.1 that a given transfer function
has an infinite number of state space realizations. One might expect that the dimension of
every state space realization is the same. This is not even true as the next example illustrates.
We say that a realization is a minimal realization if its dimension is less than or equal to that
of any other realization. Clearly, all minimal realizations have the same dimension. Later
on we will characterize minimal state space realizations.

Example 29 Consider a SISO system of dimension two described by

A =

(
1 −3

−3 1

)
B =

(
1
1

)
C =

(
1 0

)
D = 0

Here

Ĝ(s) = C(sI − A)−1B + D =
s− 4

s2 − 2s− 8
=

1

s + 2

This also has the following one dimensional realization

A = −2 B = 1 C = 1 D = 0

Note that this system is stable, whereas the original system is unstable.
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4.4 Realization of SISO transfer functions

4.4.1 Controllable canonical form realization

Suppose that Ĝ is a proper rational scalar function of a complex variable s. If Ĝ 6= 0, then
for some positive integer n, the function Ĝ can be expressed as

Ĝ(s) =
βn−1s

n−1 + · · ·+ β1s + β0

sn + αn−1sn−1 + · · ·+ α1s + α0

+ d (4.17)

Note that the denominator polynomial is monic. This is illustrated in the following example.

Example 30 Consider

G(s) =
4s + 8

−2s + 10

This is a proper rational function. Also 4s + 8 = −2(−2s + 10) + 28 which results in

G(s) =
−2(−2s + 10) + 28

−2s + 10
= −2 +

28

−2s + 10
=

−14

s− 5
− 2 .

When Ĝ is expressed in the form shown in (4.17) we now show that

Ĝ(s) = C(sI − A)−1B + D

where

Ĝ(s) = C(sI − A)−1B + D

where

A =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
−α0 −α1 −α2 . . . −αn−2 −αn−1




B =




0
0
...
...
0
1




C =
(

β0 β1 β2 . . . βn−2 βn−1

)
D = d

(4.18)

It then follows that one can obtain a state space realization of any proper rational scalar
SISO transfer function.

To demonstrate the above claim, let ∆ be the denominator polynomial in the above
expression for Ĝ, that is,

∆(s) := α0 + α1s + . . . + sn

76



and define

v(s) :=




1
s
...

sn−1


 .

Then,

(sI − A)v(s) =




s −1 0 . . . 0 0
0 s −1 . . . 0 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 . . . s −1
α0 α1 α2 . . . αn−2 s + αn−1







1
s
...
...

ss−2

sn−1




=




0
0
...
...
0

∆(s)




= ∆(s)B

Hence, whenever s is not an eigenvalue of A,

(sI − A)−1B =
1

∆(s)
v(s)

and

C(sI − A)−1B =
1

∆(s)

(
β0 β1 . . . βn−1

)



1
s
...

sn−1




=
β0 + β1s + · · ·+ βn−1s

n−1

α0 + α1s + · · ·+ αn−1sn−1 + sn

So,

Ĝ(s) = C(sI − A)−1B + D

We will see later why this realization is called controllable.

4.4.2 Observable canonical form realization

Suppose Ĝ(s) is a proper rational scalar function of a complex variable s. If Ĝ 6= 0, then,
for some positive integer n,

Ĝ(s) =
βn−1s

n−1 + · · ·+ β1s + β0

sn + αn−1sn−1 + · · ·+ α1s + α0

+ d

We will show that

Ĝ(s) = C(sI − A)−1B + D
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where

A =




0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1
. . . 0 −α2

...
...

. . . . . .
...

0 0 . . . 1 −αn−1




B =




β0

β1
...
...

βn−1




C =
(

0 0 . . . 0 1
)

D = d

• Noting that C(sI − A)−1B + D is a scalar and using the results of the previous section,
we have

C(sI − A)−1B + D = BT (sI − AT )−1CT + D = Ĝ(s)

We will see later why this realization is called observable.
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MATLAB

>> help tf2ss

TF2SS Transfer function to state-space conversion.

[A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space

representation:

.

x = Ax + Bu

y = Cx + Du

of the system:

NUM(s)

H(s) = --------

DEN(s)

from a single input. Vector DEN must contain the coefficients of

the denominator in descending powers of s. Matrix NUM must

contain the numerator coefficients with as many rows as there are

outputs y. The A,B,C,D matrices are returned in controller

canonical form. This calculation also works for discrete systems.

To avoid confusion when using this function with discrete systems,

always use a numerator polynomial that has been padded with zeros

to make it the same length as the denominator. See the User’s

guide for more details.

Example 31 Consider

Ĝ(s) =
s2

s2 + 1

This can be written as

Ĝ(s) =
−1

s2 + 1
+ 1

hence a state space representation is given by

A =

(
0 1

−1 0

)
B =

(
0
1

)
C =

( −1 0
)

D = 1

or,

ẋ1 = x2

ẋ2 = −x1 + u

y = −x1 + u

Matlab time:
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>> num = [1 0 0]

>> den = [1 0 1]

>> [a,b,c,d]=tf2ss(num,den)

a =

0 -1

1 0

b =

1

0

c =

0 -1

d =

1

4.5 Realization of MIMO systems

Suppose Ĝ is an p × m proper rational transfer function. Because Ĝ is a proper rational
function it has a representation of the form

Ĝ(s) =
1

d(s)
N(s) + D (4.19)

where D is a constant p ×m matrix, N is a p ×m matrix of polynomials and d is a scalar
valued monic polynomial.

4.5.1 Controllable realizations

Sometimes it is more convenient to express Ĝ as

Ĝ(s) = N(s)∆(s)−1 + D (4.20)

where ∆ is a p × m matrix of polynomials. Let us consider this case. Note that if Ĝ is
expressed as in (4.19) then, Ĝ can be expressed as in (4.20) with ∆(s) = d(s)I where I is
the m×m identity matrix.

Without loss of generality, we can express N and ∆ as

N(s) = sl−1Nl−1 + sl−2Nl−2 + · · ·+ sN1 + N0

∆(s) = slI + sl−1Dl−1 + sl−2Dl−2 + · · ·+ sD1 + D0
(4.21)

Here, N0, . . ., Nl−1 are constant p × m matrices while D0, . . ., Dl−1 are constant m × m
matrices. With n = ml, let A, B and C be the following matrices of dimensions n×n, n×m
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and p× n, respectively,

A =




0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 I

−D0 −D1 −D2 . . . −Dl−2 −Dl−1




, B =




0
0
...
...
0
I




, (4.22a)

C =
(

N0 N1 N2 . . . Nl−2 Nl−1

)
. (4.22b)

Note that in the above matrices, I and 0 represent the m ×m identity and zero matrices,
respectively. We claim that (A,B, C, D) is a realization of Ĝ. This is proven at the end of
this section.

Note that, when G(s) = 1
d(s)

N(s) and d(s) = α0 + α1s + · · ·+ αn−1s
n−1 + sn, we have

A =




0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 I

−α0I −α1I −α2I . . . −αl−2I −αl−1I




, B =




0
0
...
...
0
I




, (4.23a)

C =
(

N0 N1 N2 . . . Nl−2 Nl−1

)
(4.23b)

where I and 0 represent the m×m identity and zero matrices, respectively.

Example 32 Consider

Ĝ(s) =




3
s−2

s+4
s2+2s+3




The lowest common denominator (LCD) of the two elements of Ĝ(s) is

(s− 2)(s2 + 2s + 3) = s3 − s− 6 =: d(s)

and Ĝ(s) = N(s)d(s)−1 where

N(s) =

(
3s2 + 6s + 9
s2 + 2s− 8

)
= s2

(
3
1

)
+ s

(
6
2

)
+

(
9

−8

)

Hence, a controllable realization of Ĝ is given by

A =




0 1 0
0 0 1
6 1 0


 B =




0
0
1


 C =

(
9 6 3

−8 2 1

)
D = 0

81



Example 33 Consider the strictly proper rational function,

Ĝ(s) =




1
s+1

1
s2+3s+2

0 1
s+2


 .

Here Ĝ = 1
d
N where

d(s) = s2 + 3s + 2

and

N(s) =




s + 2 1

0 s + 1


 = s




1 0

0 1


 +




2 1

0 1




Hence a realization of Ĝ is given by

A =




0 0 1 0
0 0 0 1

−2 0 −3 0
0 −2 0 −3


 B =




0 0
0 0
1 0
0 1


 C =

(
2 1 1 0
0 1 0 1

)
D =

(
0 0
0 0

)

Here we show that (A,B, C, D) as defined above is a realization of Ĝ. Let V be the n×m
matrix of polynomials defined by

V (s) =




I
sI
...

sl−1I


 .

where I represents the m×m identity matrix. Then we have

(sI − A)V (s) =




sI −I 0 . . . 0 0
0 sI −I . . . 0 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 . . . sI −I

D0 D1 D2 . . . Dl−2 sI + Dl−1







I
sI
...
...

sl−2I
sl−1I




=




0
0
...
...
0

∆(s)




= B∆(s)

Hence, whenever s is not an eigenvalue of A,

(sI − A)−1B = V (s)∆(s)−1

Now note that

CV (s) =
(

N0 N1 · · · Nl−1

)




I
sI
...
...

sl−2I
sl−1I




= N(s) .
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Hence

C(sI − A)−1B = CV (s)∆(s)−1 = N(s)∆(s)−1

and

Ĝ(s) = C(sI − A)−1B + D .

4.5.2 Observable realizations

Sometimes it is more convenient to express Ĝ as

Ĝ(s) = ∆(s)−1N(s) + D (4.24)

where ∆ is a p × p matrix of polynomials. Note that if Ĝ is expressed as in (4.19) then, Ĝ
can be expressed as in (4.24) with ∆(s) = d(s)I where I is the p× p identity matrix.

Without loss of generality, we can express N and ∆ as

N(s) = sl−1Nl−1 + sl−2Nl−2 + · · ·+ sN1 + N0

∆(s) = slI + sl−1Dl−1 + sl−2Dl−2 + · · ·+ sD1 + D0
(4.25)

Here, N0, . . ., Nl−1 are constant p × m matrices while D0, . . ., Dl−1 are constant p × p
matrices With n = pl, let A, B and C be the following matrices of dimensions n× n, n×m
and p× n, respectively,

A =




−Dl−1 I 0 . . . 0 0
−Dl−2 0 I . . . 0 0

...
...

. . .
...

...
...

. . .
...

−D1 0 0 . . . 0 I
−D0 0 0 . . . 0 0




, B =




Nn−1

Nn−2
...
...

N1

N0




, (4.26a)

C =
(

I 0 0 · · · 0 0
)

. (4.26b)

Note that in the above matrices, I and 0 represent the p × p identity and zero matrices,
respectively. We claim that (A,B, C, D) is a realization of Ĝ. This can be shown as follows.

Let V be the p× n matrix of polynomials defined by

V (s) =
(

sl−1I sl−2I · · · sI I
)

.
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where I represents the p× p identity matrix. Then we have

V (s)(sI − A) =
(

sl−1I sl−2I · · · · · · sI I
)




sI + Dl−1 −I 0 . . . 0 0
Dl−2 sI −I . . . 0 0

...
...

. . .
...

...
...

. . .
...

D1 0 0 . . . 0 −I
D0 0 0 . . . 0 sI




=
(

∆(s) 0 · · · · · · 0 0
)

= ∆(s)C

Hence, whenever s is not an eigenvalue of A,

C(sI − A)−1 = ∆(s)−1V (s)

Now note that

V (s)B =
(

sl−1I sl−2I · · · sI I
)




Nl−1

Nl−2
...

N1

N0




= N(s) .

Hence
C(sI − A)−1B = ∆(s)−1V (s)B = ∆(s)−1N(s)

and
Ĝ(s) = C(sI − A)−1B + D .

4.5.3 Alternative realizations∗

SIMO systems

Suppose Ĝ is an p× 1 transfer matrix function and

Ĝ =




ĝ1
...
ĝp




that is ĝi is the i-th element of Ĝ. Choosing a monic polynomial ∆ as the least common
denominator polynomial of ĝ1, . . . , ĝp, we can write each ĝi as

ĝi(s) =
ni(s)

∆(s)
+ di
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where

∆(s) = sn + αn−1s
n−1 + · · ·+ α1s + α0

and

ni(s) = βi
n−1s

n−1 + · · ·+ βi
1s + βi

0

Letting

A =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
−α0 −α1 −α2 . . . −αn−2 −αn−1




B =




0
0
...
...
0
1




C =




β1
0 β1

1 β1
2 . . . β1

n−2 β1
n−1

...
...

...
...

...
βp

0 βp
1 βp

2 . . . βp
n−2 βp

n−1


 D =




d1
...
dp




we obtain

C(sI − A)−1B + D = Ĝ(s)

Example 34 Consider

Ĝ(s) =




3
s−2

s+4
s2+2s+3




The lowest common denominator (LCD) of the two elements of Ĝ(s) is

(s− 2)(s2 + 2s + 3) = s3 − s− 6 =: ∆(s)

and Ĝ(s) can be expressed as

Ĝ(s) =




3s2+6s+9
∆(s)

s2+2s−8
∆(s)




Hence, a controllable realization of Ĝ is given by

A =




0 1 0
0 0 1
6 1 0


 B =




0
0
1


 C =

(
9 6 3

−8 2 1

)
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MIMO systems

Suppose Ĝ is an p×m transfer matrix function and

Ĝ =
(

Ĝ1 . . . Ĝm

)

that is Ĝi is the i-th column of Ĝ. Using the results of the previous section, for i = 1, . . . , m,
we can obtain matrices Ai, Bi, Ci, Di such that

Ĝi(s) = Ci(sI − Ai)
−1Bi + Di

Let

A =




A1 . . . 0
...

. . .
...

0 . . . Am


 B =




B1 . . . 0
...

. . .
...

0 . . . Bm




C =
(

C1 . . . Cm

)
D =

(
D1 . . . Dm

)

Then

C(sI − A)−1B + D = Ĝ(s)

• Nonminimal realization, in general.

Example 35

Ĝ(s) =




1
s

1
s2

0 1
s




The first and second columns of Ĝ have realizations

A1 = 0 B1 = 1 C1 =

(
1
0

)
D1 = 0

and

A2 =

(
0 1
0 0

)
B2 =

(
0
1

)
C2 =

(
1 0
0 1

)
D2 = 0

respectively. Hence a realization of Ĝ is given by

A =




0 0 0
0 0 1
0 0 0


 B =




1 0
0 0
0 1


 C =

(
1 1 0
0 0 1

)
D =

(
0 0
0 0

)

Note that this transfer function also has the following lower dimensional realization:

A =

(
0 1
0 0

)
B =

(
1 0
0 1

)
C =

(
1 0
0 1

)
D =

(
0 0
0 0

)
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Exercises

Exercise 29 Obtain a state space realization of the transfer function,

Ĝ(s) =
s2 + 3s + 2

s2 + 5s + 6
.

Is your realization minimal?

Exercise 30 Obtain a state space realization of the transfer function,

Ĝ(s) =




1
1

s− 1

1

s + 1

1

s2 − 1


 .

Exercise 31 Obtain a state space realization of the following transfer function.

Ĝ(s) =




s+2
s+1

1
s+3

5
s+1

5s+1
s+2




Exercise 32 Obtain a state space realization of the transfer function,

Ĝ(s) =




1

s− 1

1

s− 1

1

s + 1
− 1

s + 1


 .

Exercise 33 Obtain a state space realization of the transfer function,

Ĝ(s) =

(
s

s− 1

1

s + 1

)
.

Is your realization minimal?

Exercise 34 Obtain a state space representation of the following transfer function.

Ĝ(s) =

(
s2 + 1

s2 − 1

2

s− 1

)

Exercise 35 Obtain a state space representation of the following input-output system.

2
d3y

dt3
+ 6

d2y

dt2
+ 4

dy

dt
+ 2y = 6

d2u

dt2
+ 10

du

dt
+ 8u

Exercise 36 (a) Obtain a state space realization of the following single-input single-output
system.

ÿ − 3ẏ − 4y = ü− 2u̇− 8u
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(b) Is your realization minimal?

Exercise 37 Obtain a state space realization of the following input-output system.

ÿ1 − y1 + y2 = u̇1 + u1

ÿ2 + y2 − y1 = u2

Exercise 38 Obtain a state space realization of the following input-output system.

ẏ1 = u̇1 + u2

ẏ2 = u1 + u̇2

Exercise 39 Obtain a state space realization of the following input-output system.

ẏ1 + y2 = u̇2 + u1

ẏ2 + y1 = u̇1 + u2

Exercise 40 Consider the single-input single-output system described by

ẋ1 = −2x2 + u

ẋ2 = −2x1 + u

y = x1 − x2

(a) Compute eAt for the matrix,

A =

(
0 −2

−2 0

)
.

(b) Obtain the impulse response of the system.

(c) What is the transfer function of this system?

Exercise 41 Consider the single-input single-output system described by

ẋ1 = −3x1 + x2 + w

ẋ2 = x1 − 3x2 + w

y = x1 + x2

(a) Compute eAt for the matrix,

A =

( −3 1
1 −3

)

(b) Obtain the impulse response of the system.

(c) What is the transfer function of this system?

(d) What are the poles and zeros of the transfer function?
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Part II

System Behavior and Stability
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Chapter 5

Behavior of (LTI) systems : I

5.1 Initial stuff

5.1.1 Continuous-time

Here we look at the behavior of linear time-invariant systems described by

ẋ = Ax (5.1)

where the state x(t) is a complex n-vector and A is a complex n × n matrix. (The reason
for complexifying things will be seen shortly.) Sometimes A is called the system matrix.

Solutions. By a solution of system (5.1) we mean any continuous function x(·) which is
defined on some time interval [t0,∞) and which satisfies (5.1). Sometimes we are interested
in solutions which satisfy an initial condition of the form

x(t0) = x0 (5.2)

where t0 is called the initial time and x0 is called the initial state. As a consequence of the
linearity of the system, one can prove the following result:

For each initial condition, system (5.1) has a unique solution.

Shortly, we will study the nature of these solutions.
Since the system is time-invariant, knowledge of the solutions for zero initial time, that

is t0 = 0, yields knowledge of the solutions for any other initial time. For suppose x̃(·) is
a solution corresponding to x̃(0) = x0 . Then, the solution corresponding to x(t0) = x0 is
given by

x(t) = x̃(t−t0) .

Since the system is linear, one can readily show that solutions depends linearly on the
initial state; more specifically, there is a matrix valued function Φ (called the state transition
matrix) such that at each time t the solution due to x(0) = x0 is uniquely given by

x(t) = Φ(t)x0

Later, we develop explicit expressions for Φ.
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5.1.2 Discrete-time

Here we look at the behavior of linear time-invariant systems described by

x(k+1) = Ax(k)

The state x(k) is a complex n-vector and A is a complex n × n matrix. Sometimes A is
called the system matrix.

Solutions: Consider initial condition:

x(k0) = x0 (5.3)

Since the system is time-invariant we can, wlog (without loss of generality), consider only
zero initial time, that is, k0 = 0. For suppose x(·) is a solution corresponding

x̃(k0) = x0

Then
x̃(k) = x(k−k0)

where x(·) is the solution corresponding to (5.3).

For k ≥ k0 = 0, we have existence and uniqueness of solutions; specifically,

x(k) = Akx0

Proof: (Example of a proof by induction) Suppose there is a k∗ ≥ 0 for which the above
holds, that is,

x(k∗) = Ak∗x0

Then

x(k∗+1) = Ax(k∗)

= AAk∗x0

= A(k∗+1)x0

So, if it holds for k∗ it holds for k∗ + 1. Since, x(0) = A0x0, it holds for k∗ = 0. It now
follows by induction that it holds for all k∗ ≥ 0.

Solution depends linearly on initial state; specifically,

x(k) = Φ(k)x(0) , for k ≥ 0

where Φ(k) = Ak.
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5.2 Scalar systems

5.2.1 Continuous-time

Consider a scalar system described by

ẋ = ax

where x(t) and a are scalars. All solutions are given by:

x(t) = eatx0 ; x0 := x(0)

Real a. So,

(a) If a < 0 you decay with increasing age.

(b) If a > 0 you grow with increasing age.

(c) If a = 0 you stay the same; every state is an equilibrium state.

Figure 5.1: The three types of modes for real scalar systems: α = a

Example 36 (A first example.) Here

a = −c/m < 0

Thus, all solutions are of the form e−(c/m)tx0; hence they decay exponentially.
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Complex a. Suppose a is a genuine complex number (unreal); that is,

a = α + ω

where α and ω are real numbers. We call α the real part of a and denote this by α = <(a).
Similarly, we call ω the imaginary part of a and denote this by ω = =(a).

We now show that the growth behavior of eat depends only on the real part of a. To this
end, we first note that

eat = e(α+ω)t = e(αt+ωt) = eαteωt ,

and, hence, |eat| = |eαt| |eωt|. Since eαt is positive, |eαt| = eαt. Since,

eωt = cos ωt +  sin ωt ,

we obtain that |eωt| = 1. Hence,

|eat| = eαt where α = <(a)

Thu, |x(t)| = |eatx0| = |eat||x0| = eαt|x0|. So,

(a) If <(a) < 0 you decay with increasing age.

(b) If <(a) > 0 you grow with increasing age.

(c) If <(a) = 0 your magnitude remains constant.

5.2.2 First order complex and second order real.

Suppose a is a genuine complex number (unreal); that is,

a = α + ω where α = <(a), ω = =(a)

Since
x = ξ1 + ξ2 where ξ1 = <(x), ξ2 = =(x)

Then

ξ̇1 = αξ1 − ωξ2

ξ̇2 = ωξ1 + αξ2
=

(
α −ω
ω α

)
ξ

︸ ︷︷ ︸
axisymmetric spacecraft
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Exercise 42 Verify the last set of equations.

Also,

ξ1(t) = eαt cos(ωt)ξ10 − eαt sin(ωt)ξ20

ξ2(t) = eαt sin(ωt)ξ10 + eαt cos(ωt)ξ20
=

(
eαt cos(ωt) −eαt sin(ωt)
eαt sin(ωt) eαt cos(ωt)

)
ξ0

where ξ10 = ξ1(0), ξ20 = ξ2(0)

Exercise 43 Verify the last set of equations. Hint: eωt = cos ωt +  sin ωt

Figure 5.2: The three complex modes
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5.2.3 DT

x(k+1) = ax(k)

where x(k) and a are scalars. All solutions are given by:

x(k) = akx0 ; x0 := x(0)

Hence, |x(k)| = |akx0| = |a|k|x0|. So,

(a) If |a| < 1 you decay with increasing age.

(b) If |a| > 1 you grow with increasing age.

(c) If |a| = 1 your magnitude remains the same.

(d) If a = 1 you stay the same; every state is an equilibrium state.
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5.3 Eigenvalues and eigenvectors

Shortly, we shall see that the behavior of a linear time invariant system is completely deter-
mined by the eigenvalues and eigenvectors of its system matrix.

Suppose A is a complex n× n matrix. (The use of the word complex also includes real.
To indicate that something is complex but not real we say genuine complex.)

DEFN. A complex number λ is an eigenvalue of A if there is a nonzero vector v such that

Av = λv

The nonzero vector v is called an eigenvector of A corresponding to λ.

So, an eigenvector of A is a nonzero complex n-vector with the property that there is a
complex number λ such that the above relationship holds or, equivalently,

(λI − A)v = 0

Since v is nonzero, λI − A must be singular; so,

det(λI − A) = 0

• The characteristic polynomial of A:

charpoly(A) := det(sI − A)

Note that det(sI − A) is an n-th order monic polynomial, that is, it has the form

det(sI − A) = a0 + a1s + . . . + sn

• We conclude that a complex number λ is an eigenvalue of A if and only if it is a root of
the nth order characteristic polynomial of A. Hence, A has at least one eigenvalue and at
most n distinct eigenvalues. Suppose A has l distinct eigenvalues, λ1, λ2, . . . , λl; since these
are the distinct roots of the characteristic polynomial of A, we must have

det(sI − A) =
l∏

i=1

(s− λi)
mi

• The integer mi is called the algebraic multiplicity of λi

• It should be clear that if v1 and v2 are any two eigenvectors corresponding to the same
eigenvalue λ and ξ1 and ξ2 are any two numbers then (provided it is nonzero) ξ1v

1 + ξ2v
2

is also an eigenvector for λ. The set of eigenvectors corresponding to λ along with the zero
vector is called the eigenspace of A associated with λ. This is simply the null space of λI−A

• The geometric multiplicity of λ is the nullity of λI −A, that is, it is the maximum number
of linearly independent eigenvectors associated with λ.

• It follows that A is invertible if and only if all its eigenvalues are nonzero.
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Example 37 (An eigenvalue-eigenvector calculation)

A =

(
3 −1

−1 3

)

The characteristic polynomial of A is given by

det(sI − A) = det

(
s− 3 1

1 s− 3

)

= (s− 3)(s− 3)− 1 = s2 − 6s + 8

= (s− 2)(s− 4)

The roots of this polynomial yield two distinct real eigenvalues:

λ1 = 2, λ2 = 4

To compute eigenvectors for λ1, we use (λ1I − A)v = 0 to obtain

−v1 + v2 = 0

v1 − v2 = 0

which is equivalent to
v1 − v2 = 0

So, only one linearly independent eigenvector for λ1; let’s take

v = v1 =

(
1
1

)

In a similar fashion, λ2 has one linearly independent eigenvector; we take

v2 =

(
1

−1

)

To check the above calculations, note that:

Av1 =

(
3 −1

−1 3

)(
1
1

)
=

(
2
2

)
= 2

(
1
1

)
= λ1v

1

Similarly for λ2.
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Example 38 (Another eigenvalue-eigenvector calculation)

A =

(
1 1

−1 1

)

The characteristic polynomial of A is given by

det(sI − A) = det

(
s− 1 −1

1 s− 1

)
= (s− 1)(s− 1) + 1

= s2 − 2s + 2

Computing the roots of this polynomial yields two distinct complex eigenvalues:

λ1 = 1 + , λ2 = 1− 

To compute eigenvectors for λ1, we use (λ1I − A)v = 0 to obtain

v1 − v2 = 0

v1 + v2 = 0

which is equivalent to
−v1 + v2 = 0

So, only one linearly independent eigenvector; let’s take

v = v1 =

(
1


)

(We could also take
(

 1
)T

.) In a similar fashion, λ2 has one linearly independent eigen-
vector; we take

v2 =

(
1
−

)

To check the above calculations, note that

Av1 =

(
1 1

−1 1

)(
1


)
=

(
1 + 

−1 + 

)
= (1 + )

(
1


)
= λ1v

1

Similarly for λ2.

Example 39

A =

(
0 1
0 0

)

Exercise 44 Compute expressions for eigenvalues and linearly independent eigenvectors of

A =

(
α ω
−ω α

)
α, ω 6= 0
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5.3.1 Real A

Recall Examples 37 and 38. They illustrate the following facts.

• If A is real, its eigenvalues and eigenvectors occur in complex conjugate pairs.

To see this, suppose λ is an eigenvalue of A with eigenvector v. Then

Av = λv

Taking complex conjugate of both sides of this equation yields

Āv̄ = λ̄v̄

Since A is real, Ā = A; hence
Av̄ = λ̄v̄

that is, λ̄ is an eigenvalue of A with eigenvector v̄

• Real eigenvectors for real eigenvalues.

• Genuine complex eigenvectors for (genuine) complex eigenvalues.

• The real and imaginary parts of a complex eigenvector are linearly independent.

Example 40 Consider any non-zero angular velocity matrix of the form:

A =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




charpoly(A) = s(s2 + Ω2), Ω :=
√

ω2
1 + ω2

2 + ω2
3

Hence, A has one real eigenvalue 0 and two complex conjugate eigenvalues, Ω,−Ω.
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5.3.2 MATLAB

>> help eig

EIG Eigenvalues and eigenvectors.

EIG(X) is a vector containing the eigenvalues of a square

matrix X.

[V,D] = EIG(X) produces a diagonal matrix D of

eigenvalues and a full matrix V whose columns are the

corresponding eigenvectors so that X*V = V*D.

[V,D] = EIG(X,’nobalance’) performs the computation with

balancing disabled, which sometimes gives more accurate results

for certain problems with unusual scaling.

>> help poly

POLY Characteristic polynomial.

If A is an N by N matrix, POLY(A) is a row vector with

N+1 elements which are the coefficients of the

characteristic polynomial, DET(lambda*EYE(A) - A) .

If V is a vector, POLY(V) is a vector whose elements are

the coefficients of the polynomial whose roots are the

elements of V . For vectors, ROOTS and POLY are inverse

functions of each other, up to ordering, scaling, and

roundoff error.

ROOTS(POLY(1:20)) generates Wilkinson’s famous example.

>> help roots

ROOTS Find polynomial roots.

ROOTS(C) computes the roots of the polynomial whose coefficients

are the elements of the vector C. If C has N+1 components,

the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).
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5.3.3 Companion matrices

These matrices will be useful later in control design. We met these matrices when construct-
ing state space descriptions for systems described by a single higher order linear differential
equation.

Exercise 45 Compute the characteristic polynomial of

(
0 1
−a0 −a1

)

Hence, write down the characteristic polynomials for the A matrices associated with the
unattached mass and the damped linear oscillator.

Exercise 46 Compute the characteristic polynomial of




0 1 0
0 0 1
−a0 −a1 −a2




Fact 1 The characteristic polynomial of




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1




is given by
p(s) = a0 + a1s + . . . + an−1s

n−1 + sn

Hence, given any bunch of n complex numbers, there is a companion matrix whose eigen-
values are exactly these numbers.

Exercise 47 What is the real 2× 2 companion matrix with eigenvalues 1 +  , 1− ?

Exercise 48 What is the companion matrix whose eigenvalues are −1, −2, and −3?
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5.4 Behavior of continuous-time systems

5.4.1 System significance of eigenvectors and eigenvalues

In this section, we demonstrate that the eigenvalues and eigenvectors of a square matrix A
play a fundamental role in the behavior of the linear system described by

ẋ = Ax . (5.4)

We first demonstrate the following result.

The system ẋ = Ax has a non-zero solution of the form

x(t) = eλtv (5.5)

if and only if λ is an eigenvector of A and v is a corresponding eigenvector.

To demonstrate the above claim, note that if x(t) = eλtv, then

ẋ = eλtλv and Ax(t) = Aeλtv = eλtAv .

Hence, x(t) = eλtv is a non-zero solution of ẋ = Ax if and only if v is nonzero and

eλtλv = eλtAv .

Since eλt is nonzero, the above condition is equivalent to

Av = λv .

Since v is non-zero, this means λ is an eigenvector of A and v is a corresponding eigenvector.

A solution of the form eλtv is a very special type of solution and is sometimes called a
mode of the system. Note that if x(t) = eλtv is a solution, then x(0) = v, that is, v is the
initial value of x. Hence, we can make the following statement.

If v is an eigenvector of A, then the solution to ẋ = Ax with initial condition x(0) = v
is given by x(t) = eλtv where λ is the eigenvalue corresponding to v.

If v is an eigenvector then, eλtv is also an eigenvector for each t. Also, considering the
magnitude of eλtv, we obtain

||eλtv|| = |eλt| ‖v‖ = eαt ‖v‖

where α is the real part of λ. So,

(a) Once an eigenvector, always an eigenvector!

(b) If <(λ) < 0 you decay with increasing age.

(c) If <(λ) > 0 you grow with increasing age.
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(d) If <(λ) = 0 your magnitude remains constant.

(e) If λ = 0 you stay put; every eigenvector corresponding to λ = 0 is an equilibrium state.

Example 41 The matrix A of example 37 had 2 as an eigenvalue with corresponding eigen-
vector [ 1 1 ]T . Hence with initial state,

x0 =

(
1
1

)

the system ẋ = Ax has the following solution:

x(t) =

(
e2t

e2t

)

What is the solution for

x0 =

(
1

−1

)
?

Exercise 49 Prove the following statement. Suppose that v1, . . . , vm are eigenvectors of A
with corresponding eigenvalues, λ1, . . . , λm. Then the solution of (5.4) with initial state

x0 = ξ10v
1 + . . . + ξm0v

m ,

where ξ10, . . . , ξm0 are scalars, is given by

x(t) = ξ10e
λ1tv1 + . . . + ξm0e

λmtvm .

Behaviour in the v subspace. Suppose v is an eigenvector of A with corresponding
eigenvalue λ and consider any initial state of the form x0 = ξ0v. Thus, the initial state x0 is
in the 1-dimensional subspace spanned by v. We have shown that the solution corresponding
to x(0) = x0 has the form x(t) = ξ(t)v; hence x(t) remains in this subspace. Forgetting about
the actual solution, we note that ξ̇v = ẋ = Ax = A(ξv) = λξv. Hence

ξ̇ = λξ ξ(0) = ξ0

In other words, the behavior of the system in the 1-dimensional subspace spanned by v is
that of a scalar system.

Some state space pictures
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Real systems and complex eigenvalues. Suppose we are interested in the behavior of
a ‘real’ system with real state x and real system matrix A and suppose λ is a (genuine)
complex eigenvalue of A, that is,

Av = λv

for a nonzero v. Since A is real and λ is complex, the eigenvector v is complex. The complex
system can start with a complex initial state but the ‘real’ system cannot. So is the above
result useful? It is, just wait.

Since A is real, λ̄ is also an eigenvalue of A with corresponding eigenvector v̄; hence the
(complex) solution corresponding to x(0) = v̄ is given by

eλ̄tv̄ = eλtv

Consider now the real vector

u := <(v) =
1

2
(v + v̄)

as an initial state. Since the solution depends linearly on initial state, the solution for this
real initial state is

1

2
(eλtv + eλtv ) = <( eλtv )

Suppose we let
α = <(λ) ω = =(λ) w = =(v) .

Then
λ = α + ω and v = u + w .

Hence,

eλtv = eαt(cos ωt +  sin ωt)(u + w)

= [eαt cos(ωt) u− eαt sin(ωt) w ] + 
(
eαt sin(ωt) u + eαt cos(ωt) w

)

Hence, the solution due to x(0) = u is

eαt cos(ωt) u− eαt sin(ωt) w

Similarly, the solution due to initial state w is =(eλtv), that is,

eαt sin(ωt) u + eαt cos(ωt) w

• So, if the initial state is of the form

x(0) = ξ10u + ξ20w

where ξ10, ξ20 are any two real scalars (that is, the system starts in the real subspace spanned
by the real span of u,w), the resulting solution is given by

x(t) = ξ1(t)u + ξ2(t)w
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where

ξ1(t) = eαt cos(ωt)ξ10 + eαt sin(ωt)ξ20

ξ2(t) = −eαt sin(ωt)ξ10 + eαt cos(ωt)ξ20
=

(
eαt cos(ωt) eαt sin(ωt)
−eαt sin(ωt) eαt cos(ωt)

)
ξ0

Note that, if we let A0 = (ξ2
10 + ξ2

20)
1
2 and let φ0 be the unique number in the interval [0, 2π)

defined by

sin(φ0) = ξ10/A0 and cos(φ0) = ξ20/A0

then

ξ1(t) = A0e
αt sin(ωt+φ0)

ξ2(t) = A0e
αt cos(ωt+φ0)

and

x(t) = A0e
αt (sin(ωt+φ0)u + cos(ωt+φ0)w)

So, we conclude that for real systems:

(a) If the initial state is in the real 2D subspace spanned by the real and imaginary parts
of an complex eigenvector, then so is the resulting solution.

(b) If <(λ) < 0 you decay with increasing age.

(c) If <(λ) > 0 you grow with increasing age.

(d) If <(λ) = 0 your magnitude remains constant and if λ 6= 0 you oscillate forever.

(e) If λ = 0 you stay put; every eigenvector corresponding to λ = 0 is an equilibrium state.

Example 42 Recall example 38. Considering

v = v1 =

(
1


)

we have

u =

(
1
0

)
w =

(
0
1

)

So,

x = x1u + x2w

Hence, all solutions are given by

x1(t) = eαt cos(ωt)x10 + eαt sin(ωt)x20

x2(t) = −eαt sin(ωt)x10 + eαt cos(ωt)x20
=

(
eαt cos(ωt) eαt sin(ωt)
−eαt sin(ωt) eαt cos(ωt)

)
x0
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Behavior in the u−w subspace. We have shown that if the state starts in the 2-
dimensional subspace spanned by u,w, ( let’s call it the u−w subspace) it remains there,
that is, if x0 = ξ10u+ ξ20w then x(t) = ξ1(t)u+ ξ2(t)w. Forgetting about the actual solution,
we now show that motion in this subspace is described by:

ξ̇1 = αξ1 + ωξ2

ξ̇2 = −ωξ1 + αξ2
=

(
α ω

−ω α

)
ξ

To see this, we first equate real and imaginary parts of

A(u + w) = (α + ω)(u + w)

to obtain
Au = αu − ωw
Aw = ωu + αw

Now

ξ̇1u + ξ̇2w = ẋ

= Ax

= A(ξ1u + ξ2w)

= ξ1Au + ξ2Aw

= (αξ1 + ωξ2)u + (−ωξ1 + αξ2)w

The desired result now follows by equating coefficients of u and w on both sides of the
equation.

Example 43 (Beavis and Butthead) Consider u1 = u2 = 0 in the system in Figure 5.3.

Figure 5.3: Beavis & Butthead

mq̈1 = k(q2 − q1)
mq̈2 = −k(q2 − q1)
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Introducing state variables

x1 := q1 , x2 := q2 , x3 := q̇1 , x4 := q̇2 ,

this system is described by ẋ = Ax where A is the block partitioned matrix given by

A =

(
0 I

A21 0

)
, A21 = k/m

( −1 1
1 −1

)
.

The characteristic polynomial of A is given by

p(s) = s2(s2 + ω2) , ω =
√

2k/m

Hence, A has three eigenvalues

λ1 = ω , λ2 = −ω , λ3 = 0 .

Corresponding to each eigenvalue λi, there is at most one linearly independent eigenvector
vi, for example,

v1 =




1
−1
ω

−ω


 , v2 = v1 , v3 =




1
1
0
0


 .

Consider now the subspace S1 spanned by the real and imaginary parts of v1:

S1 = span








1
−1

0
0


 ,




0
0
ω

−ω








= span








1
−1

0
0


 ,




0
0
1

−1








.

A little reflection reveals that states in this subspace correspond to those states for which
q2 = −q1 and q̇2 = −q̇1. A state trajectory which remains in this subspace is characterized
by the condition that

q2(t) ≡ −q1(t) .

We have seen that whenever a motion originates in this subspace it remains there; also
all motions in this subspace are purely oscillatory and consist of terms of the form cos(ωt)
and sin(ωt).

Consider now the subspace S3 spanned by the eigenvector v3. Every state in this subspace
has the form 



q1

q1

0
0


 ,

that is, q1 is arbitrary, q2 = q1, and q̇1 = q̇2 = 0. Since the eigenvalue corresponding to this
eigenspace is zero, every state in this subspace is an equilibrium state.
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5.4.2 Solutions for nondefective matrices

Recall that the algebraic multiplicity of an eigenvalue of a matrix is the number of times
that the eigenvalue is repeated as a root of the characteristic polynomial of the matrix. Also
the geometric multiplicity of an eigenvalue is the dimension of its eigenspace, or equivalently,
the maximum number of linearly independent eigenvectors associated with that eigenvalue.
It can be proven that the geometric multiplicity of an eigenvalue is always less than or equal
to its algebraic multiplicity. An eigenvalue whose geometric multiplicity equals its algebraic
multiplicity is call a nondefective eigenvalue. Otherwise, it is called defective. If an eigenvalue
is not repeated, that is, it is not a repeated root of the matrix characteristic polynomial, then
it has algebraic multiplicity one. Since its geometric multiplicity must be greater than zero
and less than or equal to its algebraic multiplicity, it follows that its geometric multiplicity
equals its algebraic multiplicity; hence the eigenvalue is nondefective.

A matrix with the property that all its eigenvalues are nondefective is called a nondefective
matrix. Otherwise, it is called defective. When is a matrix A nondefective? Some examples
are:

(a) A has n distinct eigenvalues where A is n× n.

(b) A is hermitian that is, A∗ = A.

(c) A is unitary, that is, A∗A = I.

Here A∗ is the complex conjugate transpose of A.
We have the following result.

Fact 2 An n× n matrix has n linearly independent eigenvectors if and only if A is nonde-
fective.

Example 44 The following matrix is a simple example of a defective matrix.

A =

(
0 1
0 0

)

Example 45 The following matrix is another example example of a defective matrix.

A =




0 1 0 0
−ω2 0 1 0

0 0 0 1
0 0 −ω2 0




where ω is any real number.

Suppose A is a nondefective matrix and consider any initial condition: x(0) = x0. Since
A is nondefective, it has a basis of eigenvectors v1, · · · , vn. Hence, there are unique scalars
ξ10, ξ10, . . . , ξn0 such that x0 can be expressed as

x0 = ξ10v
1 + ξ20v

2 + . . . + ξn0v
n .
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From this it follows that the solution due to x(0) = x0 is given by

x(t) = eλ1tξ10v
1 + eλ2tξ20v

2 + . . . + eλntξn0v
n (5.6)

Note that each term eλitξi0v
i on the right-hand-side of the above equation is a mode. This

results in the following fundamental observation.

Every motion (solution) of a linear time-invariant system with nondefective A matrix is
simply a sum of modes.

5.4.3 Defective matrices and generalized eigenvectors

Consider a square matrix A. Then we have the following fact.

Fact 3 An eigenvalue λ for A is defective if and only if there is a nonzero vector g such that

(A− λI)2g = 0 but (A− λI)g 6= 0 .

The vector g is called a generalized eigenvector for A.

Example 46

A =

(
0 1
0 0

)

Consider λ = 0. Then

g =

(
0
1

)

is a generalized eigenvector of A.

We now demonstrate the consequence of a system having a defective eigenvalue. So,
suppose λ is a defective eigenvalue for a square matrix A. Let g be any corresponding
generalized eigenvector for λ. We now show that

x(t) = eλtg + teλt(A− λI)g

is a solution of ẋ = Ax. To see this, differentiate x to obtain

ẋ(t) = eλtλg + eλt(A− λI)g + teλtλ(A− λI)g

= eλtAg + teλtλ(A− λI)g

Since (A− λI)2g = 0, we have

A(A− λI)g = λ(A− λI)g .

Hence

ẋ(t) = eλtAg + teλtA(A− λI)g = A(eλtg + teλt(A− λI)g)

= Ax(t) .
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Consider the function given by teλt and note that

|teλt| = |t|eαt

where α is the real part of λ. So, if α is negative, the magnitude of the above function decays
exponentially. If α is positive, the magnitude of the above function grows exponentially. If
α is zero, the magnitude of the above function is given by |t| which is also unbounded. From
this discussion, we see that the defectiveness of an eigenvalue is only significant when the
eigenvalue lies on the imaginary axis of the complex plane, that is when it has zero real part.

Example 47 (Resonance) Consider a simple spring-mass system, of mass m and spring
constant k, subject to a sinusoidal force w(t) = A sin(ωt + φ) where ω =

√
k/m is the

unforced natural frequency of the spring mass system and A and φ are arbitrary constants.
Letting q be the displacement of the mass from its unforced equilibrium position, the motion
of this system can be described by

mq̈ + kq = w .

Figure 5.4: Resonance

Since w(t) = A sin(ωt + φ) it satisfies the following differential equation:

ẅ + ω2w = 0 .

If we introduce state variables,

x1 = q , x2 = q̇ , x3 = w , ẍ4 , = ẇ

the sinusoidally forced spring-mass system can be described by ẋ = Ax where

A =




0 1 0 0
−ω2 0 1/m 0

0 0 0 1
0 0 −ω2 0


 .

This matrix has characteristic polynomial

p(s) = (s2 + ω2)2 .

111



Hence A has two distinct imaginary eigenvalues λ1 = ω and λ2 = −ω, both of which are
repeated twice as roots of the characteristic polynomial. All eigenvalues for λ1 and λ2 are of
the form cv1 and cv2, respectively, where

v1 =




1
ω
0
0


 and v2 =




1
−ω

0
0


 .

Since these eigenvalues have algebraic multiplicity two and geometric multiplicity one, they
are defective. A generalized eigenvector corresponding to λ1 and λ2 is given by

g1 =




1/2k
0
1
ω


 and g2 =




1/2k
0
1
−ω


 ,

respectively. Hence this system has solutions with terms of the form t sin(ωt).

Exercises

Exercise 50 (Beavis and Butthead at the laundromat)

mq̈1 −mΩ2q1 + k
2
(q1 − q2 − 2l0) = 0

mq̈2 −mΩ2q2 − k
2
(q1 − q2 − 2l0) = 0

with

ω :=
√

k/m > Ω

Figure 5.5: At the laundromat

(a) Obtain the equilibrium values qe
1, q

e
2 of q1, q2.
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(b) With

x1 = δq1 := q1 − qe
1

x2 = δq2 := q2 − qe
2

x3 = q̇1

x4 = q̇2

Obtain a state space description of the form ẋ = Ax.

(c) Obtain expressions for the eigenvalues of A. Write down expressions for the complex
Jordan form and the real Jordan form of A?

(d) For the rest of the exercise, consider ω2 = 2Ω2. Obtain expressions for linearly inde-
pendent eigenvectors of A.

(e) For the rest of the exercise, let Ω = 1. Numerically simulate with initial conditions

δq1(0) = 1, δq2(0) = −1, q̇1(0) = 0, q̇2(0) = 0

On the same graph, plot δq1(t) and −δq2(t) vs t. Why is δq2(t) ≡ −δq1(t)? Plot δq2(t)
vs δq1(t).

(f) Numerically simulate with initial conditions

δq1(0) = 1, δq2(0) = 1, q̇1(0) = −1, q̇2(0) = −1

On the same graph, plot δq1(t) and δq2(t) vs t. Why is δq2(t) ≡ δq1(t)? Why does the
solution decay to zero? Plot δq2(t) vs δq1(t).

(g) Numerically simulate with initial conditions

δq1(0) = 1, δq2(0) = 1, q̇1(0) = 1, q̇2(0) = 1

On the same graph, plot δq1(t) and δq2(t) vs t. Why is δq2(t) ≡ δq1(t)? Is this solution
bounded? Plot δq2(t) vs δq1(t).

(h) Numerically simulate with initial conditions

δq1(0) = 1, δq2(0) = −1, q̇1(0) = , q̇2(0) = −

Compute ||x(t)|| and show (by plotting ||x|| vs t) that it is constant. Why is it constant?

Exercise 51 Consider the delay differential equation described by

ẋ(t) = A1x(t) + A2x(t− 1)

where t ∈ IR and x(t) ∈ Cn. Show that if a complex number λ satisfies

det(λI − A1 − e−λA2) = 0

then the delay differential equation has a solution of the form

eλtv

where v ∈ Cn is nonzero.
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Exercise 52 Consider a system described by

Mq̈ + Cq̇ + Kq = 0

where q(t) is an N -vector and M , C and K are square matrices. Suppose λ is a complex
number which satisfies

det(λ2M + λC + K) = 0 .

Show that the above system has a solution of the form

q(t) = eλtv

where v is a constant N -vector.
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5.5 Behavior of discrete-time systems

5.5.1 System significance of eigenvectors and eigenvalues

Consider now a discrete time system described by

x(k+1) = Ax(k) (5.7)

We now demonstrate the following result:

The discrete-time system (5.7) has a solution of the form

x(k) = λkv (5.8)

if and only if λ is an eigenvalue of A and v is a corresponding eigenvector.

To prove this, we first suppose that λ is an eigenvalue of A with v as a corresponding
eigenvector. We need to show that x(k) = λkv is a solution of (5.7). Since Av = λv, it
follows that x(k+1) = λ(k+1)v = λkλv = λkAv = A(λkv) = Ax(k), that is x(k+1) = Ax(k);
hence x(·) is a solution of (5.7).

Now suppose that x(k) = λkv is a solution of (5.7). Then λv = x(1) = Ax(0) = Av, that
is, Av = λv; hence λ is an eigenvalue of A and v is a corresponding eigenvector.

A solution of the form λkv is a very special type of solution and is sometimes called a
mode of the system. Note that if x(k) = λkv is a solution, then x(0) = v, that is, v is the
initial value of x. Hence, we can make the following statement.

If v is an eigenvector of A, then the solution to x(k+1) = Ax(k) with initial condition
x(0) = v is given by x(k) = λkv where λ is the eigenvalue corresponding to v.

If v is an eigenvector then, λkv is also an eigenvector for each k. Also, considering the
magnitude of λkv, we obtain

||λkv|| = |λk| ‖v‖ = |λ|k ‖v‖

So,

(a) Once an eigenvector, always an eigenvector!

(b) If |λ| < 1 you decay with increasing age.

(c) If |λ| > 1 you grow with increasing age.

(d) If |λ| = 1 and λ 6= 1 you oscillate forever.

• If λ = 1 and x(0) = v, then x(k) = v for all k, that is v is an equilibrium state for the
system.
• If λ = 0 and x(0) = v, then x(k) = 0 for all k > 0, that is the state of the system goes to
zero in one step.
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5.5.2 All solutions for nondefective matrices

Recall that an eigenvalue whose geometric multiplicity equals its algebraic multiplicity is
called a nondefective eigenvalue. Otherwise, it is considered defective. A matrix with the
property that all its eigenvalues are nondefective is called a nondefective matrix. Otherwise,
it is considered defective. Recall also that an n × n matrix has n linearly independent
eigenvectors if and only if A is nondefective.

Example 48 The following matrix is a simple example of a defective matrix.

A =

(
0 1
0 0

)

Suppose A is a nondefective matrix and consider any initial condition: x(0) = x0. Since
A is nondefective, it has a basis of eigenvectors v1, · · · , vn. Hence,

x0 = ξ10v
1 + ξ20v

2 + . . . + ξn0v
n

From this it follows that

x(k) = λk
1ξ10v

1 + λk
2ξ20v

2 + . . . + λk
nξn0v

n (5.9)

Note that each term λk
i ξi0v

i on the right-hand-side of the above equation is a mode. This
results in the following fundamental observation.

Every motion (solution) of a discrete-time linear time-invariant system with nondefective
A matrix is simply a sum of modes.

5.5.3 Some solutions for defective matrices

Consider a square matrix A and recall that an eigenvalue λ for A is defective if and only if
there is a nonzero vector g such that

(A− λI)2g = 0 but (A− λI)g 6= 0 .

The vector g is called a generalized eigenvector for A.

Example 49

A =

(
0 1
0 0

)

Consider λ = 0. Then

g =

(
0
1

)

is a generalized eigenvector of A.
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We now demonstrate the consequence of a system having a defective eigenvalue. So,
suppose λ is a defective eigenvalue for a square matrix A. Let g be any corresponding
generalized eigenvector for λ. We now show that

x(k) = λkg + kλ(k−1)(A− λI)g

is a solution of x(k+1) = Ax(k). To see this, we first note that, since (A − λI)2g = 0, we
have

A(A− λI)g = λ(A− λI)g .

Hence

Ax(k) = λkAg + kλ(k−1)A(A− λI)g

= λkAg + kλk(A− λI)g .

Now note that

x(k+1) = λ(k+1)g + (k+1)λk(A− λI)g

= λ(k+1)g + kλk(A− λI)g + λkAg − λ(k+1)g

= λkAg + kλk(A− λI)g .

Hence x(k+1) = Ax(k)

Consider the function given by kλk−1 and note that

|kλk−1| = |k||λ|k−1 .

So, if |λ| < 1, the magnitude of the above function decays exponentially. If |λ| > 1,
the magnitude of the above function grows exponentially. If |λ| = 1, the magnitude of the
above function is given by |k| which is also unbounded. From this discussion, we see that the
defectiveness of an eigenvalue is only significant when the eigenvalue lies on the unit circle
in the complex plane, that is when its magnitude is one.
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5.6 Similarity transformations

Motivating example. Consider

ẋ1 = 3x1 − x2

ẋ2 = −x1 + 3x2

Suppose we define new states:

ξ1 = (x1 + x2)/2

ξ2 = (x1 − x2)/2

Then,

ξ̇1 = 2ξ1

ξ̇2 = 4ξ2

That looks better!

Where did new states come from? First note that

x1 = ξ1 + ξ2

x2 = ξ1 − ξ2

and we have the following geometric interpretation. Since,

x = x1

(
1
0

)
+ x2

(
0
1

)

= ξ1

(
1
1

)
+ ξ2

(
1
−1

)

the scalars x1, x2 are the coordinates of the vector x wrt the usual basis for IR2; the scalars
ξ1, ξ2 are the coordinates of x wrt the basis

(
1
1

) (
1

−1

)

Where did these new basis vectors come from? These new basis vectors are eigenvectors of
the matrix

A =

(
3 −1

−1 3

)

and the system is described by ẋ = Ax.
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Coordinate transformations. Suppose we have n scalar variables x1, x2, . . . , xn and we
implicitly define new scalar variables ξ1, ξ2, . . . , ξn by

x = Tξ where x =




x1

x2
...

xn


 and ξ =




ξ1

ξ2
...
ξn




and T is an n× n invertible matrix. Then, ξ is explicitly given by

ξ = T−1x

We can obtain a geometric interpretation of this change of variables as follows. First,
observe that 



x1

x2
...

xn




︸ ︷︷ ︸
x

= x1




1
0
...
0




︸ ︷︷ ︸
e1

+ x2




0
1
...
0




︸ ︷︷ ︸
e2

+ . . . + xn




0
0
...
1




︸ ︷︷ ︸
en

,

that is the scalars x1, x2, . . . , xn are the coordinates of the vector x wrt the standard basis
e1, e2, . . . , en, or, x is the coordinate vector of itself wrt the standard basis. Suppose

T =
(

t1 . . . tj . . . tn
)

that is, tj is the j-th column of T . Since T is invertible, its columns, t1, t2, . . . , tn, form a
basis for Cn. Also, x = Tξ can be written as

x = ξ1t
1 + ξ2t

2 + . . . + ξnt
n

From this we see that ξ1, ξ2, . . . , ξn are the coordinates of x wrt to the new basis and the
vector ξ is the coordinate vector of the vector x wrt this new basis. So x = Tξ defines a
coordinate transformation.

Similarity transformations. Consider now a CT (DT) system described by

ẋ = Ax ( x(k+1) = Ax(k) )

and suppose we define new state variables by x = Tξ where T is nonsingular; then the
behavior of ξ is governed by

ξ̇ = Λξ ( ξ(k+1) = Λξ(k) )

where
Λ = T−1AT

A square matrix A is said to be similar to another square matrix Λ if there exists a
nonsingular matrix T such that Λ = T−1AT .

Recalling that the columns t1, t2, . . . , tn of T form a basis, we have now the following very
useful result.
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Useful result. Suppose

Atj = α1jt
1 + α2jt

2 + . . . + αnjt
n

Then the matrix Λ = T−1AT is uniquely given by

Λij = αij

that is Λij is the i-th coordinate of the vector Atj wrt the basis t1, t2, · · · , tn. Thus, the j-th
column of the matrix Λ is the coordinate vector of Atj wrt the basis t1, t2, · · · , tn.

Proof. Premultiply Λ = T−1AT by T to get:

TΛ = AT

On the right we have

AT = A
(

t1 . . . tj . . . tn
)

=
(

At1 . . . Atj . . . Atn
)

And on the left,

TΛ =
(

t1 t2 . . . . . . tn
)




Λ11 . . . Λ1j . . . Λ1n

Λ21 . . . Λ2j . . . Λ2n
...

...
...

...
...

...
Λn1 . . . Λnj . . . Λnn




=

(
Λ11t

1 + · · ·+ Λn1t
n ... . . . . . .

... Λ1jt
1 + . . . + Λnjt

n

︸ ︷︷ ︸
j-th column

... . . . . . .
... Λ1nt

1 + . . . + Λnnt
n

)

Comparing the expressions for the j-th columns of AT and TΛ yields

Λ1jt
1 + . . . + Λnjt

n = Atj

= α1jt
1 + . . . + αnjt

n

Since the bi’s form a basis we must have Λij = αij.

• Note that
A = TΛT−1

Example 50 Recall example 37. Note that the eigenvectors v1 and v2 are linearly indepen-
dent; hence the matrix

T :=
(
v1 v2

)
=

(
1 1
1 −1

)
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is invertible. Since

Av1 = 2v1

Av2 = 4v2

we can use the above result and immediately write down (without computing T−1)

Λ = T−1AT =

(
2 0
0 4

)

Explicitly compute T−1 and then T−1AT to check.

Example 51 Recalling example 38 we can follow the procedure of the last example and
define

T :=

(
1 1
 −

)

to obtain (without computing T−1)

Λ = T−1AT =

(
1 +  0

0 1− 

)

You may now compute T−1 and check this.

Example 52 Suppose A is a 4 × 4 matrix and v1, v2, v3, v4 are four linearly independent
vectors which satisfy:

Av1 = v2 , Av2 = v3 , Av3 = v4 , Av4 = 3v1 − v2 + 6v3

If we let V be the matrix whose columns are v1, v2, v3, v4, then V is invertible and we can
immediately write down that

V −1AV =




0 0 0 3
1 0 0 −1
0 1 0 6
0 0 1 0




Example 53 B&B

Some properties:

Exercise 53 Prove the following statements:

(a) If A is similar to B, then B is similar to A

(b) If A is similar to B and B is similar to C, then A is similar to C.

Exercise 54 Show that if A is similar to Λ then the following hold:
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(a) det A = det Λ

(b) charpoly A = charpoly Λ and, hence, A and Λ have the same eigenvalues with the
same algebraic multiplicities.

Exercise 55 Suppose A is a 3× 3 matrix, b is a 3-vector,

A3 + 2A2 + A + 1 = 0

and the matrix

T =
(

b Ab A2b
)

is invertible. What is the matrix Λ := T−1AT? Specify each element of Λ explicitly.
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5.7 Hotel California

5.7.1 Invariant subspaces

Suppose A is a square matrix. We have already met several subspaces associated with A,
namely, its range, null space, and eigenspaces. These subspaces are all examples of invariant
subspaces for A

We say that a subspace S is an invariant subspace for A if for each vector x in S, the
vector Ax is also in S.

Figure 5.6: Invariant subspace

The significance of invariant subspaces for LTI systems lies in the following result which
is proven later.

If the state of a linear-time-invariant system starts in an invariant subspace of the system
matrix, it never leaves the subspace.

A coordinate transformation. Suppose S is an invariant subspace for a square matrix
A. If S has dimension m, let

t1, t2, · · · , tm

be a basis for S. If A is n× n, extend the above basis to a basis

t1, . . . , tm, tm+1, · · · , tn

for Cn (This can always be done.) Now introduce the coordinate transformation

x = Tξ

where
T :=

(
t1 t2 . . . tn

)

Letting

ξ =

(
ζ
η

)
,

where ζ is an m-vector and η is an (n−m)-vector, we obtain

x = ζ1t
1 + . . . + ζmtm + η1t

m+1 + . . . + ηn−mtn
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So

x is in S if and only if η = 0

Let

Λ := T−1AT .

Using our ‘useful result on similarity transformations’ and the fact that S is invariant for A,
it follows that Λ must have the following structure:

Λ =

(
Λ11 Λ21

0 Λ22

)

System significance of invariant subspaces. Consider a system described by

ẋ = Ax

and suppose S is an invariant subspace for A. Introduce the above coordinate transformation
to obtain

ξ̇ = Λξ

or

ζ̇ = Λ11ζ + Λ12η

η̇ = Λ22η

Looking at the differential equation η̇ = Λ22η, we see that if η(0) = 0, then η(t) ≡ 0; hence,
if x(0) is in S then x(t) is always in S. In other words, if you are in S, you can check out
any time, but you can never leave.....

5.7.2 More on invariant subspaces∗

Suppose S1,S2, . . . ,Sq are q invariant subspaces of a square matrix A with the property that
there is basis

t1, . . . , tn

where

t1, . . . , tn1

is a basis for S1,

tn1+1, . . . , tn1+n2

is a basis for S2,

tn1+···+nq−1+1, . . . , tn

is a basis for Sq,

ẋ = Ax

Coordinate transformation

x = Tξ
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where
T =

(
t1 t2 . . . tn

)

that is, ti is the i-th column of T . Consider

Λ = T−1AT

Claim:
Λ = blockdiag (Λ1, . . . , Λq)
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5.8 Diagonalizable systems

5.8.1 Diagonalizable matrices

We say that a square matrix A is diagonalizable if it is similar to a diagonal matrix, that is,
there is an invertible matrix T and a diagonal matrix Λ such that

Λ = T−1AT .

In this section, we show that A is diagonalizable if and only if it has the following property:
For each distinct eigenvalue of A,

geometric multiplicity = algebraic multiplicity

Recall that the geometric multiplicity of an eigenvalue is the dimension of its eigenspace,
or equivalently, the maximum number of linearly independent eigenvectors associated with
that eigenvalue. An eigenvalue whose geometric multiplicity equals its algebraic multiplicity
is call a nondefective eigenvalue. Otherwise, it is considered defective. A matrix with the
property that all its eigenvalues are nondefective is called a nondefective matrix. Otherwise,
it is considered defective. When is a matrix A nondefective? Some examples are:

(a) A has n distinct eigenvalues where A is n× n.

(b) A is hermitian that is, A∗ = A.

We first need the following result.

Fact 4 Suppose that geometric multiplicity equals algebraic multiplicity for each distinct
eigenvalue of a square matrix A. Then A has a basis of eigenvectors:

v1, v2, . . . , vn

Example 54

A =

(
0 1
0 0

)

Theorem 2 Suppose that for each distinct eigenvalue of A, its geometric multiplicity is the
same as its algebraic multiplicity . Then A is similar to a diagonal matrix Λ whose diagonal
elements are the eigenvalues of A. (If an eigenvalue has multiplicity m, it appears m times
on the diagonal of Λ)

Proof. Let
T :=

(
v1 v2 . . . vn

)

where v1, . . . , vn is a basis of eigenvectors for A. Let λi be the eigenvalue corresponding to
vi. Then,

Avi = λiv
i
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Defining
Λ := T−1AT

it follows from the ‘useful result on similarity transformations’ that

Λ = diag (λ1, λ2, . . . , λn)

:=




λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 0 . . . λn




︸ ︷︷ ︸
Complex Jordan form of A

So A is similar to the diagonal matrix Λ.

Example 55

A =




4 −2 −2
0 2 −2
0 −2 2




The characteristic polynomial of A is

p(s) = det(sI − A) = (s− 4)[(s− 2)(s− 2)− 4] = s(s− 4)2

So A has eigenvalues,
λ1 = 0, λ2 = 4

with algebraic multiplicities 1 and 2.
The equation (A− λI)v = 0 yields:

For λ1 = 0,

rref(A− λ1I) = rref




4 −2 −2
0 2 −2
0 −2 2


 = rref




4 0 −4
0 2 −2
0 0 0


 =




1 0 −1
0 1 −1
0 0 0




Hence, λ1 has geometric multiplicity 1 and its eigenspace is spanned by

v1 =




1
1
1




For λ2 = 4,

rref(A− λ2I) = rref




0 −2 −2
0 −2 −2
0 −2 −2


 = rref




0 −2 −2
0 0 0
0 0 0


 =




0 1 1
0 0 0
0 0 0
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Hence, λ2 has geometric multiplicity 2 and its eigenspace is spanned by

v2 =




1
0
0


 and v3 =




0
−1

1




Since the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity,
A is diagonalizable and its Jordan form is

Λ =




0 0 0
0 4 0
0 0 4




A quick check with MATLAB yields Λ = T−1AT where T = (v1v2v3).

5.8.2 Diagonalizable continuous-time systems

Consider a continuous-time system
ẋ = Ax

and suppose A is an n × n diagonalizable matrix, that is, there is a nonsingular matrix T
such that

Λ = T−1AT

is diagonal. Hence, the diagonal elements of Λ are the eigenvalues (including possible mul-
tiplicities) λ1, λ2, . . . , λn of A. Introducing the state transformation,

x = Tξ

we have ξ = T−1x and the system behavior is now equivalently described by

ξ̇ = Λξ .

This yields

ξ̇1 = λ1ξ1

ξ̇2 = λ2ξ2
...

ξ̇n = λnξn

that is, n decoupled first order systems. Hence, for i = 1, 2, . . . , n,

ξi(t) = eλitξi0 (5.10)

where ξi0 = ξ(0). In vector form, we obtain

ξ(t) =




eλ1t 0 . . . 0
0 eλ2t . . . 0
...

. . .
...

0 0 . . . eλnt


 ξ0 (5.11)
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where ξ0 =
(

ξ10 ξ20 · · · ξn0

)T
. Since x(t) = Tξ(t), we have

x(t) = ξ1(t)v
1 + ξ2(t)v

2 + . . . + ξn(t)vn

where v1, v2, . . . , vn are the columns of T . It now follows from (5.10) that the solution for
x(t) is given by

x(t) = eλ1tξ10v
1 + eλ2tξ20v

2 + . . . + eλntξn0v
n (5.12)

Note that each term eλitξi0v
i on the right-hand-side of the above equation is a mode. This

results in the following fundamental observation.

Every motion (solution) of a diagonalizable linear time-invariant system is simply a sum
of modes.

Suppose x0 is the initial value of x at t = 0, that is, x(0) = x0. Then, the corresponding
initial value ξ0 = ξ(0) of ξ is given by

ξ0 = T−1x0 .

State transition matrix. Since x(t) = Tξ(t) and ξ0 = T−1x0, it follows from (5.11) that

x(t) = Φ(t)x0 (5.13)

where the state transition matrix Φ(·) is given by

Φ(t) := T




eλ1t 0 . . . 0
0 eλ2t . . . 0
...

. . .
...

0 0 . . . eλnt


 T−1 (5.14)

Example 56 Consider a CT system with A from example 37, that is,

A =

(
3 −1

−1 3

)

Here,

T =

(
1 1
1 −1

)

and λ1 = 2, λ2 = 4.
Hence,

Φ(t) = T

(
e2t 0
0 e4t

)
T−1

=
1

2

(
e2t + e4t e2t − e4t

e2t − e4t e2t + e4t

)

and all solutions are given by

x1(t) =
1

2
( e2t + e4t )x10 +

1

2
( e2t − e4t )x20

x2(t) =
1

2
( e2t − e4t )x10 +

1

2
( e2t + e4t )x20
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Exercise 56 Compute the state transition matrix for the CT system corresponding to the
A matrix in example 55.

5.8.3 Diagonalizable DT systems

The story here is basically the same as that for CT. Consider a DT system

x(k + 1) = Ax(k)

and suppose A is diagonalizable, that is, there is a nonsingular matrix T such that

Λ = T−1AT

is diagonal and the diagonal elements of Λ are the eigenvalues λ1, . . . , λn of A.
Introducing the state transformation,

x = Tξ

we have ξ = T−1x and its behavior is described by:

ξ(k + 1) = Λξ(k)

Hence,

ξ1(k + 1) = λ1ξ1(k)

ξ2(k + 1) = λ2ξ2(k)
...

ξn(k + 1) = λnξn(k)

If
x(0) = x0

then
ξ(0) = ξ0 = T−1x0

So,
ξi(k) = λk

i ξi0, i = 1, 2, . . . , n

or,

ξ(k) =




λk
1 0 . . . 0
0 λk

2 . . . 0
...

. . .
...

0 0 . . . λk
n


 ξ0

Since
x = ξ1v

1 + ξ2v
2 + . . . + ξnv

n
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where v1, v2, . . . , vn are the columns of T , the solution for x(k) is given by

x(k) = λk
1ξ10v

1 + λk
2ξ20v

2 + . . . + λk
nξn0v

n

Or,
x(k) = Φ(k)x0

where the DT state transition matrix Φ(·) is given by

Φ(k) := T




λk
1 0 . . . 0
0 λk

2 . . . 0
...

. . .
...

0 0 . . . λk
n


 T−1

Example 57 Consider a DT system with A from example 37, that is,

A =

(
3 −1

−1 3

)

Here,

T =

(
1 1
1 −1

)

and λ1 = 2, λ2 = 4.
Hence,

Φ(k) = T

(
2k 0
0 4k

)
T−1

=
1

2

(
2k + 4k 2k − 4k

2k − 4k 2k + 4k

)

and all solutions are given by

x1(t) = ( 2k + 4k )x10 + ( 2k − 4k )x20

x2(t) = ( 2k − 4k )x10 + ( 2k + 4k )x20
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5.9 Real Jordan form for real diagonalizable systems∗

Suppose A is real and has a complex eigenvalue

λ = α + ω

where α, ω are real. Then any corresponding eigenvector v is complex and can be expressed
as

v = u + w

where u,w are real and are linearly independent over the real scalars.
Since A is real, λ̄ is also an eigenvector of A with eigenvector v̄. So we can replace each v

and v̄ in the basis of eigenvectors with the corresponding u and w to obtain a new basis; then
we define a coordinate transformation where the columns of T are these new basis vectors.

The relationship,
Av = λv

and A real implies

Au = αu− ωw

Aw = ωu + αw

Hence, using the ‘useful result on similarity transformations’, we can choose T so that
Λ = T−1AT is given by

Λ = block-diag

(
λ1, . . . , λl,

(
α1 ω1

−ω1 α1

)
, . . . ,

(
αm ωm

−ωm αm

) )

=




λ1

. . .

λl (
α1 ω1

−ω1 α1

)

. . . (
αm ωm

−ωm αm

)




︸ ︷︷ ︸
Real Jordan form of A

where λ1, . . . , λl are real eigenvalues of A and α1 + ω1, . . . , αm + ωm are genuine complex
eigenvalues.

Example 58 Recall example 38.

Example 59

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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By inspection (recall companion matrices),

det(sI − A) = s4 − 1

So eigenvalues are:

λ1 = 1 λ2 = −1 λ2 =  λ3 = −

Since there are n = 4 distinct eigenvalues, the complex Jordan form is:




1 0 0 0
0 −1 0 0
0 0  0
0 0 0 −




The real Jordan form is: 


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0




5.9.1 CT systems

The solutions of

ẋ = Ax, x(0) = x0

are given by

x(t) = Φ(t)x0

where the state transition matrix Φ(·) is given by

Φ(t) = T Φ̂(t)T−1

with Φ̂(t) being the block diagonal matrix:

block-diag

(
eλ1t, . . . , eλlt,

(
eα1t cos(ω1t) eα1t sin(ω1t)
−eα1t sin(ω1t) eα1t cos(ω1t)

)
, . . . ,

(
eαmt cos(ωmt) eαmt sin(ωmt)
−eαmt sin(ωmt) eαmt cos(ωmt)

))

5.10 Diagonalizable second order systems

Only two cases for real Jordan form

(
λ1 0
0 λ2

) (
α ω

−ω α

)

where all the above scalars are real.
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5.10.1 State plane portraits for CT systems

Real eigenvalues

Genuine complex eigenvalues

5.11 Exercises
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Exercise 57 Compute the eigenvalues and eigenvectors of the matrix,

A =




2 −3 0
2 −3 0
3 −5 1




.

Exercise 58 Compute the eigenvalues and eigenvectors of the matrix,

A =




1 2 1
1 2 1

−1 2 3




.

Exercise 59 Compute the eigenvalues and eigenvectors of the following matrix.

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




Exercise 60 Compute expressions for eigenvalues and linearly independent eigenvectors of

A =

(
α ω
−ω α

)
α, ω 6= 0

Exercise 61 Find expressions for the eigenvalues and linearly independent eigenvectors of
matrices of the form: (

β γ
γ β

)

where γ and β are real with γ ≥ 0. Obtain state plane portraits for

β = 0 γ = 1

β = −3 γ = 2

β = 3 γ = 2

Exercise 62 Consider an LTI system described by ẋ = Ax.
(a) Suppose that the vectors




1
−1

1
−1


 and




1
1
1
1
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are eigenvectors of A corresponding to eigenvalues −2 and 3, respectively. What is the
response x(t) of the system to the initial condition

x(0) =




1
0
1
0


 ?

(b) Suppose A is a real matrix and the vector




1


−1
−




is an eigenvector of A corresponding to the eigenvalue 2 + 3ı. What is the response x(t) of
the system to the initial condition

x(0) =




1
0

−1
0


 ?

Exercise 63 Suppose A is a square matrix and the vectors




1
2
3


 and




1
1
1




are eigenvectors of A corresponding to eigenvalues −1 and 1, respectively. What is the
response x(t) of the system ẋ = Ax to the following initial conditions.

(a) x(0) =




2
4
6


 (b) x(0) =




2
2
2


 (c) x(0) =




0
2
4


 ?

(d) Suppose A is a real matrix and the vector




1 + 2
1− 

3




is an eigenvector of A corresponding to the eigenvalue 2 − 3. What is the response x(t) of
the system ẋ = Ax to the initial condition

x(0) =




1
1
3


 ?
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Exercise 64 Suppose A is a real square matrix and the vectors



1
−1

1
−1







1
2
4
8







1


−1
−




are eigenvectors of A corresponding to eigenvalues −1 and 2 and , respectively. What is the
response x(t) of the system ẋ = Ax to the following initial conditions.

(a) x(0) =




2
−2

2
−2


 (b) x(0) =




−1
−2
−4
−8


 (c) x(0) =




0
3
3
9


 (d) x(0) =




1
1

−1
−1


 ?

Exercise 65 Suppose A is a real square matrix with characteristic polynomial

p(s) = (s + 2)(s2 + 4)2

Suppose that all eigenvectors of A are nonzero multiples of



1
2
3
4
0




,




0
1 + 
−
0
1




or




0
1− 


0
1




What is the solution to ẋ = Ax with the following initial conditions.

(a) x(0) =




2
4
6
8
0




, (b) x(0) =




0
1
0
0
1




, (c) x(0) =




0
0
1
0
1




(d) All all solutions of the system ẋ = Ax bounded? Justify your answer.

Exercise 66 Consider a discrete-time LTI system described by x(k+1) = Ax(k).
(a) Suppose that the vectors




1
−1

1
−1


 and




1
1
1
1




are eigenvectors of A corresponding to eigenvalues −2 and 3, respectively. What is the
response x(k) of the system to the initial condition

x(0) =




1
0
1
0


 ?
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(b) Suppose A is a real matrix and the vector




1


−1
−




is an eigenvector of A corresponding to the eigenvalue 2 + 3ı. What is the response x(k) of
the system to the initial condition

x(0) =




1
0

−1
0


 ?

Exercise 67 Determine whether or not the following matrix is nondefective.

A =




0 1 0
0 0 1
−1 1 1




Exercise 68 In vibration analysis, one usually encounters systems described by

Mq̈ + Kq = 0

where q(t) is an N -vector and M and K are square matrices. Suppose ω is a real number
which satisfies

det(ω2M −K) = 0 .

Show that the above system has a solution of the form

q(t) = sin(ωt)v

where v is a constant N -vector.

Exercise 69 Determine whether or not the matrix,

A =




0 1 0
0 0 1
0 −2 3


 ,

is diagonalizable, that is, determine whether or not there exists an invertible matrix T such
that T−1AT is diagonal. If A is diagonalizable, determine T .

Problem 1 Recall that a square matrix is said to be diagonalizable if there exists an invert-
ible matrix T so that T−1AT is diagonal. Determine whether or not each of the following
matrices are diagonalizable. If not diagonalizable, give a reason. If diagonalizable, obtain T .
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(a)

A =




0 1 0
0 0 1
0 1 0




(b)

A =

(
0 1

−1 2

)

(c)

A =




1 0 0
0 0 1
0 1 0
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Chapter 6

eAt

Recall that all solutions to the scalar system ẋ = ax satisfy x(t) = ea(t−t0)x(t0) for all t and
t0. Recall also the power series expansion for eat:

eat = 1 + at +
1

2!
(at)2 + · · ·+ 1

k!
(at)k + · · ·

The main result of this chapter is that all solutions of ẋ = Ax satisfy

x(t) = eA(t−t0)x(t0) (6.1)

for all t and t0 where

eAt = 1 + At +
1

2!
(At)2 + · · ·+ 1

k!
(At)k + · · · (6.2)

6.1 State transition matrix

6.1.1 Continuous time

Consider the initial value problem specified by

ẋ = Ax and x(t0) = x0 . (6.3)

It can be shown that for each initial time t0 and each initial state x0 there is an unique
solution x(·) to the above initial value problem and this solution is defined for all time t.
Let φ̃(t; t0, x0) be the value of this solution at t, that is, for any t0 and x0, the solution to
(6.3) is given by x(t) = φ̃(t; t0, x). Since the system ẋ = Ax is time-invariant, we must have
φ̃(t; t0, x0) = φ(t−t0; x0) for some function φ. Since the system under consideration is linear,
one can show that, for any t and t0, the solution at time t depends linearly on the initial
state x0 at time t0; hence there exists a matrix Φ(t−t0) such that φ(t−t0, x0) = Φ(t−t0)x0.
We call the matrix valued function Φ(·) the state transition matrix for the system ẋ = Ax.
So, we have concluded that there is a matrix valued function Φ(·) such that for any t0 and
x0, the solution x(·) to the above initial value problem is given by

x(t) = Φ(t−t0)x0
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We now show that Φ must satisfy the following matrix differential equation and initial
condition:

Φ̇ = AΦ
Φ(0) = I

To demonstrate this, consider any initial state x0 and let x(·) be the solution to (6.3)
with t0 = 0. Then x(t) = Φ(t)x0. Considering t = 0, we note that

x0 = x(0) = Φ(0)x0 ;

that is Φ(0)x0 = x0. Since the above holds for any x0, we must have Φ(0) = I.
We now note that for all t,

Φ̇(t)x0 = ẋ(t) = Ax(t) = AΦ(t)x0 ;

that is Φ̇(t)x0 = AΦ(t)x0. Since the above must hold for any x0, we obtain that Φ̇(t) = AΦ(t).
Note that the above two conditions on Φ uniquely specify Φ (Why?) The purpose of this

section is to examine Φ and look at ways of evaluating it.

142



6.1.2 Discrete time

x(k+1) = Ax(k) and x(k0) = x0

We have
x(k) = Φ(k−k0)x0

The matrix valued function Φ(·) is called the state transition matrix and is given by

Φ(k) = Ak

Note that, if A is singular, Φ(k) is not defined for k < 0. That was easy; now for CT.
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6.2 Polynomials of a square matrix

6.2.1 Polynomials of a matrix

We define polynomials of a matrix as follows. Consider any polynomial p of a scalar variable
s given by:

p(s) = a0 + a1s + a2s
2 + . . . + amsm

where a0, . . . , am are scalars. If A is a square matrix, we define p(A) as follows:

p(A) := a0I + a1A + a2A
2 + . . . + amAm

that is, we replace sk with Ak. (Recall that s0 = 1 and A0 = I)
The following properties can be readily deduced from the above definition.

(a) The matrices A and p(A) commute, that is,

Ap(A) = p(A)A

(b) Consider any nonsingular matrix T , and suppose A = TΛT−1. Then

p(A) = Tp(Λ)T−1

(c) Suppose A is diagonal, that is,

A =




λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn




then

p(A) =




p(λ1) 0 · · · 0
0 p(λ2) 0
...

. . .
...

0 0 · · · p(λn)




(d) Suppose A is diagonalizable, that is, for some nonsingular T ,

A = T




λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn


 T−1

Then

p(A) = T




p(λ1) 0 · · · 0
0 p(λ2) 0
...

. . .
...

0 0 · · · p(λn)


 T−1

(e) If λ is an eigenvalue of A with eigenvector v, then p(λ) is an eigenvalue of p(A) with
eigenvector v.

Properties (b)-(d) are useful for computing p(A).
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Example 60 For

A =

(
3 −1

−1 3

)

we found that

T =

(
1 1
1 −1

)

results in

Λ = T−1AT =

(
2 0
0 4

)

Hence, A = TΛT−1 and

p(A) = Tp(Λ)T−1

= T

(
p(2) 0
0 p(4)

)
T−1

=
1

2

(
p(2) + p(4) p(2)− p(4)
p(2)− p(4) p(2) + p(4)

)

Suppose p is the characteristic polynomial of A. Since 2, 4 are the eigenvalues of A, we have
p(2) = p(4) = 0; hence

p(A) = 0

6.2.2 Cayley-Hamilton Theorem

The following result is a fundamental result in linear algebra and is very useful in systems
and control.

Theorem 3 If p is the characteristic polynomial of a square matrix A, then

p(A) = 0 .

Proof. The proof is easy for a diagonalizable matrix A. Recall that such a matrix is
similar to a diagonal matrix whose diagonal elements λ1, . . . , λn are the eigenvalues of A;
hence p(λ1) = . . . = p(λn) = 0. Now use property (d) above. We will leave the proof of the
general nondiagonalizable case for another day.

Suppose the characteristic polynomial of A is

det(sI − A) = a0 + a1s + . . . + an−1s
n−1 + sn

Then the Cayley Hamilton theorem states that

a0I + a1A + . . . + an−1A
n−1 + An = 0
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hence,
An = −a0I − a1A− . . .− an−1A

n−1

From this one can readily show that for any m ≥ n, Am can be expressed as a linear
combination of I, A, . . . , An−1. Hence, any polynomial of A can be can be expressed as a
linear combination of I, A, . . . , An−1.

Example 61 Consider a discrete-time system described by x(k+1) = Ax(k) and suppose
that all the eigenvalues of A are zero. Then the characteristic polynomial of A is given by
p(s) = sn where A is n× n. It now follows from the Cayley Hamilton theorem that

An = 0

Since all solutions of the system satisfy x(k) = Akx(0) for k = 0, 1, 2, . . ., it follows that

x(k) = 0 for k ≥ n.

Thus, all solutions go to zero in at most n steps.

Minimal polynomial of A

The minimal polynomial (minpoly) of a square matrix A is the monic polynomial q of lowest
order for which q(A) = 0.

The order of minpoly q is always less than or equal to the order of charpoly p; its roots are
precisely the eigenvalues of A and p(s) = g(s)q(s).

Example 62 The matrix

A =

(
0 0
0 0

)

has charpoly p(s) = s2 and minpoly q(s) = s. The matrix

A =

(
0 1
0 0

)

has charpoly p(s) = s2 and minimal poly q(s) = s2.

• It follows from property (d) above that for a diagonalizable matrix A, its minimal polyno-
mial is

l∏
i=1

(s− λi)

where λi are the distinct eigenvalues of A.

Exercise 70 Without doing any matrix multiplications, compute A4 for

A =




0 1 0 0
0 0 1 0
0 0 0 1

564 1 0 0




Justify your answer.
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6.3 Functions of a square matrix

Consider a complex valued function f of a complex variable λ. Suppose f is analytic in some
open disk {λ ∈ C : |λ| < ρ} of radius ρ > 0. Then, provided |λ| < ρ, f(λ) can be expressed
as the sum of a convergent power series; specifically

f(λ) =
∞∑

k=0

akλ
k = a0 + a1λ + a2λ

2 + . . .

where

ak =
1

k!
f (k)(0) =

1

k!

dkf

dλk
(0)

Suppose A is a square complex matrix and |λi| < ρ for every eigenvalue λi of A. Then,
it can be shown that the power series {∑n

k=0 akA
k}∞n=0 is convergent. We define f(A) to be

the sum of this power series, that is,

f(A) :=
∞∑

k=0

akA
k = a0I + a1A + a2A

2 + . . .

Example 63 Consider

f(λ) =
1

1− λ

This is analytic in the open unit disk (ρ = 1) and

f(λ) =
∞∑

k=0

λk = 1 + λ + λ2 + . . .

Consider any matrix A with eigenvalues in the open unit disk. Then the series {∑n
k=0 Ak}∞n=0

is convergent and we let

f(A) :=
∞∑

k=0

Ak

Multiplication of both sides of the above equality by I − A yields

(I − A)f(A) =
∞∑

k=0

(Ak − Ak+1) = I;

hence the matrix I − A is invertible with inverse f(A) and we obtain the following power
series expansion for (I − A)−1:

(I − A)−1 =
∞∑

k=0

Ak = I + A + A2 + . . .
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Power series expansion for (sI − A)−1. We present here an expansion which will be
useful later on. Consider any square matrix A and any complex number s which satisfies:

|s| > |λi| for every eigenvalue λi of A .

Then sI −A is invertible and (sI −A)−1 = 1
s
(I − 1

s
A)−1. Also, the eigenvalues of 1

s
A are in

the open unit disk; hence

(I − 1

s
A)−1 =

∞∑

k=0

1

sk
Ak = I +

1

s
A +

1

s2
A2 + . . .

and

(sI − A)−1 =
∞∑

k=0

1

sk+1
Ak =

1

s
I +

1

s2
A +

1

s3
A2 + . . .

Properties of f(A). The following properties can be readily deduced from the above
definition of f(A).

(a) The matrices A and f(A) commute, that is,

Af(A) = f(A)A .

(b) Consider any nonsingular matrix T and suppose A = TΛT−1. Then

f(A) = Tf(Λ)T−1 .

(c) Suppose A is diagonal, that is,

A =




λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn




then

f(A) =




f(λ1) 0 · · · 0
0 f(λ2) 0
...

. . .
...

0 0 · · · f(λn)




(d) Suppose A is diagonalizable, that is, for some nonsingular T ,

A = T




λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn


 T−1
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Then

f(A) = T




f(λ1) 0 · · · 0
0 f(λ2) 0
...

. . .
...

0 0 · · · f(λn)


 T−1

(e) If λ is an eigenvalue of A with eigenvector v, then f(λ) is an eigenvalue of f(A) with
eigenvector v.

• It follows from Cayley Hamilton, that f(A) is a linear combination of I, A, . . . , An−1

Properties (b)-(d) are useful for calculating f(A). When A is diagonalizable, one simply has
to evaluate the scalars f(λ1), . . . , f(λn) and then compute T diag (f(λ1), . . . , f(λn)) T−1.

Example 64 For

A =

(
3 −1

−1 3

)

we found that

T =

(
1 1
1 −1

)

results in

Λ = T−1AT =

(
2 0
0 4

)

Hence, A = TΛT−1 and

f(A) = Tf(Λ)T−1

= T

(
f(2) 0

0 f(4)

)
T−1

=
1

2

(
f(2) + f(4) f(2)− f(4)
f(2)− f(4) f(2) + f(4)

)

Exercise 71 Compute an explicit expression (see last example) for f(A) where

A =

(
9 −2

−2 6

)
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6.3.1 The matrix exponential: eA

Recall the exponential function:
f(λ) = eλ

This function is analytic in the whole complex plane (that is ρ = ∞) and

dkeλ

dλk
= eλ

for k = 1, 2, . . .; hence for any complex number λ,

eλ =
∞∑

k=0

1

k!
λk = 1 + λ +

1

2
λ2 +

1

3!
λ3 + . . .

Thus the exponential of any square matrix A is defined by:

eA :=
∞∑

k=0

1

k!
Ak = I + A +

1

2!
A2 + . . .

and this power series converges for every square matrix A. Some properties:

(a) For any zero matrix 0,
e0 = I

(b) Suppose t is a scalar variable.

deAt

dt
= AeAt = eAtA

The following results also hold:

(i)
eA(t1+t2) = eAt1eAt2

e−A = (eA)−1

(ii) If λ is an eigenvalue of A with eigenvector v, then eλ is an eigenvalue of eA with
eigenvector v. So, eA has no eigenvalue at 0 and hence:

(iii) eA is nonsingular.

(iv) The following result also holds

eA+B = eAeB if A and B commute

6.3.2 Other matrix functions

cos(A)

sin(A)
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6.4 The state transition matrix: eAt

Using the above definitions and abusing notation (eAt instead of etA),

eAt :=
∞∑

k=0

1

k!
(tA)k = I + tA +

1

2!
(tA)2 +

1

3!
(tA)3 + . . .

Letting
Φ(t) := eAt

we have

Φ(0) = I

Φ̇ = AΦ

Hence, the solution of
ẋ = Ax x(0) = x0

is given by

x(t) = eAtx0
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6.5 Computation of eAt

6.5.1 MATLAB

>> help expm

EXPM Matrix exponential.

EXPM(X) is the matrix exponential of X. EXPM is computed using

a scaling and squaring algorithm with a Pade approximation.

Although it is not computed this way, if X has a full set

of eigenvectors V with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = V*diag(exp(diag(D)))/V.

See EXPM1, EXPM2 and EXPM3 for alternative methods.

EXP(X) (that’s without the M) does it element-by-element.

6.5.2 Numerical simulation

Let φi be the i-th column of the state transition matrix Φ(t) = eAt; thus

Φ(t) =
(

φ1(t) φ2(t) · · · φn(t)
)

.

Let x be the unique solution to ẋ = Ax and x(0) = x0. Since x(t) = Φ(t)x0 we have

x(t) = x01φ1(t) + · · ·+ x0nφn

where x0i is the i-th component of x0. Hence φi, is the solution to

ẋ = Ax x(0) = ei

where ei is all zeros except for its i-th component which is 1.

6.5.3 Jordan form

eAt = TeΛtT−1

where Λ = T−1AT and Λ is the Jordan form of A. We have already seen this for diagonal-
izable systems.

6.5.4 Laplace style

ẋ = Ax x(0) = x0
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Suppose
X(s) = L(x)(s)

is the Laplace transform of x(·) evaluated at s ∈ C. Taking the Laplace transform of ẋ = Ax
yields:

sX(s)− x0 = AX(s)

Hence, except when s is an eigenvalue of A, sI − A is invertible and

L(x)(s) = X(s) = (sI − A)−1x0

Since x(t) = eAtx0 for all x0, we must have

L(eAt) = (sI − A)−1

eAt = L−1 ((sI − A)−1)

Example 65 Recall

A =

(
3 −1

−1 3

)

So,

(sI − A)−1 =




s−3
(s−2)(s−4)

−1
(s−2)(s−4)

−1
(s−2)(s−4)

s−3
(s−2)(s−4)




Since

s− 3

(s− 2)(s− 4)
=

1

2

(
1

s− 2
+

1

s− 4

)

−1

(s− 2)(s− 4)
=

1

2

(
1

s− 2
− 1

s− 4

)

and

L−1(
1

s− 2
) = e2t L−1(

1

s− 4
) = e4t

we have,

eAt = L−1
(
(sI − A)−1

)

=
1

2

(
e2t + e4t e2t − e4t

e2t − e4t e2t + e4t

)

Exercise 72 Compute eAt at t = ln(2) for

A =

(
0 1
1 0

)

using all methods of this section.
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6.6 Sampled-data systems

Here we discuss the process of discretizing a continuous-time system to obtain a discrete-time
system.

Consider a continuous-time LTI system described by

ẋc(t) = Acxc(t) .

Suppose we only look at the behavior of this system at discrete instants of time, namely

· · · ,−2T, T, 0, T, 2T, · · ·
where T > 0 is called the sampling time.

Figure 6.1: Sampling

If we introduce the discrete-time state defined

xd(k) = xc(kT ) k = . . . ,−2,−1, 0, 1, 2, . . . ,

then,

xd(k+1) = xc( (k+1)T )

= eAcT xc(kT )

= eAcT xd(k)

Hence, this sampled data system is described by the discrete-time system

xd(k+1) = Adxd(k)

where
Ad = eAcT
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The eigenvalues of Ad are
eλ1T , . . . eλlT

where λ1, . . . , λl are the eigenvalues of Ac. Note that,

|eλiT | < 1 iff <(λi) < 0

|eλiT | = 1 iff <(λi) = 0

|eλiT | > 1 iff <(λi) > 0

eλiT = 1 iff λi = 0

It should be clear that all eigenvalues of Ad are nonzero, that is Ad in invertible.

Note that if we approximate eAcT by the first two terms in its power series, that is,

eAcT ≈ I + AcT

then,
Ad ≈ I + AcT .

6.7 Exercises

Exercise 73 Suppose A is a 3× 3 matrix, b is a 3-vector and

det(sI − A) = s3 + 2s2 + s + 1

(a) Express A3b in terms of b, Ab, A2b.

(b) Suppose that the matrix

T =
(

b Ab A2b
)

is invertible. What is the matrix Λ := T−1AT? Specify each element of Λ explicitly.

Exercise 74 Suppose A is a 3× 3 matrix and

det(sI − A) = s3 + 2s2 + s + 1

(a) Express A3 in terms of I, A, A2.

(b) Express A5 in terms of I, A, A2.

(c) Express A−1 in terms of I, A, A2

Exercise 75 Suppose A is a 3× 3 matrix with eigenvalues 1, 2π and −2π. What are the
eigenvalues of eA.
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Exercise 76 Consider the differential equation

ẋ = Ax (6.4)

where A is a square matrix. Show that if A has 2π as an eigenvalue, then there is an nonzero
initial state x0 such that (6.4) has a solution x which satisfies x(1) = x(0) = x0.

Exercise 77 Suppose A is a square matrix.
(a) Obtain expressions for

cos(At) and sin(At) .

(b) Show that

cos(At) = (eAt + e−At)/2 and sin(At) = (eAt − e−At)/2

(c) Show that

d cos(At)

dt
= −A sin(At) and

d sin(At)

dt
= A cos(At) .

Exercise 78 Compute eAt for the matrix

A =

(
3 −5

−5 3

)

Exercise 79 Compute eAt for the matrix,

A =

( −11 20
−6 11

)
.

Exercise 80 Compute eAt for the matrix

A =

(
0 1
1 0

)

Exercise 81 Suppose A is a matrix with four distinct eigenvalues: −1, +1− j, j. Show that
A4 = I.

Exercise 82 Suppose

A =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




What is A20 + 4A4?

Exercise 83 Compute eAt for the matrix,

A =

( −3 2
−4 3

)
.
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Exercise 84 Compute eAt for the matrix

A =

(
3 −5

−5 3

)

Exercise 85 Compute eAt at t = ln(2) for

A =

(
0 1

−1 0

)

using all four methods mentioned in the notes.
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Chapter 7

Stability and boundedness

Consider a general nonlinear system described by

ẋ = f(x) (7.1)

where x(t) is a real n-vector and t is a real scalar. By a solution of (7.1) we mean any
continuous function x(·) : [0, t1) → IRn with t1 > 0, which satisfies ẋ(t) = f(x(t)) for
0 ≤ t < t1.

7.1 Boundedness of solutions

DEFN. (Boundedness) A solution x(·) is bounded if there exists β ≥ 0 such that

||x(t)|| ≤ β for all t ≥ 0

A solution is unbounded if it is not bounded.

It should be clear from the above definitions that a solution x(·) is bounded if and only
if each component xi(·) of x(·) is bounded. Also, a solution is unbounded if and only if
at least one of its components is unbounded. So, x(t) = [ e−t e−2t ]T is bounded while
x(t) = [ e−t et ]T is unbounded.

Example 66 All solutions of

ẋ = 0

are bounded.

Example 67 All solutions of

ẋ = x− x3

are bounded.
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Example 68 All solutions (except the zero solution) of

ẋ = x

are unbounded.

Example 69 Consider
ẋ = x2 , x(0) = x0

If x0 > 0, the corresponding solution has a finite escape time and is unbounded. If x0 < 0,
the corresponding solution is bounded.

Example 70 Undamped oscillator.

ẋ1 = x2

ẋ2 = −x1

All solutions are bounded.

Boundedness and linear time-invariant systems. Consider a general LTI (linear time-
invariant) system

ẋ = Ax (7.2)

Recall that every solution of this system has the form

x(t) =
l∑

i=1

ni−1∑
j=0

tjeλitvij

where λ1, . . . , λl are the eigenvalues of A, ni is the index of λi, and the constant vectors vij

depend on initial state.
We say that an eigenvalue λ of A is non-defective if its index is one; this means that the

algebraic multiplicity and the geometric multiplicity of λ are the same. Otherwise we say λ
is defective.

Hence we conclude that all solutions of (7.2) are bounded if and only if for each eigenvalue
λi of A:

(b1) <(λi) ≤ 0 and

(b2) if <(λi) = 0 then λi is non-defective.

If there is an eigenvalue λi of A such that either

(u1) <(λi) > 0 or

(u2) <(λi) = 0 and λi is defective

then, the system has some unbounded solutions.
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Example 71 Unattached mass

ẋ1 = x2

ẋ2 = 0

Here

A =

(
0 1
0 0

)

has a single eigenvalue 0. This eigenvalue has algebraic multiplicity 2 but geometric multi-
plicity 1; hence some of the solutions of the system are unbounded. One example is

x(t) =

(
t
1

)

Example 72

ẋ1 = 0

ẋ2 = 0

Here

A =

(
0 0
0 0

)

has a single eigenvalue 0. This eigenvalue has algebraic multiplicity 2 and geometric mul-
tiplicity 2. Hence all the solutions of the system are bounded. Actually every state is an
equilibrium state and every solution is constant.

Example 73 (Resonance) Consider a simple linear oscillator subject to a sinusoidal input
of amplitude W :

q̈ + q = W sin(ωt+φ)

Resonance occurs when ω = 1. To see this, let

x1 := q , x2 := q̇ , x3 := W sin(ωt+φ) , x4 := ωW cos(ωt+φ)

to yield
ẋ = Ax

where

A =




0 1 0 0
−1 0 1 0

0 0 0 1
0 0 −ω2 0




If ω = 1 then, A has eigenvalues  and −. These eigenvalues have algebraic multiplicity two
but geometric multiplicity one; hence the system has unbounded solutions.
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7.2 Stability of equilibrium states

Suppose xe is an equilibrium state of the system ẋ = f(x). Then, whenever x(0) = xe, we
have (assuming uniqueness of solutions) x(t) = xe for all t ≥ 0. Roughly speaking, we say
that xe is a stable equilibrium state for the system if the following holds. If the initial state
of the system is close to xe, then the resulting solution is close to xe. The formal definition
is as follows.

DEFN. (Stability) An equilibrium state xe is stable if for each ε > 0 there exists δ > 0 such
that whenever ||x(0)−xe|| < δ one has ||x(t)−xe|| < ε for all t ≥ 0.

Figure 7.1: Stability of an equilibrium state

An equilibrium state xe is said to be unstable if it is not stable.

Example 74

ẋ = 0

Every equilibrium state is stable. (Choose ε = δ.)

Example 75

ẋ = x

The origin is unstable.

Example 76

ẋ = x− x3

The origin is unstable; the remaining equilibrium states 1 and −1 are stable.

Example 77 Undamped oscillator
The origin is stable.
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Example 78 Simple pendulum

ẋ1 = x2

ẋ2 = − sin x1

(0, 0) is stable; (π, 0) is unstable.

Example 79 Van der Pol oscillator

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1

Figure 7.2: Van der Pol oscillator

The origin is unstable. However, all solutions are bounded.

Stability of linear time-invariant systems. It can be shown that every equilibrium
state of a LTI system (7.2) is stable if and only if all eigenvalues λi of A satisfy conditions
(b1) and (b2) above. Hence every equilibrium state of a LTI system is stable if and only if
all solutions are bounded.
It can also be shown that every equilibrium state is unstable if and only if there is an
eigenvalue λi of A which satisfies condition (u1) or (u2) above. Hence every equilibrium
state of a LTI system is unstable if and only if there are unbounded solutions.
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7.3 Asymptotic stability

7.3.1 Global asymptotic stability

DEFN. (Global asymptotic stability) An equilibrium state xe is globally asymptotically stable
(GAS) if

(a) It is stable

(b) Every solution x(·) converges to xe with increasing time, that is,

lim
t→∞

x(t) = xe

If xe is a globally asymptotically stable equilibrium state, then there are no other equi-
librium states and all solutions are bounded. In this case we say that the system ẋ = f(x)
is globally asymptotically stable.

Example 80 The system
ẋ = −x

is GAS.

Example 81 The system
ẋ = −x3

is GAS.

7.3.2 Asymptotic stability

In asymptotic stability, we do not require that all solutions converge to the equilibrium state;
we only require that all solutions which originate in some neighborhood of the equilibrium
state converge to the equilibrium state.

DEFN. (Asymptotic stability) An equilibrium state xe is asymptotically stable (AS) if

(a) It is stable.

(b) There exists R > 0 such that whenever ||x(0)−xe|| < R one has

lim
t→∞

x(t) = xe . (7.3)

The region of attraction of an equilibrium state xe which is AS is the set of initial states
which result in (7.3), that is it is the set of initial states which are attracted to xe. Thus, the
region of attraction of a globally asymptotically equilibrium state is the whole state space.
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Figure 7.3: Asymptotic stability

Example 82
ẋ = −x

Example 83
ẋ = x− x3

The equilibrium states −1 and 1 are AS with regions of attraction (−∞, 0) and (0,∞),
respectively.

Example 84 Damped simple pendulum

ẋ1 = x2

ẋ2 = − sin x1 − x2

The zero state is AS but not GAS.

Example 85 Reverse Van der Pol oscillator

ẋ1 = −x2

ẋ2 = −(1− x2
1)x2 + x1

The zero state is AS but not GAS. Also, the system has unbounded solutions.

Figure 7.4: Reverse Van der Pol oscillator
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LTI systems. For LTI systems, it should be clear from the general form of the solution
that the zero state is AS if and only if all the eigenvalues λi of A have negative real parts,
that is,

<(λi) < 0

Also AS is equivalent to GAS.

Example 86 The system

ẋ1 = −x1 + x2

ẋ2 = −x2

is GAS.

Example 87 The system

ẋ1 = −x1 + x2

ẋ2 = −x1 − x2

is GAS.

7.4 Exponential stability

We now present the “strongest” form of stability considered in this section.

DEFN. (Global exponential stability) An equilibrium state xe is globally exponentially stable
(GES) with rate of convergence α > 0 if there exists β > 0 such that every solution satisfies

||x(t)−xe|| ≤ β||x(0)−xe|| exp(−αt) for all t ≥ 0

Example 88
ẋ = −x

GES with rate α = 1.

Note that global exponential stability implies global asymptotic stability, but, in general,
the converse is not true. This is illustrated in the next example. For linear time-invariant
systems, GAS and GES are equivalent.

Example 89
ẋ = −x3

Solutions satisfy

x(t) =
x0√

1 + 2x2
0t

where x0 = x(0) .

GAS but not GES

166



DEFN. (Exponential stability) An equilibrium state xe is exponentially stable (ES) with rate of
convergence α > 0 if there exists R > 0 and β > 0 such that whenever ||x(0)−xe|| < R one
has

||x(t)−xe|| ≤ β||x(0)−xe|| exp(−αt) for all t ≥ 0

Figure 7.5: Exponential stability

Note that exponential stability implies asymptotic stability, but, in general, the converse is
not true.

Example 90
ẋ = −x3

GAS but not even ES

Example 91

ẋ = − x

1 + x2

GAS, ES, but not GES

7.5 LTI systems

Consider a LTI system
ẋ = Ax (7.4)

Recall that every solution of this system has the form

x(t) =
l∑

i=1

ni−1∑
j=0

tjeλitvij

where λ1, . . . , λl are the eigenvalues of A, the integer ni is the index of λi, and the constant
vectors vij depend on initial state. From this it follows that the stability properties of this
system are completely determined by the location of its eigenvalues; this is summarized in
the table below.
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The following table summarizes the relationhip between the stability properties of a LTI
system and the eigenproperties of its A-matrix. In the table, unless otherwise stated, a
property involving λ must hold for all eigenvalues λ of A.

Stability properties Eigenproperties

Global exponential stability <(λ) < 0
and boundedness

Stability and <(λ) ≤ 0
boundedness If <(λ) = 0 then λ is non-defective.

Instability and some There is an eigenvalue λ with <(λ) > 0 or
unbounded solutions <(λ) = 0 and λ is defective.

Example 92 The system

ẋ1 = −x1 + x2

ẋ2 = −x2

is GES.

Example 93 The system

ẋ1 = −x1 + x2

ẋ2 = −x1 − x2

is GES.

Example 94 The system

ẋ1 = 0

ẋ2 = 0

is stable about every equilibrium point.

Example 95 The system

ẋ1 = x2

ẋ2 = 0

is unstable about every equilibrium point.
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Figure 7.6: The big picture. For LTI systems, the concepts in each dashed box are equivalent
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7.6 Linearization and stability

Consider a nonlinear time-invariant system described by

ẋ = f(x)

where x(t) is an n-vector at each time t. Suppose xe is an equilibrium state for this system,
that is, f(xe) = 0, and consider the linearization of this system about xe:

δẋ = Aδx where A =
∂f

∂x
(xe) .

The following results can be demonstrated using nonlinear Lyapunov stability theory.

Stability. If all the eigenvalues of the A matrix of the linearized system have negative real
parts, then the nonlinear system is exponentially stable about xe.

Instability. If at least one eigenvalue of the A matrix of the linearized system has a positive
real part, then the nonlinear system is unstable about xe.

Undetermined. Suppose all the eigenvalues of the A matrix of the linearized system have
non-positive real parts and at least one eigenvalue of A has zero real part. Then, based on
the linearized system alone, one cannot predict the stability properties of the nonlinear system
about xe.

Note that the first statement above is equivalent to the following statement. If the
linearized system is exponentially stable, then the nonlinear system is exponentially stable
about xe.

Example 96 (Damped simple pendulum.) Physically, the system

ẋ1 = x2

ẋ2 = − sin x1 − x2

has two distinct equilibrium states: (0, 0) and (π, 0). The A matrix for the linearization of
this system about (0, 0) is

A =

(
0 1

−1 −1

)

Since all the eigenvalues of this matrix have negative real parts, the nonlinear system is
exponentially stable about (0, 0). The A matrix corresponding to linearization about (π, 0)
is

A =

(
0 1
1 −1

)

Since this matrix has an eigenvalue with a positive real part, the nonlinear system is unstable
about (π, 0)

The following example illustrates the fact that if the eigenvalues of the A matrix have non-
positive real parts and there is at least one eigenvalue with zero real part, then, one cannot
make any conclusions on the stability of the nonlinear system based on the linearization.
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Example 97 Consider the scalar nonlinear system:

ẋ = ax3

This origin is GAS if a < 0, unstable if a > 0 and stable if a = 0. However, the linearization
of this system about zero, given by

δẋ = 0

is independent of a and is stable.

The following example illustrates that instability of the linearized system does not imply
instability of the nonlinear system.

Example 98 Using nonlinear techniques, one can show that the following system is GAS
about the origin.

ẋ1 = x2

ẋ2 = −x3
1 − x3

2

However, the linearization of this system, given by

δẋ1 = δx2

δẋ2 = 0 ,

is unstable about the origin.
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Exercises

Exercise 86 For each of the following systems, determine (from the state portrait) the
stability properties of each equilibrium state. For AS equilibrium states, give the region of
attraction.

(a)
ẋ = −x− x3

(b)
ẋ = −x + x3

(c)
ẋ = x− 2x2 + x3

Exercise 87 If possible, use linearization to determine the stability properties of each of
the following systems about the zero equilibrium state.

(i)

ẋ1 = (1 + x2
1)x2

ẋ2 = −x3
1

(ii)

ẋ1 = sin x2

ẋ2 = (cos x1)x3

ẋ3 = ex1x2

Exercise 88 If possible, use linearization to determine the stability properties of each equi-
librium state of the Lorenz system.
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Chapter 8

Stability and boundedness: discrete
time

8.1 Boundedness of solutions

Consider a general discrete-time nonlinear system described by

x(k+1) = f(x(k)) (8.1)

where x(k) is an n-vector and k is an integer. By a solution of (8.1) we mean a sequence
x(·) = ( x(0), x(1), x(2), . . . ) which satisfies (8.1) for all k ≥ 0.

DEFN. (Boundedness of solutions) A solution x(·) is bounded if there exists β ≥ 0 such that

||x(k)|| ≤ β for all k ≥ 0 .

A solution is unbounded if it is not bounded.

It should be clear from the above definitions that a solution x(·) is bounded if and only
if each component xi(·) of x(·) is bounded. Also, a solution is unbounded if and only if at
least one of its components is unbounded. So, x(k) = [ (0.5)k (−0.5)k ]T is bounded while
x(k) = [ (0.5)k 2k ]T is unbounded.

Example 99
x(k+1) = 0

All solutions are bounded.

Example 100
x(k+1) = x(k)

All solutions are bounded.

Example 101
x(k+1) = −2x(k)

All solutions (except the zero solution) are unbounded.
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Linear time invariant (LTI) systems. All solutions of the LTI system

x(k+1) = Ax(k) (8.2)

are bounded if and only if for each eigenvalue λ of A:

(b1) |λ| ≤ 1 and

(b2) if |λ| = 1 then λ is non-defective.

If there is an eigenvalue λ of A such that either

(u1) |λ| > 1 or

(u2) |λ| = 1 and λ is defective.

then the system has some unbounded solutions.

Example 102 Discrete unattached mass. Here

A =

(
1 1
0 1

)

has a single eigenvalue 1. This eigenvalue has algebraic multiplicity 2 but geometric mul-
tiplicity 1; hence this eigenvalue is defective. So, some of the solutions of the system
x(k+1) = Ax(k) are unbounded. One example is

x(k) =

(
k
1

)

8.2 Stability of equilibrium states

Suppose xe is an equilibrium state of the system x(k +1) = f(x(k)). Then, whenever
x(0) = xe, we have x(k) = xe for all k ≥ 0. Roughly speaking, we say that xe is a stable
equilibrium state for the system if the following holds. If the initial state of the system is
close to xe, then the resulting solution is close to xe. The formal definition is as follows.

DEFN. (Stability) An equilibrium state xe is stable if for each ε > 0 there exists δ > 0 such
that whenever ||x(0)−xe|| < δ, one has ||x(k)−xe|| < ε for all k ≥ 0.
xe is unstable if it is not stable.

Example 103
x(k+1) = −x(k) .

The origin is stable. (Consider δ = ε.)

Example 104
x(k+1) = −2x(k) .

The origin is unstable.

Example 105
x(k+1) = −x(k)3 .

The single equilibrium at the origin is stable, but, the system has unbounded solutions.

174



LTI systems. Every equilibrium state of a LTI system (8.2) is stable if and only if all
eigenvalues λ of A satisfy conditions (b1) and (b2) above. Hence every equilibrium state of
a LTI system is stable if and only if all solutions are bounded.

Every equilibrium state is unstable if and only if there is an eigenvalue λ of A which
satisfies condition (u1) or (u2) above. Hence every equilibrium state of a LTI system is
unstable if and only if there are unbounded solutions.

8.3 Asymptotic stability

8.3.1 Global asymptotic stability

DEFN. (Global asymptotic stability (GAS)) An equilibrium state xe is globally asymptotically
stable (GAS) if

(a) It is stable

(b) Every solution x(·) converges to xe, that is,

lim
k→∞

x(k) = xe .

If xe is a globally asymptotically stable equilibrium state, then there are no other equi-
librium states. In this case we say the system (8.1) is globally asymptotically stable.

Example 106

x(k+1) =
1

2
x(k)

GAS

Example 107

x(k+1) =
x(k)

2 + x(k)2

8.3.2 Asymptotic stability

DEFN. (Asymptotic stability (AS)) An equilibrium state xe is asymptotically stable (AS) if

(a) It is stable

(b) There exists R > 0 such that whenever ||x(0)− xe|| < R one has

lim
k→∞

x(k) = xe (8.3)
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The region of attraction of an equilibrium state xe which is AS is the set of initial states
which result in (8.3), that is it is the set of initial states which are attracted to xe. Thus, the
region of attraction of a globally asymptotically equilibrium state is the whole state space.

Example 108

x(k+1) = x(k)3

Origin is AS with region of attraction [−1 1].

LTI systems. For LTI systems, it should be clear from the general form of the solution
that the zero state is AS if and only if all the eigenvalues λi of A have magnitude less than
one, that is,

|λi| < 1 .

Also AS is equivalent to GAS.

8.4 Exponential stability

We now present the “strongest” form of stability considered in this section.

DEFN. (Global exponential stability) An equilibrium state xe is globally exponentially stable
(GES) with there exists 0 ≤ λ < 1 and β > 0 such that every solution satisfies

||x(k)−xe|| ≤ βλk||x(0)−xe|| for all k ≥ 0

Example 109

x(k+1) =
1

2
x(k)

GES with γ = 1
2
.

Note that global exponential stability implies global asymptotic stability, but, in general,
the converse is not true. This is illustrated in the next example. For linear time-invariant
systems, GAS and GES are equivalent.

Lemma 1 Consider a system described by x(k+1) = f(x(k)) and suppose that for some
scalar λ ≥ 0,

‖f(x)‖ ≤ λ‖x‖
for all x. Then, every solution x(·) of the system satisfies

‖x(k)‖ ≤ λk‖x(0)‖

for all k ≥ 0. In particular, if λ < 1 then, the system is globally exponentially stable.
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Example 110

x(k+1) =
x(k)√

1 + 2x(k)2

Solutions satisfy

x(k) =
x0√

1 + 2kx2
0

where x0 = x(0) .

GAS but not GES

DEFN. (Exponential stability) An equilibrium state xe is exponentially stable (ES) if there
exists R > 0, 0 ≤ λ < 1 and β > 0 such that whenever ||x(0)−xe|| < R one has

||x(k)−xe|| ≤ βλk||x(0)−xe|| for all k ≥ 1

Note that exponential stability implies asymptotic stability, but, in general, the converse
is not true.

Example 111

x(k+1) =
x(k)√

1 + 2x(k)2

Solutions satisfy

x(k) =
x0√

1 + 2kx2
0

where x0 = x(0) .

GAS but not even ES

8.5 LTI systems

The following table summarizes the relationhip between the stability properties of a LTI
system and the eigenproperties of its A-matrix. In the table, unless otherwise stated, a
property involving λ must hold for all eigenvalues λ of A.

Stability properties eigenproperties

Asymptotic stability |λ| < 1
and boundedness

Stability and |λ| ≤ 1
boundedness If |λ| = 1 then λ is non-defective

Instability and some There is an eigenvalue of A with
unbounded solutions |λ| > 1 or

|λ| = 1 and λ is defective
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8.6 Linearization and stability

Consider a nonlinear time-invariant system described by

x(k+1) = f(x(k))

where x(k) is an n-vector at each time t. Suppose xe is an equilibrium state for this system,
that is, f(xe) = xe, and consider the linearization of this system about xe:

δx(k+1) = Aδx(k) where A =
∂f

∂x
(xe) .

The following results can be demonstrated using nonlinear Lyapunov stability theory.

Stability. If all the eigenvalues of the A matrix of the linearized system have magnitude less
than one, then the nonlinear system is exponentially stable about xe.

Instability. If at least one eigenvalue of the A matrix of the linearized system has magnitude
greater than one, then the nonlinear system is unstable about xe.

Undetermined. Suppose all the eigenvalues of the A matrix of the linearized system have
magnitude less than or equal to one and at least one eigenvalue of A has magnitude one.
Then, based on the linearized system alone, one cannot predict the stability properties of the
nonlinear system about xe.

Note that the first statement above is equivalent to the following statement. If the
linearized system is exponentially stable, then the nonlinear system is exponentially stable
about xe.

Example 112 (Newton’s method) Recall that Newton’s method for a scalar function
can be described by

x(k+1) = x(k)− g(x(k))

g′(x(k))

Here

f(x) = x− g(x)

g′(x)

So,

f ′(x) = 1− 1 +
g(x)g′′(x)

g′(x)2
=

g(x)g′′(x)

g′(x)2
.

At an equilibrium state xe, we have g(xe) = 0; hence f ′(xe) = 0 and the linearization about
any equilibrium state is given by

δx(k+1) = 0 .

Thus, every equilibrium state is exponentially stable.
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Chapter 9

Basic Lyapunov theory

Suppose we are interested in the stability properties of the system

ẋ = f(x) (9.1)

where x(t) is a real n-vector at time t. If the system is linear, we can determine its stability
properties from the properties of the eigenvalues of the system matrix. What do we do for
a nonlinear system? We could linearize about each equilibrium state and determine the
stability properties of the resulting linearizations. Under certain conditions this will tell us
something about the local stability properties of the nonlinear system about its equilibrium
states. However there are situations where linearization cannot be used to deduce even the
local stability properties of the nonlinear system. Also, linearization tells us nothing about
the global stability properties of the nonlinear system.

In general, we cannot explicitly obtain solutions for nonlinear systems. Lyapunov theory
allows to say something about the stability properties of a system without knowing the form
or structure of the solutions.

In this chapter, V is a scalar-valued function of the state, that is V : IRn → IR. Suppose
V is continuously differentiable. Then, at any time t, the derivative of V along a solution x(·)
of system (9.1) is given by

dV

dt
(x(t)) = DV (x(t))ẋ(t)

= DV (x(t))f(x(t))

where DV (x) is the derivative of V at x and is given by

DV (x) =
(

∂V
∂x1

(x) ∂V
∂x2

(x) . . . ∂V
∂xn

(x)
)

Note that

DV (x)f(x) =
∂V

∂x1

(x)f1(x) +
∂V

∂x2

(x)f2(x) + . . . +
∂V

∂xn

(x)fn(x)

In what follows, if a condition involves DV , then it is implicitly assumed that V is continu-
ously differentiable. Sometimes DV is denoted by

∂V

∂x
.
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Also, when the system under consideration is fixed, DV f is sometimes denoted by

V̇ .

This a slight but convenient abuse of notation.
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9.1 Stability

9.1.1 Locally positive definite functions

DEFN. (Locally positive definite function) A function V is locally positive definite (lpd) about
a point xe if

V (xe) = 0

and there is a scalar R > 0 such that

V (x) > 0 whenever x 6= xe and ||x− xe|| < R

Basically, a function is lpd about a point xe if it is zero at xe has a strict local minimum
at xe.

Figure 9.1: A locally positive definite function

Example 113 (Scalar x) The following functions are lpd about zero.

V (x) = x2

V (x) = 1− e−x2

V (x) = 1− cos x

V (x) = x2 − x4

Example 114

V (x) = ||x||2
= x2

1 + x2
2 + . . . + x2

n

Lpd about the origin.

Quadratic forms. Suppose P is a real n × n symmetric matrix and is positive definite.
Consider the quadratic form defined by

V (x) = xT Px =
n∑

i=1

n∑
j=1

Pijxixj .
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Clearly V (0) = 0. Recalling the definition of a positive definite matrix, it follows that
V (x) = xT Px > 0 for all nonzero x. Hence V is locally positive definite about the origin.

• The second derivative of V at x is the square symmetric matrix given by:

D2V (x) :=




∂2V
∂2x1

(x) ∂2V
∂x1∂x2

(x) . . . ∂2V
∂x1∂xn

(x)

∂2V
∂x2∂x1

(x) ∂2V
∂2x2

(x) . . . ∂2V
∂x2∂xn

(x)

...
...

...

∂2V
∂xn∂x1

(x) ∂2V
∂xn∂x2

(x) . . . ∂2V
∂2xn

(x)




that is,

D2V (x)ij =
∂2V

∂xi∂xj

(x)

Sometimes D2V (x) is written as ∂2V
∂x2 (x) and is referred to as the Hessian of V .

The following lemma is sometimes useful in demonstrating that a function is lpd.

Lemma 2 Suppose V is twice continuously differentiable and

V (xe) = 0

DV (xe) = 0

D2V (xe) > 0

Then V is a locally positive definite about xe.

Example 115 Consider V (x) = x2 − x4 where x is a scalar. Since V (0) = DV (0) = 0 and
D2V (0) = 2 > 0, V is lpd about zero.

Example 116 Consider

V (x) = 1− cos x1 +
1

2
x2

2

Clearly
V (0) = 0

Since
DV (x) =

(
sin x1 x2

)

we have
DV (0) = 0

Also,

D2V (x) =

(
cos x1 0

0 1

)
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Hence,

D2V (0) =

(
1 0
0 1

)
> 0

Since V satisfies the hypotheses of the previous lemma with xe = 0, it is lpd about zero.

9.1.2 A stability result

If the equilibrium state of a nonlinear system is stable but not asymptotically stable, then
one cannot deduce the stability properties of the equilibrium state of the nonlinear system
from the linearization of the nonlinear system about that equilibrium state

Theorem 4 (Stability) Suppose there exists a function V and a scalar R > 0 such that V is
locally positive definite about xe and

DV (x)f(x) ≤ 0 for ||x− xe|| < R

Then xe is a stable equilibrium state.

If V satisfies the hypotheses of the above theorem, then V is said to be a Lyapunov
function which guarantees the stability of xe.

Example 117
ẋ = 0

Consider
V (x) = x2

as a candidate Lyapunov function. Then V is lpd about 0 and

DV (x)f(x) = 0

Hence (it follows from Theorem 4 that) the origin is stable.

Example 118 (Undamped linear oscillator.)

ẋ1 = x2

ẋ2 = −kx1 k > 0

Consider the total energy,

V (x) =
1

2
kx2

1 +
1

2
x2

2

as a candidate Lyapunov function. Then V is lpd about the origin and

DV (x)f(x) = 0

Hence the origin is stable.
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Example 119 (Simple pendulum.)

ẋ1 = x2

ẋ2 = − sin x1

Consider the total energy,

V (x) = 1− cos x1 +
1

2
x2

2

as a candidate Lyapunov function. Then V is lpd about the origin and

DV (x)f(x) = 0

Hence the origin is stable

Example 120 (Stability of origin for attitude dynamics system.) Recall

ẋ1 =
(I2 − I3)

I1

x2x3

ẋ2 =
(I3 − I1)

I2

x3x1

ẋ3 =
(I1 − I2)

I3

x1x2

where
I1, I2, I3 > 0

Consider the kinetic energy

V (x) =
1

2

(
I1x

2
1 + I2x

2
2 + I3x

2
3

)

as a candidate Lyapunov function. Then V is lpd about the origin and

DV (x)f(x) = 0

Hence the origin is stable.

Example 121 (Undamped Duffing system)

ẋ1 = x2

ẋ2 = x1 − x3
1

As a candidate Lyapunov function for the equilibrium state xe = [ 1 0 ]T consider the
total energy

V (x) =
1

4
x4

1 −
1

2
x2

1 +
1

2
x2

2 +
1

4
.

Since

DV (x) =
(

x3
1 − x1 x2

)
and D2V (x) =

(
3x2

1 − 1 0
0 1

)

we have V (xe) = 0, DV (xe) = 0 and D2V (xe) > 0, and it follows that V is lpd about xe.
One can readily verify that DV (x)f(x) = 0. Hence, xe is stable.
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Figure 9.2: Duffing system
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Exercises

Exercise 89 Determine whether or not the following functions are lpd. (a)

V (x) = x2
1 − x4

1 + x2
2

(b)
V (x) = x1 + x2

2

(c)
V (x) = 2x2

1 − x3
1 + x1x2 + x2

2

Exercise 90 (Simple pendulum with Coulomb damping.) By appropriate choice of Lya-
punov function, show that the origin is a stable equilibrium state for

ẋ1 = x2

ẋ2 = − sin x1 − c sgm (x2)

where c > 0.

Exercise 91 By appropriate choice of Lyapunov function, show that the origin is a stable
equilibrium state for

ẋ1 = x2

ẋ2 = −x3
1

Note that the linearization of this system about the origin is unstable.

Exercise 92 By appropriate choice of Lyapunov function, show that the origin is a stable
equilibrium state for

ẋ1 = x2

ẋ2 = −x1 + x3
1
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9.2 Asymptotic stability

The following result presents conditions which guarantee that an equilibrium state is asymp-
totically stable.

Theorem 5 (Asymptotic stability) Suppose there exists a function V and a scalar R > 0
such that V is locally positive definite about xe and

DV (x)f(x) < 0 for x 6= xe and ||x− xe|| < R

Then xe is an asymptotically stable equilibrium state for ẋ = f(x).

Example 122

ẋ = −x3

Consider

V (x) = x2

Then V is lpd about zero and

DV (x)f(x) = −2x4 < 0 for x 6= 0

Hence the origin is AS.

Example 123

ẋ = −x + x3

Consider

V (x) = x2

Then V is lpd about zero and

DV (x)f(x) = −2x2(1− x2) < 0 for |x| < 1, x 6= 0

Hence the origin is AS. Although the origin is AS, there are solutions which go unbounded
in a finite time.

Example 124

ẋ = − sin x

Consider

V (x) = x2

Then V is lpd about zero and

DV (x)f(x) = −2x sin(x) < 0 for |x| < π, x 6= 0

Hence the origin is AS.
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Example 125 (Simple pendulum with viscous damping.) Intuitively, we expect the origin
to be an asymptotically stable equilibrium state for the damped simple pendulum:

ẋ1 = x2

ẋ2 = − sin x1 − cx2

where c > 0 is the damping coefficient. If we consider the total mechanical energy

V (x) = 1− cos x1 +
1

2
x2

2

as a candidate Lyapunov function, we obtain

DV (x)f(x) = −cx2
2 .

Since DV (x)f(x) ≤ 0 for all x, we have stability of the origin. Since DV (x)f(x) = 0
whenever x2 = 0, it follows that DV (x)f(x) = 0 for points arbitrarily close to the origin;
hence V does not satisfy the requirements of the above theorem for asymptotic stability.

Suppose we modify V to

V (x) =
1

2
λc2x2

1 + λcx1x2 +
1

2
x2

2 + 1− cos x1

where λ is any scalar with 0 < λ < 1. Letting

P =
1

2

(
λc2 λc
λc 1

)

note that P > 0 and

V (x) = xT Px + 1− cos x1

≥ xT Px

Hence V is lpd about zero and we obtain

DV (x)f(x) = −λcx1 sin x1 − (1− λ)cx2
2 < 0 for ||x|| < π, x 6= 0

to satisfy the requirements of above theorem; hence the origin is AS.

Exercises

Exercise 93 By appropriate choice of Lyapunov function, show that the origin is an asymp-
totically stable equilibrium state for

ẋ1 = x2

ẋ2 = −x5
1 − x2

Exercise 94 By appropriate choice of Lyapunov function, show that the origin is a asymp-
totically stable equilibrium state for

ẋ1 = x2

ẋ2 = −x1 + x3
1 − x2
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9.3 Boundedness

9.3.1 Radially unbounded functions

DEFN. A scalar valued function V of the state x is said to be radially unbounded if

lim
x→∞

V (x) = ∞

Example 126
V (x) = x2 yes

V (x) = 1− e−x2
no

V (x) = x2 − x yes
V (x) = x4 − x2 yes
V (x) = x sin x no
V (x) = x2(1− cos x) no

Example 127 Suppose P is a real n × n matrix and is positive definite symmetric and
consider the quadratic form defined by

V (x) = xT Px

Since P is real symmetric,
xT Px ≥ λmin(P )||x||2

for all x, where λmin(P ) is the minimum eigenvalue of P . Since P is positive definite,
λmin(P ) > 0. From this it should be clear that V is radially unbounded.

The following lemma can be useful for guaranteeing radial unboundedness.

Lemma 3 Suppose V is twice continuously differentiable, and there is a positive definite
symmetric matrix P and a scalar R ≥ 0 such that

D2V (x) ≥ P for ||x|| ≥ R

Then, V is radially unbounded.

9.3.2 A boundedness result

Theorem 6 Suppose there exists a radially unbounded function V and a scalar R ≥ 0 such
that

DV (x)f(x) ≤ 0 for ||x|| ≥ R

Then all solutions of ẋ = f(x) are bounded.

Note that, in the above theorem, V does not have to be positive away from the origin; it
only has to be radially unbounded.
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Example 128 Recall
ẋ = x− x3 .

Consider
V (x) = x2

Since V is radially unbounded and

DV (x)f(x) = −2x2(x2 − 1)

the hypotheses of the above theorem are satisfied with R = 1; hence all solutions are bounded.
Note that the origin is unstable.

Example 129 Duffing’s equation

ẋ1 = x2

ẋ2 = x1 − x3
1

Consider

V (x) =
1

2
x2

2 −
1

2
x2

1 +
1

4
x4

1

It should be clear that V is radially unbounded; also

DV (x)f(x) = 0 ≤ 0 for all x

So, the hypotheses of the above theorem are satisfied with any R; hence all solutions are
bounded.

Exercises

Exercise 95 Determine whether or not the the following function is radially unbounded.

V (x) = x1 − x3
1 + x4

1 − x2
2 + x4

2

Exercise 96 (Forced Duffing’s equation with damping.) Show that all solutions of the
system

ẋ1 = x2

ẋ2 = x1 − x3
1 − cx2 + 1 c > 0

are bounded.
Hint: Consider

V (x) =
1

2
λc2x2

1 + λcx1x2 +
1

2
x2

2 −
1

2
x2

1 +
1

4
x4

1

where 0 < λ < 1. Letting

P =
1

2

(
λc2 λc
λc 1

)

note that P > 0 and

V (x) = xT Px− 1

2
x2

1 +
1

4
x4

1

≥ xT Px− 1

4
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Exercise 97 Recall the Lorenz system

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

with b > 0. Prove that all solutions of this system are bounded. (Hint: Consider V (x) =
rx2

1 + σx2
2 + σ(x3 − 2r)2.)
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9.4 Global asymptotic stability

9.4.1 Positive definite functions

DEFN. (Positive definite function.) A function V is positive definite (pd) if

V (0) = 0

V (x) > 0 for all x 6= 0

lim
x→∞

V (x) = ∞

In the above definition, note the requirement that V be radially unbounded.

Example 130 Scalar x

V (x) = x2 pd

V (x) = 1− e−x2
lpd but not pd

V (x) = 1− cos x lpd but not pd

Example 131
V (x) = x4

1 + x2
2

Example 132

V (x) = ||x||2
= x2

1 + x2
2 + . . . + x2

n

Example 133 Suppose P is a real n × n matrix and is positive definite symmetric and
consider the quadratic form defined by

V (x) = xT Px

V is a positive definite function.

Lemma 4 Suppose V is twice continuously differentiable and

V (0) = 0

DV (0) = 0

D2V (x) > 0 for all x

Then V (x) > 0 for all x.

If V satisfies the hypotheses of the above lemma, it is not guaranteed to be radially un-
bounded, hence it is not guaranteed to be positive definite. Lemma 3 can be useful for
guaranteeing radial unboundedness. We also have the following lemma.
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Lemma 5 Suppose V is twice continuously differentiable,

V (0) = 0

DV (0) = 0

and there is a positive definite symmetric matrix P such that

D2V (x) ≥ P for all x

Then

V (x) ≥ 1

2
xT Px

for all x.

9.4.2 A result on global asymptotic stability

Theorem 7 (Global asymptotic stability) Suppose there exists a positive definite function V
such that

DV (x)f(x) < 0 for all x 6= 0

Then the origin is a globally asymptotically stable equilibrium state for ẋ = f(x).

Example 134
ẋ = −x3

V (x) = x2

DV (x)f(x) = −2x4

< 0 for all x 6= 0

We have GAS. Note that linearization of this system about the origin cannot be used to
deduce the asymptotic stability of this system.

Example 135 The first nonlinear system

ẋ = −sgm (x) .

This system is not linearizable about its unique equilibrium state at the origin. Considering

V (x) = x2

we obtain

DV (x)f(x) = −2|x|
< 0 for all x 6= 0 .

Hence, we have GAS.
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Example 136 (Linear globally stabilizing controller for inverted pendulum.)

ẋ1 = x2

ẋ2 = sin x1 + u

Consider

u = −k1x1 − k2x2 with k1 > 1, k2 > 0

Closed loop system:

ẋ1 = x2

ẋ2 = −k1x1 + sin x1 − k2x2

Consider

V (x) =
1

2
λk2

2x
2
1 + λk2x1x2 +

1

2
x2

2 +
1

2
k1x

2
1 + cos x1 − 1

where 0 < λ < 1. Then V is pd (apply lemma 5) and

DV (x)f(x) = λk2(−k1x
2
1 + x1 sin x1)− (1− λ)k2x

2
2

Since

| sin x1| ≤ |x1| for all x1

it follows that

x1 sin x1 ≤ x2
1 for all x1

hence

DV (x)f(x) ≤ −λk2(k1 − 1)x2
1 − (1− λ)k2x

2
2 < 0 for all x 6= 0

The closed loop system is GAS.

Example 137 (Stabilization of origin for attitude dynamics system.)

ẋ1 =
(I2 − I3)

I1

x2x3 +
u1

I1

ẋ2 =
(I3 − I1)

I2

x3x1 +
u2

I2

ẋ3 =
(I1 − I2)

I3

x1x2 +
u3

I3

where

I1, I2, I3 > 0

Consider any linear controller of the form

ui = −kxi i = 1, 2, 3, k > 0
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Closed loop system:

ẋ1 =

(
I2 − I3

I1

)
x2x3 − kx1

I1

ẋ2 =

(
I3 − I1

I2

)
x3x1 − kx2

I2

ẋ3 =

(
I1 − I2

I3

)
x1x2 − kx3

I3

Consider the kinetic energy

V (x) =
1

2

(
I1x

2
1 + I2x

2
2 + I3x

2
3

)

as a candidate Lyapunov function. Then V is pd and

DV (x)f(x) = −k(x2
1 + x2

2 + x2
3)

< 0 for all x 6= 0

Hence the origin is GAS for the closed loop system.

Exercises

Exercise 98 Determine whether or not the following function is positive definite.

V (x) = x4
1 − x2

1x2 + x2
2

Exercise 99 Consider any scalar system described by

ẋ = −g(x)

where g has the following properties:

g(x) > 0 for x > 0

g(x) < 0 for x < 0

Show that this system is GAS.

Exercise 100 Recall the Lorenz system

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

Prove that if
b > 0 and 0 ≤ r < 1 ,

then this system is GAS about the origin. (Hint: Consider V (x) = x2
1 + σx2

2 + σx2
3.)
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Exercise 101 (Stabilization of the Duffing system.) Consider the Duffing system with a
scalar control input u(t):

ẋ1 = x2

ẋ2 = x1 − x3
1 + u

Obtain a linear controller of the form

u = −k1x1 − k2x2

which results in a closed loop system which is GAS about the origin. Numerically simulate
the open loop system (u = 0) and the closed loop system for several initial conditions.

9.5 Exponential stability

9.5.1 Global exponential stability

Theorem 8 (Global exponential stability) Suppose there exists a function V and positive
scalars α, β1, β2 such that for all x,

β1||x||2 ≤ V (x) ≤ β2||x||2

and

DV (x)f(x) ≤ −2αV (x) .

Then, for the system ẋ = f(x), the origin is a globally exponentially stable equilibrium state
with rate of convergence α. In particular, all solutions x(·) of the system satisfy

‖x(t)‖ ≤
√

β2/β1 ‖x(0)‖ e−αt for all t ≥ 0 .

Proof. See below.

Example 138

ẋ = −x

Considering

V (x) = x2

we have

DV (x)f(x) = −2x2

= −2V (x)

Hence, we have GES with rate of convergence 1.
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Example 139
ẋ = −x− x3

Considering
V (x) = x2

we have

DV (x)f(x) = −2x2 − 2x4

≤ −2V (x)

Hence, we have GES with rate of convergence 1.

9.5.2 Proof of theorem 8

Consider any solution x(·) and let v(t) = V (x(t)). Then

v̇ ≤ −2αv .

9.5.3 Exponential stability

Theorem 9 (Exponential stability) Suppose there exists a function V and positive scalars R,
α, β1, β2 such that, whenever ‖x‖ ≤ R, one has

β1||x||2 ≤ V (x) ≤ β2||x||2

and
DV (x)f(x) ≤ −2αV (x)

Then, for system ẋ = f(x), the state xe is an exponentially stable equilibrium state with rate
of convergence α.
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Exercise 102 Consider the scalar system

ẋ = −x + x3

As a candidate Lyapunov function for exponential stability, consider V (x) = x2. Clearly,
the condition on V is satisfied with β1 = β2 = 1. Noting that

V̇ = −2x2 + 2x4 = −2(1− x2)x2 ,

and considering R = 1/2, we obtain that whenever |x| ≤ R, we have V̇ ≤ −2αV where
α = 3/4. Hence, we have ES.
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9.5.4 A special class of GES systems

Consider a system described by
ẋ = f(x) (9.2)

and suppose that there exist two positive definite symmetric matrices P and Q such that

xT Pf(x) ≤ −xT Qx .

We will show that the origin is GES with rate

α := λmin(P
−1Q)

where λmin(P
−1Q) > 0 is the smallest eigenvalue of P−1Q.

As a candidate Lyapunov function, consider

V (x) = xT Px .

Then
λmin(P )||x||2 ≤ V (x) ≤ λmax(P )||x||2

that is
β1||x||2 ≤ V (x) ≤ β2||x||2

with
β1 = λmin(P ) > 0 and β2 = λmax(P ) > 0 .

Now note that

DV (x)f(x) = 2xT Pf(x)

≤ −2xT Qx

For any two positive-definite matrices P and Q, one can show that all the eigenvalues of
P−1Q are real positive and

xT Qx ≥ λmin(P
−1Q) xT Px

where λmin(P
−1Q) > 0 is the smallest eigenvalue of P−1Q. Thus,

DV (x)f(x) ≤ −2λmin(P
−1Q)xT Px

= −2αV (x)

Hence GES with rate α.

Example 140 Recall example 137.
Closed loop system:

ẋ1 =

(
I2 − I3

I1

)
x2x3 − kx1

I1

ẋ2 =

(
I3 − I1

I2

)
x3x1 − kx2

I2

ẋ3 =

(
I1 − I2

I3

)
x1x2 − kx3

I3
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Considering

P =




I1 0 0
0 I2 0
0 0 I3




we have
xT Pf(x) = −kxT x

that is, Q = kI. Hence, GES with rate

α = λmin(P
−1Q)

= λmin(kP−1)

= kλmin(P
−1)

=
k

λmax(P )

=
k

max{I1, I2, I3}
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9.5.5 Summary

The following table summarizes the results of this chapter for stability about the origin.

V V̇ ⇒ stability properties

lpd ≤ 0 for ||x|| ≤ R ⇒ S

lpd < 0 for ||x|| ≤ R, x 6= 0 ⇒ AS

ru ≤ 0 for ||x|| ≥ R ⇒ B

pd < 0 for x 6= 0 ⇒ GAS

β1||x||2 ≤ V (x) ≤ β2||x||2 ≤ −2αV (x) ⇒ GES

β1||x||2 ≤ V (x) ≤ β2||x||2 for ||x|| ≤ R ≤ −2αV (x) for ||x|| ≤ R ⇒ ES

Figure 9.3: Lyapunov table
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Chapter 10

Basic Lyapunov theory: discrete
time*

Suppose we are interested in the stability properties of the system,

x(k + 1) = f(x(k)) (10.1)

where x(k) ∈ IRn and k ∈ IR. If the system is linear, we can determine its stability properties
from the properties of the eigenvalues of the system matrix. What do we for a nonlinear
system? We could linearize about each equilibrium state and determine the stability prop-
erties of the resulting linearizations. Under certain conditions (see later) this will tell us
something about the local stability properties of the nonlinear system about its equilibrium
states. However there are situations where linearization cannot be used to deduce even the
local stability properties of the nonlinear system. Also, linearization tells us nothing about
the global stability properties of the nonlinear system.

In general, we cannot explicitly obtain solutions for nonlinear systems. Lyapunov theory
allows to say something about the stability properties of a system without knowing the form
or structure of the solutions.

• In this chapter, V is a scalar-valued function of the state, i.e. V : IRn → IR. At any time
k, the one step change in V along a solution x(·) of system (10.1) is given by

V (x(k + 1))− V (x(k)) = ∆V (x(k))

where
∆V (x) := V (f(x))− V (x)
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10.1 Stability

Theorem 10 (Stability) Suppose there exists a locally positive definite function V and a
scalar R > 0 such that

∆V (x) ≤ 0 for ||x|| < R

Then the origin is a stable equilibrium state.

• If V satisfies the hypotheses of the above theorem, then V is said to be a Lyapunov function
which guarantees the stability of origin.

Example 141
x(k + 1) = x(k)

Consider
V (x) = x2

as a candidate Lyapunov function. Then V is a lpdf and

∆V (x) = 0

Hence (it follows from theorem 10 that) the origin is stable.
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10.2 Asymptotic stability

Theorem 11 (Asymptotic stability) Suppose there exists a locally positive definite function
V and a scalar R > 0 such that

∆V (x) < 0 for x 6= 0 and ||x|| < R

Then the origin is an asymptotically stable equilibrium state.

Example 142

x(k + 1) =
1

2
x(k)

Consider
V (x) = x2

Then V is a lpdf and

∆V (x) = (
1

2
x)2 − x2

= −3

4
x2

< 0 for x 6= 0

Hence the origin is AS.

Example 143

x(k + 1) =
1

2
x(k) + x(k)2

Consider
V (x) = x2

Then V is a lpdf and

∆V (x) = (
1

2
x + x2)2 − x2

= −x2(
3

2
+ x)(

1

2
− x)

< 0 for |x| < 1

2
, x 6= 0

Hence the origin is AS.
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10.3 Boundedness

Theorem 12 Suppose there exists a radially unbounded function V and a scalar R ≥ 0 such
that

∆V (x) ≤ 0 for ||x|| ≥ R

Then all solutions of (10.1) are bounded.

Note that, in the above theorem, V does not have to positive away from the origin; it only
has to be radially unbounded.

Example 144

x(k + 1) =
2x(k)

1 + x(k)2

Consider
V (x) = x2

Since V is radially unbounded and

∆V (x) =

(
2x

1 + x2

)2

− x2

= −x2(x2 + 3)(x2 − 1)

(x2 + 1)2

≤ 0 for |x| ≥ 1

the hypotheses of the above theorem are satisfied with R = 1; hence all solutions are bounded.
Note that the origin is unstable.
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10.4 Global asymptotic stability

Theorem 13 (Global asymptotic stability) Suppose there exists a positive definite function
V such that

∆V (x) < 0 for all x 6= 0

Then the origin is a globally asymptotically stable equilibrium state.

Example 145

x(k + 1) =
1

2
x(k)

Example 146

x(k + 1) =
x(k)

1 + x(k)2

Consider
V (x) = x2

Then

∆V (x) =

(
x

1 + x2

)2

− x2

= − 2x4 + x6

(1 + x2)2

< 0 for all x 6= 0

Hence this system is GAS about zero.

Exercise 103 Consider any scalar system described by

x(k + 1) = g(x(k))

where g has the following properties:

|g(x)| < |x| for x 6= 0

Show that this system is GAS.
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10.5 Exponential stability

Theorem 14 (Global exponential stability.) Suppose there exists a function V and scalars
α, β1, β2 such that for all x,

β1||x||2 ≤ V (x) ≤ β2||x||2 β1, β2 > 0

and

V (f(x)) ≤ α2V (x) 0 ≤ α < 1

Then, every solution satisfies

||x(k)|| ≤
√

β2

β1

αk||x(0)|| for k ≥ 0

Hence, the origin is a globally exponentially stable equilibrium state with rate of convergence
α.

Proof.

Example 147

x(k + 1) = −1

2
x(k)
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Considering
V (x) = x2

we have

V (f(x)) =
1

4
x2

= (
1

2
)2V (x)

Hence, we have GES with rate of convergence α = 1
2
.

Example 148

x(k + 1) =
1

2
sin(x(k))

Considering
V (x) = x2

we have

V (f(x)) = (
1

2
sin x)2

= (
1

2
)2| sin x|2

≤ (
1

2
)2|x|2

= (
1

2
)2V (x)

Hence, we have GES with rate of convergence α = 1
2
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Chapter 11

Lyapunov theory for linear
time-invariant systems

The main result of this section is contained in Theorem 15.

11.1 Positive and negative (semi)definite matrices

11.1.1 Definite matrices

For any square matrix n× n matrix P we can define an associated quadratic form by

x∗Px =
n∑

i=1

n∑
j=1

pijx
∗
i xj

Recall that a square complex matrix P is hermitian if P ∗ = P where P ∗ is the complex
conjugate of P . If P is real then hermitian is equivalent to symmetric, that is, P T = P .

Fact 5 Every hermitian matrix P has the following properties.

(a) All eigenvalues of P are real.

(b) The scalar x∗Px is real for all x ∈ Cn. and satisfies

λmin(P )||x||2 ≤ x∗Px ≤ λmax(P )||x||2

where λmin(P ) and λmax(P ) denote the minimum and maximum eigenvalues of P .

DEFN. A hermitian matrix P is positive definite (pd) if

x∗Px > 0

for all nonzero x. We denote this by P > 0. The matrix P is negative definite (nd) if −P is
positive definite; we denote this by P < 0.
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Example 149 For

P =

(
1 −1

−1 2

)

we have (note the completion of squares trick)

x∗Px = x∗1x1 − x∗1x2 − x∗2x1 + 2x∗2x2

= (x1 − x2)
∗(x1 − x2) + x∗2x2

= |x1 − x2|2 + |x2|2

Clearly, x∗Px ≥ 0 for all x. If x∗Px = 0, then x1 − x2 = 0 and x2 = 0; hence x = 0. So,
P > 0.

Fact 6 The following statements are equivalent for any hermitian matrix P .

(a) P is positive definite.

(b) All the eigenvalues of P are positive.

(c) All the leading principal minors of P are positive.

Example 150 Consider

P =

(
1 −1

−1 2

)

Since p11 = 1 > 0 and det(P ) = 1 > 0, we must have P > 0.

>> eig(P)

ans =

0.3820

2.6180

Note the positive eigenvalues.

Exercise 104 Suppose P is hermitian and T is invertible. Show that P > 0 iff T ∗PT > 0.

Exercise 105 Suppose P and Q are two hermitian matrices with P > 0. Show that P +
λQ > 0 for all real λ sufficiently small; i.e., there exists λ̄ > 0 such that whenever |λ| < λ̄,
one has P + λQ > 0.

11.1.2 Semi-definite matrices*

DEFN. A hermitian matrix P is positive semi-definite (psd) if

x∗Px ≥ 0

for all non-zero x. We denote this by P ≥ 0
P is negative semi-definite (nsd) if −P is positive semi-definite; we denote this by P ≤ 0
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Fact 7 The following statements are equivalent for any hermitian matrix P .

(a) P is positive semi-definite.

(b) All the eigenvalues of P are non-negative.

(c) All the leading minors of P are positive.

Example 151 This example illustrates that non-negativity of the leading principal minors
of P is not sufficient for P ≥ 0.

P =

(
0 0
0 −1

)

We have p11 = 0 and det(P ) = 0. However,

x∗Px = −|x2|2

hence, P is not psd. Actually, P is nsd.

Fact 8 Consider any m× n complex matrix M and let P = M∗M . Then

(a) P is hermitian and P ≥ 0

(b) P > 0 iff rank M = n.

Example 152

P =

(
1 1
1 1

)

Since

P =

(
1
1

) (
1 1

)

and
rank

(
1 1

)
= 1

P ≥ 0 but P is not pd.
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11.2 Lyapunov theory

11.2.1 Asymptotic stability results

The scalar system
ẋ = ax

is asymptotically stable if and only if a+a∗ < 0. Consider now a general linear time-invariant
system described by

ẋ = Ax (11.1)

The generalization of a + a∗ < 0 to this system is A + A∗ < 0. We will see shortly that this
condition is sufficient for asymptotic stability; however, as the following example illustrates,
it is not necessary.

Example 153 The matrix

A =

( −1 3
0 −1

)

is asymptotically stable. However, the matrix

A + A∗ =

( −2 3
3 −2

)

is not negative definite.

Since stability is invariant under a similarity transformation T , i.e., the stability of A and
T−1AT are equivalent for any nonsingular T , we should consider the more general condition

T−1AT + T ∗A∗T−∗ < 0

Introducing the hermitian matrix P := T−∗T−1, and pre- and post-multiplying the above
inequality by T−∗ and T−1, respectively, yields

P > 0 (11.2a)

PA + A∗P < 0 (11.2b)

We now show that the existence of a hermitian matrix P satisfying these conditions guar-
antees asymptotic stability.

Lemma 6 Suppose there is a hermitian matrix P satisfying (11.2). Then system (11.1) is
asymptotically stable

Proof. Suppose there exists a hermitian matrix P which satisfies inequalities (11.2).
Consider any eigenvalue λ of A. Let v 6= 0 be an eigenvector corresponding to λ, i.e.,

Av = λv

Then
v∗PAv = λv∗Pv ; v∗A∗Pv = λ̄v∗Pv
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Pre- and post-multiplying inequality (11.2b) by v∗ and v, respectively, yields

λv∗Pv + λ̄v∗Pv < 0

i.e.,

2Re(λ)v∗Pv < 0

Since P > 0, we must have v∗Pv > 0; hence Re(λ) < 0. Since the above holds for every
eigenvalue of A, system (11.1) is asymptotically stable.

Remark 1 A hermitian matrix P which satisfies inequalities (11.2) will be referred to as a
Lyapunov matrix for (11.1) or A.

Remark 2 Conditions (11.2) are referred to as linear matrix inequalities (LMI’s). In recent
years, efficient numerical algorithms have been developed to solve LMI’s or determine that
a solution does not exist.

Lyapunov functions. To obtain an alternative interpretation of inequalities (11.2), con-
sider the quadratic function V of the state defined by

V (x) := x∗Px

Since P > 0, this function has a strict global minimum at zero. Using inequality (11.2b), it
follows that along any non-zero solution x(·) of (11.1),

dV (x(t))

dt
= ẋ∗Px + x∗Pẋ

= x∗ (A∗P + PA) x

< 0

i.e., V (x(·)) is strictly decreasing along any non-zero solution. Intuitively, one then expects
every solution to asymptotically approach the origin. The function V is called a Lyapunov
function for the system. The concept of a Lyapunov function readily generalizes to nonlinear
systems and has proved a very useful tool in the analysis of the stability properties of
nonlinear systems.

Remark 3 Defining the hermitian matrix S := P−1, inequalities (11.2) become

S > 0 (11.3a)

AS + SA∗ < 0 (11.3b)

Hence the above lemma can be stated with S replacing P and the preceding inequalities
replacing (11.2).

So far we have shown that if a LTI system has a Lyapunov matrix, then it is AS. Is the
converse true? That is, does every AS LTI system have a Lyapunov matrix? And if this is
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true how does one find a Lyapunov matrix? To answer this question note that satisfaction
of inequality (11.2b) is equivalent to

PA + A∗P + Q = 0 (11.4)

where Q is a hermitian positive definite matrix. This linear matrix equation is known as the
Lyapunov equation. So one approach to looking for Lyapunov matrices could be to choose a
pd hermitian Q and determine whether the Lyapunov equation has a pd hermitian solution
for P .

We first show that if the system ẋ = Ax is asymptotically stable and the Lyapunov
equation (11.4) has a solution then, the solution is unique. Suppose P1 and P2 are two
solutions to (11.4). Then,

(P2 − P1)A + A∗(P2 − P1) = 0 .

Hence,
eA∗t(P2 − P1)AeAt + eA∗tA∗(P2 − P1)e

At = 0

that is,
d

(
eA∗t(P2 − P1)e

At
)

dt
= 0

This implies that, for all t,

eA∗t(P2 − P1)e
At = eA∗0(P2 − P1)e

A0 = P2 − P1 .

Since ẋ = Ax is asymptotically stable, limt−→∞ eAt = 0. Hence

P2 − P1 = lim
t−→∞

eA∗t(P2 − P1)e
At = 0 .

From this it follows that P2 = P1.
The following lemma tells us that every AS LTI system has a Lyapunov matrix and a

Lyapunov matrix can be obtained by solving the Lyapunov equation with any pd hermitian
Q.

Lemma 7 Suppose system (11.1) is asymptotically stable. Then for every matrix Q, the
Lyapunov equation (11.4) has a unique solution for P . If Q is positive definite hermitian
then this solution is positive-definite hermitian.

Proof. Suppose system (11.1) is asymptotically stable and consider any matrix Q. Let

P :=

∫ ∞

0

eA∗tQeAtdt

This integral exists because each element of eAt is exponentially decreasing.
To show that P satisfies the Lyapunov equation (11.4), use the following properties of

eAt,

eAtA =
deAt

dt
A∗eA∗t =

deA∗t

dt
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to obtain

PA + A∗P =

∫ ∞

0

(
eA∗tQeAtA + A∗eA∗tQeAt

)
dt

=

∫ ∞

0

(
eA∗tQ

deAt

dt
+

deA∗t

dt
QeAt

)
dt

=

∫ ∞

0

d
(
eA∗tQeAt

)

dt
dt

= lim
t→∞

∫ t

0

deA∗tQeAt

dt
dt

= lim
t→∞

eA∗tQeAt − Q

= −Q

We have already demonstrated uniqueness of solutions to (11.4),
Suppose Q is pd hermitian. Then it should be clear that P is pd hermitian. .

Using the above two lemmas, we can now state the main result of this section.

Theorem 15 The following statements are equivalent.

(a) The system ẋ = Ax is asymptotically stable.

(b) There exist positive definite hermitian matrices P and Q satisfying the Lyapunov equa-
tion (11.4).

(c) For every positive definite hermitian matrix Q, the Lyapunov equation (11.4) has a
unique solution for P and this solution is hermitian positive-definite.

Proof. The first lemma yields (b) =⇒ (a). The second lemma says that (a) =⇒ (c).
Hence, (b) =⇒ (c).

To see that (c) =⇒ (b), pick any positive definite hermitian Q. So, (b) is equivalent to
(c). Also, (c) =⇒ (a); hence (a) and (c) are equivalent.

.

Example 154

ẋ1 = x2

ẋ2 = −x1 + cx2

Here

A =

(
0 1

−1 c

)
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Choosing

Q =

(
1 0
0 1

)

and letting

P =

(
p11 p12

p12 p22

)

(note we have taken p21 = p12 because we are looking for symmetric solutions) the Lyapunov
equation results in

−2p12 + 1 = 0

p11 + cp12 − p22 = 0

2p12 + 2cp22 + 1 = 0

We consider three cases:

Case i) c = 0. No solution; hence no GAS.

Case ii) c = −1. A single solution; this solution is pd; hence GAS.

Case iii) c = 1. A single solution; this solution is not pd; hence no GAS.

Remark 4 One can state the above theorem replacing P with S and replacing (11.4) with

AS + SA∗ + Q = 0 (11.5)

11.2.2 MATLAB.

>> help lyap

LYAP Lyapunov equation.

X = LYAP(A,C) solves the special form of the Lyapunov matrix

equation:

A*X + X*A’ = -C

X = LYAP(A,B,C) solves the general form of the Lyapunov matrix

equation:

A*X + X*B = -C

See also DLYAP.

Note. In MATLAB, A’ is the complex conjugate transpose of A (i.e. A∗). Hence, to solve
(11.4) one must use P= lyap(A’, Q).
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>> q=eye(2);

>> a=[0 1; -1 -1];

>> p=lyap(a’, q)

p =

1.5000 0.5000

0.5000 1.0000

>> p*a + a’*p

ans =

-1.0000 -0.0000

0 -1.0000

>> det(p)

ans =

1.2500

>> eig(p)

ans =

1.8090

0.6910

Exercise 106 Consider the Lyapunov equation

PA + A∗P + 2αP + Q = 0

where A is a square matrix, Q is some positive-definite hermitian matrix and α is some
positive scalar. Show that this equation has a unique solution for P and this solution is
positive-definite hermitian if and only if for every eigenvalue λ of A,

Re(λ) < −α

11.2.3 Stability results*

For stability, the following lemma is the analog of Lemma 11.2.

Lemma 8 Suppose there is a hermitian matrix P satisfying

P > 0 (11.6a)

PA + A∗P ≤ 0 (11.6b)

Then system (11.1) is stable.

We do not have the exact analog of lemma 7. However the following can be shown.
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Lemma 9 Suppose system (11.1) is stable. Then there exist a positive definite hermitian
matrix P and a positive semi-definite hermitian matrix Q satisfying the Lyapunov equation
(11.4).

The above lemma does not state that for every positive semi-definite hermitian Q the
Lyapunov equation has a solution for P . Also, when the Lyapunov equation has a solution,
it is not unique. This is illustrated in the following example.

Example 155

A =

(
0 1

−1 0

)

With

P =

(
1 0
0 1

)

we obtain
PA + A∗P = 0

In this example the Lyapunov equation has a pd solution with Q = 0; this solution is
not unique; any matrix of the form

P =

(
p 0
0 p

)

(where p is arbitrary) is also a solution.
If we consider the psd matrix

Q =

(
1 0
0 0

)

the Lyapunov equation has no solution.

Combining the above two lemmas results in the following theorem.

Theorem 16 The following statements are equivalent.

(a) The system ẋ = Ax is stable.

(b) There exist a positive definite hermitian matrix P and a positive semi-definite matrix
Q satisfying the Lyapunov equation (11.4).
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11.3 Mechanical systems*

Example 156 A simple structure

Figure 11.1: A simple structure

Recall

m1q̈1 + (c1 + c2)q̇1 − c2q̇2 + (k1 + k2)q1 − k2q2 = 0
m2q̈2 − c2q̇1 + c2q̇2 − k2q1 + k2q2 = 0

Letting

q =

(
q1

q2

)

this system can be described by the following second order vector differential equation:

Mq̈ + Cq̇ + Kq = 0

where the symmetric matrices M,C,K are given by

M =

(
m1 0
0 m2

)
C =

(
c1 + c2 −c2

−c2 c2

)
K =

(
k1 + k2 −k2

−k2 k2

)

Since m1, m2 > 0, we have M > 0.

If k1, k2 > 0 then K > 0 (why?) and if c1, c2 > 0 then C > 0.

Note also that

kinetic energy = 1
2
m1q̇

2
1 + 1

2
m2q̇

2
2 = 1

2
q̇T Mq̇

potential energy = 1
2
k1q

2
1 + 1

2
k2(q2 − q1)

2 = 1
2
qT Kq
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Consider now a general mechanical system described by

Mq̈ + Cq̇ + Kq = 0

where q(t) is a real N -vector of generalized coordinates which describes the configuraton of
the system. The real matrix M is the inertia matrix and satisfies

MT = M > 0

We call K and C the ‘stiffness’ matrix and ‘damping’ matrix respectively. The kinetic energy
of the system is given by

1

2
q̇T Mq̇

With x =
(
qT , q̇T

)T
, this system has a state space description of the form ẋ = Ax with

A =

(
0 I

−M−1K −M−1C

)

A first Lyapunov matrix. Suppose

KT = K > 0 and CT = C ≥ 0 .

The potential energy of the system is given by

1

2
qT Kq

Consider the following candidate Lyapunov matrix

P =
1

2

(
K 0
0 M

)

Then P ∗ = P > 0 and
PA + A∗P + Q = 0

where

Q =

(
0 0
0 C

)

It should be clear that
PA + A∗P ≤ 0

iff
C ≥ 0

Hence,

KT = K > 0 and CT = C ≥ 0 imply stability.

Note that

V (x) = xT Px =
1

2
q̇T Mq̇ +

1

2
qT Kq = total energy

V̇ (x) = −q̇T Cq̇
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A second Lyapunov matrix.

P =
1

2

(
K + λC λM

λM M

)
=

1

2

(
K 0
0 M

)
+

λ

2

(
C M
M 0

)

For sufficiently small λ, the matrix P is positive definite.
Now,

PA + A∗P + Q = 0

where

Q =

(
λK 0
0 C − λM

)

For sufficiently small λ > 0, the matrix C − λM is pd and, hence, Q is pd. So,

KT = K > 0 and CT = C > 0 imply asymptotic stability.
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11.4 Rates of convergence for linear systems*

Theorem 17 Consider an asymptotically stable linear system described by ẋ = Ax and let
α be any real number satisfying

0 < α < ᾱ

where
ᾱ := −max{<(λ) : λ is an eigenvalue of A } .

Then ẋ = Ax is GES with rate α.

Proof: Consider any α satisfying 0 < α < ᾱ. As a consequence of the definition of ᾱ, all
the eigenvalues of the matrix A+αI have negative parts. Hence, the Lyapunov equation

P (A+ αI) + (A+αI)′P + I = 0 .

has a unique solution for P and P = P T > 0. As a candidate Lyapunov for the system
ẋ = Ax, consider V (x) = xT Px. Then,

V̇ = xT Pẋ + ẋT Px

= xT PAx + (Ax)T Px

= xT (PA + AT P )x .

From the above Lyapunov matrix equation, we obtain that

PA + AT P = −2αP − I ;

hence,

V̇ = −2αxT Px− xT x

≤ −2αV (x) .

Hence the system is globally exponentially stable with rate of convergence α.
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11.5 Linearization and exponential stability

Consider a nonlinear system
ẋ = f(x) (11.7)

and suppose that xe is an equilibrium state for this system. We assume that f is differential
at xe and let

Df(xe) =




∂f1

∂x1

(xe)
∂f1

∂x2

(xe) · · · ∂f1

∂xn

(xe)

∂f2

∂x1

(xe)
∂f2

∂x2

(xe) · · · ∂f2

∂xn

(xe)

...
...

...

∂fn

∂x1

(xe)
∂fn

∂x2

(xe) · · · ∂fn

∂xn

(xe)




where x = (x1, x2, · · · , xn). Then the linearization of ẋ = f(x) about xe is the linear system
defined by

δẋ = Aδx where A = Df(xe) . (11.8)

Theorem 18 Suppose xe is an equilibrium state of a nonlinear system of the form ẋ = f(x)
and the corresponding linearization is exponentially stable. Then the nonlinear system is
exponentially stable about xe.

Proof. Suppose the linearization is exponentially stable and let

ᾱ := −max{<(λ) : λ is an eigenvalue of A } .

Since all the eigenvalues have negative real parts, we have ᾱ > 0. Consider now any α
satisfying 0 < α < ᾱ. As a consequence of the definition of ᾱ, all the eigenvalues of the
matrix A+αI have negative parts. Hence, the Lyapunov equation

P (A+ αI) + (A+αI)′P + I = 0 .

has a unique solution for P and P = P T > 0. As a candidate Lyapunov function for the
nonlinear system, consider

V (x) = (x−xe)′P (x−xe) .

Recall that
f(x) = f(xe) + Df(xe)(x−xe) + o(x)

where the “remainder term” has the following property:

lim
x→0, x6=0

o(x)

‖x‖ = 0 .

Hence
f(x) = A(x−xe) + o(x)
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and

V̇ = 2xT Pẋ

= xT Pf(x)

= 2xT PAx + 2xT o(x)

≤ xT (PA + AT P )x + 2‖x‖o(x) .

From the above Lyapunov matrix equation, we obtain that

PA + AT P = −2αP − I ;

hence,

V̇ = −2xT Px− xT x + 2‖x‖o(x)

= −2αV (x)− ‖x‖2 + o(x)‖x‖ .

As a consequence of the properties of o, there is a scalar R > 0 such that

o(x) ≤ ‖x‖ when ‖x‖ ≤ R .

Hence, whenever ‖x‖ ≤ R we obtain that

V̇ ≤ −2αV (x) .

Hence the nonlinear system is exponentially stable about xe with rate of convergence α.
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Part III

Input-Output Properties

227





Chapter 12

Input output response

outputs
←− system

inputs
←−

12.1 Response of continuous-time systems

In general, a linear time-invariant continuous-time system with inputs and outputs is de-
scribed by

y
←− ẋ = Ax + Bu

y = Cx + Du

u
←−

where A, B, C and D are matrices of dimensions n×n, n×m, p×n and p×m, respectively.

12.1.1 State response and the convolution integral

The solution to
ẋ(t) = Ax(t) + Bu(t) with x(t0) = x0 (12.1)

is unique and is given by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (12.2)

for all t.

Proof. Consider any time t. Considering any time τ in the interval bounded by t0 and t,
we have

ẋ(τ) = Ax(τ) + Bu(τ)

Pre-multiply both sides by e−Aτ and rearrange to get:

e−Aτ ẋ(τ)− e−AτAx(τ) = e−AτBu(τ)
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Hence
d

dτ
(e−Aτx(τ)) = e−AτBu(τ)

Integrate with respect to to τ from t0 to t and use x(t0) = x0:

e−Atx(t)− e−At0x0 =

∫ t

t0

e−AτBu(τ)dτ

Now premultiply by eAt and use eAte−At = I and eAte−At0 = eA(t−t0) to obtain

x(t)− eA(t−t0)x0 =

∫ t

t0

eA(t−τ)Bu(τ)dτ

and, hence, the desired result.

• Note that the solution depends linearly on the pair (x0, u(·)).

• Suppose that for some input function u(·), the function xp(·) is a particular solution to
(12.1) with xp(t0) = xp

0. Then all other solutions are given by

x(t) = eA(t−t0)(x0 − xp
0) + xp(t)

(Why?)

Impulse response

Suppose t0 = 0 and

u(t) = δ(t)v

where δ(·) is the Dirac delta function or the unit impulse function and v is some constant
vector. (Don’t confuse with the δ used in linearization.) Recall that if zero is in the interval
bounded by t0 and t and g is any continuous function then,

∫ t

t0

g(t)δ(t)dt = g(0)

Hence, the solution to (12.1) is given by

x(t) = eAtx0 + eAtBv

From this we see that the zero initial state response (that is, x0 = 0) to the above impulse
input is given by

x(t) = eAtBv

This is the same as the system response to zero input and initial state, x0 = Bv.
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Response to exponentials and sinusoids

Suppose t0 = 0 and
u(t) = eλtv

where v is a constant m-vector and λ is not an eigenvalue of A. Then the solution to (12.1)
is

x(t) = eAt(x0 − xp
0)︸ ︷︷ ︸

transient part

+ eλtxp
0︸ ︷︷ ︸

steady state part

where
xp

0 = (λI − A)−1Bv

We need only prove the result for x0 = xp
0. So considering

x(t) = eλt(λI − A)−1Bv

we have
ẋ(t) = λeλt(λI − A)−1Bv = λx(t)

and
(λI − A)x(t) = eλtBv = Bu(t)

Hence,
λx(t) = Ax(t) + Bu(t)

and
ẋ(t) = λx(t) = Ax(t) + Bu(t)

• If A is asymptotically stable, the transient part goes to zero as t goes to infinity.

12.1.2 Output response

The output response of the system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

subject to initial condition x(t0) = x0 is unique and is given by

y(t) = CeA(t−t0)x0 +

∫ t

t0

G(t−τ)u(τ)dτ (12.3)

where the impulse response matrix G is defined by

G(t) = CeAtB + δ(t)D

where δ(·) is the Dirac delta function or the unit impulse function. (Don’t confuse with the δ
used in linearization.)
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To see this, recall that if zero is in the interval bounded by t0 and t and g is any continuous
function then, ∫ t

t0

δ(t)g(t)dt = g(0)

Recalling that

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ

we see that

y(t) = Cx(t) + Du(t)

= CeA(t−t0)x0 + C

∫ t

t0

eA(t−τ)Bu(τ)dτ + Du(t)

= CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ) + δ(t−τ)Du(τ)dτ

= CeA(t−t0)x0 +

∫ t

t0

G(t−τ)u(τ) dτ

Zero initial conditions response: x(0) = 0.

y(t) =

∫ t

0

G(t−τ)u(τ)dτ (12.4)

Sometimes this is represented by

y ←− G ←− u

This defines a linear map from the space of input functions to the space of output functions.

Example 157

ẋ = −x + u

y = x

Here

G(t) = CeAtB + δ(t)D

= e−t

So, for zero initial state,

y(t) =

∫ t

0

e−(t−τ)u(τ) dτ
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Example 158 Unattached mass

ẋ1 = x2

ẋ2 = u

y = x1

Here

A =

(
0 1
0 0

)
B =

(
0
1

)
C =

(
1 0

)
D = 0

Hence

eAt =

(
1 t
0 1

)

and

G(t) = CeAtB

= t

So,

y(t) =

∫ t

0

(t−τ)u(τ) dτ

Remark 5 Description (12.4) is a very general representation of a linear input-output system.
It can also be used for infinite-dimensional systems such as distributed parameter systems and
systems with delays.

Example 159 Consider the system with input delay described by

ẋ(t) = −x(t) + u(t− 1)

y(t) = x(t) .

Since

y(t) =

∫ t

0

e−(t−τ̂)u(τ̂ − 1) dτ̂

(why?) we have (upon changing variable of integration)

y(t) =

∫ t−1

−1

e−(t−1−τ)u(τ) dτ

Considering only inputs for which

u(t) = 0 for t < 0

and defining

G(t) =

{
0 for t < 1
e−(t−1) for t ≥ 1

the input-output response of this system is described by (12.4).
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Impulse response

Consider first a SISO (single-input single-output) system with impulse response function g
and subject to zero initial conditions, x(0) = 0. Suppose such a system is subject to a unit
impulse input, that is, u(t) = δ(t). Then, using (12.3), its output is given by

y(t) =

∫ t

0

g(t−τ)δ(τ) τ = g(t) .

Thus, as its name suggests, the impulse response function g is the output response of the
system to zero initial conditions and a unit impulse input.

Consider now a MIMO (multi-input multi-output) system with impulse response function
G and subject to zero initial conditions. Suppose this system is subject to an input of the
form

u(t) = δ(t)v

where v is constant m-vector. Then, from (12.3),

y(t) =

∫ t

0

G(t−τ)vδ(τ) τ = G(t)v .

By considering v = ej, where each component of ej is zero except for its j-th component
which equals one, we see that Gij is the zero initial state response of yi when uj = δ and all
other inputs are zero, that is,

u1(t) = 0
...

uj(t) = δ(t)
...

um(t) = 0





=⇒





y1(t) = G1j(t)
...

yi(t) = Gij(t)
...

yp(t) = Gpj(t)

Impulse response and transfer function

Recall that the transfer function (matrix) is given by

Ĝ(s) = C(sI − A)−1B + D

Also, the impulse response (matrix) is given by

G(t) = CeAtB + δ(t)D

Using the following Laplace transform results:

L(eAt)(s) = (sI − A)−1, L(δ) = 1

we obtain

Ĝ = L(G)

that is,

the transfer function Ĝ is the Laplace transform of the impulse response G.
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Response to exponentials and sinusoids

Suppose t0 = 0 and

u(t) = eλtv

where v is a constant m vector and λ is not an eigenvalue of A. Then

y(t) = CeAt(x0 − xp
0)︸ ︷︷ ︸

transient part

+ eλtĜ(λ)v︸ ︷︷ ︸
steady state part

where

xp
0 = (λI − A)−1Bv

and

Ĝ(λ) := C(λI − A)−1B + D

If A is asymptotically stable, then the transient part goes to zero as t goes to infinity.

12.2 Discretization and zero-order hold

Here we consider the discretization of a continuous-time system described by

ẋc(t) = Acxc(t) + Bcuc(t) (12.5)

Let T > 0 be the sampling time for discretization.

• Zero-order hold. Suppose that the input to the continuous-time system comes from a
zero-order hold with sampling time T , that is,

uc(t) = ud(k) for kT ≤ t < (k + 1)T

Thus the input uc is constant over each sampling interval, [kT, (k + 1)T ).

Suppose also that we sample the state of the continuous-time system at multiples of the
sampling time and let

xd(k) := xc(kT )
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Then

xd(k + 1) = xc((k + 1)T )

= eAcT xc(kT ) +

∫ (k+1)T

kT

eAc((k+1)T−t)Bcuc(t) dt

= eAcT xd(k) +

∫ (k+1)T

kT

eAc((k+1)T−t)Bcud(k) dt

= eAcT xd(k) +

∫ (k+1)T

kT

eAc((k+1)T−t) dtBcud(k)

Changing the variable of integration from t to τ := (k + 1)T − t yields
∫ (k+1)T

kT

eAc((k+1)T−t) dt = −
∫ 0

T

eAcτ dτ =

∫ T

0

eAcτ dτ

Hence, we obtain the following discretization of the continuous-time system (12.5):

xd(k + 1) = Adxd(k) + Bdud(k) (12.6)

where
Ad = eAcT

Bd =
∫ T

0
eAcτdτ Bc

Recall that

eAct = I + Act +
1

2!
A2

ct
2 +

1

3!
A3

ct
3 + · · ·

Thus, ∫ T

0

eAcτdτ = TI +
T 2

2!
Ac +

T 2

3!
A2

cT
3 + · · · .

and we have the following power series for Ad and Bd:

Ad = I + TAc +
T 2

2!
A2

c +
T 3

3!
A3

c + · · ·

Bd = TBc +
T 2

2!
AcBc +

T 3

3!
A2

cBc + · · · .

If Ac is invertible, then
∫ T

0

eAcτdτ = (eAcT − I)A−1
c = (Ad − I)A−1

c

and
Bd = (Ad − I)A−1

c Bc (12.7)

If we approximate Ad and Bd by considering only terms up to first order in T in their
power series, we obtain

Ad ≈ I + TAc and Bd ≈ TBc .
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Example 160 (Discretization of forced undamped oscillator)

ẋ1 = x2

ẋ2 = −x1 + u

Ac =

(
0 1

−1 0

)
Bc =

(
0
1

)

Here,

eAct =

(
cos t sin t

− sin t cos t

)

Hence,

Ad = eAcT =

(
cos T sin T

− sin T cos T

)
Bd =

∫ T

0

eAcτ dτ Bc =

(
1− cos T

sin T

)

Consider T = 2π. Then,

Ad =

(
1 0
0 1

)
Bd =

(
0
0

)

So,

x1d(k + 1) = x1d(k)

x2d(k + 1) = x2d(k)

Where did the input go?
What about T = π/2?

Ad =

(
0 1

−1 0

)
Bd =

(
1
1

)

>> help c2d

C2D Conversion of state space models from continuous to discrete time.

[Phi, Gamma] = C2D(A,B,T) converts the continuous-time system:

.

x = Ax + Bu
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to the discrete-time state-space system:

x[n+1] = Phi * x[n] + Gamma * u[n]

assuming a zero-order hold on the inputs and sample time T.

See also: C2DM, and D2C.

>> a=[0 1 ; -1 0] ; b=[0; 1] ; T= pi/2;

>> [phi, gamma]= c2d(a,b,T)

phi =

-0.0000 1.0000

-1.0000 0.0000

gamma =

1.0000

1.0000

12.2.1 Input-output discretization

Consider a continuous-time system:

ẋc(t) = Acxc(t) + Bcuc(t)

yc(t) = Ccxc(t) + Dcuc(t)

Suppose T > 0 is the sampling time.

• Zero order hold:
uc(t) = ud(k) for kT ≤ t < (k + 1)T

Letting

xd(k) := xc(kT ) yd(k) := y(kT )

we obtain

xd(k + 1) = Adxd(k) + Bdud(k)

yd(k) = Cdxd(k) + Ddud(k)

where

Ad = eAcT Bd =

∫ T

0

eAcτ dτ Bc Cd = Cc Dd = Dc
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12.3 Response of discrete-time systems*

A general linear time-invariant discrete-time system is described by

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

where k ∈ IR is ‘time’, x(k) ∈ IRn in the state, u(k) ∈ IRm the input, and y(k) ∈ IRp is the
output.

12.3.1 State response and the convolution sum

The solution to
x(k + 1) = Ax(k) + Bu(k) x(k0) = x0 (12.8)

is unique and is given by

x(k) = A(k−k0)x0 +
k−1∑

j=k0

A(k−1−j)Bu(j) (12.9)

Proof. Use induction.

12.3.2 Input-output response and the pulse response matrix

The solution to

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

subject to initial condition
x(k0) = x0

is unique and is given by

y(k) = CA(k−k0)x0 +
k∑

j=k0

G(k − j)u(j)

where the pulse response matrix G is defined by

G(0) = D
G(k) = CAk−1B for k = 1, 2, . . .

Clearly, the above holds for k = k0. For k > k0, recall that

x(k) = A(k−k0)x0 +
k−1∑

j=k0

A(k−1−j)Bu(j)
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Hence,

y(k) = CA(k−k0)x0 +
k−1∑

j=k0

CA(k−1−j)Bu(j) + Du(k)

= CA(k−k0)x0 +
k−1∑

j=k0

G(k − j)u(j) + G(0)u(k)

= CA(k−k0)x0 +
k∑

j=k0

G(k − j)u(j)

Zero initial conditions response: x(0) = 0.

y(k) =
k∑

j=0

G(k − j)u(j)

Sometimes this is represented by

y ←− G ←− u

Pulse response: Suppose x(0) = 0 and

u(0) = p(k)v for k = 0, 1, . . .

where v is constant m vector and p is the unit pulse function defined by

p(0) = 1

p(k) = 0 for k = 1, 2, . . .

Then,

y(k) = G(k)v for k = 0, 1, . . .

From this we can see that Gij is the zero initial condition response of output component yi

when input component uj is a unit pulse and all other inputs are zero, that is,

u1(k) = 0
...

uj(k) = p(k)
...

um(k) = 0





=⇒





y1(k) = G1j(k)
...

yi(k) = Gij(k)
...

yp(k) = Gpj(k)

• So, for a SISO (single-input single-output) system, G is the output response due a unit
pulse input and zero initial conditions.
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Exercises

Exercise 107 Obtain (by hand) the response of each of the following systems due to a unit
impulse input and the zero initial conditions. For each case, determine whether the response
contains all the system modes.

a)

ẋ1 = −5x1 + 2x2 + u

ẋ2 = −12x1 + 5x2 + u

b)

ẋ1 = −5x1 + 2x2 + u

ẋ2 = −12x1 + 5x2 + 2u

c)

ẋ1 = −5x1 + 2x2 + u

ẋ2 = −12x1 + 5x2 + 3u

Exercise 108 Consider the system with disturbance input w and performance output z
described by

ẋ1 = −x1 + x2 + w

ẋ2 = −x1 + 4x2 + 2w

z = x1 .

Using an appropriate Lyapunov equation, determine

∫ ∞

0

‖z(t)‖2 dt

for each of the following situations.
(a)

w = 0 and x(0) = (1, 0) .

(b)
w(t) = δ(t) and x(0) = 0 .
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Chapter 13

Observability

13.1 Observability

We are concerned here with the problem of determining the state of a system based on
measurements of its inputs and outputs. Consider the system

ẋ = Ax + Bu
y = Cx + Du

(13.1)

with initial condition
x(0) = x0

where the n-vector x(t) is the state, the m-vector u(t) is the input and the p-vector y(t) is
a vector of measured outputs; we call y the measured output (vector).

Consider any time interval [0, T ] with T > 0. The basic observability problem is as
follows. Suppose we have knowledge of the input u(t) and the output y(t) over the interval
[0, T ]; can we uniquely determine the initial state x0? If we can do this for all input histories
and initial states x0 we say that the system is observable. So, for observability, we require
that for each input history, different initial states produce different output histories, or,
equivalently, if two output histories are identical, then the corresponding initial states must
be the same. A formal definition of observability follows the next example. Note that
knowledge of the initial state and the input history over the interval [0, T ] allows one to
compute the state x(t) for 0 ≤ t ≤ T . This follows from the relationship

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ) dτ .

Example 161 Two unattached masses

ẋ1 = 0

ẋ2 = 0

y = x1

Clearly, this system is unobservable.
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DEFN. System (13.1) is observable over an interval [0, T ] if the following holds for each
input history u(·). Suppose ya(·) and yb(·) are any two output histories of system (13.1) due
to initial states xa

0 and xb
0, respectively, and ya(t) = yb(t) for 0 ≤ t ≤ T ; then xa

0 = xb
0.

13.2 Main result

To describe the main results associated with observability of LTI systems, we introduce the
observability matrix Qo associated with system (13.1). This is the following pn× n matrix

Qo =




C
CA

...
CAn−1




The following result is the main observability result for continuous-time LTI systems.

Theorem 19 (Main observability result) For any T > 0, system (13.1) is observable
over the interval [0, T ] if and only if the its observability matrix has maximum rank, that is,

rank




C
CA

...
CAn−1


 = n

where n is the number of state variables.

An immediate consequence of the above theorem is that observability does not depend
on the interval [0, T ]. So, from now on we drop reference to the interval. Since observability
only depends on the matrix pair (C, A), we say that this pair is observable if system (13.1)
is observable.

SO systems. For scalar output (p = 1) systems, Qo is a square n×n matrix; hence it has
rank n if and only if its determinant is nonzero. So, the above theorem has the following
corollary.

Corollary 1 A scalar output system of the form (13.1) is observable if and only if its ob-
servability matrix Qo has non-zero determinant.

Example 162 (Two unattached masses.) Recall example 161. Here n = 2,

A =

(
0 0
0 0

)
C =

(
1 0

)
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Hence,

Qo =

(
C

CA

)
=

(
1 0
0 0

)

Since rankQo = 1 < n, this system is unobservable.

Example 163 (The unattached mass)

ẋ1 = x2

ẋ2 = 0

We consider two cases:

(a) (Velocity measurement.) Suppose y = x2. Then

A =

(
0 1
0 0

)
C =

(
0 1

)

So,

Qo =

(
C

CA

)
=

(
0 1
0 0

)

Since rankQ0 = 1 < n, we have unobservability.

(b) (Position measurement.) Suppose y = x1. Then

Qo =

(
C

CA

)
=

(
1 0
0 1

)

Since rankQ0 = 2 = n, we have observability.

Example 164 (Beavis and Butthead: mass center measurement)

Figure 13.1: Example 164

mq̈1 = k(q2 − q1)
mq̈2 = −k(q2 − q1)

y = q1 + q2

Actually, y is not the location of the mass center of the system, however there is a one-to-one
correspondence between y and the mass center location.
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With

x1 = q1 x2 = q2 x3 = q̇1 x4 = q̇2

we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 C =

(
1 1 0 0

)

Since,
CA =

(
0 0 1 1

)
CA2 = (CA)A =

(
0 0 0 0

)
CA3 = (CA2)A =

(
0 0 0 0

)

the observability matrix for this system is

Qo =




C
CA
CA2

CA3


 =




1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0




Since rankQo = 2 < n, this system is not observable.
Physically, one can see why this system is not observable. The system can oscillate with

the mass center fixed, that is, a non-zero state motion results in zero output history.

Example 165 (Beavis and Butthead: observable) Here we take the system from the
last example and consider the measured output to be the position of the first mass.

mq̈1 = k(q2 − q1)
mq̈2 = −k(q2 − q1)

y = q1

With

x1 = q1 x2 = q2 x3 = q̇1 x4 = q̇2

we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 C =

(
1 0 0 0

)

Hence,
CA =

(
0 0 1 0

)

CA2 = (CA)A =
( −k/m k/m 0 0

)

CA3 = (CA2)A =
(

0 0 −k/m k/m
)
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So,

Qo =




C
CA
CA2

CA3


 =




1 0 0 0
0 0 1 0

−k/m k/m 0 0
0 0 −k/m k/m


 .

Since rankQo = 4 = n; this system is observable.

Useful facts for checking observability. In checking observability, the following facts
are useful.

(a) Suppose there exists n∗ such that

N







C
CA
...
CAn∗−1

CAn∗







= N







C
CA
...
CAn∗−1







or, equivalently,

rank




C
CA
...
CAn∗−1

CAn∗




= rank




C
CA
...
CAn∗−1




Then

N (Qo) = N







C
CA
...
CAn∗−1







and

rank (Qo) = rank




C
CA
...
CAn∗−1
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(b) Suppose V 1, . . . , V k is a sequence of matrices which satisfy

N (V 1) = N (C)

N







V 1

...
V j−1

V j





 = N







V 1

...
V j−1

V j−1A





 for j = 2, . . . , k

Then

N







C
...
CAk

CAk+1





 = N







V 1

...
V k

V kA







and

rank




C
...
CAk

CAk+1


 = rank




V 1

...
V k

V kA




See next two examples.

Example 166 (Beavis and Butthead: mass center measurement revisited)

mq̈1 = k(q2 − q1)
mq̈2 = −k(q2 − q1)

y = q1 + q2

With
x1 = q1 x2 = q2 x3 = q̇1 x4 = q̇2

we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 C =

(
1 1 0 0

)

Hence,
CA =

(
0 0 1 1

)

CA2 =
(

0 0 0 0
)

So, using useful fact (b) above,

rank (Qo) = rank

(
C

CA

)
= rank

(
1 1 0 0
0 0 1 1

)
= 2

Since rank (Qo) < n, this system is not observable.
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Example 167 (Beavis and Butthead: observable)

mq̈1 = k(q2 − q1)
mq̈2 = −k(q2 − q1)

y = q1

With

x1 = q1 x2 = q2 x3 = q̇1 x4 = q̇2

we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 C =

(
1 0 0 0

)

Hence,

CA =
(

0 0 1 0
)

CA2 =
( −k/m k/m 0 0

)

So,

rank




C
CA
CA2


 = rank




1 0 0 0
0 0 1 0
0 1 0 0




and

rank (Qo) = rank




C
CA
CA2

CA3


 = rank




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 = 4

Since rankQo = n; this system is observable.

Example 168 State feedback can destroy observability.

A =

(
0 1
0 0

)
C =

(
1 0

)

(C, A) is observable. Consider

BK =

(
0 1
0 0

)

Then

A + BK = 0

and (C, A + BK) is unobservable.
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13.3 Development of main result

To develop the main result presented in the last section, we first demonstrate the following
result:

System (13.1) is observable over an interval [0, T ] if and only if the uncontrolled system
(u(t) ≡ 0)

ẋ = Ax
y = Cx

(13.2)

has the property that the zero state is the only initial state which results in an output history
which is identically zero; that is, it has the following property:

y(t) = 0 for 0 ≤ t ≤ T implies x(0) = 0

To see that the above property is necessary for observability, simply note that the zero
initial state produces a zero output history; hence if some nonzero initial state x0 produces
a zero output history, then there are two different initial states producing the same output
history and the system is not observable.

To see that the above property is sufficient, consider any input history u(·) and suppose
ya(·) and yb(·) are two output histories due to initial states xa

0 and xb
0, repectively, and ya(·) =

yb(·). Let xa(·) and xb(·) be the state histories corresponding the xa
0 and xb

0, respectively,
that is,

ẋa = Axa + Bu , xa(0) = xa
0

ya = Cxa + Du

and

ẋb = Axb + Bu , xb(0) = xb
0

yb = Cxb + Du

Then, letting

x(t) := xb(t)− xa(t)

y(t) := yb(t)− ya(t)

we obtain

ẋ = Ax , x(0) = xb
0 − xa

0

y = Cx

Since y(t) ≡ 0 we must have xb
0 − xa

0 = 0; hence xb
0 = xa

0. So, system (13.1) is observable.
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Example 169 (The unattached mass)

ẋ1 = x2

ẋ2 = 0

If y = x2, the system is unobservable: consider nonzero initial state x0 = [1 0]T ; the
corresponding output history satisfies y(t) ≡ 0. If y = x1, the system is observable. To see
this note that x = [y, ẏ]T . If y(t) ≡ 0 over a nonzero interval, then ẏ(0) = 0 and hence,
x(0) = 0.

We have just shown that to investigate the observability of system (13.1), we need only
determine the initial states which result in an identically zero output for the system with
zero input, that is system (13.2). So, let us look at the consequences of a zero output for the
above system. So, suppose x0 is an initial state which, for some T > 0, results in y(t) = 0
for 0 ≤ t ≤ T , that is,

Cx(t) = 0 for 0 ≤ t ≤ T (13.3)

where

ẋ(t) = Ax(t), x(0) = x0 .

Differentiating the equation in (13.3) with respect to t results in

0 = Cẋ(t) = CAx(t) = 0 for 0 ≤ t ≤ T .

Repeated differentiation of (13.3) yields:

CAkx(t) = 0 for 0 ≤ t ≤ T and k = 0, 1, 2, . . .

Letting t = 0 and using the initial condition x(0) = x0 results in

CAkx0 = 0 for k = 0, 1, 2, . . . . (13.4)

So, we have shown that if an initial state x0 results in a zero output over some nonzero
interval then, (13.4) holds.

Let us now demonstrate the converse, that is, if (13.4) holds, then the resulting output
is zero over any nonzero interval. So, suppose (13.4) holds for some initial state x0. Recall
that x(t) = eAtx0; hence

y(t) = CeAtx0

Since eAt can be expressed as eAt =
∑∞

k=0 βk(t)A
k, we have

y(t) = CeAtx0 =
∞∑

k=0

β(t)CAkx0 = 0 .

So, we now conclude that an initial state x0 results in a zero output over some nonzero
interval if and only if (13.4) holds. Since, for each k = 0, 1, 2 . . ., the matrix Ak can be
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expressed as a linear combination of I, A, A2, . . . , An−1, it follows that (13.4) holds if and
only if

CAkx0 = 0 for k = 0, 1, 2, n−1 . (13.5)

Thus an initial state x0 results in a zero output over some nonzero interval if and only if
(13.5) holds. Recalling the definition of the observability matrix Qo associated with system
(13.1) we obtain the following result:

An initial state x0 results in zero output over some nonzero interval if and only if Qox0 = 0

Hence, system (13.1) is observable if and only if the only vector satisfying Qox0 = 0 is
the zero vector. This immediately leads to the following result on observability. Recall that
the nullity of a matrix is the dimension of its null space.

For any T > 0, system (13.1) is observable over the interval [0, T ] if and only if the
nullity of its observability matrix is zero.

Since the rank and nullity of Qo must sum to n which is the maximum of Qo, we now
obtain main result, that is Theorem 19.

252



13.4 The unobservable subspace

Example 170 At first sight, the system

ẋ1 = x1

ẋ2 = x2

y = x1 + x2

might look observable. However, it is not. To see this, introduce new state variables

xo := x1 + x2 and xuo := x1 − x2

Then

ẋo = xo

ẋu = xu

y = xo

Hence, xo(0) = 0 implies xo(t) = 0 and, hence, y(t) = 0 for all t. In other words if the initial
state x(0) is in the set

{x ∈ IR2 : x1 + x2 = 0}
The resulting output history is zero.

Figure 13.2: Example 170

Recall that observability matrix Qo associated with (C, A) is defined to be the following
pn× n matrix

Qo =




C
CA

...
CAn−1




Recall also that an initial state x0 results in a zero output if and only if Qox0 = 0, that is
xo is in the null space of Qo. So, we define the unobservable subspace Xuo associated with
system (13.1) or (C, A) to be the null space of the observability matrix, that is,

Xuo = N (Qo)

and we have the following result.
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Lemma 10 (Unobservable subspace lemma) For any nonzero time interval [0, T ], the
following statements are equivalent for system (13.2).

(i) y(t) = 0 for 0 ≤ t ≤ T .

(ii) Qox(0) = 0, or, equivalently, x(0) is in the unobservable subspace Xuo.

Example 171 Recalling the last example we have n = 2 and

A =

(
1 0
0 1

)
C =

(
1 1

)

Hence,

Qo =

(
C

CA

)
=

(
1 1
1 1

)

Clearly,
Xuo = N (Qo) = N ((

1 1
))

= N (C)

Hence
N (Qo) = {x ∈ IR2 : x1 + x2 = 0}
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13.5 Unobservable modes

Suppose we are interested in the observability of the the input-output system

ẋ = Ax + Bu

y = Cx + Du

Since observability is independent of u, we only need to consider the corresponding zero
input system:

ẋ = Ax

y = Cx (13.6)

Recall that a mode of this system is a special solution of the form x(t) = eλtv. Such a
solution results when x(0) = v and v is an eigenvector of A with eigenvalue λ. We say that
eλtv is an unobservable mode of the above system if, the above system has a solution of the
form x(t) = eλtv and the corresponding output is zero, that is,

x(t) ≡ eλtv and y(t) ≡ 0

The eigenvalue λ is called an unobservable eigenvalue of the system. We also refer to λ as an
unobservable eigenvalue of (C,A).

Clearly, if a system has an unobservable mode then, the system is not observable. In
the next section, we show that if an LTI system is not observable, then it must have an
unobservable mode. Thus:

An LTI system is observable if and only if it has no unobservable modes.

This is illustrated in the following example.

Example 172

ẋ1 = λ1x1 + b1u

ẋ2 = λ2x2 + b2u

y = c1x1 + c2x2 + du

Since

Qo =

(
C

CA

)
=

(
c1 c2

λ1c1 λ2c2

)

This system is observable if and only if

c1 6= 0, c2 6= 0 , λ1 6= λ2

Note that if c1 = 0 then considering u(t) ≡ 0 this system has a solution

x(t) = eλ1t

(
1
0

)

and the corresponding output satisfies

y(t) ≡ 0
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13.5.1 PBH Test

The next lemma provides a useful characterization of unobservable eigenvalues.

Lemma 11 A complex number λ is an unobservable eigenvalue of the pair (C, A) if and
only if the matrix (

A− λI
C

)
(13.7)

does not have maximum rank (that is n, where n is the number of columns in A.)

Proof. Recall that λ is an unobservable eigenvalue of (C,A) if the system ẋ = Ax
has a non-zero solution of the form x(t) = eλtv which satisfies Cx(t) ≡ 0. We have already
seen that the existence of a nonzero solution of the form eλtv is equivalent to v being an
eigenvector of A with eigenvalue λ, that is, v 6= 0 and Av = λv; this is equivalent to

(A− λI)v = 0

and v 6= 0. Since x(t) = eλtv and eλt 6= 0, the statement that Cx(t) ≡ 0 is equivalent to

Cv = 0 .

So, we have shown that λ is an unobservable eigenvalue of (C, A) if and only if there is a
nonzero vector satisfying (

A− λI
C

)
v = 0 .

The existence of a nonzero v satisfying the above equality is equivalent to saying that the
columns of the matrix in the equality are linearly dependent, that is, the rank of the matrix
is less than the number of its columns. Since the number of columns in the above matrix is
less than or equal to the number of its rows, the maximum rank of this matrix equals the
number of its columns. Hence, λ being an unobservable eigenvalue of (C, A) is equivalent to
the matrix in (13.7) not having maximum rank.

Example 173 Consider a system with

A =

(
0 1
1 0

)
B =

(
0
1

)
C =

( −1 1
)

D = 0 .

Here, the observability matrix is

Qo =

(
C

CA

)
=

( −1 1
1 −1

)
.

Since Qo has zero determinant, this system is not observable. Hence, the system has some
unobservable modes. The eigenvalues of A are 1 and −1. To determine the unobservable
eigenvalues, we carry out the PBH test:

(
A− λI

C

)
=



−λ 1

1 −λ
−1 1
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For λ = 1, the above matrix is rank deficient; hence 1 is an unobservable eigenvalue. For
λ = −1, the PBH matrix has maximum rank. Hence, this eigenvalue is observable.

Note that the transfer function for this system is given by

Ĝ(s) =
s− 1

s2 − 1
=

1

s + 1
.

So, the unobservable eigenvalue is not a pole of the transfer function. This transfer function
is also the transfer function of the stable system with with A = −1 and B = C = 1 and
D = 0.

Since we have already stated that an LTI system is observable if and only if it has no
unobservable eigenvalues, we obtain the following corollary to Lemma 11. This new result
provides another useful test for observability.

Corollary 1 (PBH observability test.) The pair (C, A) is observable if and only if the matrix

(
A− λI

C

)

has maximum rank for every eigenvalue λ of A.

Example 174 (Unobservable modes)

A

-2 2 1 2

-1 1 1 2

-3 2 2 2

-1 0 -1 1

B =

2

0

0

2

C

1 0 0 -1

Qo= obsv(A, C)

1 0 0 -1

-1 2 2 1

-7 4 4 7

-9 -2 -2 9

rank(Qo)

2 %System is unobservable
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eig(A)

1.0000 + 2.0000i

1.0000 - 2.0000i

-1.0000

1.0000

I=eye(4);

rank([A-(-1)*I; C]) %PBH Time

3

rank([A-(1)*I; C])

3

rank([A-(1+2i)*I; C])

4

rank([A-(1-2i)*I; C])

4

So the eigenvalues −1 and +1 are unobservable. The eigenvalues 1 + ı2 and 1 − ı2 are not
unobservable.

[num den] = ss2tf(A,B,C,0)

num = 1.0e-013 *

0 -0.0400 0.0933 0.0044 -0.1954

den =

1.0000 -2.0000 4.0000 2.0000 -5.0000

%Actually, the transfer function is ZERO! Why?

Here we observe that unobservable eigenvalues are invariant under a state transformation.
To see this consider any state transformation of the form x = T x̃; then the new PBH
observability matrix is given by

(
Ã− λI

C̃

)
=

(
T−1AT − λI

CT

)
=

(
T−1 0
0 I

)(
A− λI

C

)
T
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Since T is invertible, we see that the new and the old PBH matrices have the same rank.

13.5.2 Existence of unobservable modes*

Here we will show that, if a system is unobservable then, is must have an unobservable mode.
So, consider a linear time-invariant input-output system described

ẋ = Ax + Bu (13.8a)

y = Cx + Du (13.8b)

where x(t) is an n-vector, u(t) is an m-vector, and y(t) is a p-vector. Suppose (C, A) is not
observable. In the following section, we show that there is a state transformation x = T x̃ so
that the corresponding transformed system has the following special structure:

ẋo = Aooxo + Bou
ẋu = Auoxo + Auuxu + Buu
y = Coxo + Du

with (
xo

xu

)
= x̃ .

Also, the pair (Co, Aoo) is observable. Roughly speaking, this transformation splits the state
into an observable part xo and an unobservable part xu; the subsystem

ẋo = Aooxo + Bou

y = Coxo + Du

is observable; one can obtain xo from knowledge of the histories of u and y.
Notice that, in the transformed system description, there is no connection from the state

xu to the output y. We also note that, when u(t) ≡ 0 and xo(0) = 0 we must have xo(t) ≡ 0.
Also,

ẋu = Auuxu

y = 0

From this it should be clear that, if λ is any eigenvalue of Auu then the transformed system
(with zero input) has a solution which satisfies

x̃(t) = eλtṽ and y(t) ≡ 0

for some nonzero ṽ, that is λ is an unobservable eigenvalue of the transformed system.
Hence, the system

ẋ = Ax , y = Cx

has a nonzero solution x which satisfies

x(t) ≡ eλtv and y(t) ≡ 0
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Since the matrices A and

Ã =

(
Aoo 0
Auo Auu

)

are similar, they have the same characteristic polynomial. Moreover the characteristic poly-
nomial of Ã is given by

det(sI − Ã) = det(sI − Aoo) det(sI − Auu)

Hence the characteristic polynomial of A is the product of the characteristic polynomials of
Aoo and Auu. Thus, the eigenvalues of A are the union of those of Aoo and Auu. Hence, the
eigenvalues of Auu are the unobservable eigenvalues of (C,A). The corresponding modes are
the unobservable modes.

Transfer function considerations. Consider the reduced order observable system:

ẋo = Aooxo + Bou

y = Coxo + Du

One can readily show that the transfer function of this system is exactly the same as that
of the original system, that is,

C(sI − A)−1B + D = Co(sI − Ao)
−1Bo + D

13.5.3 A nice transformation*

Consider a LTI input-output system described by

ẋ = Ax + Bu

y = Cx + Du

where x(t) is an n-vector, u(t) is an m-vector, and y(t) is a p-vector. Suppose (C, A) is not
observable; then, its unobservable subspace Xuo is nontrivial. The next lemma states that
Xuo is an invariant subspace of A.

Lemma 12 For any n× n matrix A and any p× n matrix, C, the subspace

Xuo = N







C
CA
...

CAn−1







is an invariant subspace for A.

Proof. Consider any element x of Xuo. It satisfies

CAkx = 0 for k = 0, · · · , n− 1
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Since
An = −α0I − α1A− · · · − αn−1A

n−1

we obtain
CAnx = 0

from which it follows that

CAk(Ax) = 0 for k = 0, · · · , n− 1

hence Ax is contained in Xuo. Since this holds for every element x of Xuo, it follows that Xuo

is A-invariant.

Transformation. Suppose nu is the dimension of the unobservable subspace Xuo, that is,
nu is the nullity of the observability matrix, and let

no := n− nu .

Choose any basis
tno+1, . . . , tn

for the unobservable subspace, that is, the null space of the observability matrix Qo. Extend
it to a basis

t1, . . . , tno , tno+1, . . . , tn

for the whole state space IRn and let

T :=
(

t1 t2 . . . tn
)

(One could do this by choosing T = V where USV ∗ is a singular value decomposition of
Qo). Introduce the state transformation

x = T x̃

If we let (
xo

xu

)
= x̃

where xo is an no-vector and xu is an nu-vector, then

x is in Xuo if and only if xo = 0

The transformed system description is given by

˙̃x = Ãx̃ + B̃u

y = C̃x̃ + Du

where
Ã = T−1AT B̃ = T−1B C̃ = CT

261



Since Xuo is an invariant subspace of A, the matrix Ã has the following structure:

Ã =

(
Aoo 0
Auo Auu

)

where Aoo is no× no. Since the vectors tno+1, . . . , tn are in the null space of C, the matrix C̃
has the following structure

C̃ =
(

Co 0
)

where Co is p× no. If we partition B̃ as

B̃ =

(
Bo

Bu

)

where Bo is no ×m. then the transformed system is described by

ẋo = Aooxo +Bou
ẋu = Auoxo + Auuxu +Buu
y = Coxo +Du

• The pair (Co, Aoo) is observable.

Example 175 (Unobservable modes)

A

-2 2 1 2

-1 1 1 2

-3 2 2 2

-1 0 -1 1

C

1 0 0 -1

Qo= obsv(A, C)

1 0 0 -1

-1 2 2 1

-7 4 4 7

-9 -2 -2 9

rank(Qo)

2 %System is unobservable

eig(A)

1.0000 + 2.0000i
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1.0000 - 2.0000i

-1.0000

1.0000

I=eye(4);

rank([A-(-1)*I; C]) %PBH Time

3

rank([A-(1)*I; C])

3

rank([A-(1+2i)*I; C])

4

rank([A-(1-2i)*I; C])

4

So the eigenvalues −1 and +1 are unobservable. The eigenvalues 1 + ı2 and 1 − ı2 are not
unobservable.

rref(Qo)

1 0 0 -1

0 1 1 0

0 0 0 0

0 0 0 0

N=[1 0 0 1; 0 1 -1 0]’ %Basis for unobservable subspace

1 0

0 1

0 -1

1 0

Qo*N

0 0 %Just checking!

0 0

0 0

0 0

rref([N I])

1 0 0 0 0 1

0 1 0 0 -1 0

0 0 1 0 0 -1
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0 0 0 1 1 0

T=[E(:,1:2) N ] % A nice transformation

1 0 1 0

0 1 0 1

0 0 0 -1

0 0 1 0

Anew = inv(T)*A*T

-1 2 0 0

-4 3 0 0

-1 0 0 1

3 -2 1 0

Cnew = C*T

1 0 0 0

Aoo= Anew(1:2,1:2)

-1 2

-4 3

Auu= Anew(3:4,3:4)

0 1

1 0

eig(Auu)

-1.0000 %Unobservable eigenvalues

1.0000

eig(Aoo)

1.0000 + 2.0000i %The remaining eigenvalues

1.0000 - 2.0000i

B

2

0

0

2

[num den] = ss2tf(A,B,C,0) num = 1.0e-013 *

0 -0.0400 0.0933 0.0044 -0.1954

den =

1.0000 -2.0000 4.0000 2.0000 -5.0000
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%Actually, the transfer function is ZERO! Why?

13.6 Observability grammians*

For each T > 0, we define the finite time observability grammian associated with (C, A):

Wo(T ) =

∫ T

0

eA∗tC∗CeAt dt

To obtain an interpretation of Wo(T ), consider the output y due to zero input and any
initial state x0, that is,

ẋ = Ax x(0) = x0

y = Cx

Then y(t) = CeAtx0, and

∫ T

0

||y(t)||2 dt =

∫ T

0

||CeAtx0||2 dt =

∫ T

0

(
CeAtx0

)∗ (
CeAtx0

)
dt

=

∫ T

0

x∗0e
A∗tC∗CeAtx0 dt = x∗0

(∫ T

0

eA∗tC∗CeAt dt

)
x0

= x∗0Wo(T )x0 ;

thus ∫ T

0

||y(t)||2 dt = x∗0Wo(T )x0 .

Remark 6 Note that Wo(T ) is the solution at t = T to the following initial value problem:

Ẇo = WoA + A∗Wo + C∗C and Wo(0) = 0

Proof. With s = t− τ , we have τ = t− s and

Wc(t) =

∫ t

0

eAτC∗CeA∗τ dτ =

∫ t

0

eA(t−s)C∗CeA∗(t−s) ds

Hence, Wc(0) = 0 and

Ẇc = AWc + WcA
∗ + C∗C

Lemma 13 For each T > 0, the matrices Wo(T ) and Qo have the same null space.
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Proof. We need to show that N (Qo) = N (Wo(T )). Since

Qo =




C
CA
...

CA(n−1)




it follows that x is in N (Qo) if and only if

CAkx = 0 for k = 0, 1, . . . , n−1 (13.9)

We first show that N (Qo) ⊂ N (Wo(T )): Consider any x in N (Qo). Then (13.9) holds.
Recalling the application of the Cayley-Hamilton theorem to functions of a matrix, it follows
that for 0 ≤ t ≤ T , there are scalars β0(t), . . . , βn−1(t) such that

eAt =
n−1∑
i=0

βi(t)A
i

Hence,

CeAtx =
n−1∑
i=0

βi(t)CAix = 0

and

Wo(T )x =

∫ T

0

eA∗tC∗CeAt dt x

=

∫ T

0

eA∗tC∗CeAtx dt

= 0

that is, x is in N (Wo(T )). Since the above holds for any x ∈ N (Qo), we must have N (Qo) ⊂
N (Wo(T )).

We now show that N (Wo(T )) ⊂ N (Qo) and hence N (Qo) = N (Wo(T )). To this end,
consider any x in N (Wo(T )). Then,

0 = x∗Wo(T )x

= x∗
(∫ T

0

eA∗tC∗CeAt dt

)
x

=

∫ T

0

x∗eA∗tC∗CeAtx dt

=

∫ T

0

(
CeAtx

)∗ (
CeAtx

)
dt

=

∫ T

0

||CeAtx||2 dt .
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Since the last integrand is non-negative for all t and the integral is zero, the integrand must
be zero for all t, that is,

CeAtx ≡ 0 .

If a function is zero for all t, all its derivatives must be zero for all t; hence

CAkeAtx ≡ 0 for k = 0, 1, . . . , n−1 .

Considering t = 0 yields

CAkx = 0 for k = 0, 1, . . . , n−1 ,

that is, x is in N (Qo). Since the above holds for any x in N (Wo(T )), we must have
N (Wo(T )) ⊂ N (Qo).

Example 176 (The unattached mass)

ẋ1 = x2

ẋ2 = 0

Here

A =

(
0 1
0 0

)
eAt =

(
1 t
0 1

)

(a) (Position measurement.) y = x1. Here

C =
(

1 0
)

Hence,

Wo(T ) =

∫ T

0

eA∗tC∗CeAt dt =

(
T T 2/2

T 2/2 T 3/3

)

and Wo(T ) and Qo have the same null space; that is, {0}.
(b) (Velocity measurement.) y = x2. Here

C =
(

0 1
)

Hence,

Wo(T ) =

∫ T

0

eA∗tC∗CeAt dt =

(
0 0
0 T

)

and Wo(T ) and Qo have the same null space.

The above lemma has the following consequence.

The pair (C,A) is observable if and only if for every T > 0 the corresponding observability
grammian is invertible.
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Computation of initial state. One reason for introducing the observability grammian
is as follows: Suppose (C,A) is observable; then from the above lemma, Wo(T ) is invertible.
The output for

ẋ = Ax + Bu x(0) = x0

y = Cx + Du

is given by

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ) dτ + Du(t)

Letting

ỹ(t) = y(t)−
∫ t

0

CeA(t−τ)Bu(τ) dτ −Du(t)

we have ỹ(t) = CeAtx0 and

∫ T

0

eA∗tC∗ỹ(t) dt =

∫ T

0

eA∗tC∗CeAtx0 dt

= Wo(T )x0 .

Since Wo(T ) is invertible, we obtain the following explicit expression for the initial state in
terms of the input and output histories:

x0 = Wo(T )−1
∫ T

0
eA∗tC∗ỹ(t) dt

The above expression explicitly shows us that if a system is observable, we can obtain the
initial state from measurements of the input and output over any time interval. However,
this formula is not usually used to obtain the state. One usually uses asymptotic observers
or state estimators to asymptotically obtain the state; these are covered in a later chapter.

13.6.1 Infinite time observability grammian

Suppose A is asymptotically stable, that is, all its eigenvalues have negative real parts, and
consider the linear matrix equation

WoA + A∗Wo + C∗C = 0

This is a Lyapunov equation of the form PA + A∗P + Q = 0 with Q = C∗C. Since A is
asymptotically stable the above equation has a unique solution for Wo and this solution is
given by

Wo =

∫ ∞

0

eA∗tC∗CeAtdt

We call this matrix the (infinite-time) observability grammian associated with (C, A). One
may show that Wo and the observability matrix Qo have the same null-space. Since Wo is a
symmetric positive definite matrix, it follows that the null space of Wo is {0} if and only if
Wo is positive definite. Hence, we have the following result.
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Lemma 14 Suppose all the eigenvalues of A have negative real parts. Then (C, A) is ob-
servable if and only if Wo is positive definite.

Note that if y is the output of the system

ẋ = Ax

y = Cx

with initial condition x(0) = x0 then

∫ ∞

0

‖y(t)‖2 dt = x∗0W0x0

This follows from y(t) = CeAtx0 and

∫ ∞

0

‖y(t)‖2 dt =

∫ ∞

0

y(t)∗y(t) dt

=

∫ ∞

0

(CeAtx0)
∗CeAtx0 dt

= x∗0

∫ ∞

0

eA∗tC∗CeAt dt x0

= x∗0W0x0 .
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13.7 Discrete time

Consider the discrete-time system described by

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(13.10)

where k ∈ ZZ is time, x(k) ∈ IRn is the state, u(k) ∈ IRm is the input, and y(k) ∈ IRp is the
measured output.

Consider any fixed time N > 0. The basic observability problem is as follows. Sup-
pose we have knowledge of the input sequence {u(0), u(1), · · · , u(N) } and output sequence
{ y(0), y(1), · · · , y(N) } over the interval [0, N ]. Can we uniquely determine the initial state

x0 = x(0)

If we can do this for input histories and all initial states we say the system is observable.

DEFN. System (13.10) is observable over the interval [0, N ] if the following holds for each
input history u(·). Suppose ya(·) and yb(·) are any two output histories of system (13.1) due
to initial states xa

0 and xb
0, respectively, and ya(k) = yb(k) for 0 ≤ k ≤ N ; then xa

0 = xb
0.

• Our first observation is that system (13.10) is observable over [0, N ] if and only if the
system

x(k + 1) = Ax(k)
y(k) = Cx(k)

(13.11)

has the property that the zero state is the only initial state resulting in an output history
which is identically zero; that is, it has the the following property:

y(k) = 0 for 0 ≤ k ≤ N =⇒ x(0) = 0

13.7.1 Main observability result

Theorem 20 (Main observability theorem) For each N ≥ n− 1 , system (13.10) is
observable over [0, N ] if and only if

rank




C
CA
...
CAn−1


 = n

Proof. The proof can be obtained by showing that, for system (13.11) with x0 = x(0),



y(0)
y(1)

...
y(n−1)


 =




Cx0

CAx0
...
CAn−1x0


 = Q0x0

Also use Cayley Hamilton.
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13.8 Exercises

Exercise 109 Determine whether or not each of the following systems are observable.

ẋ1 = −x1

ẋ2 = x2 + u
y = x1 + x2

ẋ1 = −x1

ẋ2 = x2 + u
y = x2

ẋ1 = x1

ẋ2 = x2 + u
y = x1 + x2

ẋ1 = x2

ẋ2 = 4x1 + u
y = −2x1 + x2

Exercise 110 Consider the system with input u, output y, and state variables x1, x2 de-
scribed by

ẋ1 = −3x1 + 2x2 + u

ẋ2 = −4x1 + 3x2 + 2u

y = −2x1 + x2

(a) Is this system observable?
(b) If the system is unobservable, determine the unobservable eigenvalues.

Exercise 111 Determine (by hand) whether or not the following system is observable.

ẋ1 = 5x1 − x2 − 2x3

ẋ2 = x1 + 3x2 − 2x3

ẋ3 = −x1 − x2 + 4x3

y1 = x1 + x2

y2 = x2 + x3

If the system is unobservable, compute the unobservable eigenvalues.

Exercise 112 Determine the unobservable eigenvalues for each of the systems of Exercise
109.

Exercise 113 For each system in Exercise 109 which is not observable, obtain a reduced
order system which is observable and has the same transfer function as the original system.

Exercise 114 (Damped linear oscillator.) Recall

ẋ1 = x2

ẋ2 = −(k/m) x1 − (d/m) x2

Show the following:

(a) (Position measurement.) If y = x1, we have observability.

(b) (Velocity measurement.) If y = x2, we have observability if and only if k 6= 0.

(c) (Acceleration measurement.) If y = ẋ2, we have observability if and only if k 6= 0.
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Exercise 115 (BB in laundromat) Obtain a state space representation of the following sys-
tem.

mq̈1 −mΩ2q1 + k(q1 − q2) = 0

mq̈2 −mΩ2q2 − k(q1 − q2) = 0

y = q1

Determine whether or not your state space representation is observable.

Figure 13.3: Beavis and Butthead in the laundromat

Exercise 116 (BB in laundromat: mass center observations.) Obtain a state space represen-
tation of the following system.

mq̈1 −mΩ2q1 + k(q1 − q2) = 0

mq̈2 −mΩ2q2 − k(q1 − q2) = 0

y = 1
2
(q1 + q2)

(a) Obtain a basis for its unobservable subspace.

(b) Determine the unobservable eigenvalues. Consider ω :=
√

k/2m > Ω.

Exercise 117 (BB in laundromat: internal observations.) Obtain a state representation of
the following system.

mq̈1 −mΩ2q1 + k(q1 − q2) = 0

mq̈2 −mΩ2q2 − k(q1 − q2) = 0

y = q2 − q1

(a) Obtain a basis for its unobservable subspace.

(b) By using a nice transformation, obtain a reduced order observable system which has
the same transfer function as the original system.
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(c) Determine the unobservable eigenvalues. Consider ω :=
√

k/2m > Ω.

Exercise 118 Consider a system described by

ẋ1 = λ1x1 + b1u

ẋ2 = λ2x2 + b2u
...

ẋn = λnxn + bnu

y = c1x1 + c2x2 + · · ·+ cnxn

where all quantities are scalar. Obtain conditions on the numbers λ1, · · · , λn and c1, · · · , cn

which are necessary and sufficient for the observability of this system.

Exercise 119 Compute the observability grammian for the damped linear oscillator with
position measurement and d, k > 0.

Exercise 120 Carry out the following for linearizations L1-L8 of the two pendulum cart
system.

(a) Determine which linearizations are observable?

(b) Compute the singular values of the observability matrix.

(b) Determine the unobservable eigenvalues for the unobservable linearizations.
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Chapter 14

Controllability

14.1 Controllability

Consider a system in which x(t) is the system state at time t and u(t) is the control input at
time t. Consider now any non-trivial time interval [0, T ]; by non-trivial we mean that T > 0.
We say that the system is controllable over the interval if it can be ‘driven’ from any one
state to any other state over the time interval by appropriate choice of control input over
the interval. A formal definition follows the next two examples.

Example 177 (Two unattached masses)

ẋ1 = u

ẋ2 = 0

Since the behavior of x2 is completely unaffected by the control input u, this system is clearly
uncontrollable over any time interval.

Example 178 (Integrator) Consider the scalar system described by

ẋ = u

Consider any initial state x0 and any desired final state xf . For any any T > 0, consider the
constant input:

u(t) = (xf − x0)/T for 0 ≤ t ≤ T

Then the state trajectory x(·) of this system with x(0) = x0 satisfies x(T ) = xf . We consider
this system to be controllable over any time interval [0, T ].

DEFN.[Controllability] A system is controllable over a non-trivial time interval [0, T ] if, for
every pair of states x0 and xf , there is a continuous control function u(·) defined on the
interval such that the solution x(·) of the system with x(0) = x0 satisfies x(T ) = xf .

Note that the definition says nothing about keeping the state at xf after T .
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Figure 14.1: Controllability

14.2 Main controllability result

The concept of controllability also applies to linear and nonlinear systems. However, we are
concerned here with linear time-invariant systems described by

ẋ = Ax + Bu (14.1)

where the n-vector x(t) is the system state at time t and the m-vector u(t) is the control
input at time t. In this section, we introduce a simple algebraic condition which is necessary
and sufficient for the controllability of a linear time invariant system over any time interval.
This condition involves the controllability matrix Qc associated with the above system or the
pair (A, B). This matrix is defined to be the following n× nm partitioned matrix:

Qc =
(

B AB · · · An−1B
)

(14.2)

Theorem 21 (Main controllability result) For any T > 0, system (14.1) is controllable
over the interval [0, T ] if and only if its controllability has maximum rank, that is,

rank
(

B AB · · · An−1B
)

= n

Proof. A proof is given at the end of Section 14.3.

An immediate consequence of the above theorem is that controllability does not depend
on the interval [0, T ]. So, from now on we drop reference to the interval. Since controllability
only depends on the matrix pair (A,B), we say that this pair is controllable if system (14.1)
is controllable.

For scalar input (m = 1) systems, the controllability matrix is a square matrix; hence it
has maximum rank if and only if its determinant is nonzero. So, the above theorem has the
following corollary.

Corollary 2 A scalar input system of the form (14.1) is controllable if and only if its con-
trollability matrix has non-zero determinant.
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Example 179 (Two unattached masses.) This is a scalar input system with

A =

(
0 0
0 0

)
and B =

(
1
0

)
.

Hence,

Qc =
(

B AB
)

=

(
1 0
0 0

)

Clearly Qc has zero determinant, hence this system is not controllable.

Example 180

ẋ1 = x3 + u1

ẋ2 = x3 + u1

ẋ3 = u2

Since there is a control input entering every state equation, this system looks controllable.
Is it?

Here n = 3 and

A =




0 0 1
0 0 1
0 0 0


 B =




1 0
1 0
0 1




So,

Qc =
(

B AB A2B
)

=




1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 0 0




and

rank (Qc) = rank




1 0
1 0
0 1


 = 2

Since rankQc = 2, we have rank Qc 6= n; hence this system is not controllable.

MATLAB

>> help ctrb

CTRB Form controllability matrix.

CTRB(A,B) returns the controllability matrix

Co = [B AB A^2B ...]

>> A=[0 0 1; 0 0 1; 0 0 0];

>> B=[1 0; 1 0; 0 1];

>> ctrb(A,B)

ans =

1 0 0 1 0 0

1 0 0 1 0 0

0 1 0 0 0 0
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Useful fact for computing rank Qc. In computing rank Qc, the following fact is useful.
Suppose there exists a positive integer k such that

rank
(

B AB . . . AkB
)

= rank
(

B AB . . . Ak−1B
)

Then
rankQc = rank

(
B AB . . . Ak−1B

)

The next example illustrates the above fact.

Example 181 (Beavis and Butthead: self-controlled) Consider the situation in which
the system generates a pair of control forces which are equal in magnitude and opposite in
direction.

Figure 14.2: B&B: self-controlled

The motion of this system can be described by

mq̈1 = k(q2 − q1)− u
mq̈2 = −k(q2 − q1) + u

Based on simple mechanical considerations, we can see that this system is not controllable.
Now lets do the controllability test. With

x1 = q1 x2 = q2 x3 = q̇1 x4 = q̇2

we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 B =




0
0

−1/m
1/m




Here

(
B AB

)
=




0 −1/m
0 1/m

−1/m 0
1/m 0




and

(
B AB A2B

)
=




0 −1/m 0
0 1/m 0

−1/m 0 2k/m2

1/m 0 −2k/m2
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Clearly,
rank

(
B AB A2B

)
= rank

(
B AB

)

Hence
rank Qc = rank

(
B AB

)
= 2

MATLAB time.

>> a = [0 0 1 0

0 0 0 1

-1 1 0 0

1 -1 0 0];

>> b = [0; 0; -1; 1];

>> rank(ctrb(a,b))

ans = 2

Example 182 (Beavis and Butthead with external control) Here we consider the sys-
tem of the previous example and replace the pair of internal forces with a single external
control force u. This system is described by

Figure 14.3: B&B: external control

mq̈1 = k(q2 − q1)
mq̈2 = −k(q2 − q1) +u

With
x1 = q1 x2 = q2 x3 = q̇1 x4 = q̇2

we have

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 B =




0
0
0

1/m




Hence,

Qc =
(

B AB A2B A3B
)

=




0 0 0 k/m2

0 1/m 0 −k/m2

0 0 k/m2 0
1/m 0 −k/m2 0




Clearly, rankQc = 4 = n; hence this system is controllable.
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Exercise 121 Suppose A is n× n, B is n×m, T is n× n and nonsingular and let

Ã = T−1AT B̃ = T−1B

Then (A,B) is controllable if and only if (Ã, B̃) is controllable.

14.3 The controllable subspace

Let us now consider the situation when the system ẋ = Ax + Bu is not controllable.

Example 183 At first sight the system

ẋ1 = x1 + u

ẋ2 = x2 + u

might look controllable. However, it is not. To see this, consider the following change of
state variables:

xc = x1 + x2 and xu = x1 − x2

These variables satisfy

ẋc = xc + 2u

ẋu = xu

Hence, xu(0) = 0 implies xu(t) = 0 for all t. In other words if the initial x(0) is in the set

{(x1, x2) ∈ IR2 : x1 − x2 = 0}

then, regardless of the control input, the state will always stay in this set; it cannot leave
this set. So, the system is not controllable.

Figure 14.4: Controllable subspace in Example 183
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Recall that the controllability matrix associated with the pair (A, B) is defined to be the
following n× nm matrix

Qc =
(

B AB . . . An−1B
)

The controllable subspace is defined as the range of the controllability matrix, that is,

R(Qc)

So, according to the Main Controllability Theorem (Theorem 21), the system ẋ = Ax+Bu
is controllable if and only if its controllable subspace is the whole state space. It should be
clear that a vector x is in the controllable subspace associated with (A, B) if and only if it
can be expressed as

x =
n−1∑
i=0

AiBνi

where ν0, . . . , νn−1 are m-vectors.
The following lemma states that when the state of system (14.1) starts at zero, then

regardless of the control input, the state always stays in the controllable subspace; that is,
it cannot leave this subspace.

Lemma 15 If x(0) = 0 then, for every continuous control input function u(·), the solution
x(·) of (14.1) lies in the controllable subspace, that is, x(t) is in the range of Qc for all t ≥ 0.

Proof. For any time t > 0 we have

x(t) =

∫ t

0

eA(t−τ)Bu(τ) dτ

Recalling the application of the Cayley-Hamilton theorem to functions of a matrix, it follows
that for 0 ≤ τ ≤ t, there are scalars β0(τ), . . . , βn−1(τ) such that

eA(t−τ) =
n−1∑
i=0

βi(τ)Ai

Hence,

eA(t−τ)Bu(τ) =
n−1∑
i=0

AiBνi(τ) νi(τ) := βi(τ)u(τ)

From this it should be clear that for each τ , the n vector eA(t−τ)Bu(τ) is in R(Qc), the range
of Qc. From this one obtains that x(t) =

∫ t

0
eA(t−τ)Bu(τ) dτ is in R(Qc).

Example 184 For the system of example 183, we have

Qc =
(

B AB
)

=

(
1 1
1 1

)
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Clearly,

R(Qc) = R
((

1
1

))
= R (B)

If a vector x is in this controllable subspace, then x = c [ 1 1 ]T for some scalar c. This is
equivalent to the requirement that x1 − x2 = 0.

Actually, if the state starts at any point in R(Qc) then, regardless of the control input,
the state always stays in R(Qc); see next exercise. In other words, the control input cannot
drive the state out of the controllable subspace.

Figure 14.5: Invariance of the controllable subspace

Exercise 122 Prove the following statement. If x(0) is in R(Qc), then for every continuous
control input function u(·), the solution of (14.1) satisfies x(t) ∈ R(Qc) for all t ≥ 0.

The next result states that over any time interval, system (14.1) can be driven between
any two states in the controllable subspace R(Qc) by appropriate choice of control input.

Lemma 16 [Controllable subspace lemma] Consider any pair of states x0, xf in the con-
trollable subspace R(Qc). Then for each T > 0, there is a continuous control function
u(·) : [0, T ] → IRm such that the solution x(·) of (14.1) with x(0) = x0 satisfies x(T ) = xf

Proof. A proof is contained in section 14.4.

Example 185

ẋ1 = −x1 + x2 + u

ẋ2 = −x1 + x2 + u

Here,

A =

( −1 1
−1 1

)
B =

(
1
1

)

Hence

Qc =
(

B AB
)

=

(
1 0
1 0

)
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and

R(Qc) = R
((

1
1

))

To illustrate the controllable subspace lemma, introduce new states

xc = x1 xu = −x1 + x2

Then

x = xc

(
1
1

)
+ xu

(
0
1

)

and

ẋc = xu + u

ẋu = 0

It should be clear that x is in the controllable subspace if and only if xu = 0. In this case x
is completely specified by the scalar xc and

ẋc = u

Recalling example 178, we see that given any xc0, xcf and any T > 0, one can always find
a control input which ‘drives’ xc from xc0 to xcf over the interval [0, T ]. Hence, the state x
can be driven between any two points in the controllable subspace.

Proof of main controllability result. First note that rankQc = n if and only ifR(Qc) =
IRn, that is, the controllability matrix has rank n if and only if the controllable subspace is
the whole state space. If rank Qc = n, then Lemma 16 implies controllability. If rank Qc < n,
then the controllable subspace is not the whole state space and from Lemma 15 any state
which is not in the controllable subspace cannot be reached from the origin.
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14.4 Proof of the controllable subspace lemma*

14.4.1 Finite time controllability grammian

Before proving the controllable subspace lemma, we first establish a preliminary lemma. For
each T > 0, we define the finite time controllability grammian associated with (A,B):

Wc(T ) :=

∫ T

0

eAtBB∗eA∗t dt (14.3)

Note that this matrix is hermitian and positive semi-definite.

Remark 7 Note that Wc(T ) is the solution at t = T of the following initial value problem:

Ẇc = AWc + WcA
∗ + BB∗ and Wc(0) = 0

Proof.

Wc(t) =

∫ t

0

eAτBB∗eA∗τ dτ =

∫ t

0

eA(t−s)BB∗eA∗(t−s) ds

Hence, Wc(0) = 0 and
Ẇc = AWc + WcA

∗ + BB∗

Lemma 17 For each T > 0,
R(Wc(T )) = R(Qc)

Proof. We will show that N (Q∗
c) = N (Wc(T )). From this it will follow that R(Qc) =

R(Wc(T )∗) = R(Wc(T )).
Since

Q∗
c =




B∗

B∗A∗
...

B∗A∗(n−1)




it follows that x is in N (Q∗
c) if and only if

B∗A∗kx = 0 for k = 0, 1, . . . , n−1 (14.4)

We first show that N (Q∗
c) ⊂ N (Wc(T )): Consider any x ∈ N (Q∗

c). Then (14.4) holds.
Recalling the application of the Cayley-Hamilton theorem to functions of a matrix, it follows
that for 0 ≤ t ≤ T , there are scalars β0(t), . . . , βn−1(t) such that

eA∗t =
n−1∑
i=0

βi(t)A
∗i
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Hence,

B∗eA∗tx =
n−1∑
i=0

βi(t)B
∗A∗ix = 0

and

Wc(T )x =

∫ T

0

eAtBB∗eA∗t dt x

=

∫ T

0

eAtBB∗eA∗tx dt

= 0

that is, x ∈ N (Wc(T )). Since the above holds for any x ∈ N (Q∗
c), we must have N (Q∗

c) ⊂
N (Wc(T )).

We now show that N (Wc(T )) ⊂ N (Q∗
c) and hence N (Q∗

c) = N (Wc(T )): Consider any
x ∈ N (Wc(T )). Then,

0 = x∗Wc(T )x

= x∗
(∫ T

0

eAtBB∗eA∗t dt

)
x

=

∫ T

0

x∗eAtBB∗eA∗tx dt

=

∫ T

0

(
B∗eA∗tx

)∗ (
B∗eA∗tx

)
dt

=

∫ T

0

||B∗eA∗tx||2 dt

Since the integrand is non-negative for all t and the integral is zero, the integrand must be
zero for all t, that is,

B∗eA∗tx ≡ 0

If a function is zero for all t, all its derivatives must be zero for all t; hence

B∗A∗keA∗tx ≡ 0 for k = 0, 1, . . . , n−1

Considering t = 0 yields

B∗A∗kx = 0 for k = 0, 1, . . . , n−1

that is x ∈ N (Q∗
c). Since the above holds for any x ∈ N (Wc(T )), we must have N (Wc(T )) ⊂

N (Q∗
c).

From our main controllability result and the above lemma, we see that (A,B) is control-
lable if and only if , for any T > 0, its finite time controllability grammian Wc(T ) has full
rank. Since Wc(T ) is square, it has full rank if and only if it is invertible. Moreover, since
Wc(T ) is symmetric and positive semidefinite, it has full rank if and only if it is positive
definite. This yields the following result.
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Corollary 2 The system ẋ = Ax + Bu is controllable if and only if its controllability gram-
mian over any non-trivial interval is positive definite.

14.4.2 Proof of the controllable subspace lemma

Consider any T > 0 and any pair of states x0, xf in R(Qc). The solution of (14.1) at time T
is:

x(T ) = eAT x0 +

∫ T

0

eA(T−τ)Bu(τ) dτ

Hence, a control input drives the state from x0 to xf if and only if

∫ T

0

eA(T−τ)Bu(τ) dτ = z := xf − eAT x0

We first show that

z ∈ R(Qc)

Since x0 ∈ R(Qc),

x0 =
n−1∑
i=0

AiBνi

hence

eAT x0 =
n−1∑
i=0

eAT AiBνi

By application of Cayley Hamilton to functions of a matrix

eAT Ai =
n−1∑

k=0

βikA
k

so,

eAT x0 =
n−1∑
i=0

n−1∑

k=0

βikA
kBνi =

n−1∑

k=0

AkBν̃k

where ν̃k :=
∑n−1

i=0 βikν
i. From this it should be clear that eAT x0 is in R(Qc). Since xf is

also in R(Qc) we have z ∈ R(Qc).
Since z is in R(Qc), it follows from the previous lemma that z is also in R(Wc(T )). Hence

there exists an n-vector y such that

z = Wc(T )y

Considering the control input

u(τ) = B∗eA∗(T−τ)y
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we obtain

∫ T

0

eA(T−τ)Bu(τ) dτ =

∫ T

0

eA(T−τ)BB∗eA∗(T−τ)y dτ

=

∫ T

0

eA(T−τ)BB∗eA∗(T−τ) dτ y

=

∫ T

0

eAtBB∗eA∗t dt y

= Wc(T )y

= z

hence, this control input drives the state from x0 to xf .

Remark 8 Suppose (A,B) is controllable. Then rank Wc(T ) = rankQc = n. Hence Wc(T )
is invertible and the control which drives x0 to xf over the interval [0, T ] is given by

u(t) = B∗eA∗(T−t)x̃ x̃ = Wc(T )−1(xf − eAT x0)

14.5 Uncontrollable modes

We shall see that if a system is uncontrollable, it has modes which cannot be affected by the
input. To define exactly what we mean by an uncontrollable mode, we need to look at the
left eigenvectors of the system A matrix.

14.5.1 Eigenvectors revisited: left eigenvectors

Suppose that λ is an eigenvalue of a square matrix A. Then an eigenvector corresponding
to λ is any nonzero vector satisfying Av = λv. We say that a nonzero vector w is a left
eigenvector of A corresponding to λ if it satisfies

w′A = λw′ (14.5)

To see that left eigenvectors exist, note that the above equation is equivalent to A′w = λ̄w,
that is, λ̄ is an eigenvalue of A′ and w is an eigenvector of A′ corresponding to λ̄. We now
recall that λ is an eigenvalue of A if and only if λ̄ is an eigenvalue of A′ . Thus, we can
say that λ is an eigenvalue of A if and only if it satisfies (14.5) for some non-zero vector
w. Moreover, we can also say that every eigenvalue λ of A has left eigenvectors and these
vectors are simply the eigenvectors of A′ corresponding to λ̄.

Consider now any two eigenvectors λ1 and λ2 of A with λ1 6= λ2. Suppose that v1 is an
eigenvector for λ1 and w2 is a left eigenvector for λ2. Then

w′
2v1 = 0 .
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To see this, we first use the eigenvector definitions to obtain

Av1 = λ1v1 and w′
2A = λ2w

′
2 .

Pre-multiplying the first equation by w′
2 we obtain that w′

2Av1 = λ1w
′
2v1. Post-multiplying

the section equation by v1 we obtain that w′
2Av1 = λ2w

′
2v1. This implies that λ1w

′
2v1 =

λ2w
′
2v1, that is (λ1 − λ2)w

′
2v1 = 0. Since λ1 − λ2 6= 0, we must have w′

2v1 = 0.

System significance of left eigenvectors. Consider now a system described by

ẋ = Ax . (14.6)

Recall that λ is an eigenvalue of A if and only if the above system has a solution of the form
x(t) = eλtv where v is a nonzero constant vector. When this occurs, the vector v can be any
eigenvector of A corresponding to λ and the above special solution is described as a mode
of the system. We now demonstrate the following result:

A scalar λ is an eigenvalue of A if and only if there is a nonzero vector w such that every
solution x(·) of system (14.6) satisfies

w′x(t) = eλtw′x(0) (14.7)

When this occurs, the vector w can be any left eigenvector of A corresponding to λ.

In particular, if x(0) = w/||w||2 then, w′x(t) = eλt. If w′x(0) = 0 then w′x(t) = 0 for all
t.

To gain further insight into the above result, introduce the scalar variable ξ(t) = w′x(t).
Then ξ(0) = w′x(0) and (14.7) is equivalent to

ξ(t) = eλtξ(0) ,

that is, the behavior of ξ is governed by

ξ̇ = λξ .

To demonstrate the above result, we first suppose that λ is an eigenvalue of A. Then there
is a nonzero vector w such that (14.5) holds; also w is a left eigenvector of A corresponding
to λ. Consider now any solution x(·) of system (14.6). Since it satisfies ẋ = Ax, it follows
from (14.5) that

d(w′x)

dt
= w′ẋ = w′Ax = λ(w′x)

It now follows that (14.7) holds for all t.
To demonstrate the converse, suppose that there is a nonzero vector w so that (14.7)

holds for every solution x(·). This implies that

w′Ax(t) = w′ẋ(t) =
d(w′x)

dt
= λeλtw′x(0) = λw′x(t) ;

hence,
w′(A− λI)x(t) = 0 .

Since the above holds for any x(t), we must have w′(A − λI) = 0. Thus, w′A = λw′. This
implies that λ is an eigenvalue of A with left eigenvector w.
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14.5.2 Uncontrollable eigenvalues and modes

Consider now a system with input u described by

ẋ = Ax + Bu (14.8)

We say that λ is an uncontrollable eigenvalue of this system or λ is an uncontrollable eigen-
value of (A,B) if there is a nonzero vector w such that for every input u(·), every solution
x(·) of the system satisfies

w′x(t) = eλtw′x(0) (14.9)

To gain further insight into the above concept, introduce the scalar variable ξ(t) = w′x(t).
Then, as we have shown above, (14.9) is equivalent to the statement that the behavior of ξ
is governed by

ξ̇ = λξ .

Thus the behavior of ξ is completely unaffected by the input u. So, the mode eλt is completely
unaffected by the input u. We say that this is an uncontrollable mode.

When system (14.8) has an uncontrollable mode, then the system is not controllable. To
see this choose any initial state x(0) = x0 such that w′x0 6= 0. Then, regardless of the control
input, we have w′x(t) = eλtw′x0 6= 0 for all t. Hence, regardless of the control input, x(t) 6= 0
for all t. This means that over any time interval [0, T ] we cannot obtain a control history
which drives the system from x0 to 0. Hence the system is not controllable. In Section
14.5.3, we demonstrate the following result.

If a system is not controllable then, it must have some uncontrollable modes.

14.5.3 Existence of uncontrollable modes*

In this section, we show that if a LTI system is not controllable, then it has uncontrollable
modes. Consider a linear time-invariant input-output system described

ẋ = Ax + Bu

y = Cx + Du (14.10)

where x(t) is an n-vector, u(t) is an m-vector, and y(t) is a p-vector. Suppose (A,B) is
not controllable; then, its controllable subspace Xc is not equal to the whole state space.
In the following section, we show that there is a state transformation x = T x̃ so that the
corresponding transformed system is described by

ẋc = Accxc + Acuxu + Bcu

ẋu = Auuxu

y = Ccxc + Cuxu + Du (14.11)

with (
xc

xu

)
= x̃ .
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Figure 14.6: Controllable/uncontrollable decomposition

Also, the pair (Acc, Bc) is controllable.
Clearly, the state xu of the subsystem

ẋu = Auuxu (14.12)

is completely unaffected by the input u. Also, if xu(0) = 0 then xu(t) = 0 for all t and the
input-output system in (14.11) can be described by the controllable subsystem:

ẋc = Accxc + Bcu

y = Ccxc + Du (14.13)

Hence, when the initial state x(0) of the input-output system (14.10) is zero, its behavior
can be described by the lower order system (14.13).

Since the matrices A and

Ã =

(
Acc Acu

0 Auu

)

are similar, they have the same characteristic polynomial. In particular, the characteristic
polynomial of Ã is given by

det(sI − Ã) = det(sI − Acc) det(sI − Auu)

Hence the characteristic polynomial of A is the product of the characteristic polynomials of
Acc and Auu. Thus, the eigenvalues of A are the union of those of Acc and Auu. We now
make the following claim:

The eigenvalues of Auu are the uncontrollable eigenvalues of A.

Proof. To prove this claim, let λ be any eigenvalue of Auu. We will show that λ is an
uncontrollable eigenvalue of (A,B). Since λ is an eigenvalue of Auu there is a nonzero vector
wu such that for every solution xu(·) of (14.12), we have

w′
uxu(t) = eλtw′

uxu(0) .

Let w̃′ = [0 w′
u]. Then every solution x̃ of (14.11) satisfies

w̃′x̃(t) = eλtw̃′x̃(0)

With w = Tw̃, we now obtain that every solution of (14.10) satisfies w′x(t) = eλtw′x(0) .
Thus, λ is an uncontrollable eigenvalue of A.
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We now prove the converse, that is, if λ is an uncontrollable eigenvalue of (A,B), then
λ must be an eigenvalue of Auu. So, suppose that λ is an uncontrollable eigenvalue of
(A,B). Then (A,B) is not controllable and there is a state transformation x = T [x′c x′u]

′

such that the system can be represented as in (14.11) with a nontrivial xu and with (Acc, Bc)
controllable. Suppose, on the contrary, that λ is not an eigenvalue of Auu. Then λ must be
an eigenvalue of Acc. Let w be such that (14.9) holds and let [w′

u w′
c]
′ = T−1w. Then we

must have
w′

cxc(t) + w′
uxu(t) = eλt[w′

cxc(0) + w′
uxu(0)]

for every input u and every solution x̃(·) of (14.11). Considering those solutions with xu(0) =
0, we obtain that xu(t) = 0 for all t and

ẋc = Acxc + Bcu . (14.14)

Thus w′
cxc(t) = eλtw′

cxc(0) for every input and every solution xc(·) of (14.14); hence λ is an
uncontrollable eigenvalue of (Ac, Bc). This implies that (Ac, Bc) is not controllable and we
have a contradiction. So, λ must be an eigenvalue of Auu

Transfer function considerations. Consider the reduced order controllable subsystem:

ẋc = Accxc + Bcu

y = Ccxc + Du

One can readily show that the transfer function of this system is exactly the same as that
of the original system, that is

C(sI − A)−1B + D = Cc(sI − Ac)
−1Bc + D .

An immediate consequence of this result is that a minimal state space realization of a transfer
function must be controllable.

14.5.4 A nice transformation*

We first show that the controllability subspace Xc is an invariant subspace for A, that is, is
x is in Xc, then Ax is in Xc.

Lemma 18 For any pair of matrices A ∈ IRn×n and B ∈ IRn×m, the controllable subspace

Xc = R ((
B AB · · · An−1B

))

is an invariant subspace for A.

Proof. Consider any element x of Xc. It can be expressed as

x = Bν1 + ABν2 + · · ·+ An−1Bνn

Hence
Ax = ABν1 + A2Bν2 + · · ·+ AnBνn
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Since

An = −α0I − α1A− · · · − αn−1A
n−1

we obtain

Ax = B(−α0νn) + AB(ν1 − α1νn) + · · ·+ An−1B(νn−1 − αn−1νn)

hence Ax is contained in Xc. Since this holds for every element x of Xc, it follows that Xc is
A-invariant.

A nice transformation. Choose any basis

t1, . . . , tnc

for the controllable subspace Xc of (A,B). Extend it to a basis

t1, . . . , tnc , tnc+1, . . . , tn

for IRn and let

T :=
(

t1 t2 . . . tn
)

One could do this by choosing T = U where USV ∗ is a singular value decomposition of the
controllability matrix, that is

USV ∗ =
(

B AB · · · An−1B
)

Introduce the state transformation

x = T x̃

Let (
xc

xu

)
= x̃

where xc is a nc-vector and xu is a (n−nc)-vector. Then

x is in Xc if and only if xu = 0

The transformed system description is given by

˙̃x = Ãx̃ + B̃u

y = C̃x̃ + Du

where

Ã = T−1AT B̃ = T−1B C̃ = CT

Since Xc is an invariant subspace of A, the matrix Ã has the following structure:

Ã =

(
Acc Acu

0 Auu

)
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where Acc is nc × nc. Since the columns of B are contained in the Xc, the matrix B̃ has the
following structure

B̃ =

(
Bc

0

)

where Bc is nc ×m. If we partition C̃ as

C̃ =
(

Cc Cu

)

where Cc is p× nc, then the transformed system is described by

ẋc = Accxc + Acuxu + Bcu
ẋu = Auuxu

y = Ccxc + Cuxu + Du

• The pair (Acc, Bc) is controllable.

Example 186 Consider

ẋ1 = x2 − u

ẋ2 = x1 + u

y = x2

Here,

A =

(
0 1
1 0

)
B =

( −1
1

)
C =

(
0 1

)
D = 0

and the system transfer function is given by

Ĝ(s) =
1

s + 1

Since the controllability matrix

Qc =
(

B AB
)

=

( −1 1
1 −1

)

has rank less than two, this system is not controllable. The controllable subspace is spanned
by the vector ( −1

1

)
= B

Introducing the state transformation

x = T x̃ x̃ =

(
xc

xu

)
T =

( −1 1
1 1

)

we obtain an equivalent system description with

Ã =

( −1 0
0 1

)
B̃ =

(
1
0

)
C̃ =

(
1 1

)
D̃ = 0
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that is

ẋc = −xc + u

ẋu = xu

y = xc + xu

The transfer function of the reduced order controllable system

ẋc = −xc + u

y = xc

is clearly the same as that of the original system.
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14.6 PBH test

14.6.1 PBH test for uncontrollable eigenvalues

The next lemma provides a useful characterization of uncontrollable eigenvalues.

Lemma 19 A complex number λ is an uncontrollable eigenvalue of the pair (A, B) if and
only if

rank (A− λI B) < n

where n is the number of rows in A.

Proof. When the above rank condition holds, there exists a non-zero n-vector w such that

w′ (A− λI B) = 0 ,

that is
w′A = λw′ and w′B = 0 .

So, if x(·) is any solution of the system ẋ = Ax + Bu corresponding to any input u(·), we
obtain that

d(w′x)

dt
= w′Ax + w′Bu = λ(w′x) .

Hence,
w′x(t) = eλtw′x(0) . (14.15)

So λ is an uncontrollable eigenvalue.
To prove the converse, suppose now that λ is an uncontrollable eigenvalue of (A,B).

Then, (14.15) holds for any solution x(·) of the system ẋ = Ax + Bu corresponding to any
input u(·). Since (14.15) implies that

w′ẋ(t) = λeλtw′x(0) = λw′x(t), ,

it follows that
w′Ax(t) + w′Bu(t) = λw′x(t) ;

hence

w′ ( A− λI B
) (

x(t)
u(t)

)
= 0

Since x(t) and u(t) can be arbitrary chosen, we must have

w′ (A− λI B) = 0 ,

Since w is non zero, it follows that the rank of (A− λI B) is less than n.

Alternate Proof*. We first show that when the above rank condition holds, the pair
(A,B) is not controllable. When this rank condition holds, there exists a non-zero n vector
x such that

x∗ (A− λI B) = 0
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hence,
x∗A = λx∗, x∗B = 0

It now follows that
x∗AB = λx∗B = 0

and, by induction, one can readily prove that

x∗AkB = 0 for k = 0, · · · , n− 1

Hence
x∗Qc = 0

where Qc is the controllability matrix associated with (A,B). This last condition implies
that Qc has rank less than n, hence, (A,B) is not controllable.

So, if either (A,B) has an uncontrollable eigenvalue or the above rank condition holds
then, (A,B) is not controllable and there exists a nonsingular matrix T such that the matrices
Ã = T−1AT , B̃ = T−1B have the following structure;

Ã =

(
Acc Acu

0 Auu

)
B̃ =

(
Bc

0

)

with (Acc, Bc) controllable. Noting that

(
Ã− λI B̃

)
= T−1 (A− λI B)

(
T 0
0 I

)

it follows that
rank

(
Ã− λI B̃

)
= rank (A− λI B)

Since (Acc, Bc) is controllable,

rank
(

Acc − λI Bc

)
= nc

where nc is the number of rows of Ac; hence

rank
(
Ã− λI B̃

)
= rank

(
Acc − λI Acu Bc

0 Auu − λI 0

)

= rank

(
Acc − λI Bc Acu

0 0 Auu − λI

)

= rank

(
Acc − λI Bc 0

0 0 Auu − λI

)

= nc + rank [Auu − λI]

It now follows that
rank (A− λI B) < n

if and only if
rank [Auu − λI] < nu

where nu = n−nc is the number of rows of Auu. This last condition is equivalent to λ being
an uncontrollable eigenvalue of (A,B).
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14.6.2 PBH controllability test

Since a system is controllable if and only if it has no uncontrollable eigenvalues, the PBH
test for uncontrollable eigenvalues gives us the following test for controllability.

Corollary 3 (PBH controllability test) The pair (A,B) is controllable if and only if

rank (A− λI B) = n for all λ ∈ C

Example 187 Two unattached masses. There,

(A− λI B) =

( −λ 0 0
0 −λ 1

)

The above rank test fails for λ = 0.

Example 188 Recall example 186. There

(A− λI B) =

( −λ 1 −1
1 −λ 1

)

The above rank test fails for λ = 1

Exercise 123 If α is any complex number, prove the following result. The pair (A+αI,B)
is controllable if and only if (A,B) is controllable.

Example 189 (Beavis and Butthead: self-controlled) Recall the system of Example
181.

Figure 14.7: B&B: self-controlled

Here

A =




0 0 1 0
0 0 0 1

−k/m k/m 0 0
k/m −k/m 0 0


 B =




0
0

−1/m
1/m




So, the PBH controllability matrix for the zero eigenvalue is

(A B) =




0 0 1 0 0
0 0 0 1 0

−k/m k/m 0 0 −1/m
k/m −k/m 0 −0 1/m




Since the last two rows of this matrix are not linearly independent, this matrix does not
have the maximum rank of 4; hence zero is an uncontrollable eigenvalue. This eigenvalue
corresponds to the rigid body mode of this system.
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14.7 Other characterizations of controllability*

14.7.1 Infinite time controllability grammian

Suppose A is asymptotically stable, that is all its eigenvalues have negative real parts, and
consider the linear matrix equation

AWc + WcA
∗ + BB∗ = 0

This is a Lyapunov equation of the form AS + SA∗ + Q = 0 with Q = BB∗. Since A is
asymptotically stable the above equation has a unique solution for Wc and this solution is
given by

Wc =

∫ ∞

0

eAtBB∗eA∗tdt .

We call this matrix the (infinite-time) controllability grammian associated with (A,B). For
asymptotically stable systems, this matrix provides another controllability test.

Lemma 20 Suppose all the eigenvalues of A have negative real parts. Then (A,B) is con-
trollable if and only if Wc > 0

Proof. When A is asymptotically stable, one can readily generalize Lemma 17 to include
the case T = ∞; hence

R(Wc) = R(Qc)

Since Wc > 0 if and only if it has rank n, the lemma now follows from the main controllability
theorem.

MATLAB

>> help gram

GRAM Controllability and observability gramians.

GRAM(A,B) returns the controllability gramian:

Gc = integral {exp(tA)BB’exp(tA’)} dt

GRAM(A’,C’) returns the observability gramian:

Go = integral {exp(tA’)C’Cexp(tA)} dt

See also DGRAM, CTRB and OBSV.
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14.8 Controllability, observability, and duality

Recall that for any matrix M , we have rankM∗ = rankM . It now follows from the main
controllability theorem that a pair (A, B) is controllable if and only if the rank of Q∗

c is n,
that is,

rank




B∗

B∗A∗
...

B∗A∗(n−1)


 = n

Note that the above matrix is the observability matrix associated with the pair (B∗, A∗).
Recalling the main observability theorem, we obtain the following result:

• (A, B) is controllable if and only if (B∗, A∗) is observable.

The above statement is equivalent to

• (C, A) is observable if and only if (A∗, C∗) is controllable.

This is what is meant by the duality between controllability and observability.
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14.9 Discrete-time

With one exception, all the results we have developed for continuous time also hold in an
analogous fashion for discrete time. In discrete-time we need to consider time intervals [0, N ]
where N is bigger then n, the number state variables. Consider the system described by

x(k + 1) = Ax(k) + Bu(k) (14.16)

where k ∈ ZZ is time, x(k) ∈ IRn is the state, and u(k) ∈ IRm is the control input.
Consider any fixed time N > 0. We say that this system is controllable if it can be

‘driven’ from any state to any other state over the time interval [0, N ] by appropriate choice
of control input.

DEFN. System (14.16) is controllable over the interval [0, N ] if for every pair of states
x0, xf ∈ IRn, there is a control function u(·) : {0, 1 . . . , N} → IRm such that the solution x(·)
of

x(k + 1) = Ax(k) + Bu(k) x(0) = x0 (14.17)

satisfies x(N) = xf .

14.9.1 Main controllability theorem

Theorem 22 (Main controllability theorem.) For each N ≥ n , system (14.16) is control-
lable over [0, N ] if and only if

rank
(

B AB . . . An−1B
)

= n
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Chapter 15

Stabilizability and state feedback

In this chapter we look at the problem of changing the dynamics of a system using state
feedback. In particular, we look at the problem of stabilization via state feedback.

15.1 Stabilizability and state feedback

Consider a linear time-invariant system with control input described by

ẋ = Ax + Bu . (15.1)

For now, we consider linear static state feedback controllers, that is, at each instant t of time
the current control input u(t) depends linearly on the current state x(t), that is, we consider
the control input to be given by

u(t) = Kx(t) (15.2)

where K is a constant m × n matrix, sometimes called a state feedback gain matrix. When
system (15.1) is subject to such a controller, its behavior is governed by

ẋ = (A + BK)x (15.3)

We call this the closed loop system resulting from controller (15.2). The following result is

Figure 15.1: State feedback

easily shown using the PBH test for controllability.

Fact 9 The pair (A + BK, B) is controllable if and only if (A, B) is controllable.
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Suppose the open loop system, that is, the system with zero feedback, or, ẋ = Ax is
unstable or at most marginally stable. A natural question is the following. Can we choose
the gain matrix K so that A + BK is asymptotically stable? If yes, we say that system
(15.1) is stabilizable.

DEFN.[Stabilizability] System (15.1) is stabilizable if there exists a matrix K such that A+BK
is asymptotically stable.

We sometimes say that the pair (A, B) is stabilizable if system (15.1) is stabilizable.
The big question is: under what conditions is a given pair (A,B) stabilizable? We shall

see in Section 15.4.2 that controllability is a sufficient condition for stabilizability; that is,
if a system is controllable it is stabilizable. However, controllability is not necessary for
stabilizability, that is, it is possible for a system to be stabilizable but not controllable. To
see this, consider a system with A asymptotically stable and B equal to zero; see also the
next two examples.

Example 190 (Not stabilizable and not controllable)

ẋ1 = x1

ẋ2 = u

For any gain matrix K, the matrix

A + BK =

(
1 0
k1 k2

)

has eigenvalues 1 and k2. Hence, A + BK is unstable for all K. So, this system is not
stabilizable.

Example 191 (Stabilizable but not controllable.)

ẋ1 = −x1

ẋ2 = u

For any gain matrix K, the matrix

A + BK =

( −1 0
k1 k2

)

has eigenvalues −1 and k2. Hence, A + BK is asymptotically stable provided k2 < 0. So,
this system is stabilizable. However, it is not controllable.

15.2 Eigenvalue placement (pole placement) by state

feedback

Recall the stabilizability problem for the system

ẋ = Ax + Bu
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and suppose A and B are real matrices. Here we consider a more general question: Can
we arbitrarily assign the eigenvalues of A + BK by choice of the gain matrix K? The main
result of this section is that the answer is yes if and only if the pair (A,B) is controllable.
We consider first single input systems.

15.2.1 Single input systems

Here we consider scalar input (m = 1) systems. We first demonstrate that the characteristic
polynomial of A + BK depends in an affine linear fashion on the gain matrix K. To achieve
this, we need to use the following result whose proof is given in the appendix at the end of
this chapter.

Fact 10 Suppose M and N are any two matrices of dimensions n×m and m×n, respectively.
Then,

det(I + MN) = det(I + NM) .

In particular, if m = 1, we have

det(I + MN) = 1 + NM .

Whenever s is not an eigenvalue of A, we have sI−A−BK = (sI−A)(I−(sI−A)−1BK).
Thus, using Fact 10, we obtain that

det(sI − A−BK) = det(sI − A) det(I − (sI − A)−1BK)

= det(sI − A) det(I −K(sI − A)−1B)

= det(sI − A)(1−K(sI − A)−1B) ,

that is, the characteristic polynomial of A + BK satisfies

det(sI − A−BK) = det(sI − A)(1−K(sI − A)−1B) . (15.4)

From this expression, we can make the following statement:

For a single input system, the characteristic polynomial of A + BK depends in an affine
linear fashion on the gain matrix K.

We now show that we can arbitrarily assign the eigenvalues of A + BK by choice of the
gain matrix K if (A,B) is controllable. Consider any bunch of complex numbers λ1, . . . , λn

with the property that if λ is in the bunch then so is λ̄ and suppose we wish to choose a gain
matrix K such that the eigenvalues of A + BK are precisely these complex numbers. Let

d̂(s) =
n∏

i=1

(s− λi)

that is, d̂ is the unique monic polynomial whose roots are the desired closed loop eigenvalues,
λ1, . . . , λn. We need to show that there is a gain matrix K so that det(sI−A−BK) = d̂(s).
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Let d be the characteristic polynomial of A, that is, d(s) = det(sI − A). Then, recalling
(15.4) we need to show that there exists a gain matrix K such that

d̂(s) = d(s)(1−K(sI − A)−1B)

that is,
d(s)K(sI − A)−1B = d(s)− d̂(s) . (15.5)

Let

d(s) = a0 + a1s + · · ·+ an−1s
n−1 + sn

d̂(s) = â0 + â1s + · · ·+ ân−1s
n−1 + sn .

Recall the power series expansion for (sI − A)−1:

(sI − A)−1 =
1

s
I +

1

s2
A + · · ·+ 1

sk
Ak−1 + · · ·

Substituting this expression into (15.5) and equating the coefficients of like powers of s we
obtain that (15.5) holds if and only if

s0 : a1KB + a2KAB + · · ·+ an−1KAn−2B + KAn−1B = a0 − â0

s1 : a2KB + · · ·+ an−1KAn−3B + KAn−2B = a1 − â1
...

sn−2 an−1KB + KAB = an−2 − ân−2

sn−1 : KB = an−1 − ân−1

that is,
(

KB KAB · · · KAn−1B
)
Υ =

(
a0 − â0 a1 − â1 · · · an−1 − ân−1

)
(15.6)

where Υ is the invertible matrix given by

Υ =




a1 a2 · · · an−2 an−1 1
a2 a3 · · · an−1 1 0
a3 a4 · · · 1 0 0
...

...
...

...
...

an−1 1 · · · 0 0 0
1 0 . . . 0 0 0




. (15.7)

Let Qc be the controllability matrix associated with (A, B), that is,

Qc =
(

B AB · · · An−1B
)

.

Then condition (15.6) on K reduces to

KQcΥ =
(

a0 − â0 a1 − â1 · · · an−1 − ân−1

)
.

Because the pair (A,B) is controllable, Qc is invertible. This readily implies that the gain
matrix K is uniquely given by

K =
(

a0 − â0 a1 − â1 · · · an−1 − ân−1

)
Υ−1Q−1

c . (15.8)

We have just demonstrated the following result.
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Theorem 23 (Pole placement theorem: SI case) Suppose the real matrix pair (A,B)
is a single input controllable pair with state dimension n and λ1, . . . , λn is any bunch of n
complex numbers with the property that if λ is in the bunch then so is λ̄. Then there exists a
real matrix K such that λ1, . . . , λn are the eigenvalues (multiplicities included) of A + BK.

MATLAB

>> help acker

ACKER Pole placement gain selection using Ackermann’s formula.

K = ACKER(A,B,P) calculates the feedback gain matrix K such that

the single input system

.

x = Ax + Bu

with a feedback law of u = -Kx has closed loop poles at the

values specified in vector P, i.e., P = eig(A-B*K).

See also PLACE.

Note: This algorithm uses Ackermann’s formula. This method

is NOT numerically reliable and starts to break down rapidly

for problems of order greater than 10, or for weakly controllable

systems. A warning message is printed if the nonzero closed loop

poles are greater than 10% from the desired locations specified

in P.

Example 192 Consider

A =

(
3 −2
4 −3

)
and B =

(
2
3

)

Here the controllability matrix

Qc =
(

B AB
)

=

(
2 0
3 −1

)

is full rank; hence (A,B) is controllable. Considering any state feedback gain matrix K =(
k1 k2

)
, we have

A + BK =

(
3 + 2k1 −2 + 2k2

4 + 3k1 −3 + 3k2

)

and

det(sI − A−BK) = s2 − (2k1 + 3k2)s− 1 + k2 .
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Suppose we desire the eigenvalues of A + BK to be −2 and −3. Then the desired charac-
teristic polynomial d̂ of A + BK is given by

d̂(s) = (s + 2)(s + 3) = s2 + 5s + 6 .

By equating the coefficients of like powers of s, we obtain

−1 + k2 = 6

−2k1 − 3k2 = 5

Solving these equations yields (uniquely) k1 = −13 and k2 = 7. Hence the gain matrix is
given by

K =
( −13 7

)
.

Checking our answer in Matlab, we obtain

K = -acker(A,B,[-2 -3])

K =

-13 7

Example 193 (Beavis and Butthead with external control) Considering m = k =

Figure 15.2: B&B: external control

1, a state space description of this system is given by

A =




0 0 1 0
0 0 0 1

−1 1 0 0
1 −1 0 0


 and B =




0
0
0
1


 .

Here,
det(sI − A) = s4 + 2s2

Let
d̂(s) = s4 + â3s

3 + â2s
2 + â1s + â0

be the desired characteristic polynomial of A + BK.
Since this is a scalar input system, the coefficients of the characteristic polynomial of

A + BK depend affinely on K and we can use the following solution approach to find K.
Let

K =
(

k1 k2 k3 k4

)
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Then

det(sI − A−BK) = det




s 0 −1 0
0 s 0 −1
1 −1 s 0

−1− k1 1− k2 −k3 s− k4




= s4 − k4s
3 + (2− k2)s

2 − (k3 + k4)s− (k1 + k2) .

Note the affine dependence of the coefficients of the above polynomial on K. Letting the
above polynomial equal the desired polynomial d̂ and equating like coefficients results in the
following four linear equations in the four unknowns components of K:

−k4 = â3

2− k2 = â2

−k3 − k4 = â1

−k1 − k2 = â0

Solving for k1, . . . , k4 uniquely yields

k1 = −2− â0 + â2

k2 = 2− â2

k3 = −â1 + â3

k4 = −â3

• To illustrate MATLAB, consider desired closed loop eigenvalues: −1,−2− 3,−4.

>> poles=[-1 -2 -3 -4];

>> poly(poles)

ans =

1 10 35 50 24

Hence
â0 = 24 â1 = 50 â2 = 35 â3 = 10

and the above expressions for the gain matrix yield

k1 = 9 k2 = −33 k3 = −40 k4 = −10

Using MATLAB pole placement commands, we obtain:

>> k= place(a,b,poles)

place: ndigits= 18

k =
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-9.0000 33.0000 40.0000 10.0000

>> k= acker(a,b,poles)

k =

-9 33 40 10

Remembering that MATLAB yields −K, these results agree with our ‘hand’ calculated
results. Lets check to see if we get the desired closed loop eigenvalues.

>> eig(a-b*k)

ans =

-1.0000

-2.0000

-3.0000

-4.0000

YEES!

15.2.2 Multi-input systems

The following theorem (which we do not prove here) states that the eigenvalue placement
result also holds in the general multi-input case.

Theorem 24 (Pole placement theorem ) Suppose the real matrix pair (A,B) is a con-
trollable pair with state dimension n and λ1, . . . , λn is any bunch of n complex numbers with
the property that if λ is in the bunch then so is λ̄. Then there exists a real matrix K such
that λ1, . . . , λn are the eigenvalues (multiplicities included) of A + BK.

• It follows from the above theorem that

controllability =⇒ stabilizability

MATLAB

>> help place

PLACE K = place(A,B,P) computes the state feedback matrix K such that

the eigenvalues of A-B*K are those specified in vector P.

The complex eigenvalues in the vector P must appear in consecu-

tive complex conjugate pairs. No eigenvalue may be placed with

multiplicity greater than the number of inputs.
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The displayed "ndigits" is an estimate of how well the

eigenvalues were placed. The value seems to give an estimate

of how many decimal digits in the eigenvalues of A-B*K match

the specified numbers given in the array P.

A warning message is printed if the nonzero closed loop poles

are greater than 10% from the desired locations specified in P.

See also: LQR and RLOCUS.
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15.3 Uncontrollable eigenvalues (you can’t touch them)

In the previous section, we saw that, if the pair (A,B) is controllable, then one could
arbitrarily place the eigenvalues of A + BK by appropriate choice of the gain matrix K;
hence controllability is a sufficient condition for arbitrary eigenvalue placement. In this
section, we show that controllability is also necessary for arbitrary eigenvalue placement.
In particular, we show that if λ is an uncontrollable eigenvalue of (A,B), then λ is an
eigenvalue of A + BK for every K. Recall Examples 190 and 191 in which the matrix A
had an eigenvalue λ with the property that for every gain matrix K, it is an eigenvalue of
A + BK. We now demonstrate the following result:

If λ is an uncontrollable eigenvalue of (A,B), then λ is an eigenvalue of A+BK for every
gain matrix K.

To see this, recall that λ is an uncontrollable eigenvalue of (A,B) if and only if

rank
(

A− λI B
)

< n (15.9)

where A is n× n. Hence, there exists a nonzero n-vector w such that

w′ ( A− λI B
)

= 0 .

that is
w′(A− λI) = 0 and w′B = 0

So, for any gain matrix K, we have

w′(A + BK) = λw′

that is, λ is an eigenvalue of A + BK with left eigenvector w. So, regardless of the feed-
back gain matrix, λ is always an eigenvalue of A + BK. We cannot alter this eigenvalue
by feedback. In particular, if λ has a non-negative real part, then the pair (A,B) is not
stabilizable.

Another way to see the above result is to consider the nice transformation introduced
earlier, namely,

x = T x̃ and x̃ =

(
xc

xu

)

which results in the equivalent system description,

˙̃x = Ãx̃ + B̃u

where

Ã = T−1AT =

(
Acc Acu

0 Auu

)
and B̃ = T−1B =

(
Bc

0

)
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and the pair (Acc, Bc) is controllable. If u = Kx, then u = K̃x̃ where K̃ = KT . Letting
K̃ =

(
Kc Ku

)
, we obtain

Ã = B̃K̃ =

(
Acc + BcKc Acu + BcKu

0 Auu

)

Since
Ã + B̃K̃ = T−1[A + BK]T

the eigenvalues of A + BK are exactly the same as those of Ã + B̃K̃ which are equal to the
union of the eigenvalues of Acc + BcKc and Auu. From this we see that, regardless of K, the
eigenvalues of Auu are always eigenvalues of A+BK. Now recall that the eigenvalues of Auu

are the uncontrollable eigenvalues of (A,B).
Furthermore, since the pair (Acc, Bc) is controllable, the eigenvalues of Acc + BcKc can

be arbitrarily placed by appropriate choice of Kc. Hence, except for the eigenvalues of Auu,
all eigenvalues of A + BK can be arbitrarily placed. In particular, if all the eigenvalues of
Auu have negative real parts, then K can be chosen so that all the eigenvalues of A + BK
have negative real parts. So, we have the following conclusion.

A pair (A,B) is stabilizable if and only if all the uncontrollable eigenvalues of (A,B) have
negative real parts.

Recalling the PBH test for uncontrollable eigenvalues, we now have the following PBH
result on stabilizability.

Theorem 25 (PBH stabilizability theorem) A pair (A,B) is stabilizable if and only
if

rank (A− λI B) = n

for every eigenvalue λ of A with nonnegative real part.

Example 194
A =

0 -1 0

1 -1 -1

-1 0 0

B =

1

-1

1

rank(ctrb(A,B))

2 %Uncontrollable

eig(A)
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0 + 1.0000i

0 - 1.0000i

-1.0000

rank([ A-i*eye(3) B])

3 %Stabilizable

rank([ A+eye(3) B])

2 %-1 is an uncontrollable eigenvalue

Considering K =
(

k1 k2 k3

)
we obtain that

det(sI − A−BK) = s3 + (1− k1 + k2 − k3)s
2 + (1− 2k1)s + (1− k1 − k2 + k3) .

As expected, we can write this as

det(sI − A−BK) = (s + 1)
(
s2 + (−k1 + k2 − k3)s + (1− k1 − k2 + k3)

)

Suppose that the desired eigenvalues of A + BK are −1− 2,−3. Then

d̂(s) = (s + 1)(s + 2)(s + 3) = s3 + 6s2 + 11s + 6 .

Equating coefficients, we obtain

1− k1 − k2 + k3 = 6

1− 2k1 = 11

1− k1 + k2 − k3 = 6

Solving yields

k1 = −5

k2 = k3

k3 is arbitrary

We choose

K =
( −5 0 0

)
.

eig(A+B*K)

-3.0000

-2.0000 %Just checking!

-1.0000
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Remark 9 If system (15.1) is not stabilizable via a linear static state controller of the form
u = Kx then, it is not stabilizable with any controller. This can be seen as follows. The
fact that the system is not stabilizable via a linear controller implies that the system has an
uncontrollable eigenvalue λ with non-negative real part. Hence there exists a nonzero vector
w such that, regardless of the input u, we have

w′x(t) = eλtw′x(0)

for all t. Considering any initial state x(0) for which w′x(0) 6= 0 (for example, let x(0) be
the real part of w), we see that, regardless of the input u, the resulting solution x(t) does
not go to zero as t goes to infinity.

15.4 Controllable canonical form

Consider a scalar input system of the form ẋ = Ax + Bu where A and B have the following
structure:

A =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1




and B =




0
0
...
...
0
1




.

We say that the pair (A,B) is in controllable canonical form. We saw this structure when we
constructed realizations for scalar transfer functions. Note that ẋ = Ax + Bu looks like:

ẋ1 = x2

...

ẋn−1 = xn

ẋn = −a0x1 + a1x2 + . . . + an−1xn + u

Also,
det(sI − A) = a0 + a1s + · · ·+ an−1s

n−1 + sn

Example 195 (Controlled unattached mass)

ẋ1 = x2

ẋ2 = u

Here,

A =

(
0 1
0 0

)
and B =

(
0
1

)
.
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Fact 11 If the pair (A,B) is in controllable canonical form, then it is controllable.

To prove the above result, let K =
(

a0 a1 · · · an−1

)
. Then

A + BK =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0




The controllability matrix Qc for the pair (A + BK,B) is simply given by

Qc =




0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . . 0 0

0 1 · · · 0 0
1 0 · · · 0 0




This matrix has rank n; hence (A + BK, B) is controllable. It now follows that (A,B) is
controllable.

15.4.1 Transformation to controllable canonical form∗

Here we show that any controllable single-input system

ẋ = Ax + Bu

can be transformed via a state transformation to a system which is in controllable canonical
form.

State transformations. Suppose T is a nonsingular matrix and consider the state trans-
formation

x = T x̃

Then the evolution of x̃ is governed by

˙̃x = Ãx̃ + B̃u

where Ã = T−1AT and B̃ = T−1B.

Note that controllability is invariant under a state transformation, that is, (A,B) is
controllable if and only if (T−1AT, T−1B) is controllable. This can readily seen by noting
the controllability matrix Q̃c for the pair (T−1AT, T−1B) is given by Q̃c = T−1Qc where Qc

is the controllability matrix for (A,B); hence Q̃c and Qc have the same rank.
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Transformation to controllable canonical form. Suppose (A,B) is controllable and
m = 1. Then the following algorithm yields a state transformation which transforms (A, B)
into controllable canonical form.

Algorithm. Let
a0 + . . . + an−1s

n−1 + sn = det(sI − A)

Recursively define the following sequence of n-vectors:

tn = B
tj = Atj+1 + ajB , j = n− 1, . . . , 1

and let
T =

(
t1 . . . tn

)

Fact 12 If (A,B) is controllable then, the matrix T is generated by the above algorithm is
nonsingular and the pair (T−1AT, T−1B) is in controllable canonical form.

Proof. We first need to prove that T is nonsingular. By applying the algorithm, we obtain

tn = B
tn−1 = AB + an−1B
tn−2 = A(AB + an−1B) + an−2B = A2B + an−1AB + an−2B

One may readily show by induction that for j = n− 1, n− 2 · · · , 1, one has

tj = An−jB + an−1A
n−j−1B + · · ·+ aj+1AB + ajB (15.10)

From this it should be clear that for any j = n, n− 1, · · · 1,

rank
(

tn tn−1 · · · tj
)

= rank
(

B AB · · · An−jB
)

Hence

rankT = rank
(

tn tn−1 · · · t1
)

= rank
(

B AB · · · AnB
)

= rankQc

Since (A,B) is controllable, Qc has rank n. Hence T has rank n and is invertible.
We now show that T−1AT and T−1B have the required structure. It follows from (15.10)

that
t1 = An−1B + an−1A

n−2B + · · ·+ a2AB + a1B

Using the Cayley Hamilton Theorem, we obtain

At1 = [An + an−1A
n−1 + · · ·+ a2A

2 + a1A]B = −a0B ,

that is At1 = −a0t
n. Also from the algorithm, we have

Atj = tj−1 − aj−1t
n for j = 2, 3, · · · , n

Recalling a useful fact on similarity transformations, it follows that T−1AT has the required
structure. Since B = tn, it follows that T−1B also has the required structure.

We can now state the following result.
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Theorem 26 A single input system (A,B) is controllable if and only if there is a nonsingular
matrix T such that (T−1AT, T−1B) is in controllable canonical form.

Example 196 (Beavis and Butthead with external control.) Consider m = k = 1. Then,

A =




0 0 1 0
0 0 0 1

−1 1 0 0
1 −1 0 0


 and B =




0
0
0
1


 .

Hence,
det(sI − A) = s4 + 2s2

and
t4 = B

t3 = At4 + a3B = At4 =




0
1
0
0




t2 = At3 + a2B = At3 + 2B =




0
0
1
1




t1 = At2 + a1B = At2 =




1
1
0
0




So, the transformation matrix is given by:

T =
(

t1 t2 t3 t4
)

=




1 0 0 0
1 0 1 0
0 1 0 0
0 1 0 1




>> inv(t)

ans =

1 0 0 0

0 0 1 0

-1 1 0 0

0 0 -1 1

>> inv(t)*a*t

ans =

0 1 0 0

0 0 1 0
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0 0 0 1

0 0 -2 0

15.4.2 Eigenvalue placement by state feedback∗

Recall that if (A,B) is controllable then, we arbitrarily assign the eigenvalues of A + BK
by choice of the gain matrix K? We can demonstrate this result for single input systems
using the controllable canonical form. Consider any bunch of complex numbers λ1, . . . , λn

with the property that if λ is in the bunch then so is λ̄ and suppose we wish to choose a
gain matrix K such that the eigenvalues of A + BK are precisely these complex numbers.

Let

d̂(s) = sn + ân−1s
n−1 + . . . + â0 =

n∏
i=1

(s− λi)

that is, the real numbers, â0, . . . , ân−1, are the coefficients of the unique monic polynomial d̂
whose roots are the desired closed loop eigenvalues, λ1, . . . , λn. If (A, B) is controllable and
m = 1, then there exists a nonsingular matrix T such that the pair (Ã, B̃) is in controllable
canonical form, where Ã = T−1AT and B̃ = T−1B, that is,

Ã =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1




, B̃ =




0
0
...
...
0
1




where

sn + an−1s
n−1 + . . . + a0 = det(sI − A) .

Considering the 1× n real gain matrix

K̃ =
(

a0−â0 a1−â1 . . . an−1−ân−1

)

we obtain

Ã + B̃K̃ =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . 0 1
−â0 −â1 −â2 . . . −ân−2 −ân−1




.

Clearly, the matrix Ã + B̃K̃ has the desired characteristic polynomial d̂. Let

K = K̃T−1 .
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Then

A + BK = TÃT−1 + TB̃K̃T−1

= T [Ã + B̃K̃]T−1

and hence
det(sI − A−BK) = det(sI − Ã− B̃K̃) = d̂(s)

in other words, the eigenvalues of A + BK are as desired.

Remark 10 For scalar input systems, the coefficients of the characteristic polynomial of
A + BK depend affinely on K̃. Since K = K̃T−1, it follows that the coefficients of the
characteristic polynomial of A + BK depend affinely on K.

Example 197 (Beavis and Butthead with external control) Here

A =




0 0 1 0
0 0 0 1

−1 1 0 0
1 −1 0 0


 and B =




0
0
0
1


 .

We have already shown that this system is controllable and it can be transformed to con-
trollable canonical form with the matrix

T =




1 0 0 0
1 0 1 0
0 1 0 0
0 1 0 1




Also,
det(sI − A) = s4 + 2s2

Let
p̂(s) = s4 + â3s

3 + â2s
2 + â1s + â0

be the desired characteristic polynomial of A + BK. Then

K̃ =
( −â0 −â1 2−â2 −â3

)

and

K = = K̃T−1 =
( −â0 −â1 2−â2 −â3

)



1 0 0 0
0 0 1 0

−1 1 0 0
0 0 −1 1




=
( −2−â0+â2 2−â2 −â1 + â3 −â3

)

This is the same as the result we previously obtained for this example.
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15.5 Discrete-time systems

Basically, everything we have said in this chapter so far also holds for discrete time systems,
except that in talking about asymptotic stability of discrete-time systems, we need the
eigenvalues to have magnitude strictly less than one.

15.5.1 Dead beat controllers

One cannot drive the state of a LTI continuous-time system to zero in a finite time using a
static linear state-feedback controller. However, this is possible for a controllable discrete-
time system. To see this, consider

x(k+1) = Ax(k) + Bu(k)

where x(k) is an n-vector and u(k) is an m-vector and suppose that the pair (A,B) is con-
trollable. Then there exists a gain matrix K so that all the eigenvalues of the corresponding
closed loop system matrix Acl := A + BK are all zero. Hence the characteristic polynomial
of Acl is p(s) = sn. From the Cayley-Hamilton Theorem, we obtain that

An
cl = 0 .

Since the solutions x(·) of the closed lop system

x(k+1) = Aclx(k)

satisfy x(k) = Ak
clx(0) for all k ≥ 0, we see that

x(k) = 0 for k ≥ n .

Thus, all solutions go to zero in at most n steps.

Application to continuous-time systems. One could use the above result to obtain a
controller which drives the state of a continuous-time system to zero. Simply, pick a sampling
time T and discretize the continuous-time system. Now design a deadbeat controller for the
discrete-time system. Using a zero order hold, apply this controller to the continuous-time
system. Note that the resulting controller is not a static controller for the continuous-time
system.
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15.6 Stabilization of nonlinear systems

Consider a nonlinear system described by

ẋ = F (x, u)

and suppose we wish to stabilize this system about some controlled equilibrium state xe.
Let ue be a constant input that achieves the desired controlled equilibrium state xe, that is,
F (xe, ue) = 0. Let

δẋ = Aδx + Bδu (15.11)

be the linearization of the nonlinear system about (xe, ue). Thus,

A =
∂F

∂x
(xe, ue) and B =

∂F

∂u
(xe, ue) .

15.6.1 Continuous-time controllers

If the pair (A, B) is stabilizable, the following procedure yields a controller which stabilizes
the nonlinear system about xe.

Choose a gain matrix K such that all eigenvalues of A + BK have negative real part and
let

u = ue + K(x− xe) (15.12)

We now show that the above controller results in the closed loop nonlinear system being
asymptotically about xe. To this end, note that the closed loop system is described by

ẋ = f(x) = F (x, Kx + ue−Kxe)

Note that

f(xe) = F (xe, ue) = 0 ;

hence xe is an equilibrium state for the closed loop system. Linearizing the closed loop
system about xe, we obtain

δẋ = (A + BK)δx

Since all the eigenvalues of A+BK have negative real parts, the closed loop nonlinear system
is asymptotically stable about xe.

15.6.2 Discrete-time controllers

Linearize the continuous time nonlinear system to obtain the LTI continuous-time system
(15.11).

Choose a sample time T > 0 and discretize (15.11) to obtain

δxd(k+1) = Adδxd(k) + Bdδud(k) (15.13)
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If the pair (Ad, Bd) is stabilizable, choose matrix K so that all the eigenvalues of Ad + BdK
have magnitude less than one.

Let
ud(k) = K(xd(k)− xe) + ue = K[x(kT )− xe] + ue . (15.14)

The continuous control input u is obtained form ud via a zero order hold.

Exercises

Exercise 124 Consider the system with input u, output y, and state variables x1, x2, x3, x4

described by

ẋ1 = −x1

ẋ2 = x1 − 2x2

ẋ3 = x1 − 3x3 + u

ẋ4 = x1 + x2 + x3 + x4

y = x3

(a) Is this system controllable?
(b) Is this system stabilizable using state feedback? Justify your answers.

Exercise 125 (BB in laundromat: external excitation.) Obtain a state space representation
of the following system.

mφ̈1 −mΩ2φ1 + k
2
(φ1 − φ2) = 0

mφ̈2 −mΩ2φ2 − k
2
(φ1 − φ2) = u

Show that this system is controllable.
Considering

Ω = 1, m = 1, k = 2

obtain a linear state feedback controller which results in a closed loop system with eigenvalues

−1,−2,−3,−4

Use the following methods.

(a) Method based on computing the transformation matrix which transforms to control-
lable canonical form.

(b) Obtaining an expression for the closed loop characteristic polynomial in terms of the
components of the gain matrix.

(c) acker

(d) place
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Numerically simulate the closed loop system with the same initial conditions you used in to
simulate the open-loop system.

Exercise 126 Consider the system described by

ẋ1 = x3
1 + sin x2 − 1 + u

ẋ2 = −ex1 + (cos x2)u

Obtain a state feedback controller which results in a closed loop system which is asymptoti-
cally stable about the zero state.

Exercise 127 Stabilization of 2-link manipulator with linear state feedback.

[m1lc
2
1 + m2l

2
1 + I1]q̈1 + [m2l1lc2 cos(q1 − q2)]q̈2 + m2l1lc2 sin(q1 − q2)q̇

2
2

− [m1lc1 + m2l1]g sin(q1) = u

[m2l1lc2 cos(q1 − q2)]q̈1 + [m2lc
2
2 + I2]q̈2 −m2l1lc2 sin(q1 − q2)q̇

2
1 −m2glc2 sin(q2) = 0

Linearize this system about
q1 = q2 = u = 0

and obtain a state space description.
For rest of exercise, use MATLAB and the following data: Is the linearization control-

m1 l1 lc1 I1 m2 l2 lc2 I2 mpayload

kg m m kg.m2 kg m m kg.m2 kg

10 1 0.5 10/12 5 1 0.5 5/12 0

lable? Design a state feedback controller which stabilizes this linearized system . Apply the
controller to the nonlinear system and simulate the nonlinear closed loop system for various
initial conditions.

Exercise 128 Consider the system described by

ẋ1 = x2 + u

ẋ2 = x1 + u

(a) Is this system stabilizable ?

(b) Does there exist a linear state feedback controller which results in closed loop eigen-
values −1,−2?

(b) Does there exist a linear state feedback controller which results in closed loop eigen-
values −2,−3?

In parts (b) and (c): If no controller exists, explain why; if one does exist, give an example
of one.
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Exercise 129 Consider the system described by

ẋ1 = −x2 + u

ẋ2 = −x1 − u

where all quantities are scalars.

(a) Is this system stabilizable via state feedback?

(b) Does there exist a linear state feedback controller which results is closed loop eigenval-
ues −1,−4?

(c) Does there exist a linear state feedback controller which results is closed loop eigenval-
ues −2,−4?

In parts (b) and (c): If no controller exists, explain why; if one does exist, give an example
of one.

Exercise 130 Consider the system

ẋ1 = x2

ẋ2 = −x1 + u

(a) Design a continuous-time linear state feedback controller which stabilizes this system
about the zero state. Illustrate the effectiveness of your controller with a simulation.

(b) For various sampling times, discretize the controller found in part (a) and simulate the
corresponding closed loop. Is the closed loop system stable for any sampling time?

(c) Design a stabilizing discrete-time controller based on a discretization of the system.
Consider sampling times T = 0.1, 1, 2π, 10. Illustrate the effectiveness of your controller
with simulations of the continuous-time system subject to the discrete-time controller.

(d) Design a dead-beat controller based on a discretization of the system. Consider sam-
pling times T = 0.1, 1, 10. Illustrate the effectiveness of your controller with simula-
tions.

Exercise 131 (BB in laundromat: external excitation.) Obtain a state space representation
of the following system.

mφ̈1 −mΩ2φ1 + k
2
(φ1 − φ2) = 0

mφ̈2 −mΩ2φ2 − k
2
(φ1 − φ2) = u

(a) Show that this system is controllable.
(b) Considering

Ω = 1, m = 1, k = 2

obtain a linear state feedback controller which results in a closed loop system with eigenvalues

−1,−2,−3,−4

Use the following methods.
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(i) Obtain (by hand) an expression for the closed loop characteristic polynomial in terms
of the components of the gain matrix.

(ii) acker

(iii) place

Illustrate the effectiveness of your controllers with numerical simulations.

Exercise 132 (Stabilization of cart pendulum system via state feedback.) Carry out
the following for parameter sets P2 and P4 and equilibriums E1 and E2. Illustrate the ef-
fectiveness of your controllers with numerical simulations.

Using eigenvalue placement techniques, obtain a state feedback controller which stabilizes
the nonlinear system about the equilibrium.

What is the largest value of δ (in degrees) for which your controller guarantees conver-
gence of the closed loop system to the equilibrium for initial condition

(y, θ1, θ2, ẏ, θ̇1, θ̇2)(0) = (0, θe
1−δ, θe

2+δ, 0, 0, 0)

where θe
1 and θe

2 are the equilibrium values of θ1 and θ2.

Exercise 133 (Discrete-time stabilization of cart pendulum system via state feedback.)
Carry out the following for parameter set P4 and equilibriums E1 and E2. Illustrate the
effectiveness of your controllers with numerical simulations.

Using eigenvalue placement techniques, obtain a discrete-time state feedback controller
which stabilizes the nonlinear system about the equilibrium.

What is the largest value of δ (in degrees) for which your controller guarantees conver-
gence of the closed loop system to the equilibrium for initial condition

(y, θ1, θ2, ẏ, θ̇1, θ̇2)(0) = (0, θe
1−δ, θe

2+δ, 0, 0, 0)

where θe
1 and θe

2 are the equilibrium values of θ1 and θ2.

15.7 Appendix

Proof of Fact 10. We need to prove that for any two matrices M and N of dimensions
m× n and n×m, respectively, we have

det(I + MN) = det(I + NM) .

Consider the following matrix equation:

(
I M
−N I

)(
I O
N I

)
=

(
I + MN M

O I

)
(15.15)

Since the matrix on the right of the equality is block diagonal, its determinant is det(I) det(I+
MN) = det(I + MN). Hence the product of the determinants of the two matrices on the
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left of the equation is det(I + MN). Reversing the order of the two matrices on the left of
(15.15), we obtain (

I O
N I

)(
I M
−N I

)
=

(
I M
O I + NM

)

From this we can conclude that the product of the determinants of the two matrices on the left
of equation (15.15) is det(I +NM). Hence we obtain the desired result that det(I +MN) =
det(I + NM).

327



328



Chapter 16

Detectability and observers

16.1 Observers, state estimators and detectability

Consider the system (we will call it the plant)

ẋ = Ax + Bu
y = Cx + Du

(16.1)

Suppose that at each instant time t we can measure the plant output y(t) and the plant
input u(t) and we wish to estimate the plant state x(t). In this section we demonstrate how
to obtain an estimate x̂(t) of the plant state x(t) with the property that as t →∞ the state
estimation error x̂(t) − x(t) goes to zero. We do this by constructing an observer or state
estimator.

Observer or state estimator. An observer or state estimator for a plant is a system
whose inputs consist of the plant input and plant output while its output is an estimate of
the plant state; see Figure 16.1.

Figure 16.1: Observer

We consider here observers which have the following structure.

˙̂x = Ax̂ + Bu + L(ŷ − y)
ŷ = Cx̂ + Du

x̂(0) = x̂0 (16.2)

where the n-vector x̂(t) is the estimated state; the matrix L is called the observer gain matrix
and is yet to be determined. The initial state x̂0 for the observer is arbitrary. One can regard
x̂0 as an initial guess of the initial plant state x0.
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Note that the observer consists of a copy of the plant plus the “correction term,” L(ŷ−y).

If we rewrite the observer description as

˙̂x = (A + LC)x̂ + (B + LD)u− Ly ,

it should be clear that we can regard the observer as a linear system whose inputs are the
plant input u and plant output y. We can regard the estimated state x̂ as the observer
output.

To discuss the behavior of the above estimator, we introduce the state estimation error

x̃ := x̂− x

Using (16.1) and (16.2) one can readily show that the evolution of the estimation error is
simply governed by

˙̃x = (A + LC)x̃

Hence, if one can choose L such that all the eigenvalues of the matrix A + LC have negative
real parts then, we obtain the desired result that

lim
t→∞

x̃(t) = 0 .

In other words, the state estimation error goes to zero as t goes to infinity. When this
happens, we call the observer an asymptotic observer. This leads to the next definition.

DEFN. System (16.1) or the pair (C, A) is detectable if there exists a matrix L such that
A + LC is asymptotically stable.

Note that the matrix A + LC is asymptotically stable if and only if the matrix

(A + LC)∗ = A∗ + C∗L∗

is asymptotically stable. Thus, the problem of choosing a matrix L so that A + LC is
asymptotically stable is equivalent to the stabilizability problem of choosing K so that A∗+
C∗K is asymptotically stable. If one solves the stabilizability problem for K, then L = K∗

solves the original problem.
From the above observations, we obtain the following duality between stabilizability and

detectability.

• (C, A) is detectable if and only if (A∗, C∗) is stabilizable.

• (A, B) is stabilizable if and only if (B∗, A∗) is detectable.

• Also, it follows that

observability =⇒ detectability
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16.2 Eigenvalue placement for estimation error dynam-

ics

Suppose (C, A) is a real observable pair. Then (A∗, C∗) is a real controllable pair. Now
consider any bunch of complex numbers

{λ1, λ2, · · · , λn }
with the property that if λ is in the bunch then so is λ̄. Since (A∗, C∗) is real and controllable,
there is a real gain matrix K such that {λ1, λ2, · · · , λn } are precisely the eigenvalues of
A∗ + C∗K. Letting L = K∗ and recalling that a matrix and its transpose have the same
eigenvalues, we obtain that the eigenvalues of A + LC are precisely {λ1, λ2, · · · , λn }. We
have just demonstrated the following result.

If (C,A) is observable, one can arbitrarily place the eigenvalues of A + LC by appropriate
choice of the observer gain matrix L.

Example 198 (The unattached mass with position measurement and an input.)

ẋ1 = x2

ẋ2 = u
y = x1

Here

A =

(
0 1
0 0

)
C =

(
1 0

)

Since this system is observable, it is detectable. If

L =

(
l1
l2

)

we have

A + LC =

(
l1 1
l2 0

)

Hence,
det(sI − A− LC) = s2 − l1s− l2

and A + LC is asymptotically stable if

l1 < 0 l2 < 0

An asymptotic observer is then given by

˙̂x1 = x̂2 + l1(x̂1 − y)
˙̂x2 = u + l2(x̂1 − y)

and the estimation error x̃ = x̂− x satisfies

˙̃x1 = l1x̃1 + x̃2

˙̃x2 = l2x̃1

331



16.3 Unobservable modes (you can’t see them)

Suppose system (16.1) is unobservable. Then, as we have already seen, this system will have
at least one unobservable eigenvalue λ. This means that, when u(t) ≡ 0, the system has a
nonzero solution of the form xuo(t) = eλtv which produces zero output, y(t) ≡ 0. Thus one
cannot distinguish this state motion from the zero motion, x(t) ≡ 0. If <(λ) < 0 then xuo(t)
asymptotically goes to zero. However, if <(λ) ≥ 0 then, xuo(t) does not asymptotically go
to zero. Hence, even using nonlinear observers, there is no way that one can asymptotically
estimate the state of this system. For linear observers, we have the following result.

If λ an unobservable eigenvalue of (C, A), then λ is an eigenvalue of A + LC for every
observer gain matrix L .

To see this, recall that λ is an unobservable eigenvalue of (C, A) if and only if

rank

(
A− λI

C

)
< n

where A is n× n. Hence, there is a nonzero n-vector v such that
(

A− λI
C

)
v = 0

or, equivalently,

Av = λv

Cv = 0

Hence, for any matrix L
(A + LC)v = λv

Since v 6= 0, it follows that λ is an eigenvalue of A + LC.
The next result states that a necessary and sufficient condition for stabilizability is that

all unobservable eigenvalues are asymptotically stable.

Theorem 27 (PBH detectability theorem) The pair (C, A) is detectable if and only if

rank

(
A− λI

C

)
= n

for every eigenvalue λ of A with nonnegative real part.

Proof. Use duality and the corresponding result for stabilizability.

Example 199 (The unattached mass with velocity measurement.)

ẋ1 = x2

ẋ2 = 0
y = x2
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Here

A =

(
0 1
0 0

)
C =

(
0 1

)

Hence (
A− λI

C

)
=



−λ 1

0 −λ
0 1




The above matrix has rank 1 < n for λ = 0; hence λ = 0 is an unobservable eigenvalue and
this system in not detectable.

Note that for any observer gain matrix

L =

(
l1
l2

)

we have

A + LC =

(
0 1 + l1
0 l2

)

Hence,
det(sI − A− LC) = s(s− l2)

So, regardless of choice of L, the matrix A + LC always has an eigenvalue at 0.

16.4 Observable canonical form*

Suppose A and C have the following structure:

A =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

. . .
...

0 0 · · · 1 −an−1




and C =
(

0 0 · · · 0 1
)

.

Then we say that the pair (C,A) is in observable canonical form. Note that (C, A) is in
observable canonical form if and only if (A∗, C∗) is in controllable canonical form. If (C, A)
is in observable canonical form, then ẋ = Ax and y = Cx look like

ẋ1 = −a0xn

ẋ2 = −a1xn + x1
...

ẋn = −an−1xn + xn−1

y = xn

Also,
det(sI − A) = sn + an−1s

n−1 + · · ·+ a0 .
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If we reverse the ordering of the states, then

ẋ1 = −an−1x1 + x2
...

ẋn−1 = −a1x1 + xn

ẋn = −a0x1

y = x1

and the corresponding A and C matrices have the following structure:

A =




−an−1 1 0 · · · 0
−an−2 0 1 · · · 0

...
. . .

...
−a1 1 0 · · · 1
−a0 0 0 · · · 0




and C =
(

1 0 · · · 0 0
)

16.5 Discrete-time systems

The results for discrete-time systems are basically the same as those for continuous-time
systems. Consider a discrete-time system described by

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(16.3)

Observer or state estimator. Recalling the observer structure in the continuous-time
case, we consider here observers which have the following structure.

x̂(k+1) = Ax̂(k) + Bu(k) + L(ŷ(k)− y(k))
ŷ(k) = Cx̂(k) + Du(k)

x̂(0) = x̂0 (16.4)

where the n-vector x̂(k) is the estimated state; the matrix L is called the observer gain matrix.

Introducing the state estimation error

x̃ := x̂− x

and using (16.3) and (16.4) one can readily show that the evolution of the estimation error
is simply governed by

x̃(k+1) = (A + LC)x̃(k)

Hence, if one can choose L such that all the eigenvalues of the matrix A+LC have magnitude
less than one then, we obtain the desired result that

lim
t→∞

x̃(k) = 0 .
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Dead beat observer. If (C,A) is observable, choose L so that all the eigenvalues of A+LC
are zero. Then, the state estimation error goes to zero in at most n steps.

Exercises

Exercise 134 BB in laundromat: Obtain a state space representation of the following
system.

mφ̈1 −mΩ2φ1 + k
2
(φ1 − φ2) = 0

mφ̈2 −mΩ2φ2 − k
2
(φ1 − φ2) = u

y = φ2

Show that this system is observable. Considering

Ω = 1, m = 1, k = 2

obtain a state estimator (observer) which results in an estimation error system with eigen-
values

−1,−2,−3,−4

Use the following methods.

(a) Obtaining an expression for the characteristic polynomial of the error system in terms
of the components of the observer gain matrix.

(b) acker

(c) place

Illustrate the effectiveness of your observer(s) with numerical simulations.

Exercise 135 Consider the system described by

ẋ1 = −x2 + u

ẋ2 = −x1 − u

y = x1 − x2

where all quantities are scalars.

(a) Is this system observable?

(b) Is this system detectable?

(c) Does there exist an asymptotic state estimator for this system? If an estimator does
not exist, explain why; if one does exist, give an example of one.
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Chapter 17

Climax: output feedback controllers

Plant. (The object of your control desires.) Consider a system described by

ẋ = Ax + Bu
y = Cx

(17.1)

where the state x(t) is an n-vector, the control input u(t) is an m-vector, and the measured
output y(t) is a p-vector. Initially, we consider D = 0 for simplicity of presentation.

17.1 Memoryless (static) output feedback

The simplest type of controller is a memoryless (or static) linear output feedback controller;
this is of the form

u = Ky

where K is a real m × p matrix, sometimes called a gain matrix. This controller results in
the following closed loop system:

ẋ = (A + BKC)x

If the open loop system ẋ = Ax is not asymptotically stable, a natural question is whether
one can choose K so that the closed loop system is asymptotically stable. For full state
feedback (C = I), we have seen that it is possible to do this if (A, B) is controllable or, less
restrictively, if (A,B) is stabilizable. If (C, A) is observable or detectable, we might expect
to be able to stabilize the plant with static output feedback. This is not the case as the
following example illustrates.

Example 200 Unattached mass with position measurement.

ẋ1 = x2

ẋ2 = u

y = x1

This system is both controllable and observable. All linear static output feedback controllers
are given by

u = ky
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which results in

ẋ1 = x2

ẋ2 = kx1

Such a system is never asymptotically stable.
Note that if the plant has some damping in it, that is,

ẋ1 = x2

ẋ2 = −dx2 + u
y = x1

where d > 0, the closed loop system is given by

ẋ1 = x2

ẋ2 = kx1 − dx2

This is asymptotically stable provided k < 0.

Example 201 Consider

ẋ1 = x2

ẋ2 = x1 + u
y = −2x1 + x2

For a SISO system, one could use root locus techniques to determine whether or not
the system is stabilizable via static output feedback. For a general MIMO system, there
are currently are no easily verifiable conditions which are both necessary and sufficient for
stabilizability via static output feedback. It is a topic of current research. So where do we
go now?

17.2 Dynamic output feedback

A dynamic output feedback controller is a dynamic input-output system whose input is the
measured output of the plant and whose output is the control input to the plant. Thus, a
linear, time-invariant, dynamic, output-feedback controller is described by

ẋc = Acxc + Bcy
u = Ccxc + Dcy

(17.2)
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where the nc-vector xc(t) is called the controller state and nc is the order of the controller. We
regard a memoryless controller as a controller of order zero.

Using transfer functions, the above controller can be described by

û(s) = Ĝc(s)ŷ(s)

where
Ĝc(s) = Cc(sI − Ac)

−1Bc + Dc

Closed loop system. Application of the dynamic controller (17.2) to the plant (17.1)
yields the following closed loop system:

ẋ = (A + BDcC)x + BCcxc

ẋc = BcCx + Acxc
(17.3)

This is an LTI system whose state is (
x
xc

)

and whose “A-matrix” is given by

A =

(
A + BDcC BCc

BcC Ac

)

So the order of the closed loop system is n + nc.

Example 202 Consider a SISO system and recall that a PI (proportional integral) controller
can be described by

u(t) = −kP y(t)− kI

∫ t

0

y(τ) dt

Letting

xc(t) =

∫ t

0

y(τ) dt

it can readily be seen that this controller is a first order dynamic system described by

ẋc = y
u = −kIxc − kP y

with initial condition xc(0) = 0.

Exercise 136 Show that the unattached mass with position feedback can be stabilized with
a first order dynamic output feedback controller. What controller parameters place all the
eigenvalues of the closed loop system at −1?

We now demonstrate the following result:

If a complex number λ is an unobservable eigenvalue of (C,A) then λ is an eigenvalue of
A.
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To see this, suppose λ is an unobservable eigenvalue of (C, A). Then

rank

(
A− λI

C

)
< n

Since the above matrix has n columns, it must have non-zero nullity; this means there exists
a nonzero n-vector v with (

A− λI
C

)
v = 0

or, equivalently,

Av = λv

Cv = 0

Letting ♣ be the n + p vector

♣ =

(
v
0

)

it should be clear that
A♣ = λ♣

Since ♣ 6= 0, it follows that λ is an eigenvalue of A

Exercise 137 Prove the following statement. If λ is an uncontrollable eigenvalue of (A,B),
then λ is an eigenvalue of A.

We can now state the following intuitively appealing result.

Lemma 21 If either (A,B) is not stabilizable or (C, A) is not detectable, then plant (17.1)
is not stabilizable by a LTI dynamic output feedback controller of any order.

The last lemma states that stabilizability of (A,B) and and detectability of (C, A) is
necessary for stabilizability via linear dynamic output feedback control. In the next section,
we demonstrate that if these conditions are satisfied then closed loop asymptotic stability
can be achieved with a controller of order no more than the plant order.

17.3 Observer based controllers

Consider a general LTI plant described by

ẋ = Ax + Bu
y = Cx + Du

(17.4)

An observer based controller has the following structure:

˙̂x = Ax̂ + Bu + L(Cx̂ + Du− y)
u = Kx̂

(17.5)
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Note that this controller is completely specified by specifying the gain matrices K and L;
also this controller can be written as

˙̂x = [A + BK + L(C + DK)]x̂− Ly

u = Kx̂

This is a dynamic output feedback controller with state xc = x̂ (hence nc = n, that is, the
controller has same order as plant) and Ac = A + BK + L(C + DK), Bc = −L, Cc = K,
and Dc = 0.

Closed loop system. Combining the plant description (17.1) with the controller description
(17.5), the closed loop system can be described by

ẋ = Ax + BKx̂
˙̂x = −LCx + (A + BK + LC)x̂

Let x̃ be the state estimation error, that is,

x̃ = x̂− x . (17.6)

Then the closed loop system is described by

ẋ = (A + BK)x + BKx̃
˙̃x = (A + LC)x̃

(17.7)

This is an LTI system with “A matrix”

A =

(
A + BK BK
0 A + LC

)

Noting that
det(sI −A) = det(sI − A−BK) det(sI − A− LC) (17.8)

it follows that the set of eigenvalues of the closed loop system are simply the union of those
of A+BK and those of A+LC. So, if both A+BK and A+LC are asymptotically stable,
the closed loop system is asymptotically stable. If (A, B) is stabilizable, one can choose K
so that A + BK is asymptotically stable. If (C, A) is detectable, one can choose L so that
A+LC is asymptotically stable. Combining these observations with Lemma 21 leads to the
following result.

Theorem 28 The following statements are equivalent.

(a) (A,B) is stabilizable and (C, A) is detectable.

(b) Plant (17.1) is stabilizable via a LTI dynamic output feedback controller.

(c) Plant (17.1) is stabilizable via a LTI dynamic output feedback controller whose order
is less than or equal to that of the plant.
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Example 203 The unattached mass with position measurement

ẋ1 = x2

ẋ2 = u

y = x1

Observer based controllers are given by

˙̂x1 = x̂2 + l1(x̂1 − y)
˙̂x2 = u l2(x̂1 − y)
u = k1x̂1 + k2x̂2

which is the same as
˙̂x1 = l1x̂1 + x̂2 − l1y
˙̂x2 = (k1 + l2)x̂1 + k2x̂2 − l2y

The closed loop system is described by

ẋ1 = x2

ẋ2 = k1x1 + k2x2 + k1x̃1 + k2x̃2

˙̃x1 = l1x̃1 + x̃2

˙̃x1 = l2x̃1

where x̃i = x̂i − xi, i = 1, 2 are the estimation error state variables. The characteristic
polynomial of the closed loop system is

p(s) = (s2 − k2s− k1)(s
2 − l1s− l2)

Hence, if
k1, k2, l1, l2 < 0

the closed loop system is asymptotically stable.
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17.4 Discrete-time systems

Basically, everything said above for continuous-time systems also holds for discrete-time
systems. The only differences are the way systems are described are the characterization of
stability, stabilizability, and detectability in terms of eigenvalues.

Plant.

x(k + 1) = Ax(k) + Bu(k) (17.9a)

y(k) = Cx(k) (17.9b)

with state x(k) ∈ IRn, control input u(k) ∈ IRm, and measured output y(k) ∈ IRp.

17.4.1 Memoryless output feedback

A memoryless (or static) linear output feedback controller is of the form

u(k) = Ky(k)

where K is a real m × p matrix, sometimes called a gain matrix. This controller results in
the following closed loop system:

x(k + 1) = (A + BKC)x(k)

17.4.2 Dynamic output feedback

In general, a linear dynamic output feedback controller is described by

xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k)

(17.10)

where xc(k) ∈ IRnc is called the controller state; nc is the order of the controller.

Closed loop system.

x(k + 1) = (A + BDcC)x(k) + BCcxc(k)
xc(k + 1) = BcCx(k) + Acxc(k)

(17.11)

This is an lti system with state

(
x
xc

)
and “A-matrix”

A =

(
A + BDcC BCc

BcC Ac

)
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17.4.3 Observer based controllers

Consider

x(k + 1) = Ax(k) + Bu(k) (17.12a)

y(k) = Cx(k) + Du(k) (17.12b)

An observer based controller has the following structure:

x̂(k + 1) = Ax̂(k) + Bu + L [Cx̂(k) + Du(k)− y(k)]
u(k) = Kx̂(k)

(17.13)

Closed loop system. Let x̃ be the estimation error, that is, x̃ = x̂− x. Then the closed loop
system is described by

x(k + 1) = (A + BK)x(k) + BKx̃(k)
x̃(k + 1) = (A + LC)x̃(k)

(17.14)

This is an lti system with “A matrix”

A =

(
A + BK BK
0 A + LC

)

Dead-beat controllers. Place all eigenvalues of A + BK and A + LC at zero.
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Exercises

Exercise 138 Consider the system,

ẋ1 = x2 + u

ẋ2 = x1

y = x1

where all quantities are scalar. Obtain an output feedback controller which results in an
asymptotically stable closed loop system.

Exercise 139 Consider the system with input u, output y, and state variables x1, x2, x3, x4

described by

ẋ1 = −x1

ẋ2 = x1 − 2x2

ẋ3 = x1 − 3x3 + u

ẋ4 = x1 + x2 + x3 + x4

y = x3

(a) Is this system observable? (b) Is this system stabilizable using output feedback? Justify

your answers.

Exercise 140 Consider the system,

ẋ1 = x2

ẋ2 = x1 + u

y = x1

where all quantities are scalar. Obtain an output feedback controller which results in an
asymptotically stable closed loop system.

Exercise 141 Consider the system

ẋ1 = −x1 + x3

ẋ2 = u

ẋ3 = x2

y = x3

with scalar control input u and scalar measured output y.

(a) Obtain an observer-based output feedback controller which results in an asymptotically
stable closed loop system.

(b) Can all the eigenvalues of the closed loop system be arbitrarily placed?
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Exercise 142 Consider the system,

ẋ1 = x2 + u1

ẋ2 = u2

y = x1

where all quantities are scalar. Obtain an output feedback controller which results in an
asymptotically stable closed loop system.

Exercise 143 Stabilization of 2-link manipulator with dynamic output feedback.

[m1lc
2
1 + m2l

2
1 + I1]q̈1 + [m2l1lc2 cos(q1 − q2)]q̈2 + m2l1lc2 sin(q1 − q2)q̇

2
2

− [m1lc1 + m2l1]g sin(q1) = u

[m2l1lc2 cos(q1 − q2)]q̈1 + [m2lc
2
2 + I2]q̈2 −m2l1lc2 sin(q1 − q2)q̇

2
1 −m2glc2 sin(q2) = 0

y = q2

Recall the linearizization of this system about

q1 = q2 = u = 0

and recall its state space description.
Use parameter values previously given.
Is the linearization observable? Design a observer based dynamic output feedback con-

troller which asymptotically stabilizes this linearized system. Apply the controller to the
nonlinear system and simulate the nonlinear closed loop system for various initial condi-
tions. (Use zero initial conditions for the observer.)
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Chapter 18

Constant output tracking in the
presence of constant disturbances

18.1 Zeros

Consider a SISO system described by

ẋ = Ax + Bu (18.1a)

y = Cx + Du (18.1b)

where u(t) and y(t) are scalars while x(t) is an n-vector. The transfer function ĝ associated
with this system is given by

ĝ(s) = C(sI − A)−1B + D . (18.2)

Recall that a scalar λ is a zero of ĝ if

ĝ(λ) = 0 .

Since every rational scalar transfer function can be written as ĝ = n/d where n and d
are polynomials with no common zeros, it follows that the zeros of ĝ are the zeros of n while
the poles of g are the zeros of d. Hence, a scalar cannot be simultaneously a pole and a zero
of ĝ. Also, the eigenvalues of A which are neither uncontrollable nor unobservable are the
poles of ĝ.

18.1.1 A state space characterization of zeros

For each scalar λ we define Tλ to be the (n+1)× (n+1) matrix given by

Tλ =

(
A− λI B

C D

)
. (18.3)

This matrix yields the following state space characterization of zeros.

Theorem 29 Consider a SISO system described by (18.1) and let Tλ be the matrix defined
by (18.3). Then det Tλ = 0 if and only if at least one of the following conditions hold.
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(a) λ is an uncontrollable eigenvalue of (A,B).

(b) λ is an unobservable eigenvalue of (C, A).

(c) λ is a zero of ĝ.

Proof. We first demonstrate that if at least one of conditions (a), (b), or (c) hold, then
det Tλ = 0. When λ is an uncontrollable eigenvalue of (A,B), we have

rank
(

A− λI B
)

< n .

This implies that rank Tλ < n + 1; hence det Tλ = 0. In a similar fashion, if λ is an
unobservable eigenvalue of (C,A), then

rank

(
A− λI

C

)
< n .

From this it also follows that det Tλ = 0. Now consider the case in which λ is a zero of ĝ but
is neither an uncontrollable eigenvalue of (A, B) nor an unobservable eigenvalue of (C, A).
Since λ is a zero of ĝ it follows that λ is not a pole of ĝ. Thus λ is not an eigenvalue of A.
Hence λI − A is invertible. Letting x0 = (λI − A)−1B, we obtain that

(A− λI)x0 + B = 0

and
Cx0 + D = C(λI − A)−1B + D = ĝ(λ) = 0 .

This implies that (
A− λI B

C D

)(
x0

1

)
= 0 .

Hence, det Tλ = 0.
We now show that if det Tλ = 0, then at least one of conditions (a), (b), or (c) must hold.

To this end suppose that det Tλ = 0 and (a) and (b) do not hold. Then we need to show
that (c) holds. Since det Tλ = 0, there is an n-vector x0 and a scalar u0, such that

(
A− λI B

C D

)(
x0

u0

)
= 0 . (18.4)

and u0 and x0 cannot both be zero. We now claim that u0 cannot be zero. If u0 = 0, then
x0 6= 0 and (

A− λI
C

)
x0 = 0 .

This contradicts the assumption that λ is not an unobservable eigenvalue of (C, A). Hence
u0 is non-zero and, by scaling x0, we can consider u0 = 1. It follows from (18.4) that

(A− λI)x0 + B = 0 (18.5a)

Cx0 + D = 0 (18.5b)
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Hence, B = −(A− λI)x0, that is B is a linear combination of the columns of A− λI. This
implies that

rank
(

A− λI B
)

= rank(A− λI) .

Using this conclusion and the fact that λ is not an uncontrollable eigenvalue of (A,B), we
obtain that

n = rank
(

A− λI B
)

= rank(A− λI) .

Since rank(A − λI) = n, it follows that λ is not an eigenvalue of A. It now follows from
(18.5a) that x0 = (λI − A)−1B; hence, using (18.5a), we obtain

0 = Cx0 + D = C(λI − A)−1B + D = ĝ(λ) ,

that is, λ is a zero of ĝ.

Corollary 4 Suppose {A,B, C,D} is a minimal realization of a SISO transfer function ĝ.
Then a scalar λ is a zero of ĝ if and only if

det

(
A− λI B

C D

)
= 0 .

Proof. If {A,B,C,D} is a minimal realization of a SISO transfer function then, (A,B) is
controllable and (C,A) is observable. The result now follows from Theorem 29.

Example 204 Consider the transfer function

ĝ(s) =
s2 − 1

s2 + 1
.

The zeros of this transfer function are 1 and −1. A minimal realization of this transfer
function is given by

A =

(
0 1

−1 0

)
, B =

(
0
1

)
, C =

( −2 0
)

, D = 1 .

For this realization,

det Tλ = det

(
A− λI B

C D

)
=



−λ 1 0
−1 −λ 1
−2 0 1


 = λ2 − 1 .

Clearly, the zeros of ĝ are given by det Tλ = 0.
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w

u

z

x

Figure 18.1: A block diagram

18.2 Tracking and disturbance rejection with state feed-

back

Consider a system described by

ẋ = Ax + B1w + B2u
z = Cx + D1w + D2u

(18.6)

where the n-vector x(t) is the state; the m1-vector w is an unknown, constant, disturbance
input; the m2-vector u(t) is the control input; and the p-vector z(t) is a performance output.
Initially, we assume that the state x and the performance output z can be measured.

The control problem we consider here is the following: Suppose r is any constant reference
output; we wish to design a feedback controller such that for all initial conditions x(0) = x0,
we have

lim
t→∞

z(t) = r

and the state x(t) is bounded for all t ≥ 0.

Assumptions. We will assume that the pair (A,B2) is stabilizable. We will also need the
following condition:

rank

(
A B2

C D2

)
= n + p (18.7)

that is, the the rank of the above matrix must equal the number of its rows.

For a system with scalar control input u and scalar output z, the above condition is
equivalent to

det

(
A B2

C D2

)
6= 0 .

By Theorem 29, this is equivalent to the requirement that 0 is neither an uncontrollable
eigenvalue of (A,B2), an unobservable eigenvalue of (C, A), nor a zero of the transfer function
Tzu(s) = C(sI − A)−1B2 + D2.

Why do we need the condition in (18.7)? If it does not hold then, there is a reference
output r0 such that one cannot achieve limt→∞ z(t) = r0 with a bounded state history. To
see this, suppose the above condition does not hold. Then there is a nonzero vector

(
v1

v2

)
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with v1 ∈ Rn and v2 ∈ IRp such that

(
v1

v2

)∗ (
A B2

C D2

)
= 0 ,

that is,

v∗1A + v∗2C = 0 , v∗1B2 + v∗2D2 = 0

Since (A, B2) is stabilizable, we must have v2 6= 0. (Why?) Consider w = 0, premultiply
the first and second equations in the system description by v∗1 and v∗2, respectively, and add
to obtain

v∗1ẋ + v∗2z = 0 ,

that is,
dv∗1x
dt

= −v∗2z

Suppose

lim
t→∞

z(t) = r0 := −v2

Then
dv∗1x
dt

= ||v2||2 − v∗2(z − r0);

Since v2 6= 0 and limt→∞(z(t)− r0) = 0, it follows that there exists a time T and a positive
number ε such that

||v2||2 − v∗2(z(t)− r0) ≥ ε for all t ≥ T

Hence, for t ≥ T ,

v∗1x(t) ≥ v∗1x(T ) + ε(t− T )

This implies that v∗1x is unbounded, So, x is unbounded.

Example 205 Consider
ẋ1 = x2

ẋ2 = −x1 − x2 + u
z = x2

Here (
A B2

C D2

)
=




0 1 0
−1 −1 1

0 1 0




Clearly rank condition (18.7) does not hold. It should be clear from the first differential
equation describing this system that, in order to keep z = x2 equal to a nonzero constant,
x1 must be unbounded. Note that the transfer function from u to z, given by

s

s2 + s + 1
,

has a zero at 0.

351



• Since the rank of a matrix is always less than or equal to the number of its columns, it
follows that if rank condition (18.7) holds then,

p ≤ m2 ,

that is, the number of performance output variables is less than or equal to the number of
control input variables.

18.2.1 Nonrobust control

Consider first the question of the existence of steady state values of x and u such that z has
a steady state value of r. Letting x(t) ≡ xe, u(t) ≡ ue, and z(t) ≡ r in system description
(18.6) results in (

A B2

C D2

)(
xe

ue

)
=

( −B1w
−D1w + r

)

Since the matrix

(
A B2

C D2

)
has full row rank, there exists a solution (xe, ue) to the above

equation. Consider now the controller

u = ue + K[x− xe]

Letting
δx := x− xe

the closed loop system is described by

δẋ = [A + B2K]δx

z = Cδx + r

Choosing K so that A+B2K is asymptotically stable results in limt→∞ δx(t) = 0 and, hence,
limt→∞ z(t) = r.

In addition to requiring knowledge of w, this approach also requires exact knowledge of
the matrices A, B2, C,D2. Inexact knowledge of these matrices yields inexact values of the
required steady values xe and ue. This results in the steady state value of z being offset from
the desired value r.

18.2.2 Robust controller

Integration of output error. Introduce a new state variable xI given by

ẋI = z − r

where xI(0) = xI0 and xI0 is arbitrary. Roughly speaking, this state is the integral of the
output tracking error, z − r; specifically, it is given by

xI(t) = xI0 +

∫ t

0

(z(τ)− r) dτ .
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Introducing new state, disturbance input and performance output,

x̃ :=

(
x
xI

)
, w̃ :=

(
w
r

)
, z̃ := z − r ,

respectively, we obtain the augmented plant,

˙̃x = Ãx̃ + B̃1w̃ + B̃2u

z̃ = C̃x̃ + D̃1w̃ + D̃2u

where

Ã =

(
A 0
C 0

)
B̃1 =

(
B1 0
D1 −I

)
B̃2 =

(
B2

D2

)

C̃ =
(

C 0
)

D̃1 =
(

D1 −I
)

D̃2 = D2

We have now the following result.

Lemma 22 The pair (Ã, B̃2) is controllable (stabilizable) if and only if

(a) the pair (A, B2) is controllable (stabilizable), and

(b) rank condition (18.7) holds.

Proof. The pair (Ã, B̃2) is controllable (stabilizable) iff

rank
(

Ã− λI B̃2

)
= n + p

for all complex numbers λ (for all complex λ with <(λ) ≥ 0). Also,

(
Ã− λI B̃2

)
=

(
A− λI 0 B2

C −λI D2

)

Considering λ = 0, we obtain

rank
(

Ã− λI B̃2

)
= rank

(
A 0 B2

C 0 D2

)
= rank

(
A B2

C D2

)
. (18.8)

Considering λ 6= 0, we obtain

rank
(

Ã− λI B̃2

)
= rank

(
A− λI 0 B2

C −λI D2

)

= rank

(
A− λI B2 0

0 0 −λI

)

= rank
(

A− λI B2

)
+ p (18.9)

Since the pair (A, B2) is controllable (stabilizable) iff rank [ A− λI B2 ] = n for all complex
numbers λ (for all complex λ with <(λ) ≥ 0), the desired result now follows from (18.8) and
(18.9).
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Controller design. Suppose (A, B2) is stabilizable and rank condition (18.7) holds. Then
(Ã, B̃2) is also stabilizable. Choose any matrix K̃ such that Ã+B̃2K̃ is asymptotically stable.
Let

u = K̃x̃

If we partition K̃ as
K̃ =

(
KP KI

)

where KP is given by the first n columns of K̃ and KI is given by the last p columns of K̃,
then the controller is given by

ẋI = z − r
u = KP x + KIxI

Note that this controller can be written as

u = KP x + KI

∫
(z − r)

This is a generalization of the classical PI (Proportional Integral) Controller.

Closed loop system. The closed loop system is given by

˙̃x = [Ã + B̃2K̃]x̃ + B̃1w̃

z̃ = [C̃ + D̃2K̃]x̃ + D̃1w̃

Since the matrix Ã + B̃2K̃ is asymptotically stable and w̃ is constant, all solutions x̃ are
bounded for t ≥ 0. Thus, x(t) is bounded for all t ≥ 0.

Letting η = ˙̃x and noting that w̃ is constant, we obtain that

η̇ = [Ã + B̃2K̃]η .

Since the matrix Ã + B̃2K̃ is asymptotically stable, we must have

lim
t→∞

˙̃x = lim
t→∞

η(t) = 0 .

In particular, we have
lim
t→∞

ẋI = 0 ;

hence
lim
t→∞

z(t) = r .

Thus, the proposed controller achieves the desired behavior.

Example 206 Consider the constantly disturbed and controlled harmonic oscillator de-
scribed by

ẋ1 = x2

ẋ2 = −x1 + w + u

z = x1
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Here

A =

(
0 1

−1 0

)
, B1 = B2 =

(
0
1

)
, C =

(
1 0

)
, D1 = D2 = 0

The pair (A, B2) is controllable and

rank

(
A B2

C D2

)
= rank




0 1 0
−1 0 1

1 0 0


 = 3 = n + p

Hence

Ã =

(
A 0
C 0

)
=




0 1 0
−1 0 0

1 0 0


 , and B̃2 =

(
B2

D2

)
=




0
1
0




Letting
K̃ =

(
k1 k2 kI

)

we obtain

Ã + B̃2K̃ =




0 1 0
−1 + k1 k2 kI

1 0 0




The characteristic polynomial p of Ã + B̃2K̃ is given by

p(s) = s3 − k2s
2 + (1− k1)s− kI

Choosing k1, k2, kI so that this polynomial has roots with negative real parts, a controller
yielding constant output tracking, rejecting constant disturbances and yielding bounded
states is given by

ẋI = x1 − r
u = k1x1 + k2x2 + kIxI

18.3 Measured Output Feedback Control

Consider a system described by

ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w

where the n-vector x(t) is the state; the m1-vector w is an unknown, constant, disturbance
input; the m2-vector u(t) is the control input; and the p1-vector z(t) is a performance output.
We will assume z(t) can be measured and that instead of x we can only measure the measured
output y(t) which is a p2-vector.

Suppose the p1-vector r is any constant reference output and we wish to design a controller
such that for any initial condition x(0) = x0,

lim
t→∞

z(t) = r

and the state x(t) is bounded for all t ≥ 0. To achieve this objective, we need the following
assumptions.
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Assumptions.

(a) The pair (A, B2) is stabilizable.

(b) The pair (C2, A) is detectable.

(c)

rank

(
A B2

C1 D12

)
= n + p1

As before, we introduce a new state variable xI given by

ẋI = z − r

where xI(0) is arbitrary. Letting

x̃ :=

(
x
xI

)
, w̃ :=

(
w
r

)
, z̃ := z − r , ỹ :=




y
xI

r




we obtain the augmented plant

˙̃x = Ãx̃ + B̃1w̃ + B̃2u

z̃ = C̃1x̃ + D̃11w̃ + D̃12u

ỹ = C̃2x̃ + D̃21w̃

(18.10)

with

Ã =

(
A 0
C1 0

)
B̃1 =

(
B1 0
D11 −I

)
B̃2 =

(
B2

D12

)

C̃1 =
(

C1 0
)

D̃11 =
(

D11 −I
)

D̃12 = D12

C̃2 =




C2 0
0 I
0 0


 D̃21 =




D21 0
0 0
0 I




Consider now any output feedback controller of the form

ẋc = Acxc + Bcỹ
u = Ccxc + Dcỹ

(18.11)

The resulting closed loop system is described by
(

˙̃x
ẋc

)
=

(
Ã + B̃2DcC̃2 B̃2Cc

BcC̃2 Ac

)

︸ ︷︷ ︸
Acl

(
x̃
xc

)
+

(
B̃1 + B̃2DcD̃21

DcD̃21

)
w̃ (18.12)

From the lemma of the previous section, assumptions (a) and (c) imply that the pair (Ã, B̃2)
is stabilizable. Also, detectability of the pair (C2, A) is equivalent to detectability of the pair
(C̃2, Ã). Hence, one can always choose matrices Ac, Bc, Cc, Dc so that so that the closed loop
system matrix Acl is asymptotically stable.
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Controller design. Choose any matrices Ac, Bc, Cc, Dc so that the closed loop system
matrix Acl in (18.12) is asymptotically stable. Then the controller is given by (18.11).

If we let

Bc = (BcP BcI Bcr)

Dc = (BcP BcI Bcr)

where the above partitions correspond to the partitions of ỹ, we can express this controller
as

ẋI = z − r

ẋc = Acxc + BcIxI + BcP y + Bcrr

u = Ccxc + DcIxI + DcP y + Dcrr

Note that Acl does not depend on Bcr and Dcr; hence these two matrices can be arbitrarily
chosen.

Closed loop system. The closed loop system is described by (18.12). Since the closed
loop system matrix Acl is asymptotically stable and w̃ is constant, it follows that x̃ and xc

are bounded. Hence x is bounded.
Letting

η =

(
˙̃x

ẋc

)

and noting that w̃ is constant, we obtain that

η̇ = Aclη

Since the matrix Acl is asymptotically stable, we must have

lim
t→∞

(
˙̃x

ẋc

)
= lim

t→∞
η(t) = 0

In particular, we have
lim
t→∞

ẋI = 0 ;

hence
lim
t→∞

z(t) = r

18.3.1 Observer based controllers

As we have seen in a previous chapter, one approach to the design of stabilizing output
feedback controllers is to combine an asymptotic state estimator with a stabilizing state
feedback gain matrix. Since there is no need to estimate the state xI of the augmented plant
(18.10), we design the observer to estimate only x. This yields the following design.

• Choose gain matrix K̃ so that the Ã + B̃2K̃ is asymptotically stable and let

K̃ =
(

KP KI

)
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where KP is given by the first n columns of K̃ and KI is given by the last p1 columns of K̃.

• Choose observer gain matrix L so that A + LC2 is asymptotically stable.

• An observer based controller is given by

ẋI = z − r integrator
ẋc = Axc + B2u + L(C2xc − y) observer
u = KP xc + KIxI control input

where xc(0) and xI(0) are arbitrary.

If we let

e := xc − x

the closed loop system due to this controller is described by

(
˙̃x
ė

)
=

(
Ã + B̃2K̃ ∗

0 A + LC2

)(
x̃
e

)
+

( ∗
∗

)
w̃

Since the eigenvalues of the closed loop system matrix

(
Ã + B̃2K̃ ∗

0 A + LC2

)

are the union of those of Ã + B̃2K̃ and A + LC2, it follows that this matrix is asympotically
stable. Hence, this controller yields the desired behavior.

Exercises

Exercise 144 Consider a system described by

ẑ(s) = Tzw(s)ŵ(s) + Tzu(s)û(s)

with

Tzw(s) =
1

s2 − 1
and Tzu(s) =

s− 2

s2 − 1

where ẑ, ŵ, and û are the Laplace transforms of the performance output z, disturbance
input w, and control input u, respectively. Let r be a desired constant output and assume
the disturbance input w is an unknown constant. Design an output (z) feedback controller
which guarantees that for all r and w,

lim
t→∞

z(t) = r

and all signals are bounded. Illustrate your results with simulations.
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Exercise 145 Consider a system described by

ẋ = Ax + B1w + B2u
y = Cx + D1w + D2u

where x(t), u(t), and w, and y(t) ∈ IRp are as above. Suppose that we can only measure the
control input u and the measured output y. It is desired to obtain an asymptotic observer
for x and w; that is, we wish to design an observer producing estimates x̂ and ŵ of x and w
with the property that for any initial value x0 of x and any w, one has

lim
t→∞

[x̂(t)− x(t)] = 0 , lim
t→∞

[ŵ(t)− w] = 0

(a) State the least restrictive conditions on the system which allows one to construct an
asymptotic estimator.

(b) Give a procedure for constructing an asymptotic estimator.

(c) Illustrate your results with example(s) and simulation results.
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Chapter 19

Lyapunov revisited*

19.1 Stability, observability, and controllability

Recall the damped linear oscillator described by

ẋ1 = x2

ẋ2 = − k
m

x1 − d
m

x2
(19.1)

with m, d and k positive. This system is asymptotically stable. The energy of this system is
given by

V (x) =
k

2
x2

1 +
m

2
x2

2 = x∗Px

where

P =




k
2

0

0 m
2


 .

Along any solution, the rate of change of the energy is given by

dV

dt
= −dx2

2 = −x∗C∗Cx

where
C =

[
0 d

1
2

]

From this it should be clear that

P > 0

PA + A∗P + C∗C = 0

The matrix Q = C∗C is hermitian positive semi-definite, but it is not positive definite.
Hence, using this P matrix, our existing Lyapunov results only guarantee that the system is
stable; they do not guarantee asymptotic stability. Noting that the pair (C, A) is observable,
we present a result in this section which allows us to use the above P matrix to guarantee
asymptotic stability of (19.1).
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Consider a system described by

ẋ = Ax (19.2)

where x(t) is an n-vector and A is a constant n× n matrix. We have the following result.

Lemma 23 Suppose there is a hermitian matrix P satisfying

P > 0
PA + A∗P + C∗C ≤ 0

(19.3)

where (C,A) is observable. Then system (19.2) is asymptotically stable.

Proof. Suppose there exists a hermitian matrix P which satisfies inequalities (19.3). Con-
sider any eigenvalue λ of A; we will show that <(λ) < 0. Let v 6= 0 be an eigenvector
corresponding to λ, that is,

Av = λv . (19.4)

Hence,

v∗PAv = λv∗Pv ;

and taking the complex conjugate transpose of both sides of this last equation yields

v∗A∗Pv = λ̄v∗Pv

Pre- and post-multiplying the second inequality in (19.3) by v∗ and v, respectively, yields

v∗PAv + v∗APv + v∗C∗Cv ≤ 0

which implies

λv∗Pv + λ̄v∗Pv + ||Cv||2 ≤ 0

that is,

2<(λ)v∗Pv ≤ −||Cv||2 .

Since P > 0, we must have v∗Pv > 0.

We now show that we must also have ||Cv|| > 0. Suppose ||Cv|| = 0. Then Cv = 0.
Recalling (19.4) results in [

A− λI
C

]
v = 0

Since (C,A) is observable, the above matrix has rank n, and hence v = 0; this contradicts
v 6= 0. So, we must have ||Cv|| > 0.

Hence,

<(λ) = −||Cv||2/2v∗Pv < 0

Since <(λ) < 0 for every eigenvalue λ of A, system (19.2) is asymptotically stable.
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Example 207 Returning to the damped linear oscillator, we see that inequalities (19.3) are
satisfied by

P =

[
k
2

0
0 m

2

]
C =

[
0 d

1
2

]

Since the oscillator is described by (19.2) with

A =

[
0 1

− k
m

− d
m

]

we have [
C

CA

]
=

[
0 d

1
2

−d
1
2 k

m
−d

3
2

m

]

Since this observability matrix is invertible, (C,A) is observable. Using Lemma 23, one can
use the above matrix P to guarantee asymptotic stability of the damped oscillator.

Exercise 146 Prove the following result. Suppose there is a hermitian matrix P satisfying

P ≥ 0
PA + A∗P + C∗C ≤ 0

where (C,A) is detectable. Then the system (19.2) is asymptotically stable.

Recalling that controllability of (A,B) is equivalent to observability of (B∗, A∗), and that
asymptotic stability of A and A∗ are equivalent, we obtain the following result

Lemma 24 Suppose there is a hermitian matrix S satisfying

S > 0
AS + SA∗ + BB∗ ≤ 0

(19.5)

where (A,B) is controllable. Then system (19.2) is asymptotically stable

Exercise 147 Suppose there is a hermitian matrix S satisfying

S ≥ 0
AS + SA∗ + BB∗ ≤ 0

where (A,B) is stabilizable. Then system (19.2) is asymptotically stable

Suppose system (19.2) is asymptotically stable, Then for any matrix C (of appropriate
dimensions) the Lyapunov equation

PA + A∗P + C∗C = 0 (19.6)

has the unique solution

P =

∫ ∞

0

eA∗tC∗CeAt dt

Recall that this is the infinite time observability grammian associated with (C, A), that is,
P = Wo; it is always hermitian and positive semidefinite. In addition, as we have seen
earlier, Wo is positive definite if and only if (C,A) is observable. These observations and
Lemma 23 lead to the following result.
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Theorem 30 The following statements are equivalent.

(a) The system ẋ = Ax is asymptotically stable.

(b) There exist a positive definite hermitian matrix P and a matrix C with (C, A) observ-
able which satisfy the Lyapunov equation

PA + A∗P + C∗C = 0 (19.7)

(c) For every matrix C with (C, A) observable, the Lyapunov equation (19.7) has a unique
solution for P and this solution is hermitian positive-definite.

Recall the original Lyapunov equation

PA + A∗P + Q = 0

If Q is hermitian positive semi-definite, it can always be expressed as Q = C∗C by appropriate
choice of C and one can readily show that (Q,A) is observable iff (C,A) is observable. Also
rankC = n if and only if Q is positive definite. If C has rank n, the pair (C, A) is observable
for any A. So, if Q is positive definite hermitian, the original Lyapunov equation is of the
form (19.7) with (C,A) observable.

Recalling that controllability of (A,B) is equivalent to observability of (B∗, A∗), and that
asymptotic stability of A and A∗ are equivalent, we can obtain the following result.

Theorem 31 The following statements are equivalent.

(a) The system ẋ = Ax is asymptotically stable.

(b) There exist a positive definite hermitian matrix S and a matrix B with (A, B) control-
lable which satisfy the Lyapunov equation

AS + SA∗ + BB∗ = 0 (19.8)

(c) For every matrix B with (A, B) controllable, the Lyapunov equation (19.8) has a unique
solution for S and this solution is hermitian positive-definite.

Note that if A is asymptotically stable, the solution S to Lyapunov equation (19.8) is
the infinite-time controllability grammian associated with (A,B), that is S = Wc. Also,

S =

∫ ∞

0

eAtBB∗eA∗t dt
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19.2 A simple stabilizing controller

Consider a linear time-invariant system described by

ẋ = Ax + Bu

where x(t) is an n-vector and u(t) is an m-vector. Consider any positive T > 0 and let

W = Wc(−T ) :=

∫ 0

−T

eAtBB∗eA∗t dt

The above matrix can be regarded as the finite time controllability grammian (over the
interval [−T, 0]) associated with (A,B). If (A, B) is controllable, W is invertible.

We now show that the controller

u = −B∗W−1x

yields an asymptotically stable closed loop system.

Using the following properties of eAt,

AeAt =
deAt

dt
; eA∗tA∗ =

deA∗t

dt

we obtain

AW + WA∗ =

∫ 0

−T

[
AeAtBB∗eA∗t + eAtBB∗eA∗tA∗] dt

=

∫ 0

−T

[
deAt

dt
BB∗eA∗t + eAtBB∗deA∗t

dt

]
dt

=

∫ 0

−T

d
(
eAtBB∗eA∗t

)

dt
dt

= BB∗ − e−AT BB∗e−A∗T ,

that is,
AW + WA∗ −BB∗ = −e−AT BB∗e−A∗T

Considering the closed loop system

ẋ = (A−BB∗W−1)x

we have

(A−BB∗W−1)W + W (A−BB∗W−1)∗ = AW + WA∗ − 2BB∗

= −BB∗ − e−AT BB∗e−A∗T

≤ −BB∗ ,
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that is,
(A−BB∗W−1)W + W (A−BB∗W−1)∗ + BB∗ ≤ 0 .

Controllability of (A, B) implies controllability of (A − BB∗W−1, B). This fact, along
with W > 0 and the previous inequality imply that the closed-loop system is asymptotically
stable.

So, the above yields another proof of

controllability =⇒ stabilizability
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Chapter 20

Performance*

20.1 The L2 norm

20.1.1 The rms value of a signal

Consider any scalar signal s which is defined for 0 ≤ t < ∞. One measure of the size of the
signal is given by the rms value of the signal; we denote this by ‖s‖2 and define it by

‖s‖2 =

(∫ ∞

0

|s(t)|2 dt

) 1
2

.

This is also called the L2 norm of the signal. One can readily show that the three required
properties of a norm are satisfied. This norm is simply the generalization of the usual
Euclidean norm for n-vectors to signals or functions. Clearly, a signal has a finite L2 norm
if and only if it is square integrable.

Example 208 Consider the exponential signal s(t) = eλt where λ = −α + jω and α and ω
are both real with α > 0. For any T > 0,

∫ T

0

|s(t)|2 dt =

∫ T

0

e−2αt dt =
1

−2α
(e−2αT − 1) .

Thus, ∫ ∞

0

|s(t)|2 dt = lim
T→∞

∫ T

0

|s(t)|2 dt = lim
T→∞

1

−2α
(e−2αT − 1) =

1

2α
.

Hence ‖s‖2 = 1/
√

2α.

Consider now a signal s where s(t) is an n-vector for 0 ≤ t < ∞. We define the L2 norm
of the signal s by

‖s‖2 =

(∫ ∞

0

|s(t)|2 dt

) 1
2

where ‖s(t)‖ is the usual Euclidean norm of the n-vector s(t) as given by

‖s(t)‖2 = |s1(t)|2 + |s2(t)|2 + · · ·+ |sn(t)|2 .

One can readily show that the three required properties of a norm are satisfied.
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20.1.2 The L2 norm of a time-varying matrix

Consider now a function G defined on [0,∞) where G(t) is a matrix for 0 ≤ t < ∞. We
define the L2 norm of G by

‖G‖2 =

(∫ ∞

0

trace (G∗(t)G(t)) dt

) 1
2

.

Suppose G(t) is m×n and the m-vectors g1(t), g2(t), · · · , gn(t) are the columns of G(t). Then

trace (G(t)∗G(t)) = g1(t)
∗g1(t) + g2(t)

∗g2(t) + · · ·+ gn(t)∗gn(t)

= ‖g1(t)‖2 + ‖g2(t)‖2 + · · ·+ ‖gn(t)‖2 .

So we conclude that

‖G‖2
2 =

n∑
i=1

∫ ∞

0

‖gi(t)
2‖2 dt =

n∑
i=1

‖gi‖2
2 (20.1)

where the gi is the i-th column of G.

20.2 The H2 norm of an LTI system

Consider an input-output system with disturbance input w and performance output z de-
scribed by

ẋ = Ax + Bw
z = Cx

(20.2)

and suppose A is asymptotically stable. Recall that zero initial condition input-output
behavior of this system can be completely characterized by its impulse response

G(t) = CeAtB . (20.3)

Consider first a SISO system with impulse response g. When A is asymptotically stable,
it follows that g is square integrable and the L2 norm ‖g‖2 of g is finite where

‖g‖2 =

(∫ ∞

0

|g(t)|2 dt

) 1
2

. (20.4)

We refer to ‖g‖2 as the H2 norm of the system. Thus the H2 norm of an asymptotically stable
SISO system is the rms value of its impulse response. This norm is a a performance measure
for the system; it can be regarded as a measure of the ability of the system to mitigate the
effect of the disturbance w on the performance output z.

Consider now a general linear time-invariant system described by (20.2) with inpulse
response given by (20.3). When A is asymptotically stable, if follows that each element of
G is square integrable, and we define the L2 norm of the impulse response by

‖G‖2 =

(∫ ∞

0

trace (G∗(t)G(t)) dt

) 1
2

. (20.5)
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We refer to ‖G‖2 as the H2 norm of the system.
We now obtain a frequency domain interpretation of ‖G‖2. Recall that the transfer

function of this system is given by Ĝ(s) = C(sI −A)−1B. When A is asymptotically stable,
we define the 2-norm of the transfer function by

‖Ĝ‖2 =

(
1

2π

∫ ∞

−∞
trace (G(ω)∗G(ω)) dω

) 1
2

. (20.6)

For a SISO system with transfer function ĝ, we have

‖ĝ‖2
2 =

1

2π

∫ ∞

−∞
|ĝ(ω)|2 dω .

Since Ĝ is the Laplace transform of G, it follows from Parseval’s Theorem that

‖Ĝ‖2 = ‖G‖2 , (20.7)

that is, the 2-norm of the transfer function equals the L2 norm of the impulse response.

20.3 Computation of the H2 norm

We now show how the H2-norm can be computed using Lyapunov equations. Suppose A is
asymptotically stable and let Wo be the observability grammian associated with (C, A), that
is, Wo =

∫∞
0

eA∗tC∗CeAt dt. Recall that Wo is the unique solution to the Lyapunov equation

WoA + A∗Wo + C∗C = 0 .

We now obtain that
∫ ∞

0

G∗(t)G(t) dt =

∫ ∞

0

B∗eA∗tC∗CeAtB dt = B∗
∫ ∞

0

eA∗tC∗CeAt dtB = B∗WoB ,

that is, ∫ ∞

0

G∗(t)G(t) dt = B∗WoB . (20.8)

Using the linearity of the trace operation, it now follows that

‖G(·)‖2
2 =

∫ ∞

0

trace (G∗(t)G(t)) dt = trace

(∫ ∞

0

G∗(t)G(t) dt

)
= trace (B∗WoB) ;

hence

‖G‖2
2 = trace (B∗WoB) . (20.9)

We can also compute the H2-norm using the controllability grammian. Since

trace (G∗(t)G(t)) = trace (G(t)G∗(t)) ;
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it follows that the H2-norm is also given by

‖G‖2 =

(∫ ∞

0

trace (G(t)G∗(t)) dt

) 1
2

. (20.10)

Let Wc be the controllability grammian associated with (A,B), that is, Wo =
∫∞
0

eAtBB∗eA∗t dt.
Recall that Wc is the unique solution to the Lyapunov equation

AWc + WcA
∗ + BB∗ = 0 .

Hence,
∫ ∞

0

G(t)G(t)∗ dt =

∫ ∞

0

CeAtBB∗eA∗tC∗ dt = C

∫ ∞

0

eAtBB∗eA∗t dtC∗ = CWcC
∗ ,

that is, ∫ ∞

0

G(t)G∗(t) dt = CWcC
∗ . (20.11)

Using the linearity of the trace operation, it now follows that

‖G(·)‖2
2 =

∫ ∞

0

trace (G(t)G∗(t)) dt = trace

(∫ ∞

0

G(t)G∗(t) dt

)
= trace (CWcC

∗) ;

hence
‖G‖2

2 = trace (CWcC
∗) . (20.12)

Example 209 Consider the scalar system described by

ẋ = −αx + u

y = x

with α > 0. This system has transfer function ĝ(s) = 1
s+α

. Hence,

‖ĝ‖2
2 =

1

2π

∫ ∞

−∞
|ĝ|2 dω =

1

2π

∫ ∞

−∞

1

α2 + ω2
dω =

1

2πα

∫ ∞

−∞

1

1 + η2
dη (η = ω/α)

=
1

2πα

∣∣∞−∞ tan−1(η)

=
1

2α
.

The impulse response for this system is given by g(t) = e−αt. Hence

‖g‖2
2 =

∫ ∞

0

g(t)2 dt =

∫ ∞

0

e−2αt dt = |∞0
1

−2α
e−2αt

=
1

2α
.

This clearly illustrates the fact that ‖ĝ‖2 = ‖g‖2 and the H2 norm of this system is (1/2α)
1
2 .
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The observability grammian Wo is given by the solution to the Lyapunov equation

−Woα− αWo + 1 = 0 .

This yields Wo = 1/2α. Since B = 1, we readily see that the H2 norm is given by

trace (B∗WoB)
1
2 . The controllability grammian Wc is given by the solution to the Lyapunov

equation
−αWc −Wcα + 1 = 0 .

This yields Wc = 1/2α. Since C = 1, we readily see that the H2 norm is given by

trace (CWcC
∗)

1
2 .

MATLAB

>> help normh2

NORMH2 Continuous H2 norm.

[NMH2] = NORMH2(A,B,C,D) or

[NMH2] = NORMH2(SS_) computes the H2 norm of the given state-space

realization. If the system not strictly proper, INF is returned.

Otherwise, the H2 norm is computed as

NMH2 = trace[CPC’]^0.5 = trace[B’QB]^0.5

where P is the controllability grammian, and Q is the observability

grammian.

>> help norm2

nh2 = norm2(sys)

Computes the H2 norm of a stable and strictly proper LTI

system

-1

SYS = C (sE-A) B

This norm is given by

______________

/

V Trace(C*P*C’)

where P solves the Lyapunov equation: A*P+P*A’+B*B’ = 0.

See also LTISYS.
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Exercises

Exercise 148 Consider the system described by

ẋ1 = x2

ẋ2 = −2x1 − 3x2 + w

y = 4x1 + 2x2

Obtain the H2 norm of this system using the following methods.
(a) The definition in (20.4).
(b) Equation (20.9).
(c) Equation (20.11).
(d) MATLAB.

Exercise 149 Without carrying out any integration, obtain the H2 norm of the system
whose impulse response g is given by

g(t) = e−t + e−2t .
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Chapter 21

Linear quadratic regulators (LQR)

21.1 The linear quadratic optimal control problem

In this chapter we learn another method of designing stabilizing state feedback controllers.
These controllers result from solving the linear quadratic (LQ) optimal control problem and
are called linear quadratic regulators (LQR). This problem is characterized by a linear system
and a quadratic cost.

Consider a linear time-invariant system (plant)

ẋ = Ax + Bu (21.1)

with initial condition

x(0) = x0 (21.2)

where the real scalar t is the time variable, the n-vector x(t) is the plant state, and the
m-vector u(t) is the control input. When we refer to a control history, control signal, or
open loop control we will mean a continuous control input function u(·) which is defined for
0 ≤ t < ∞.

Suppose Q and R are hermitian matrices with

R > 0 and Q ≥ 0

We call them weighting matrices. For each initial state x0 and each control history u(·), we
define the corresponding quadratic cost by

J(x0, u(·)) :=

∫ ∞

0

x(t)∗Qx(t) + u(t)∗Ru(t) dt

where x(·) is the unique solution of (21.1) with initial condition (21.2). We wish to minimize
this cost by appropriate choice of the control history. Although the above cost can be infinite,
it follows from the assumptions on Q and R that it is always non-negative, that is,

0 ≤ J(x0, u(·)) ≤ ∞ .
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In addition to minimizing the above cost, we will demand that the control input drives
the state to zero, that is, we require that

lim
t→∞

x(t) = 0 .

So, for a fixed initial state x0, we say that a control history u(·) is admissible at x0 if it results
in limt→∞ x(t) = 0. We say that a control history uopt(·) is optimal at x0 if it is admissible
at x0 and

J(x0, u
opt(·)) ≤ J(x0, u(·)) (21.3)

for every admissible control history u(·). We refer to

Jopt(x0) := J(x0, u
opt(·))

as the optimal cost at x0.
In general, the optimal control history and the optimal cost depend on the initial state.

Also, for a fixed initial state, the optimal cost is unique whereas the optimal control history
need not be. In some cases an optimal control history might not exist. Since the cost is
bounded below by zero, there is always an infimal cost J inf (x0). That is, one cannot achieve
better than this cost but can come arbitrarily close to it; more precisely, for every admissible
control history u(·), one has

J inf (x0) ≤ J(x0, u(·))
and for every ε > 0 there is an admissible control history uε(·) such that

J(x0, u
ε(·)) ≤ J inf (x0) + ε

When an optimal control history exists, we must have J inf (x0) = Jopt(x0). If there exists at
least one admissible control history yielding a bounded cost, then J inf (x0) < ∞.

Example 210 Consider the scalar integrator plant described by

ẋ = u

with initial condition x(0) = 1. Suppose we wish to drive the state of this plant to zero while
minimizing the cost ∫ ∞

0

u(t)2 dt .

Consider any positive δ > 0 and let

u(t) = −δe−δt .

Then, the resulting state history, x(t) = e−δt, has the desired behavior and the corresponding
cost is ∫ ∞

0

δ2e−2δt dt = |∞0
δ

−2
e−2δt =

δ

2
.

By choosing δ > 0 arbitrarily small, we can make the cost arbitrarily close to zero. Since
the cost is bounded below by zero, it follows that the infimal cost is zero. However, we
cannot make the cost zero. If the cost is zero, that is

∫∞
0

u(t)2 dt = 0, then we must have
u(t) ≡ 0; hence x(t) ≡ 1. This control history does not drive the state to zero and, hence,
is not admissible. So there is no optimal control history for this problem. Note that in this
problem, (Q,A) = (0, 0) has an imaginary axis unobservable eigenvalue.
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Optimal feedback controllers. Suppose one has a feedback controller C with the prop-
erty that for any initial state x0 the control histories generated by the controller are admissi-
ble. We say that C is an optimal feedback controller if for each initial state x0 the corresponding
control histories generated by C are optimal at x0. We will shortly demonstrate the following
fact for linear quadratic optimal control problems:

If there is an optimal control history for every initial state then, for every initial state, the
optimal control history is unique and is given by a linear memoryless state feedback controller.

Since we are going to look controllers which minimize the cost and result in

lim
t→∞

x(t) = 0

we need to make the following assumption for the rest of the chapter:

• The pair (A,B) is stabilizable.

21.2 The algebraic Riccati equation (ARE)

We will see that, when an optimal feedback controller exists, its determination involves the
following matrix equation which is known as the Algebraic Riccati Equation (ARE):

PA + A∗P − PBR−1B∗P + Q = 0 (21.4)

The matrices A,B,Q, R are determined by the LQR problem data. Solving the LQR problem
involves solving the ARE for a hermitian matrix P . Since the ARE depends quadratically
on P , it is a nonlinear matrix equation and, in general, has more than one solution.

A solution P is said to be a stabilizing solution if the matrix A − BR−1B∗P is Hurwitz,
that is, all its eigenvalues have negative real parts. This is the solution we will be looking
for. The significance of this property is that the linear state feedback controller

u = −R−1B∗Px

results in the asymptotically stable closed loop system:

ẋ = (A−BR−1B∗P )x

It shown in Section 21.4 that if there is an optimal control history for every initial state
then, the ARE must have a stabilizing solution. Hence, if the ARE does not have a stabilizing
solution then, there is not an optimal control history for every initial state.

It is also shown in Section 21.4 that if the pair (Q,A) has no imaginary unobservable
eigenvalues then, the ARE must have a stabilizing solution.

Section 21.4 also shows that a stabilizing solution is maximal in the sense that if P is a
stabilizing and P̃ is any other solution then, P ≥ P̃ . Hence there can only be one stabilizing
solution.
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21.3 Linear state feedback controllers

Suppose
u(t) = Kx(t)

where K is a constant state feedback gain matrix. The resulting closed loop system is
described by

ẋ = (A + BK)x

and for each initial state x0 the controller results in the cost

J(x0, u(·)) = Ĵ(x0, K) :=

∫ ∞

0

x(t)∗[K∗RK + Q]x(t) dt

This feedback controller is an optimal feedback controller if and only if it is a stabilizing
controller (that is, A + BK is asymptotically stable) and for each initial state x0 we have

Ĵ(x0, K) ≤ J(x0, u(·))
for every admissible control history u(·).

If K is stabilizing then, recalling a result from Lyapunov theory,

Ĵ(x0, K) = x∗0Px0 (21.5)

where P is the unique solution to the following Lyapunov equation

P (A + BK) + (A + BK)∗P + K∗RK + Q = 0 (21.6)

Since A + BK is asymptotically stable and K∗RK + Q is hermitian positive semi-definite,
we have P ∗ = P ≥ 0.

Example 211 Consider the simple real scalar system

ẋ = αx + u

with cost ∫ ∞

0

u(t)2 dt

If we do not require limt→∞ x(t) = 0 then regardless of initial state x0, this cost is uniquely
minimized by

u(t) ≡ 0

and the resulting controlled system is described by

ẋ = αx

This system is not asymptotically stable for α ≥ 0. So, in looking for an optimal control we
restrict consideration to control inputs that result in limt→∞ x(t) = 0

Now consider any linear controller u = kx. This generates a closed loop system

ẋ = (α + k)x
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which is asymptotically stable if and only if α + k < 0. Utilizing (21.5), (21.6), the cost
corresponding to a stabilizing linear controller is Px2

0 where

P =
k2

−2(α + k)

If α = 0, P = −k/2. Since we require asymptotic stability of the closed loop system, this
cost can be made arbitrarily small but nonzero. So for α = 0, we have an infimum cost (that
is, zero) but no minimum cost. The infimum cannot be achieved by controls which drive
the state to zero. Note that in this case, (Q, A) = (0, 0) has an imaginary axis unobservable
eigenvalue.

21.4 Infimal cost*

21.4.1 Reduced cost stabilizing controllers.

Suppose one has a stabilizing gain matrix K and wishes to obtain another stabilizing gain
matrix which results in reduced cost. We will show that this is achieved by the gain matrix

K̃ = −R−1B∗P (21.7)

where P solves the Lyapunov equation (21.6).

Fact 13 Suppose A + BK is asymptotically stable and K̃ is given by (21.7) and (21.6).
Then,

(i) the matrix A + BK̃ is asymptotically stable;

(ii) for every initial state x0,
Ĵ(x0, K̃) ≤ Ĵ(x0, K)

Proof. The Appendix contains a proof.

21.4.2 Cost reducing algorithm

The above result suggests the following algorithm to iteratively reduce the cost.

Jack Benny algorithm.

(0) Choose any gain matrix K0 so that A + BK0 is asymptotically stable.

(1) For k = 0, 1, 2, · · · , let Pk be the unique solution to the Lyapunov equation

Pk(A + BKk) + (A + BKk)
∗Pk + K∗

kRKk + Q = 0 (21.8)

and let
Kk+1 = −R−1B∗Pk (21.9)
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Fact 14 Suppose (A,B) is stabilizable, R∗ = R > 0 and Q∗ = Q ≥ 0. Consider any
sequence of matrices {Pk} generated by the Jack Benny algorithm. Then this sequence has a
limit P̄ , that is,

lim
k→∞

Pk = P̄ .

Furthermore, P̄ has the following properties.

(a)
P̄ ∗ = P̄ ≥ 0

(b) P = P̄ solves

PA + A∗P − PBR−1B∗P + Q = 0 (21.10)

(c) Every eigenvalue of the matrix A−BR−1B∗P̄ has real part less than or equal to zero.

(d) If (Q,A) has no imaginary axis unobservable eigenvalues, then every eigenvalue of the
matrix A−BR−1B∗P̄ has negative real part.

Proof. (a) Since Pk solves (21.8) we have Pk ≥ 0. From consequence (ii) of fact 13, we
have that Pk+1 ≤ Pk. Hence,

0 ≤ Pk+1 ≤ Pk

From this one can show that there is a matrix P̄ such that

P̄ := lim
k→∞

Pk

and P̄ ≥ 0.
(b) In the limit, and using (21.9),

K̄ := lim
k→∞

Kk = lim
k→∞

Kk+1 = −R−1B∗P̄

hence, it follows from (21.8) that

P̄ (A + BK̄) + (A + BK̄)∗P̄ + K̄∗RK̄ + Q = 0 (21.11)

Substituting
K̄ = −R−1B∗P̄

results in (21.10).
(c) For each k, <(λ) < 0 for all eigenvalues λ of A + BK̄. Since K̄ = limk→∞ Kk and

the eigenvalues of a matrix depend continuously on its coefficients, we must have <(λ) ≤ 0
for all eigenvalues λ of A + BK̄.

(d) Now suppose A+BK̄ has an eigenvalue λ with <(λ) = 0. Letting v be an eigenvector
0 to λ and pre- and post-multiplying (21.11) by v∗ and v yields

v∗K̄∗RK̄v + v∗Qv = 0
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Hence,
K̄v = 0 Qv = 0

and
λv = (A + BK̄)v = Av

So, (
A− λI

Q

)
v = 0

that is, λ is an unobservable eigenvalue of (Q,A). So, if (Q,A) has no imaginary axis
unobservable eigenvalues, A + BK̄ has no imaginary axis eigenvalues. So all the eigenvalues
of A + BK̄ have negative real parts.

Example 212 Recall first example. Here the algorithm yields:

Pk =
K2

k

−2(α + Kk)

Kk+1 = −Pk

Hence,

Pk+1 =
P 2

k

2(−α + Pk)

1. (α < 0): Here P̄ = limk→∞ Pk = 0 and A−BR−1B∗P̄ = α < 0.

2. (α > 0): Here P̄ = limk→∞ Pk = 2α and A−BR−1B∗P̄ = −α < 0.

3. (α = 0): Here Pk+1 = Pk/2 for all k. Hence, P̄ = limk→∞ Pk = 0 and
A−BR−1B∗P̄ = 0.

Note that this is the only case in which (Q,A) has an imaginary axis unobservable
eigenvalue.

Remark 11 The matrix equation (21.10) is called an algebraic Riccati equation (ARE). Since
it depends quadratically on P , it is a nonlinear matrix equation and, in general, has more
than one solution.

Remark 12 We say that a hermitian matrix P is a stabilizing solution to ARE (21.10) if all
the eigenvalues of the matrix A − BR−1B∗P have negative real parts. The significance of
this is that the controller

u = −R−1B∗Px

results in the asymptotically stable closed loop system:

ẋ = (A−BR−1B∗P )x
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21.4.3 Infimal cost

The following result provides a lower bound on the infimal cost J inf (x0) in terms of a specific
solution to the ARE.

Fact 15 (Completion of squares lemma.) Suppose R∗ = R > 0 and P is any hermitian
solution to ARE (21.10). Then for every initial condition x0 and every continuous control
input history u(·) which guarantees

lim
t→∞

x(t) = 0

we have
x∗0Px0 ≤ J(x0, u(·)) ;

hence
x∗0Px0 ≤ J inf (x0) .

Proof. Suppose P is any hermitian solution P to the ARE (21.10), let x0 be any initial
state, and consider any control history u(·) which results in limt→∞ x(t) = 0. Consider the
function V (x(·)) given by

V (x(t)) = x∗(t)Px(t)

Its derivative is given by

dV (x(t))

dt
= 2x∗(t)Pẋ(t)

= 2x∗(t)PAx + 2x∗(t)PBu(t)

Utilizing the ARE (21.10) we obtain

2x∗PAx = x∗(PA + A∗P )x

= x∗PBR−1B∗Px− x∗Qx

Hence (omitting the argument t for clarity),

dV (x(t))

dt
= x∗PBR−1B∗Px + 2x∗PBu− x∗Qx

= x∗PBR−1B∗Px + 2x∗PBu + u∗Ru− x∗Qx− u∗Ru

= (u + R−1B∗Px)∗R(u + R−1B∗Px)− x∗Qx− u∗Ru

Hence

x∗Qx + u∗Ru = −dV (x)

dt
+ (u + R−1B∗Px)∗R(u + R−1B∗Px)

Considering any t ≥ 0 and integrating over the interval [0, t] yields

∫ t

0

(x∗Qx + u∗Ru) dt = −V (x(t)) + V (x(0)) +

∫ t

0

(u + R−1B∗Px)∗R(u + R−1B∗Px) dt
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Recall V (x) = x∗Px, x(0) = x0, and limt→∞ x(t) = 0; so, considering the limit as t →∞
and recalling the definition of the cost, we have

J(x0, u(·)) = x∗0Px0 +

∫ ∞

0

(u + R−1B∗Px)∗R(u + R−1B∗Px) dt (21.12)

Since R > 0, we immediately have

J(x0, u(·)) ≥ x∗0Px0 (21.13)

The next result states that for any initial state x0, the infimal cost is x∗0P̄ x0 where P̄ is
the limit of any sequence {Pk} generated by Jack Benny algorithm.

Lemma 25 (Infimal cost lemma.) Suppose (A,B) is stabilizable, R∗ = R > 0 and Q∗ = Q ≥
0. Consider any sequence of matrices {Pk}∞k=0 generated by the Jack Benny algorithm. Then
this sequence has a limit P̄ , that is,

lim
k→∞

Pk = P̄

and P̄ has the following properties.

(a) If P is any hermitian solution to ARE (21.10), then

P̄ ≥ P

(b) For every initial state x0,

J inf (x0) = x∗0P̄ x0

(c) If there exists an optimal control history for every initial state x0 then P̄ is a stabilizing
solution to ARE (21.10).

Proof. Consider any sequence of matrices {Pk} generated by the Jack Benny algorithm.
Then, from fact (14), this sequence has a limit P̄ , that is,

lim
k→∞

Pk = P̄

and it satisfies ARE (21.10).
Consider any initial state x0 and any k = 1, 2, . . . . The control history given by

uk(t) = −R−1B∗Pk−1x(t)

results in the cost
J(x0, uk(·)) = x∗0Pkx0

Hence
J inf(x0) ≤ x∗0Pkx0
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Since P̄ is a solution to the ARE, it follows from the completion of squares lemma that

x∗0P̄ x0 ≤ J inf(x0)

Hence
x∗0P̄ x0 ≤ J inf(x0) ≤ x∗0Pkx0

Considering the limit as k →∞ we must have

x∗0P̄ x0 ≤ J inf(x0) ≤ x∗0P̄ x0 ;

so
J inf (x0) = x∗0P̄ x0

If P is any hermitian solution to ARE (21.10), we must have

x∗0Px0 ≤ J(x0, uk(·)) = x∗0Pkx0

Taking the limit as k →∞, we obtain

x∗0Px0 ≤ x∗0P̄ x0

Since this is true for all x0 we have P ≤ P̄ .
Suppose an optimal control history uopt exists for every x0. Then

J(x0, u
opt) = Jopt(x0) = J inf(x0) = x∗0P̄ x0

Recalling the proof of the completion of squares lemma, we have

J(x0, u
opt(·)) = x∗0P̄ x0 +

∫ ∞

0

(uopt + R−1B∗P̄ x)∗R(uopt + R−1B∗P̄ x) dt

Hence ∫ ∞

0

(uopt + R−1B∗P̄ x)∗R(uopt + R−1B∗P̄ x) dt = 0

Since R > 0 we must have
uopt = −R−1B∗P̄ x

Since uopt(·) is admissable, it results in limt→∞. Since the above is true for any initial state
x0, it follows that the system

ẋ = (A−BR−1B∗)x

must be asymptotically stable. Hence P̄ is a stabilizing solution to ARE.

Remark 13 A solution to the ARE which satisfies condition (a) above is called the maximal
solution to the ARE. Clearly, it must be unique.
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21.5 Optimal stabilizing controllers

The solution to the LQR problem is based on the following matrix equation which is known
as the Algebraic Riccati Equation:

PA + A∗P − PBR−1B∗P + Q = 0 (21.14)

Since this is a nonlinear equation in P it can have more that one solution. We will be
interested in a stabilizing solution which is defined as a hermitian matrix P with the property
that all the eigenvalues of the matrix A−BR−1B∗P have negative real parts.

Theorem 32 Suppose R∗ = R > 0 and the ARE (21.14) has a stabilizing solution P . Then
for every initial state x0, there is a unique optimal control history uopt; it is given by

uopt(t) = −R−1B∗Px(t)

and the optimal cost is
Jopt(x0) = x∗0Px0 .

Proof. Let x0 be any initial state, and consider any control history u(·) which results in
limt→∞ x(t) = 0. Define the function V given by

V (t) = x∗(t)Px(t)

The derivative of V is given by

dV

dt
= 2x∗(t)Pẋ(t)

= 2x∗(t)PAx(t) + 2x∗(t)PBu(t)

Utilizing the ARE (21.14) we obtain

2x∗PAx = x∗(PA + A∗P )x

= x∗PBR−1B∗Px− x∗Qx

Hence (omitting the argument t for clarity),

dV

dt
= x∗PBR−1B∗Px + 2x∗PBu− x∗Qx

= x∗PBR−1B∗Px + 2x∗PBu + u∗Ru− x∗Qx− u∗Ru

= (u + R−1B∗Px)∗R(u + R−1B∗Px)− x∗Qx− u∗Ru

Hence

x∗Qx + u∗Ru = −dV

dt
+ (u + R−1B∗Px)∗R(u + R−1B∗Px)
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Considering any t ≥ 0 and integrating over the interval [0, t] yields

∫ t

0

(x∗Qx + u∗Ru) dt = −V (t) + V (0) +

∫ t

0

(u + R−1B∗Px)∗R(u + R−1B∗Px) dt

Recall V (t) = x∗(t)Px(t), x(0) = x0, and limt→∞ x(t) = 0; so, considering the limit as
t →∞ and recalling the definition of the cost, we have

J(x0, u(·)) = x∗0Px0 +

∫ ∞

0

(u + R−1B∗Px)∗R(u + R−1B∗Px) dt (21.15)

Since P is a stabilizing solution to ARE (21.10) the control history given by u(t) =
û(t) := −R−1B∗Px(t) results in limt→∞ x(t) = 0; hence

J(x0, û(·)) = x∗0Px0

Consider any other admissible control history u(·). Since R > 0, we have

J(x0, u(·)) ≥ x∗0Px0

This implies that û is optimal at x0 and the optimal cost is x∗0Px0.
Also, (21.15) implies that if any other control ũ yields the optimal cost x∗0Px0, then the

ũ(t) = −R−1B∗Px(t); hence ũ(t) = û(t). So, û is a unique optimal control history.

Example 213 Returning to Example 211 we have A = α, B = 1, Q = 0, and R = 1. Hence
the ARE is

2αP − P 2 = 0

This has two solutions
P = P1 := 0 P = P2 := 2α

Hence
A−BR−1B∗P1 = α A−BR−1B∗P2 = −α

We have three cases.
Case 1. (α < 0): P1 = 0 is the stabilizing solution and optimal controller is u = 0.
Case 2. (α > 0): P1 = 2α is the stabilizing solution and optimal controller is u = −2αx.
Case 3. (α = 0): No stabilizing solution.

Remark 14 If P is a stabilizing solution to ARE (21.10) then, it can be shown that P must
be the maximal solution P̄ . This follows from

x∗0Px0 = Jopt(x0) = J inf(x0) = x∗0P̄ x0 .

Hence there can be at most one stabilizing solution.
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21.5.1 Existence of stabilizing solutions to the ARE

Lemma 26 Suppose (A, B) is stabilizable, R∗ = R > 0 and Q∗ = Q. Then ARE (21.10) has
a stabilizing solution if and only if (Q,A) has no imaginary axis unobservable eigenvalues.

Proof. From Fact 14 it follows that if (Q,A) has no imaginary unobservable eigenvalues
then the ARE has a stabilizing solution.

We now prove the converse by contradiction. Suppose P is a stabilizing solution to ARE
and λ is an imaginary unobservable eigenvalue of (Q,A). Then, there is a nonzero vector v
such that

Av = λv and Qv = 0

Pre- and postmultiplying the ARE by v∗ and v yields

2<(λ)v∗Pv − v∗PBR−1B∗Pv = 0

Hence, R−1B∗Pv = 0 and

(A−BR−1B∗P )v = Av −BR−1B∗Pv

= λv

that is, λ is an eigenvalue of the matrix A − BR−1B∗P . This contradicts the asymptotic
stability of this matrix.

Lemma 27 Suppose (A,B) is stabilizable, R∗ = R > 0 and Q∗ = Q ≥ 0. If (Q,A) is
detectable, then

(a) The ARE has a stabilizing solution.

(b) P is a stabilizing solution if and only if P ≥ 0

Proof. Part (a) follows from previous lemma.
(b) We have already seen that if P is stabilizing then P ≥ 0. So, all we have to show is

that if P solves the ARE and P ≥ 0 then P must be stabilizing. To prove this we write the
ARE as

P (A + BK) + (A + BK)∗P + K∗RK + Q = 0

where K = −R−1B∗P . Hence,

P (A + BK) + (A + BK)∗P + Q ≤ 0

Since P ≥ 0 and (Q,A) is detectable, it follows from a previous Lyapunov result that A+BK
is asymptotically stable; hence P is stabilizing.
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21.6 Summary

The main results of this chapter are summarized in the following theorem.

Theorem 33 Suppose (A,B) is stabilizable, R∗ = R > 0 and Q∗ = Q ≥ 0. Then the
following statements are equivalent.

(a) For every initial state x0, there is an optimal control history.

(b) (Q,A) has no imaginary axis unobservable eigenvalues.

(c) ARE (21.10) has a stabilizing solution.

(d) ARE (21.10) has a unique stabilizing solution P ; also P is positive semi-definite and
is the maximal solution.

Suppose any of conditions (a)-(d) hold. Then for every initial state x0, the optimal control
history is unique and is generated by the linear state feedback controller

u(t) = −R−1B∗Px(t)

where P is the stabilizing solution to ARE (21.10). Also, the optimal cost is given by

Jopt(x0) = x∗0Px0

Example 214 Consider the problem of finding an optimal stabilizing controller in the prob-
lem of minimizing the cost, ∫ ∞

0

x2
2 + u2 dt

for the system,

ẋ1 = αx1 + x2

ẋ2 = u

This is an LQR (linear quadratic regulator) problem with

A =

(
α 1
0 0

)
B =

(
0
1

)
Q =

(
0 0
0 1

)
R = 1

The pair (Q,A) has a single unobservable eigenvalue α. Hence an optimal stabilizing
controller exists if and only if α 6= 0.

Considering

P =

(
p11 p12

p12 p22

)
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(we are looking for a symmetric P ) the ARE yields the following three scalar equations

2αp11 − p2
12 = 0

p11 + αp12 − p12p22 = 0
2p12 − p2

22 + 1 = 0
(21.16)

We consider three cases:

Case 1 (α < 0.) The first equation in (21.16) yields p11 = p2
12/α. Since we require p11 ≥ 0

we must have

p11 = p12 = 0

The second equation in (21.16) is now automatically satisfied and (requiring p22 ≥ 0) the
third equation yields

p22 = 1

Since

P =

(
0 0
0 1

)

is the only positive semi-definite solution to the ARE; it must be the stabilizing one. The
fact that it is stabilizing is evident from

Acl = A−BR−1B∗P =

(
α 1
0 −1

)

So, the optimal stabilizing controller for this case is given by

u = −x2

Case 2 (α > 0.) We obtain three positive semi-definite solutions:

Pi =

(
β2

i /2α βi

βi (1 + 2βi)
1
2

)
β1 = 2α(α + 1), β2 = 2α(α− 1), β3 = 0

Since (P1)11 ≥ (P2)11, (P3)11, and the stabilizing solution is maximal, the matrix P1 must
be the stabilizing solution. Let us check that P1 is indeed a stabilizing solution. The
corresponding closed loop matrix,

Acl = A−BR−1B∗P1 =

(
α 1

−β1 −(1 + 2β1)
1
2

)

has characteristic polynomial

q(s) = s2 + a1s + a0

with
a1 = (1 + 2β1)

1
2 − α = (4α2 + 4α + 1)

1
2 − α > 0

a0 = β1 − α(1 + 2β1)
1
2 = 2α(α + 1)− α(4α2 + 4α + 1)

1
2 > 0
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Since all coefficients of this second order polynomial are positive, all roots of this polynomial
have negative real part; hence Acl is asymptotically stable. So, the optimal stabilizing
controller for this case is given by

u = −2α(α + 1)x1 − (4α2 + 4α + 1)
1
2 x2

Case 3 (α = 0.) We already know that there is no optimal stabilizing controller for this case.
However, to see this explicitly note that the only positive semi-definite solution to the ARE
is

P =

(
0 0
0 1

)

Since

Acl = A−BR−1B∗P =

(
0 1
0 −1

)
,

this solution is not stabilizing; hence there there is no stabilizing solution and no optimal
stabilizing controller.
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21.7 MATLAB

>> help lqr

LQR Linear quadratic regulator design for continuous systems.

[K,S,E] = LQR(A,B,Q,R) calculates the optimal feedback gain

matrix K such that the feedback law u = -Kx minimizes the cost

function:

J = Integral {x’Qx + u’Ru} dt

subject to the constraint equation:

.

x = Ax + Bu

Also returned is S, the steady-state solution to the associated

algebraic Riccati equation and the closed loop eigenvalues E:

-1

0 = SA + A’S - SBR B’S + Q E = EIG(A-B*K)

[K,S,E] = LQR(A,B,Q,R,N) includes the cross-term N that relates

u to x in the cost function.

J = Integral {x’Qx + u’Ru + 2*x’Nu}

The controller can be formed with REG.

See also: LQRY, LQR2, and REG.

>> help lqr2

LQR2 Linear-quadratic regulator design for continuous-time systems.

[K,S] = LQR2(A,B,Q,R) calculates the optimal feedback gain matrix

K such that the feedback law u = -Kx minimizes the cost function

J = Integral {x’Qx + u’Ru} dt

.

subject to the constraint equation: x = Ax + Bu

Also returned is S, the steady-state solution to the associated

algebraic Riccati equation:

-1

0 = SA + A’S - SBR B’S + Q

[K,S] = LQR2(A,B,Q,R,N) includes the cross-term 2x’Nu that

relates u to x in the cost functional.
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The controller can be formed with REG.

LQR2 uses the SCHUR algorithm of [1] and is more numerically

reliable than LQR, which uses eigenvector decomposition.

See also: ARE, LQR, and LQE2.

>> help are

ARE Algebraic Riccati Equation solution.

X = ARE(A, B, C) returns the stablizing solution (if it

exists) to the continuous-time Riccati equation:

A’*X + X*A - X*B*X + C = 0

assuming B is symmetric and nonnegative definite and C is

symmetric.

See also: RIC.

21.8 Minimum energy controllers

Suppose we are interested in stabilizing a system with the minimum amount of control effort.
Then, we might consider the problem of minimizing

∫ ∞

0

‖u(t)‖2 dt

subject to

ẋ = Ax + Bu and x(0) = x0 and lim
t→∞

x(t) = 0 . (21.17)

This is an LQR problem with Q = 0 and R = I. The corresponding ARE is

PA + A∗P − PBR−1B∗P = 0 . (21.18)

Since Q = 0, it follows from our main LQR result that that an optimal stabilizing controller
exists if and only if A has no imaginary eigenvalues.

The optimal controllers for this problem result in a closed loop system having the following
interesting property.

If λ is an eigenvalue of Ã := A + BK = A − BR−1B∗P , then either λ or −λ̄ is an
eigenvalue of A.

To demonstrate the above property, rewrite ARE as

PÃ + A∗P = 0 .
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Suppose λ is an eigenvalue of Ã. Then there is a nonzero vector v such that Ãv = λv.
Post-multiplying the ARE by v yields

λPv + A∗Pv = 0

If Pv 6= 0, then Pv is an eigenvector of A∗ with eigenvalue −λ. Hence , −λ̄ is an eigenvalue
of A. If Pv = 0, then Ãv = Av−BB∗Pv = Av; hence Av = λv and λ is an eigenvalue of A.

Example 215 Suppose we wish to obtain a stabilizing state feedback controller which al-
ways minimizes

∫∞
0

u(t)2 dt for the scalar system

ẋ = ax + u .

Here
A = a , B = 1 , R = 1 , Q = 0 .

So the problem has a solution provided a is not on the imaginary axis. The ARE corre-
sponding to this problem,

(a + ā)P − P 2 = 0 ,

has two solutions
P = 0 and P = a + ā .

The two corresponding values of Ã := A−BR−1B∗P are

a and − ā

respectively.
From this we can explicitly that, when a is on the imaginary axis, there is no stabilizing

P .
When a has negative real part, P = 0 is stabilizing, the optimal controller is zero and

Ã = A.
When a has positive real part, P = a + ā is stabilizing, the optimal controller is u =

−(a + ā)x and Ã = −ā.
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21.9 H2 optimal controllers*

Consider a system described by

ẋ = Ax + B1w + B2u

z = Cx + Du

where the m1-vector w(t) is a disturbance input; the m2-vector u(t) is a control input; and
the p-vector z performance output. We assume that

(i) rankD = m2.

(ii) D∗C = 0.

With the above assumptions, the energy ‖z‖2 associated with the output is given by

‖z‖2
2 =

∫ ∞

0

‖z(t)‖2 dt =

∫ ∞

0

‖Cx(t) + Du(t)‖2 dt =

∫ ∞

0

(x(t)∗Qx(t) + u(t)∗Ru(t)) dt

with
Q = C∗C and R = D∗D .

Since D has full column rank, it follows that R is positive definite.
A linear state feedback controller

u = Kx

results in the closed loop system

ẋ = (A + B2K)x + B1w (21.19a)

z = (C + DK)x (21.19b)

Suppose that A + B2K is asymptotically stable and recall the definition of the H2-norm of
a linear system. If GK is the impulse response matrix from w to z then the H2 norm of the

above system is given by ‖GK‖2 =
(
trace

(∫∞
0

G∗
K(t)GK(t) dt

)) 1
2 . Noting that

(C + DK)∗(C + DK) = C∗C + K∗D∗DK

it follows that
‖GK‖2

2 = traceB∗
1PKB1

where PK is the unique solution to

PK(A + B2K) + (A + B2K)∗PK + K∗D∗DK + C∗C = 0 .

From this one can readily show that if one considers the LQ problem with

B = B2 , R = D∗D , Q = C∗C

then an optimal LQ controller minimizes the H2 norm of the closed loop system.
The observability condition on (Q,A) is equivalent to:
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• The pair (C, A) has no imaginary axis unobservable eigenvalues.

So provided this condition holds the controller which minimizes ‖GK‖2 is given by

u = −(D∗D)−1B∗
2P

where P is the stabilizing solution to

PA + A∗P − PB∗
1(D

∗D)−1B∗
1P + C∗C = 0

• If A+B2K is asymptotically stable, it follows from an identity in Lyapunov revisited that

‖GK‖2
2 = trace (C + DK)∗X(C + DK)

where X is the unique solution to

(A + B2K)X + X(A + B2K)∗ + B∗
1B1 = 0

The hermitian positive semi-definite matrix X is sometimes referred to as the state covariance
matrix associated with the above system.
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21.10 Exercises

Exercise 150 Consider the system

ẋ = 2x + u ,

where x and u are real scalars. Obtain an optimal stabilizing feedback controller which mini-
mizes ∫ ∞

0

u(t)2 dt .

Exercise 151 Consider the system

ẋ1 = −x1 + x2

ẋ2 = x2 + u ,

where x1, x2 and u are real scalars. Obtain an optimal stabilizing feedback controller which
minimizes ∫ ∞

0

u(t)2 dt .

Exercise 152 Consider the system

ẋ1 = −x2 + u

ẋ2 = −x1 − u

where all quantities are scalar. Obtain a optimal stabilizing feedback controller which mini-
mizes ∫ ∞

0

u(t)2 dt .

Exercise 153 For the system

ẋ1 = αx1 + x2

ẋ2 = −x2 + u

Obtain a optimal feedback controller which minimizes
∫ ∞

0

u(t)2 dt

You may have to distinguish between different cases of α.

Exercise 154 2-link manipulator Recall the two link manipulator with measured output
y = q2. Recall the linearization of this system about

q1 = q2 = u = 0

and recall its state space description.
Obtain an LQG controller for this linearized system. Apply the controller to the nonlinear

system and simulate the nonlinear closed loop system for various initial conditions. (Use zero
initial conditions for the observer.)
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21.11 Appendix

21.11.1 Proof of fact 1

Asymptotic Stability

P (A + BK̃) + (A + BK̃)∗P = P (A−BR−1B∗P ) + (A−BR−1B∗P )∗P

= PA + A∗P − 2PBR−1B∗P

= −PBK −K∗B∗P −K∗RK − 2PBR−1B∗P −Q

= −PBR−1B∗P −Q− (K − K̃)∗R(K − K̃)

Hence

P (A + BK̃) + (A + BK̃)∗P + PBR−1B∗P + Q + (K − K̃)∗R(K − K̃) = 0 (21.20)

Consider any eigenvalue λ of A + BK̃ and let v 6= 0 be a corresponding eigenvector. Then

2<(λ)v∗Pv + v∗(K − K̃)∗R(K − K̃)v ≤ 0

First note that if
v∗(K − K̃)∗R(K − K̃)v = 0

we must have
K̃v = Kv

and hence
(A + BK̃)v = (A + BK)v

that is, λ is an eigenvalue of A + BK. Since K is stabilizing, <(λ) < 0. So suppose
v∗(K − K̃)R(K − K̃)v > 0. Then

2<(λ)v∗Pv < 0

Since v∗Pv ≥ 0 we must have <(λ) < 0. Since <(λ) < 0 for every eigenvalue λ of A + BK̃,
we have asymptotic stability of A + BK̃.

Reduced cost: The cost associated with K̃ is given by

Ĵ(x0, K̃) = x∗0P̃ x0

where P̃ is the unique solution to

P̃ (A + BK̃) + (A + BK̃)T P̃ + K̃T RK̃ + Q = 0

Substition for K̃ yields

P̃ (A + BK̃) + (A + BK̃)∗P̃ + PBR−1B∗P + Q = 0 (21.21)

Combining (21.21) and (21.20) yields

(P − P̃ )(A + BK̃) + (A + BK̃)∗(P − P̃ ) ≤ 0
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In other words, for some hermitian positive semi-definite matrix ∆Q,

(P − P̃ )(A + BK̃) + (A + BK̃)∗(P − P̃ ) + ∆Q = 0

Since A + BK̃ is asymptotically stable,

P − P̃ =

∫ ∞

0

e(A+BK̃)∗t∆Qe(A+BK̃)t dt

Hence P − P̃ ≥ 0, or
P̃ ≤ P
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Chapter 22

LQG controllers

In the previous chapter, we saw how to obtain stabilizing state feedback gain matrices K
by solving a Ricatti equation. Anytime one has a technique for obtaining stabilizing state
feedback gain matrices, one also has a technique for obtaining stabilizing observer gain
matrices L. This simply follows from the fact the A + LC is asymptotically stable if and
only if the same is true for A∗+C∗K with L = K∗. In this chapter, we use the results of the
last chapter to obtain an observer design method which is based on a Ricatti equation which
we call the observer Ricatti equation. We then combine these results with the results of
the previous chapter to obtain a methodolology for the design of stabilizing output feedback
controllers via the solution of two uncoupled Ricatti equations.

22.1 LQ observer

• Plant

ẋ = Ax + Bu

y = Cx

where t is the time variable, the n-vector x(t) is the plant state, the m-vector u(t) is the
control input and the p-vector y(t) is the measured output.

• Observer

ẋc = Axc + Bu + L(Cxc − y)

• Error dynamics : x̃ = xc − x

˙̃x = (A + LC)x̃

In what follows V is a p× p matrix and W is a n× n matrix.

Lemma 28 Suppose (C, A) is detectable, V ∗ = V > 0, and W ∗ = W ≥ 0. Then the
following are equivalent.
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(i) The pair (A,W ) has no imaginary axis uncontrollable eigenvalues.

(ii) The Riccati equation

AS + SA∗ − SC∗V −1CS + W = 0 (22.1)

has a hermitian solution S with A− SC∗V −1C asymptotically stable.

Proof. By duality.

• We will refer to ARE (22.1) as an observer Riccati equation associated with the plant.

• We say that S is a stabilizing solution to (22.1) if A − SC∗V −1C is asymptotically stable.
The significance of this is that if one chooses the observer gain L as

L = −SC∗V −1 (22.2)

then the error dynamics are described by the asymptotically stable system

˙̃x = (A− SC∗V −1C)x̃

22.2 LQG controllers

Plant

ẋ = Ax + Bu
y = Cx

Basically we combine an LQR regulator with an LQ observer.

So suppose the the plant satisfies the following minimal requirements for stabilization via
output feedback:

(i) (A,B) is stabilizable.

(ii) (C,A) is detectable.

Choose weighting matrices
Q R W V

(of appropriate dimensions) which satisfy the following conditions:

(i) R∗ = R > 0 and Q∗ = Q ≥ 0, and (Q, A) has no imaginary axis unobservable
eigenvalues.

(ii) V ∗ = V > 0 and W ∗ = W ≥ 0, and (A,W ) has no imaginary axis uncontrollable
eigenvalues.

Let P and S be the stabilizing solutions to the Riccati equations

PA + A∗P − PBR−1B∗P + Q = 0

AS + SA∗ − SC∗V −1CS + W = 0
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LQG Controller The corresponding LQG controller is given by

ẋc = (A−BR−1B∗P )xc − SC∗V −1(Cxc − y)
u = −R−1B∗Pxc

Note that this can be written as

ẋc = (A−BR−1B∗P − SC∗V −1C)xc + SC∗V −1y

u = −R−1B∗Pxc

Letting ˙̃x = xc − x, the closed loop system is described by

ẋ = (A−BR−1B∗P )x − BR−1B∗Px̃
˙̃x = (A− SC∗V −1C)x̃

As we have seen before the eigenvalues of this closed loop system are simply the union of
those of the asymptotically matrices A− BR−1B∗P and A− SC∗V −1C. Hence, the closed
loop system is asymptotically stable.

22.3 H2 Optimal controllers*

22.3.1 LQ observers

Consider

ẋ = Ax + B1w + B2u

y = Cx + Dw

where the measurement vector y(t) is a p-vector. We assume that

(i) rankD = p

(ii) DB∗
1 = 0

With an observer
ẋc = Axc + B2u + L(Cxc − y) ,

the corresponding observer error dynamics are described by

˙̃x = (A + LC)x̃ + (B1 − LD)w .

Note that
(B1 − LD)(B1 − LD)∗ = B1B

∗
1 + LDD∗L∗

Consider any “performance variable”

z̃ = Mx̃

399



Suppose A + LC is asymptotically stable and GL is the impulse response matrix from w to
z̃. Then, the H2 norm of GL is given by

‖GL‖2
2 =

∫ ∞

0

trace (G∗(t)G(t)) dt = MSLM∗

where SL uniquely solves

(A + LC)SL + SL(A + LC)∗ + LDD∗L∗ + B1B
∗
1 = 0

With
V = DD∗ W = B1B

∗
1

the corresponding LQ observer minimizes the H2 norm of GL.
The controllability condition on (A,W ) is equivalent to:

• The pair (A,B1) has no imaginary axis uncontrollable eigenvalues.

So provided this condition holds the observer gain which minimizes the H2 norm of GL

is given by
L = −SC∗(DD∗)−1

where S is the stabilizing solution to

AS + SA∗ − SC∗(DD∗)−1CS + B1B
∗
1 = 0

22.3.2 LQG controllers

Consider
ẋ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w
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Chapter 23

Systems with inputs and outputs: II*

Recall

←− ẋ = Ax + Bu
y = Cx + Du

←− (23.1)

23.1 Minimal realizations

Recall that (A,B, C, D) is a realization of a transfer matrix Ĝ if

Ĝ(s) = C(sI − A)−1B + D.

• A realization is minimal if the dimension of its state-space is less than or equal to the state
space dimension of any other realization.

SISO systems. Consider a SISO system described by

Ĝ(s) =
n(s)

d(s)

where n and d are polynomials. If n and d are coprime (i.e., they have no common zeros),
then the order of a minimal realization is simply the degree of d.

Equivalent systems. System

ẋ = Ax + Bu
y = Cx + Du

is equivalent to system
˙̃x = Ãx̃ + B̃u

y = C̃x̃ + D̃u

if there is a nonsingular matrix T such that

Ã = T−1AT B̃ = T−1B

C̃ = CT D̃ = D
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Theorem 34

(i) (A,B, C,D) is a minimal realization of Ĝ(s) iff (A,B) is controllable and (C, A) is
observable.

(ii) All minimal realizations are equivalent.

23.2 Exercises

Exercise 155 Obtain a state space realization of the transfer function,

Ĝ(s) =




1

s− 1

1

s− 1

1

s + 1
− 1

s + 1


 .

Is your realization minimal?

Exercise 156 Obtain a state space realization of the transfer function,

Ĝ(s) =

[
s

s− 1

1

s + 1

]
.

Is your realization minimal?

Problem 2 Obtain a minimal state space realization of the transfer function

Ĝ(s) =
s2 − 3s + 2

s2 + s− 2
.
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Chapter 24

Time-varying systems*

24.1 Linear time-varying systems (LTVs)

Here we are concerned with linear time-varying systems (LTVs) systems described by

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(24.1)

where t is the time variable, the state x(t) is an n-vector, the input u(t) is an m-vector while
the output y(t) is a p-vector. We suppose that the time-varying matrices A(t), B(t), C(t), D(t)
depend continuously on t.

24.1.1 Linearization about time-varying trajectories

Consider a nonlinear system described by

ẋ = F (x, u) (24.2a)

y = H(x, u) . (24.2b)

Suppose ū(·) is a specific time-varying input history to the nonlinear system and x̄(·) is any
corresponding state trajectory. Then

˙̄x(t) = F (x̄(t), ū(t)) .

Let ȳ(·) be the corresponding output history, that is,

ȳ(t) = F (ȳ(t), ū(t)) .

Then, introducing the perturbed variables

δx = x− x̄ and δu = u− ū and δy = y − ȳ ,

the linearization of system (24.2) about (x̄, ū) is defined by

δẋ = A(t)δx + B(t)δu (24.3a)

δy = C(t)δx + D(t)δu (24.3b)
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where

A(t) =
∂F

∂x
(x̄(t), ū(t)) and B(t) =

∂F

∂x
(ū(t), ū(t))

C(t) =
∂H

∂x
(x̄(t), ū(t)) and D(t) =

∂H

∂u
(x̄(t), ū(t)) .

Note that, although the original nonlinear system is time-invariant, its linearization about a
time-varying trajectory can be time-varying.

24.2 The state transition matrix

Consider a linear time-varying system described by

ẋ = A(t)x (24.4)

where t is the time variable, x(t) is an n-vector and the time-varying matrix A(t) depends
continuously on t.

Fact 16 We have existence and uniqueness of solutions, that is, for each initial condition,

x(t0) = x0 , (24.5)

there is a unique solution to the differential equation (24.4) which satisfies the initial condi-
tion. Also, this solution is defined for all time.

Fact 17 Solutions depend linearly on initial state. More specifically, for each pair of times
t, t0, there is a matrix Φ(t, t0) such that for every initial state x0, the solution x(t) at time t
due to initial condition (24.5) is given by

x(t) = Φ(t, t0)x0

The matrix Φ(t, t0) is called the state transition matrix associated with system (24.4).
Note that it is uniquely defined by

Φ(t0, t0) = I

∂Φ

∂t
(t, t0) = A(t)Φ(t, t0)

LTI systems

ẋ = Ax

Φ(t, t0) = eA(t−t0)
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Scalar systems. Consider any scalar system described by

ẋ = a(t)x

where x(t) and a(t) are scalars. The solution to this system corresponding to initial condition
x(t0) = x0 is given by

x(t) = e
∫ t

t0
a(τ) dτ

x0 .

Hence,

Φ(t, t0) = e
∫ t

t0
a(τ) dτ

Some properties of the state transition matrix

(a)

Φ(t2, t1)Φ(t1, t0) = Φ(t2, t0)

(b) Φ(t, t0) is invertible and

Φ(t0, t) = Φ(t, t0)
−1

(c)
∂Φ

∂t0
(t, t0) = −Φ(t, t0)A(t0)

(d)

det[Φ(t, t0)] = exp

∫ t

t0

trace [A(τ)] dτ

Computation of the state transition matrix. Let X be the solution of

Ẋ(t) = A(t)X(t) (24.6a)

X(0) = I (24.6b)

where I is the n×n identity matrix. Then X(t) = Φ(t, 0). Hence, using property (b) above,
X(t0)

−1 = Φ(0, t0) Now use property (a) to obtain

Φ(t, t0) = X(t)X(t0)
−1 (24.7)

24.3 Stability

Recall that when A is a constant matrix, system (24.4) is asymptotically stable if and only
if all the eigenvalues of A have negative real parts. This leads to the following natural
conjecture: system (24.4) is asymptotically stable if the eigenvalues of A(t) have negative
real parts for all time t. This conjecture is, in general, false. This is demonstrated by the
following example. Actually, in this example, the eigenvalues of A(t) are the same for all t
and have negative real parts. However, the system has unbounded solutions and is unstable.
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Example 216 (Markus and Yamabe, 1960.) This is an example of an unstable second
order system whose time-varying A matrix has constant eigenvalues with negative real parts.
Consider

A(t) =

[ −1 + a cos2 t 1− a sin t cos t
−1− a sin t cos t −1 + a sin2 t

]

with 1 < a < 2. Here,

Φ(t, 0) =

[
e(a−1)t cos t e−t sin t
−e(a−1)t sin t e−t cos t

]

Since a > 1, the system corresponding to this A(t) matrix has unbounded solutions. However,
for all t, the characteristic polynomial of A(t) is given by

p(s) = s2 + (2− a)s + 2

Since 2− a > 0, the eigenvalues of A(t) have negative real parts.

24.4 Systems with inputs and outputs

ẋ = A(t)x + B(t)u x(t0) = x0 (24.8)

y = C(t)x + D(t)u (24.9)

• The solution to (24.8) is uniquely given by

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

Impulse response matrix

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dt + D(t)u(t)

Hence, for x(t0) = 0,

y(t) =

∫ t

t0

G(t, τ)u(τ) dτ

where
G(t, τ) := C(t)Φ(t, τ)B(τ) + D(τ)δ(τ)

24.5 DT

x(k) = Φ(k, k0)︸ ︷︷ ︸
state transition matrix

x0
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Fact 18 (a)
Φ(k0, k0) = I

(b)
Φ(k2, k1)Φ(k1, k0) = Φ(k2, k0)

(c)
Φ(k + 1, k0) = A(k)Φ(k, k0)

LTI
Φ(k) = Ak
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Chapter 25

Appendix A: Complex stuff

25.1 Complex numbers

Think about ordered pairs (α, β) of real numbers α, β and suppose we define addition oper-
ation and a multiplication operation by

(α, β) + (γ, δ) = (α + γ, β + δ)

(α, β)(γ, δ) = (αγ − βδ, αδ + βγ)

respectively. It can readily be shown that these two operations satisfy the ‘usual’ rules of
addition and multiplication for real numbers.

Consider now any two ordered pairs of the form (α, 0) and (γ, 0). Using the above
definitions of addition and multiplication we obtain

(α, 0) + (γ, 0) = (α + γ, 0)

and
(α, 0)(β, 0) = (αβ, 0)

(check it out) So we can identify each ordered pair of the form (α, 0) with the real number
α and the above definitions of addition and multiplication reduce to the usual ones for real
numbers.

Now consider  := (0, 1). Using the above definition of multiplication, we obtain

j2 = (0, 1)(0, 1) = (−1, 0)

In other words (identifying (−1, 0) with the real number −1),

j2 = −1

We also note that for any real number β,

jβ = (0, 1)(β, 0) = (0, β)
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hence,

(α, β) = (α, 0) + (0, β) = α + jβ

If we regard the set C of complex numbers as the set of ordered pairs of real numbers
for which an addition and multiplication are as defined above, we arrive at the following
representation of complex nubers.

• A complex number λ can be written as

λ = α + β

where α, β are real numbers and j2 = −1. The real numbers α and β are called the real part
and imaginary part of λ and are denoted by

α := <(λ) β := =(λ)

respectively.
Note

(α + jβ) + (γ + jδ) = α + γ + j(β + δ)

and

(α + jβ)(γ + jδ) = αγ + jαδ + jβγ + j2βδ

= (αγ − βδ) + j(αδ + βγ)

In other words, we recovered our original definitions of complex addition and multiplication.

• If λ = α + β, its complex conjugate λ̄ is defined by

λ̄ := α− β

Some properties:

<(λ) =
1

2
(λ + λ̄)

=(λ) =
1

2j
(λ− λ̄)

λ + η = λ + η

λη = λη

• The absolute value of λ:

|λ| =
√

λ̄λ

=
√

α2 + β2
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• Suppose p is an n-th order polynomial, i.e.,

p(s) = a0 + a1s + . . . + ansn

where each coefficient ai is a complex number and an 6= 0. A complex number λ is a root or
zero of p if

p(λ) = 0

Each p has at least one root and at most n distinct roots. Suppose p has l distinct roots,
λ1, λ2, . . . , λl; then

p(s) = an

l∏
i=i

(s− λi)
mi

The integer mi is called the algebraic multiplicity of λi.

Suppose
p(s) = a0 + a1s + . . . + ansn

and define
p̄(s) = ā0 + ā1s + . . . + ānsn

Then λ is a root of p iff λ̄ is a root of p̄. To see this note that p(λ) = p̄(λ̄), hence

p(λ) = 0 iff p̄(λ̄) = 0

Real coefficients. If the coefficients ai of p are real, then the roots occur in complex
conjugate pairs, i.e., if λ is a root then so is λ̄.

25.1.1 Complex functions

The exponential function

eλ = 1 + λ + λ2

2!
+ λ3

3!
+ . . . + λn

n!
+ . . .

It satisfies:
dez

dz
= ez

and

e(λ+η) = eλeη

Can define cos(λ) and sin(λ). They satisfy

cos(λ)2 + sin(λ)2 = 1

Also, for any complex λ

eλ = cos(λ) +  sin(λ)
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Hence, for any real number β,

eβ = cos(β) +  sin(β)

and
|eβ| =

√
cos(β)2 + sin(β)2 = 1

Also,
e(α+β) = eαeβ = eα cos β + eα sin β

Hence,
|e(α+β)| = |eα| |eβ)| = eα

25.2 Complex vectors and Cn

Read all the material on real vectors and replace the word real with the word complex and
IR with C.

If x ∈ Cn, the complex conjugate of x:

x̄ :=




x̄1

x̄2
...

x̄n




Some properties:

x + y = x̄ + ȳ

λx = λ̄x̄

<(x) =
1

2
(x + x̄)

=(x) =
1

2j
(x− x̄)

25.3 Complex matrices and Cm×n

Read all the material on real matrices and replace the word real with the word complex and
IR with C

If A ∈ Cm×n, the complex conjugate of A:

Ā :=




ā11 ā12 . . . ā1n

ā21 ā22 . . . ā2n
...

...
...

ām1 ām2 . . . āmn




412



Some properties:

A + B = A + B

λA = λ̄Ā

AB = ĀB̄

<(A) =
1

2
(A + Ā)

=(A) =
1

2j
(A− Ā)

The complex conjugate transpose of A:

A∗ := ĀT

=




ā11 ā21 . . . ām1

ā12 ā22 . . . ām2
...

...
...

ā1n ā2n . . . āmn




Some properties:

(A + B)∗ = A∗ + B∗

(λA)∗ = λ̄A∗

(AB)∗ = B∗A∗

DEFN. A is hermitian if
A∗ = A
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Chapter 26

Appendix B: Norms

26.1 The Euclidean norm

What is the size or magnitude of a vector? Meet norm.

• Consider any complex n vector x.
The Euclidean norm or 2-norm of x is the nonegative real number given by

||x|| := (|x1|2 + . . . + |xn|2) 1
2

Note that

||x|| = (x̄1x1 + . . . + x̄nxn)
1
2

= (x∗x)
1
2

If x is real, these expressions become

||x|| = (x2
1 + . . . + x2

n)
1
2

= (xT x)
1
2

>> norm([3; 4])

ans = 5

>> norm([1; j])

ans = 1.4142

Note that in the last example xT x = 0, but x∗x = 2.

Properties of || · ||. The Euclidean norm has the following properties.
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(i) For every vector x,
||x|| ≥ 0

and
||x|| = 0 iff x = 0

(ii) (Triangle Inequality.) For every pair of fectors x, y,

||x + y|| ≤ ||x||+ ||y||

(iii) For every vector x and every scalar λ.

||λx|| = |λ|||x||

Any real valued function on a vector space which has the above three properties is defined
to be a norm. Two other commonly encountered norms on the space of n-vectors are the
1-norm:

‖x‖1 := |x1|+ . . . + |xn|
and the ∞-norm:

‖x‖∞ := max
i
|xi|

As a example of a norm on the set of m× n matrices A, consider

‖A‖ = Tr(A′A)
1
2 =

(
m∑

i=1

n∑
j=1

|Aij|2
) 1

2

where Tr(M) denotes the trace of a square matrix M , that is the sum of its diagonal elements.
This norm is called the Frobenius norm and is the matrix analog of the Euclidean norm for
n-vectors. We will meet other matrix norms later.
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Chapter 27

Appendix C: Some linear algebra

All the definitions and results of this section are stated for real scalars. However, they also
hold for complex scalars; to get the results for complex scalars, simply replace ‘real’ with
‘complex’ and IR with C.

27.1 Linear equations

Many problems in linear algebra can be reduced to that of solving a bunch of linear equa-
tions in a bunch of unknowns. Consider the following m linear scalar equations in n scalar
unknowns x1, x2, . . . , xn:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(27.1)

Given the scalars aij and bi, a basic problem is that of determining whether or not the
above system of linear equations has a solution for x1, x2, · · · , xn and, if a solution exists,
determining all solutions.

One approach to solving the above problem is to carry out a sequence of elementary
operations on the above equations to reduce them to a much simpler system of equations
which have the same solutions as the original system. There are three elementary operations:

1) Interchanging two equations.

2) Multiplication of an equation by a nonzero scalar.

3) Addition of a multiple of one equation to another different equation.

Each of the above operations are reversible and do not change the set of solutions.

The above approach is usually implemented by expressing the above equations in matrix
form and carrying out the above elementary operations via elementary matrix row operations.
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Introducing

b =




b1

b2
...

bm


 , A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


 and x =




x1

x2
...

xn


 ,

the above system of scalar equations can written in matrix form as:

Ax = b (27.2)

where x is an n-vector, b is an m-vector and A is an m× n matrix.

Elementary row operations. The above elementary operations on the original scalar
equations are respectively equivalent to the following elementary row operations on the aug-
mented matrix: (

A b
)

associated with the scalar equations.

1) Interchanging two rows.
2) Multiplication of a row by a nonzero scalar.
3) Addition of a multiple of one row to another different row.

The reduced row echelon form of a matrix. Consider any matrix M . For each non-
zero row, the leading element of that row is the first non-zero element of the row. The
matrix M is said to be in reduced row echelon form if its structure satisfies the following four
conditions.

1) All zero rows come after the nonzero rows.
2) All leading elements are equal to one.
3) The leading elements have a staircase pattern.
4) If a column contains a leading element of some row, then all other elements of the column
are zero.

This is illustrated with the following matrix.

M =




0 · · · 0 1 ∗ · · · 0 ∗ · · · 0 · · · ∗
0 · · · 0 0 0 · · · 1 ∗ · · · 0 · · · ∗
0 · · · 0 0 0 · · · 0 0 · · · 1 · · · ∗
...

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 · · · 0 · · · 0
0 · · · 0 0 0 · · · 0 0 · · · 0 · · · 0




(27.3)

So, the matrices




0 1 0 0 2

0 0 1 0 3

0 0 0 1 4







1 2 0 0 2

0 0 1 0 3

0 0 0 1 4







1 0 0 2 0

0 0 1 3 0

0 0 0 0 1
0 0 0 0 0
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are in reduced row echelon form, whereas the following matrices are not in reduced row
echelon form.



1 2 0 3
0 0 0 0

0 0 1 4







1 0 0 3

0 2 0 0

0 0 1 4







0 1 2 3

1 0 5 0
0 0 0 0







1 2 0 0

0 1 2 0

0 0 0 1




The above matrices respectively violate conditions 1, 2, 3, 4 above.

Fact 19 Every matrix can be transformed into reduced row echelon form by a sequence of el-
ementary row operations. Although the sequence of row operations is not unique, the resulting
row echelon form matrix is unique.

We will denote the row echelon form of a matrix M by rref (M). The following example
illustrates how to obtain the reduced row echelon form of a matrix.

Example 217

M =




0 2 2 4 −2
1 2 3 4 −1
2 0 2 0 2




We reduce M to its reduced row echelon form as follows:




0 2 2 4 −2
1 2 3 4 −1
2 0 2 0 2




Interchange Rows 1 and 2.


1 2 3 4 −1
0 2 2 4 −2
2 0 2 0 2




Add multiples of row 1 to all suceeding rows.


1 2 3 4 −1
0 2 2 4 −2
0 −4 −4 −8 4




Multiply row 2 by 1/2.


1 2 3 4 −1
0 1 1 2 −1
0 −4 −4 −8 4




Add multiples of row 2 to all succeeding rows.


1 2 3 4 −1
0 1 1 2 −1
0 0 0 0 0




Add multiples of row 2 to all preceeding rows.


1 0 1 0 1
0 1 1 2 −1
0 0 0 0 0




Sometimes the leading elements of a reduced row echelon matrix are called pivots.
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Gauss-Jordan procedure for solving systems of linear equations. Recall the prob-
lem of solving the system of scalar linear equations (27.1) or their vector/matrix counterpart
(27.2). The Gauss-Jordan procedure is a systematic method for solving such equations. One
simply uses elementary row operations to transform the augmented matrix [Ab] into its re-
duced row echelon form which we denote by [Â b̂]. Since [Â b̂] is obtained from [A b] by
elementary row operations, the set of vectors x which satisfy Ax = b is exactly the same as
the set which satisfy Âx = b̂. However, since [Â b̂] is in reduced row echelon form, it can
be simply determined whether or not the equation Âx = b̂ has a solution for x, and, if a
solution exists, to determine all solutions.

Example 218 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
expression for all solutions and give two solutions.

y − 2z = 4
x− y = 1

3x− 3y + 4z = −9
−2y + 10z = −26

Here the augmented matrix is given by

(
A b

)
=




0 1 −2 4
1 −1 0 1
3 −3 4 −9
0 −2 10 −26




Carrying our elementary row operations, we obtain




0 1 −2 4
1 −1 0 1
3 −3 4 −9
0 −2 10 −26


 −→




1 −1 0 1
0 1 −2 4
3 −3 4 −9
0 −2 10 −26


 −→




1 −1 0 1
0 1 −2 4
0 0 4 −12
0 −2 10 −26


 −→




1 −1 0 1
0 1 −2 4
0 0 4 −12
0 0 6 −18




−→




1 −1 0 1
0 1 −2 4
0 0 1 −3
0 0 6 −18


 −→




1 −1 0 1
0 1 −2 4
0 0 1 −3
0 0 0 0


 −→




1 −1 0 1
0 1 0 −2
0 0 1 −3
0 0 0 0


 −→




1 0 0 −1
0 1 0 −2
0 0 1 −3
0 0 0 0




The reduced row echelon form of [A b] (the last matrix above) tells us that the original
equations are equivalent to:

x = −1

y = −2

z = −3

Thus, the original equations have a unique solution given by x = −1, y = −2 and z = −3.
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From the above procedure we see that there are three possibilities when it comes to
solving linear equations:

1) A unique solution.

2) Infinite number of solutions.

3) No solution.
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MATLAB.

help rref

RREF Reduced row echelon form.

R = RREF(A) produces the reduced row echelon form of A.

[R,jb] = RREF(A) also returns a vector, jb, so that:

r = length(jb) is this algorithm’s idea of the rank of A,

x(jb) are the bound variables in a linear system, Ax = b,

A(:,jb) is a basis for the range of A,

R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = RREF(A,TOL) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different

value for the rank than RANK, ORTH and NULL.

See also RREFMOVIE, RANK, ORTH, NULL, QR, SVD.

Overloaded methods

help sym/rref.m

Exercises

Exercise 157 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique, and if not unique,
obtain an expression for all solutions.

x1 − x2 + 2x3 + x4 = 5
x1 − x2 + x3 = 3

−2x1 + 2x2 + 2x4 = −2
2x1 − 2x2 − x3 − 3x4 = 0

Exercise 158 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
expression for all solutions and given two solutions.

x1 − 2x2 − 4x3 = −1
2x1 − 3x2 − 5x3 = −1
x1 + 2x3 = 1
x1 + x2 + 5x3 = 2

Exercise 159 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
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expression for all solutions and give two solutions.

x1 − 2x2 x3 − 2x4 = −1
−3x1 + 7x2 − 3x3 + 7x4 = 4

2x1 − x2 + 2x3 − x4 = 2

Exercise 160 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
expression for all solutions and give two solutions.

x2 + x4 = 2
2x1 + 3x2 + 2x3 + 3x4 = 8
x1 + x2 + x3 + x4 = 3

Exercise 161 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
expression for all solutions and given two solutions.

x1 − 2x2 − 4x3 = −1
2x1 − 3x2 − 5x3 = −1
x1 + 2x3 = 1
x1 + x2 + 5x3 = 2

Exercise 162 Determine whether or not the following system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
expression for all solutions and given two solutions.

y − 2z = 4
x− y = 1

3x− 3y + 4z = −9
−2y + 10z = −26

Exercise 163 We consider here systems of linear equations of the form

Ax = b

with x =




x1

x2

x3


 .

For each of the following cases, we present the reduced row echelon form of the augmented
matrix [A b ]. Determine whether or not the corresponding system of linear equations has a
solution. If a solution exists, determine whether or not it is unique; if not unique, obtain an
expression for all solutions and given two solutions.

(a)




1 5 0 0
0 0 1 0
0 0 0 1


 (b)




1 −2 0 6
0 0 1 4
0 0 0 0


 (c)




1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 (d)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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27.2 Subspaces

Recall that a vector space is a set equipped with two operations, vector addition and mul-
tiplication by a scalar, and these operations must satisfy certain properties. The following
concept generalizes the notion of a line or a plane which passes through the origin.

A non-empty subset S of a vector space is a subspace if for every pair of elements x, y in
S and every pair of scalars α, β, the vector αx + βy is contained in S.

In other words, a subset of a vector space is a subspace if it is closed under the operations
of addition and multiplication by a scalar. Note that a subspace can be considered a vector
space (Why?). An immediate consequence of the above definition is that a subspace must
contain the zero vector; to see this consider α and β to be zero.

Example 219 Consider the set of real 2-vectors x which satisfy

x1 − x2 = 0

This set is a subspace of IR2. Note that the set of vectors satisfying

Figure 27.1: A simple subspace

x1 − x2 − 1 = 0

is not a subspace.

Example 220 Consider any real m × n matrix A and consider the set of real n-vectors x
which satisfy

Ax = 0

This set is a subspace of IRn.

Example 221 The set of real matrices of the form
(

α β
β γ

)

is a subspace of the space of real 2× 2 matrices.

Example 222 As a more abstract example of a subspace space, let V be the set of con-
tinuous real-valued functions which are defined on the interval [0,∞)and let addition and
scalar multiplication be as defined earlier Suppose W be the subset of V which consists of
the differentiable functions V . Then W is a subspace of V .
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27.3 Basis

27.3.1 Span (not Spam)

Consider a bunch X of vectors. A linear combination of these vectors is a vector which can
be expressed as

α1x
1 + α2x

2 + . . . + αmxm

where each xi is in the bunch and each αi is a scalar.

The span of a bunch X of vectors is the set of all vectors of the form

α1x
1 + α2x

2 + . . . + αmxm

where each xi is in the bunch and each αi is a scalar; it is denoted by spanX .

In other words, the span of a bunch of vectors is the set of all linear combinations of
vectors from the bunch.

Exercise 164 Show that spanX is a subspace.

Example 223

span

{(
1
0

)
,

(
0
1

)}
= IR2

To see this, note that any element x of IR2 can be expressed as
(

x1

x2

)
= x1

(
1
0

)
+ x2

(
0
1

)

Example 224

span

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
= IR2×2

To see this, note that any element A of IR2×2 can be expressed as:
(

a11 a12

a21 a22

)
= a11

(
1 0
0 0

)
+ a12

(
0 1
0 0

)
+ a21

(
0 0
1 0

)
+ a22

(
0 0
0 1

)

Fact 20 Consider a bunch X of vectors. The following ‘experiences’ do not affect span.

(a) Multiplication of one of the vectors by a nonzero scalar.

(b) Replacing a vector by the sum of itself and a scalar multiple of another (different)
vector in the bunch.

(c) Removal of a vector which is a linear combination of other vectors in the bunch.

(d) Inclusion of a vector which is in the span of the original bunch.
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Span and rref. One can use rref to solve the following problem. Given a bunch of n-
vectors x1, x2, · · · , xm and another n-vector b, determine whether or not b is in the span of
the bunch. To solve this problem, consider any linear combination α1x

1+α2x
2+. . .+αmxm of

the vectors x1, x2, · · · , xm. Let A be the matrix whose columns are the vectors x1, x2, · · · , xm,
that is,

A =
(

x1 x2 · · · xm
)

and let α be the m-vector whose components are α1, · · · , αm, that is,

α = [ α1 α2 · · · αm ]T .

Then the above linear combination can be expressed as

α1x
1 + α2x

2 + . . . + αmxm =
(

x1 x2 · · · xm
)



α1

α2
...

αm


 = Aα .

Thus, b is in the span of the bunch if and only if the equation

Aα = b

has a solution for α. One can determine whether or not a solution exists by considering
M̂ = rref(M) where

M = [A b] =
(

x1 x2 · · · xm b
)

.

Example 225 Suppose we wish to determine whether or not the vector (1, 1,−1) is a linear
combination of the vectors




2
1
1


 ,




0
3
1


 ,



−1

1
0


 .

Since

rref







2 0 −1 1
1 3 1 1
1 1 0 −2





 =




1 0 −0.5 0
0 1 0.5 0
0 0 0 1


 ,

it follows that the first vector is not a linear combination of the remaining three.

27.3.2 Linear independence

A bunch of vectors, x1, x2, . . . , xm is linearly dependent if there exist scalars α1, α2, . . . , αm,
not all zero, such that

α1x
1 + α2x

2 + . . . + αmxm = 0 (27.4)

The bunch is linearly independent if it is not linearly dependent, that is, the bunch is linearly
independent if and only if (27.4) implies that

α1, α2, . . . , αm = 0
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If the bunch consists of a single vector, then it is linearly independent if and only if that
vector is not the zero vector. If a bunch consists of more than one vector, then it is linearly
dependent if and only if one of the vectors can be expressed as a linear combination of the
preceding vectors in the bunch, that is for some j,

xj = β1x
1 + β2x

2 + . . . + βj−1x
j−1

for some scalars βi.

Example 226 The following bunches of vectors are linearly dependent.

(i) (
0
0

)

(ii) (
1
1

)
,

(
2
2

)

(iii) 


1
2
3


 ,




7
6
5


 ,




3
2
1




Why?

(iv) (
1 0
0 1

)
,

(
2 0
0 2

)

Example 227 The following bunches of vectors are linearly independent.

(a) (
1
1

)

(b) (
1
0

)
,

(
0
1

)

(c) 


1
2
3


 ,




7
6
5
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(d) 


0
1
2
3
4

494




,




0
0
5
6
4
74




,




0
0
0
0

203
11




To see this:

α1




0
1
2
3
4

494




+ α2




0
0
5
6
4
74




+ α3




0
0
0
0

203
11




=




0
0
0
0
0
0




implies
α1 = 0
2α1 + 5α2 = 0
4α1 + 4α2 + 203α3 = 0

The first equation implies α1 = 0; combining this with the second equation yields
α2 = 0; combining these results with the last equation produces α3 = 0. So, no
nontrivial linear combination of this bunch equals zero; hence the bunch is linearly
independent.

(e) (
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)

Exercise 165 Useful generalization of example 227 (d)
Consider a bunch of m vectors in IRn (m ≤ n) which have the following structure.




0
...
0

x1
n1
...
...
...




,




0
...
...
0

x2
n2
...
...




, . . . ,




0
...
...
...
0

xm
nm

...




x1
n1

, x2
n2

, . . . , xm
nm
6= 0

In words, the first ni−1 components of the i-th vector are zero; its ni component is nonzero;
and n1 < n2 < . . . < nnm .

Prove that this bunch is linearly independent.
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• Consider a bunch
x1, x2, . . . , xm

of vectors. It can readily be shown that:

Fact 21 The following ‘experiences’ do not affect linear independence status.

(a) Multiplication of one of the vectors by a nonzero scalar.

(b) Replacing a vector by the sum of itself and a scalar multiple of another (different)
vector in the bunch.

(c) Removal of a vector from the bunch.

(d) Inclusion of a vector which is not in the span of the original bunch.

Using rref to determine linear independence. Suppose we want to determine whether
or not a bunch of n-vectors, x1, x2, · · · , xm, are linearly independent. We can achieve this
using rref. To see this, consider any linear combination α1x

1+α2x
2+. . .+αmxm of the vectors

x1, x2, · · · , xm. Let A be the n × m matrix whose columns are the vectors x1, x2, · · · , xm,
that is,

A =
(

x1 x2 · · · xm
)

,

and let α be the m-vector whose components are α1, · · · , αm, that is,

α = [ α1 α2 · · · αm ]T .

Then the above linear combination of vectors can be expressed as

α1x
1 + α2x

2 + . . . + αmxm =
(

x1 x2 · · · xm
)



α1

α2
...

αm


 = Aα .

Thus the linear combination is zero if and only if Aα = 0. Letting Â be the reduced row
echelon form of A, it follows that α satisfies Aα = 0 if and only if Âα = 0. So, the columns
of A are linearly independent if and only if the columns of Â are linearly independent. More-
over, a column of A is a linear combination of the preceding columns of A if and only if the
corresponding column of Â is the same linear combination of the preceding columns of Â.
From the above observations, we can obtain the following results where Â is the reduced row
echelon form of A.

(a) The vectors are linear independent if and only if every column of Â contains a leading
element, that is, the number of leading elements of Â is the same as the number of vectors.

(b) If Â has a zero column, then the corresponding x-vector is zero; hence the vectors are
linearly dependent.
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(c) If a non-zero column of Â does not contain a leading element, then the corresponding
vector can be written as a linear combination of the preceding vectors, hence the vectors are
linearly dependent.

Example 228 Show that the vectors,




1
1
1

−1


 ,




1
1

−1
0


 ,




1
1
3

−2


 ,

are linear dependent.
Solution:

rref







1 1 1
1 1 1
1 −1 3

−1 0 −2





 =




1 0 2
0 1 −1
0 0 0
0 0 0


 .

The vectors are linearly dependent. The third vector is the twice the first vector minus the
second vector.

Example 229 Are the vectors




1
1
2


 ,




1
−1

0


 ,




1
1

−1


 ,

linearly independent?
Solution:

rref







1 1 1
1 −1 1
2 0 −1





 =




1 0 0
0 1 0
0 0 1


 .

The vectors are linearly independent.
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27.3.3 Basis

A basis for a vector space is a bunch of linearly independent vectors whose span is the space.

A vector space is called finite dimensional if it has a finite basis; otherwise it is infinite
dimensional.

For a finite dimensional vector space V , it can be shown that the number of vectors in
every basis is the same; this number is called the dimension of the space and is denoted
dim V . We refer to a vector space with dimension n as an n-dimensional space. In an
n-dimensional space, every bunch of more than n vectors space must be linearly dependent,
and every bunch of n linearly independent vectors must be a basis.

Example 230 The following vectors constitute a basis for IR2 (Why?) :

(
1
0

)
,

(
0
1

)

Hence IR2 is a 2-dimensional space (Big surprise!).

Example 231 The following vectors constitute a basis for IR2×2 (Why?) :

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)

Hence IR2×2 is a 4-dimensional space.

Example 232 The following vectors constitute a basis for the subspace of example 221.
(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)

Exercise 166 Give an example of a basis for IR3 and for IR2×3. What are the dimensions
of these spaces?

Coordinates. If e1, e2, . . . , en is a basis for an n-dimensional vector space, then every
vector x in the space has a unique representation of the form:

x = ξ1e
1 + ξ2e

2 + . . . + ξne
n

The scalars ξ1, ξ2, · · · , ξn are called the coordinates of x wrt the basis e1, e2, . . . , en. Thus
there is a one-to-one correspondence between any real n-dimensional vector space and IRn.

x
→
←




ξ1

ξ2
...
ξn




431



Any linear map from a real n-dimensional V space to a real m-dimensional space W can
be ‘uniquely’ represented by a real m×n matrix; that is, there is a one-to-one correspondence
between the set of linear maps from V to W and IRm×n. This is achieved by choosing bases
for V and W .

27.4 Range and null space of a matrix

27.4.1 Null space

Consider any real m× n matrix A.

The null space of A, denoted by N (A), is the set of real n-vectors x which satisfy

Ax = 0

that is,

N (A) := {x ∈ IRn : Ax = 0}

• N (A) is a subspace of IRn. (Exercise)

• The nullity of A is the dimension of its null space, that is,

nullity A := dim N (A)

Determining the null space of a matrix A simply amounts to solving the homogeneous
equation Ax = 0. This we can do by obtaining rref (A).

Example 233 A null space calculation
Let’s compute a basis for the null space of the following matrix.

A =




0 2 2 4 −2
1 2 3 4 −1
2 0 2 0 2




We saw in Example 217 that the reduced row echelon form of A is given by

Â =




1 0 1 0 1
0 1 1 2 −1
0 0 0 0 0
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Hence, the vectors in the null space of A are those vectors x which satisfy Âx = 0, that is,

x1 + x3 + x5 = 0
x2 + x3 + 2x4 − x5 = 0

these equations are equivalent to

x1 = −x3 − x5

x2 = −x3 − 2x4 + x5

Hence, we can consider x3, x4, x5 arbitrary and for any given x3, x4, x5, the remaining com-
ponents x1 and x2 are uniquely determined; hence, all vectors in the null space must be of
the form 



−x3 − x5

−x3 − 2x4 + x5

x3

x4

x5




= x3




−1
−1

1
0
0




+ x4




0
−2

0
1
0




+ x5




−1
1
0
0
1




where x3, x4, x5 are arbitrary. Thus the null space of A is the subspace spanned by the three
vectors: 



−1
−1

1
0
0







0
−2

0
1
0







−1
1
0
0
1




Since the three vectors are linearly independent, they form a basis for the null space of A;
hence the nullity of A is 3.

Example 234 Consider any non-zero (angular velocity) matrix of the form:

A =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




The null space of A is the set of vectors x which satisfy:

−ω3x2 + ω2x3 = 0
ω3x1 − ω1x3 = 0

−ω2x1 + ω1x2 = 0

Every solution to these equations is a scalar multiple of

x =




ω1

ω2

ω3




Hence, the null space of A is the 1-dimensional subspace of IR3 spanned by this vector.

• The set of equilibrium states of a continuous LTI system ẋ = Ax is the null space of A.

• The set of equilibrium states of a discrete LTI system x(k+1) = Ax(k) is the null space of
A− I.
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27.4.2 Range

Consider a real m× n matrix A.

The range of A, denoted by R(A), is the set of m-vectors of the form Ax where x is an
n-vector, that is,

R(A) := {Ax : x ∈ IRn}

Thus, the range of A is the set of vectors b for which the equation Ax = b has a least one
solution for x.

• R(A) is a subspace of IRm. (Exercise)

The rank of A is the dimension of its range space, that is,

rankA := dim R(A)

Since

A =
(

a1 a2 . . . an

)

where a1, a2, . . . , an are the columns of A, it should be clear that

Ax =
(

a1 a2 . . . an

)



x1

x2
...

xn


 = x1 a1 + x2 a2 + . . . + xn an

Hence, the range of a matrix is the set of all linear combinations of its columns. Thus the
rank of A equals the maximum number of linearly independent columns of A.

From Fact 20 it should be clear that if a matrix Ã is obtained from a matrix A by a
sequence of the following operations then A and Ã have the same range.

(a) Interchanging two columns.

(b) Mutiplication of one of the columns by a nonzero scalar.

(c) Replacing a column by the sum of itself and a scalar multiple of another (different)
column in the bunch.

(d) Removal of a column which is a linear combination of other columns in the bunch.

(e) Inclusion of a column which is a linear combination of other columns in the bunch.

Calculation of range basis and rank with rref

Here, we present two ways to calculate a basis for the range of a matrix using rref.
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Method one: rref(A) A basis for the range of A is given by the columns of A corre-
sponding to the columns of rref(A) which contain leading elements. Thus the rank of A is
the number of leading elements in rref(A). This method yields a basis whose members are
columns from A.

Method two: rref(AT ) Let B̂ be the reduced row echelon form of AT , that is

B̂ = rref(AT ) .

Then the nonzero columns of B̂T form a basis for the range of A. Thus the rank of A is the
number of leading elements in rref(AT ).

From the above considerations, it follows that, for any matrix A,

rankAT = rankA

hence,

rankA = maximum number of linearly independent columns of A

= maximum number of linearly independent rows of A

Example 235 (A range calculation) Let’s compute a basis for the range of the matrix,

A =




0 1 1 2
1 2 3 4
2 0 2 0




Using Method one, we compute

rref(A) =




1 0 1 0
0 1 1 2
0 0 0 0




Since the leading elements of rref(A) occur in columns 1 and 2, a basis for the range of A is
given by columns 1 and 2 of A, that is




0
1
2


 ,




1
2
0


 .

Also, the rank of A is two.
Using Method two, we compute

rref(AT ) =




1 0 −4
0 1 2
0 0 0
0 0 0
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Hence,

rref(AT )T =




1 0 0 0
0 1 0 0

−4 2 0 0




Since columns 1 and 2 are the non-zero columns of rref(AT )T , a basis for the range of A is
given by columns 1 and 2 of rref(AT )T , that is




1
0

−4


 ,




0
1
2


 .

Again we obtain that the rank of A is two.

Fact 22 If A is an m× n matrix,

dim R(A) + dim N (A) = n

Fact 23 If A and B are two matrices which have the same numbers of columns, then

N (A) = N (B) if and only if R(AT ) = R(BT )

Exercise 167 Picturize the range and the null space of the following matrices.

(
2 1
2 1

) (
1 −1
1 −1

)

Exercise 168

(a) Find a basis for the null space of the matrix,

A =




1 2 3 4
2 3 4 5
3 4 5 6


 .

(b) What is the nullity of A?

Check your answer using MATLAB.

Exercise 169

(a) Find a basis for the range of the matrix,

A =




1 2 3 4
2 3 4 5
3 4 5 6


 .

(b) What is the rank of A?
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Check your answer using MATLAB.

Exercise 170 Obtain a basis for the range of each of the following matrices. Also, what is
the rank and nullity of each matrix?




4 1 −1
3 2 −3
1 3 0







0 1 0
0 0 0
0 0 1







1 2 3 4 5
2 3 4 1 2
3 4 5 0 0




Check your answers using MATLAB.

Exercise 171 Obtain a basis for the the null space of each of the matrices in exercise 170.
Check your answers using MATLAB

27.4.3 Solving linear equations revisited

Recall the problem of solving the following m scalar equations for n scalar unknowns x1, x2, . . . , xn:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm

These equations can be written in matrix form as:

Ax = b

where x is n× 1, b is m× 1 and A is m× n.

• This matrix equation has at least one solution for x if and only if b is in the range of A.
This is equivalent to

rank (A b) = rank A

The matrix equation has at least one solution for every b if and only if the range of A is
Rm, that is, the rank of A is m, or equivalently, the nullity of A is n−m; hence n ≥ m.

• If x∗ is any particular solution of Ax = b, then all other solutions have the form

x∗ + e

where e is in the null space of A.
To see this:

Hence, a solution is unique if and only if the nullity of A is zero or equivalently, the rank
of A is n; hence n ≤ m.

• It follows from the above that A is invertible if and only if its rank is m and its nullity is
0; since rank A + nullityA = n, we must have m = n, that is A must be square.
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MATLAB A solution (if one exists) to the equation Ax = b can be solved by

x= A\b

>> help orth

ORTH Orthogonalization.

Q = orth(A) is an orthonormal basis for the range of A.

Q’*Q = I, the columns of Q span the same space as the columns

of A and the number of columns of Q is the rank of A.

See also SVD, ORTH, RANK.

>> help rank

RANK Number of linearly independent rows or columns.

K = RANK(X) is the number of singular values of X

that are larger than MAX(SIZE(X)) * NORM(X) * EPS.

K = RANK(X,tol) is the number of singular values of X that

are larger than tol.

>> help null

NULL Null space.

Z = null(A) is an orthonormal basis for the null space of A.

Z’*Z = I, A*Z has negligible elements, and the number of columns

of Z is the nullity of A.

See also SVD, ORTH, RANK.

Exercise 172 Using MATLAB, compute the rank of the matrix
(

1 0
0 δ

)

for
δ = 1, 10−3, 10−10, 10−15, 10−16

Any comments?

Range and null space of linear maps

Suppose A is a linear map from an n-dimensional space V to an m-dimensional space W .
Then the above definitions and results for matrices can be generalized as follows.

Range of A
R(A) := {Ax : x ∈ V}
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• R(A) is a subspace of W .

rank A := dim R(A)

Null space of A

N (A) := {x ∈ V : Ax = 0}
• N (A) is a subspace of V .

nullity of A := dim N (A)

Fact 24
dim R(A) + dim N (A) = n

• Suppose W = V . Then A is invertible if and only if rankA = n.

Suppose b is given vector in W and consider the equation.

Ax = b

This equation has a solution for x if and only if b is in the range of A. If x∗ is any
particular solution of Ax = b, then all other solutions have the form

x∗ + e

where e is in the null space of A.........
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27.5 Coordinate transformations

Suppose we have n scalar variables x1, x2, . . . , xn and we implicitly define new scalar variables
ξ1, ξ2, . . . , ξn by

x = Uξ

where U is an n× n invertible matrix. Then, ξ is explicitly given by

ξ = U−1x

We can obtain a geometric interpretation of this change of variables as follows. First,
observe that




x1

x2
...

xn




︸ ︷︷ ︸
x

= x1




1
0
...
0




︸ ︷︷ ︸
e1

+ x2




0
1
...
0




︸ ︷︷ ︸
e2

+ . . . + xn




0
0
...
1




︸ ︷︷ ︸
en

that is the scalars x1, x2, . . . , xn are the coordinates of the vector x wrt the standard basis
e1, e2, . . . , en, or, x is the coordinate vector of itself wrt the standard basis. Suppose

U =
(

u1 . . . uj . . . un
)

that is, uj is the j-th column of U . Since U is invertible, its columns u1, u2, . . . , un are
linearly independent; hence they form a basis for IRn. Since x = Uξ can be written as

x = ξ1u
1 + ξ2u

2 + . . . + ξnun

we see that ξ1, ξ2, . . . , ξn are the coordinates of x wrt to the new basis u1, u2, · · · , un and the
vector ξ is the coordinate vector of the vector x wrt this new basis. So x = Uξ defines a
coordinate transformation.

27.5.1 Coordinate transformations and linear maps

Suppose we have a linear map from IRn into IRm defined by

y = Ax

where A is an m× n matrix. Suppose we introduce coordinate transformations

x = Uξ , y = V η

where U and V are invertible matrices. Then the map is described by

η = Λξ

where
Λ = V −1AU
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Recalling that the columns u1, u2, . . . , un of U form a basis for IRn, and the columns v1, v2, . . . , vm

of V form a basis for IRm, we have now the following very useful result.

• Useful result: Suppose

Auj = α1jv
1 + α2jv

2 + . . . + αmjv
m

Then the matrix Λ = V −1AU is uniquely given by

Λij = αij

that is Λij is the i-th coordinate of the vector Auj wrt the basis v1, v2, . . . , vm, or, the j-th
column of Λ is the coordinate vector of Auj wrt the basis v1, v2, . . . , vm.

Example 236 Suppose A is a 2× 2 matrix and there are two linearly independent vectors
u1 and u2 which satisfy:

Au1 = 2u1 and Au2 = u1 + 2u2

Letting U =
(

u1 u2
)
, we can use the above useful result to obtain that

U−1AU =

(
2 1
0 2

)

Example 237 Suppose A is a 3 × 2 matrix while U =
(

u1 u2
)

and V =
(

v1 v2 v3
)

are invertible 3× 3 and 2× 2 matrices, respectively, which satisfy

Au1 = v1 + 2v3 Au2 = 2v2 + v3

Then, applying the above useful result, we obtain

V −1AU =




1 0
0 2
2 1




Proof of useful result. Premultiply Λ = V −1AU by V to get:

V Λ = AU

On the right we have

AU = A
(

u1 . . . uj . . . un
)

=
(

Au1 . . . Auj . . . Aun
)
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And on the left,

V Λ =
(

v1 v2 . . . . . . vm
)




Λ11 . . . Λ1j . . . Λ1n

Λ21 . . . Λ2j . . . Λ2n
...

...
...

...
...

...
Λm1 . . . Λmj . . . Λmn




=

(
Λ11v

1 + · · ·+ Λm1v
m ... . . . . . .

... Λ1jv
1 + . . . + Λmjv

m

︸ ︷︷ ︸
j-th column

... . . . . . .
... Λ1nv1 + . . . + Λmnvm

)

Comparing the expressions for the j-th columns of AU and V Λ yields

Λ1jv
1 + . . . + Λmjv

m = Auj = α1jv
1 + . . . + αmjv

m

Since the {v1, . . . , vm} is a basis we must have Λij = αij.

27.5.2 The structure of a linear map

Consider again a linear map from IRn into IRm defined by

y = Ax

where A is an m × n matrix. Suppose the rank of A is r. Then the dimension of the null
space of A is n− r. Choose any basis

{v1, . . . , vr}
for the range of A and extend it to a basis

{v1, v2, . . . , vm}
for IRm. Choose any basis

{ur+1, . . . , un}
for the null space of A and extend it to a basis

{u1, u2, . . . , un}

for IRn.
If we introduce the coordinate transformations

y = V η , x = Uξ

where
V = [v1 . . . vm] , U = [u1 . . . un]
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the original linear map is described by

η = Λξ

where
Λ = V −1AU .

Recall the useful result on coordinate transformations. Since the vectors uj, j = r + 1, . . . , n
are in the null space of A we have

Auj = 0 for j = r + 1, . . . , n

Hence, the last r columns of Λ are zero. For j = 1, . . . , r the vector Auj is in the range of A.
Hence it can be expressed as a linear combination of the vectors v1, . . . , vr. Consequently,
the last m− r rows of Λ are zero and Λ has the following structure:

Λ =

(
Λ11 0
0 0

)

where Λ11 ∈ IRr×r. Since the rank of A equals rank Λ which equals rank Λ11, the matrix Λ11

must be invertible.
If we decompose ξ and η as

ξ =

(
ξ1

ξ2

)
, η =

(
η1

η2

)

where ξ1 ∈ IRr, ξ2 ∈ IRn−r, η1 ∈ IRr, η2 ∈ IRm−r, then the linear map is described by

η1 = Λ11ξ1

η2 = 0

where Λ11 is invertible.
Also, we have shown that any matrix any m× n matrix A can be decomposed as

A = V

(
Λ11 0
0 0

)
U−1

where U , V , and Λ are square invertible matrices of dimensions n × n, m ×m, and r × r,
respectively, and r is the rank of A.
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Chapter 28

Appendix D: Inner products

28.1 The usual scalar product on IRn and Cn

Consider any pair x, y of real n-vectors. The scalar product (inner product) of x and y is
the real number given by

〈y, x〉 = y1x1 + . . . + ynxn .

Regarding x and y as real column matrices, we have

〈y, x〉 = yT x .

Suppose x and y are complex n-vectors. If we use the above definition as the definition
of inner product, we won’t have the property that 〈x, x〉 ≥ 0. To see this, note that x = 
results in x2 = −1. So we define the scalar product (inner product) of x and y to be the
complex number given by

〈y, x〉 := ȳ1x1 + . . . + ȳnxn

When x and y are real this definition yields the usual scalar product on IRn. Regarding x
and y as column matrices, we have

〈y, x〉 = y∗x

where y∗ is the complex conjugate transpose of y.

We can obtain the usual Euclidean norm from the usual scalar product by noting that

〈x, x〉 = x̄1x1 + . . . + x̄nxn

= |x1|2 + |x2|2 + . . . + |xn|2
= ‖x‖2 .

Hence

‖x‖ = 〈x, x〉 1
2 .
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Properties of 〈·, ·〉. The usual scalar product on IRn or Cn has the following properties.

(i) For every pair of vectors x and y,

〈x, y〉 = 〈y, x〉

(ii) For every vector y, every pair of vectors x1, x2, and every pair of scalars α1, α2,

〈y, α1x
1 + α2x

2〉 = α1〈y, x1〉+ α2〈y, x2〉

(iii) For every vector x,

〈x, x〉 ≥ 0

and

〈x, x〉 = 0 if and only if x = 0

For real vectors, property (i) reduces to 〈x, y〉 = 〈y, x〉. By utilizing properties (i) and
(ii), we obtain that for every vector x, every pair of vectors y1, y2, and every pair of scalars
α1, α2,

〈α1y
1 + α2y

2, x〉 = α1〈y1, x〉+ α2〈y2, x〉

Any scalar valued function on a real (or complex) vector space which has the above three
properties is defined to be an inner product. A vector space equipped with an inner product
is called an inner product space. For example, suppose V is the vector space of all real valued
continuous functions defined on the interval [0, 1]. For any two functions f and g in V , let

〈f, g〉 =

∫ 1

0

f(t)g(t) dt .

One may readily show that properties (i)-(iii) above hold.

28.2 Orthogonality

Suppose V is a real (or complex) vector space which is equipped with an inner product 〈·, ·〉.

A vector y is said to be orthogonal to a vector x if

〈y, x〉 = 0

For example, in IR2 the vector (1, 1) is orthogonal to vector (1,−1).

If y is orthogonal to x, then (using property (ii) above) x is orthogonal to y; so, we
usually just say x and y are orthogonal.
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Figure 28.1: Orthogonality

28.2.1 Orthonormal basis

Suppose V is finite dimensional and

b1, b2, . . . bn

is a basis for V . Then this basis is an orthonormal basis if for every i, j,

〈bi, bi〉 = 1

〈bi, b j〉 = 0 when i 6= j

that is each basis vector has magnitude 1 and is orthogonal to all the other basis vectors.

Unitary coordinate transformations

Suppose b1, b2, . . . , bn is an orthonormal basis for Cn and consider the transformation matrix

T =
(

b1 b2 . . . bn
)

Then

T ∗T =




b1∗

b2∗
...

bn∗




(
b1 b2 . . . bn

)

=




b1∗b1 b1∗b2 . . . b1∗bn

b2∗b1 b2∗b2 . . . b2∗bn

...
...

...
bn∗b1 bn∗b2 . . . bn∗bn


 =




1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1


 ,

that is, T ∗T = I.

A square complex matrix T is said to be unitary if

T ∗T = I .

If T is unitary, then
T−1 = T ∗ .
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Example 238 The following matrix is unitary for any θ.

T =

(
cos θ − sin θ
sin θ cos θ

)

Consider a unitary coordinate transformation

x = Tξ

with T unitary. Then for any two n vectors ξ1 and ξ2,

〈Tξ1, T ξ2〉 = (Tξ1)∗Tξ2

= ξ1∗T ∗Tξ2

= ξ1∗ξ2

= 〈ξ1, ξ2〉

hence, 〈Tξ1, T ξ2〉 = 〈ξ1, ξ2〉; that is, unitary transformations preserve the scalar product
and, hence, the Euclidean norm.
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28.3 Hermitian matrices

In this section, the square (n× n) complex matrix P is hermitian, that is

P ∗ = P

If P is real, then hermitian is equivalent to symmetric, that is, P T = P .

• For any complex n-vector x, the scalar x∗Px is real:

x∗Px = (x∗Px)∗

= x∗P ∗x

= x∗Px

Since x∗Px = x∗Px, the scalar x∗Px is real.

• Every eigenvalue λ of P real. Since λ is an eigenvalue of P , there is a nonzero vector v
such that

Pv = λv

Hence
v∗Pv = λv∗v = λ||v||2

Since v∗Pv is real and ||v||2 is nonzero real, λ must be real.

• Suppose v1 and v2 are eigenvectors corresponding to different eigenvalues of P . Then v1

and v2 are orthogonal:

Pv1 = λ1v1

implies
v2
∗Pv1 = λ1v2

∗v1

Similarly,
v1
∗Pv2 = λ2v1

∗v2

Taking the complex conjugate transpose of both sides of this last expression and using
P ∗ = P and λ2 = λ2 yields

v2
∗Pv1 = λ2v2

∗v1

Equating the two expressions for v2
∗Pv1 yields

λ1v2
∗v1 = λ2v2

∗v1

Since λ1 6= λ2, we must have v2
∗v1 = 0, that is, v2 is orthogonal to v1.

Actually, the following more general result is true.

Fact 25 Every hermitian matrix has an orthonormal basis of eigenvectors.
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It now follows that every hermitian matrix P can be expressed as

P = TΛT ∗

where T is a unitary matrix and Λ is a real diagonal matrix whose diagonal elements are
the eigenvalues of P and the number of times an eigenvalue appears equals its algebraic
multiplicity.

28.4 Positive and negative (semi)definite matrices

28.4.1 Quadratic forms

For any square n× n matrix P we can define an associated quadratic form:

x∗Px =
n∑

i=1

n∑
j=1

pijx
∗
i xj .

Quadratic forms arise naturally is mechanics. For example, suppose one considers a rigid
body and chooses an orthogonal coordinate system with origin at the body mass center. If
ω is a real 3-vector consisting of the components of the angular velocity vector of the body
and I is the 3 × 3 symmetric inertia matrix of the body, then the rotational kinetic energy
of the body is given by 1

2
ωT Iω.

If P is hermitian (P ∗ = P ) then, as we have already shown, the scalar x∗Px is real for
all x ∈ Cn. The following result provides useful upper and lower bounds on x∗Px .

• If P is a hermitian n× n matrix, then for all x ∈ Cn

λmin(P )||x||2 ≤ x∗Px ≤ λmax(P )||x||2

where λmin(P ) and λmax(P ) denote the minimum and maximum eigenvalues of P respectively.

Proof. Letting ξ = T ∗x, we have

x∗Px = x∗TΛT ∗x

= ξ∗Λξ

= λ1ξ
∗
1ξ1 + . . . + λnξ

∗
nξn

= λ1|ξ1|2 + . . . + λn|ξn|2

Since, λi ≤ λmax(P ) for i = 1, . . . , n we have λi|ξi|2 ≤ λmax(P )|ξi|2; hence

x∗Px ≤ λmax(P )
(|ξ1|2 + . . . + |ξn|2

)
= λmax(P )||ξ||2 ;

hence x∗Px ≤ λmax(P )||ξ||2. Also ||ξ|| = ||x||; hence,

x∗Px ≤ λmax(P )||x||2

In an analogous fashion one can show that

x∗Px ≥ λmin(P )||x||2
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28.4.2 Definite matrices

DEFN. A hermitian matrix P is positive definite (pd) if

x∗Px > 0 for all nonzero x in Cn

We denote this by P > 0.

The matrix P is negative definite (nd) if −P is positive definite; we denote this by P < 0.

Example 239 For

P =

(
1 −1

−1 2

)

we have (note the completion of squares trick)

x∗Px = x∗1x1 − x∗1x2 − x∗2x1 + 2x∗2x2

= (x1 − x2)
∗(x1 − x2) + x∗2x2

= |x1 − x2|2 + |x2|2

Clearly, x∗Px ≥ 0 for all x. If x∗Px = 0, then x1 − x2 = 0 and x2 = 0; hence x = 0. So,
P > 0.

Fact 26 The following statements are equivalent for any hermitian matrix P .

(a) P is positive definite.

(b) All the eigenvalues of P are positive.

(c) All the leading principal minors of P are positive; that is,

p11 > 0

det

(
p11 p12

p21 p22

)
> 0

...

det(P ) > 0

Example 240 Consider

P =

(
1 −1

−1 2

)

Since p11 = 1 > 0 and det(P ) = 1 > 0, we must have P > 0.

>> eig(P)

ans =

0.3820

2.6180

Note the positive eigenvalues.
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28.4.3 Semi-definite matrices

DEFN. A hermitian matrix P is positive semi-definite (psd) if

x∗Px ≥ 0 for all x in Cn

We denote this by P ≥ 0

The matrix P is negative semi-definite (nsd) if −P is positive semi-definite; we denote this
by P ≤ 0

Fact 27 The following statements are equivalent for any hermitian matrix P .

(a) P is positive semi-definite.

(b) All the eigenvalues of P are non-negative.

(c) All the principal minors of P are non-negative.

Example 241 This example illustrates that non-negativity of only the leading principal
minors of P is not sufficient for P ≥ 0. One needs non-negativity of all the principal minors.

P =

(
0 0
0 −1

)

We have p11 = 0 and det(P ) = 0. However,

x∗Px = −|x2|2
hence, P is not psd. Actually, P is nsd.

Fact 28 Consider any m× n complex matrix M and let P = M∗M . Then

(a) P is hermitian and P ≥ 0

(b) P > 0 if and only if rank M = n.

Example 242

P =

(
1 1
1 1

)

Since

P =

(
1
1

) (
1 1

)

and
rank

(
1 1

)
= 1

P ≥ 0 but P is not pd.

Exercise 173 (Optional)
Suppose P is hermitian and T is invertible. Show that P > 0 if and only if T ∗PT > 0.

Exercise 174 (Optional)
Suppose P and Q are two hermitian matrices with P > 0. Show that P + εQ > 0 for

all real ε sufficiently small; that is, there exists ε̄ > 0 such that whenever |ε| < ε̄, one has
P + εQ > 0.
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28.5 Singular value decomposition

In this section we introduce a matrix decomposition which is very useful for reliable numerical
computations in linear algebra. First, some notation.

The diagonal elements of an m× n matrix A are

A11, A22, . . . , App where p = min{m,n}
We say that A is diagonal if all its nondiagonal elements are zero, that is, Aij = 0 for i 6= j.
Examples are:

(
1 0
0 2

)
,




1 0
0 2
0 0


 ,




1 0 0 0
0 2 0 0
0 0 0 0


 ,

(
1
0

)
.

Theorem 35 (Singular value decomposition) If A is a complex m × n matrix, then
there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such that

A = UΣV ∗

where Σ is a diagonal matrix of the same dimension as A and with real nonnegative diagonal
elements:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 p = min{m,n}
If A is real, then U and V are real.

So, if A is square (m = n), then

Σ =




σ1 0 · · · 0
0 σ2 · · · 0
...

. . .
...

0 0 · · · σn


 .

When A is “fat” (m < n), we have

Σ =




σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

. . .
...

...
...

0 0 · · · σm 0 · · · 0


 .

Finally, a “tall” matrix (m > n) yields

Σ =




σ1 0 · · · 0
0 σ2 · · · 0
...

. . .
...

0 0 · · · σn

0 0 · · · 0
...

...
...

0 0 · · · 0




.
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The scalar σi is called the i-th singular value of A. Let σr be the smallest nonzero singular
value of A. Then r is smaller than both m and n. Moreover, Σ can be expressed as

Σ =

(
Σ11 0
0 0

)

where Σ11 is the square diagonal invertible matrix given by

Σ11 =




σ1 0 . . . 0
0 σ2 0

0 0
. . .

...
0 0 . . . σr




If

U

(
Σ11 0
0 0

)
V ∗

is a singular value decomposition of A, then

A∗A = V

(
Σ2

11 0
0 0

)
V ∗

Hence, the nonzero singular values of A are uniquely given by

σi =
√

λi

where λ1, . . . , λr are the nonzero eigenvalues of the hermitian positive semidefinite matrix
A∗A.

Example 243 The matrix

A =

(
1.2 −0.64 −0.48
1.6 0.48 0.36

)

has the following singular value decomposition

A =

(
0.6 0.8
0.8 −0.6

)

︸ ︷︷ ︸
U

(
2 0 0
0 1 0

)

︸ ︷︷ ︸
Σ




1 0 0
0 −0.8 0.6
0 −0.6 −0.8



∗

︸ ︷︷ ︸
V ∗

Useful facts

• The maximum (or largest) singular value of a matrix satisfies the properties of a norm.
Thus, if we consider the set of m× n matrices A and define

||A|| = σmax(A)
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where σmax(A) denotes the largest singular of A, then the following properties hold:

(a) ||A|| ≥ 0 and ‖A‖ = 0 if and only if A = 0
(b) ||λA‖ = |λ|‖A‖
(c) ‖A + B‖ ≤ ‖A‖+ ‖B‖ .

In addition to the above usual norm properties, this norm also satisfies

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

where the above vector norms are the usual euclidean vector norms. Thus,

‖Ax‖ ≤ ‖A‖‖x‖

for all x.

• Using the above norm, we can define the distance between two matrices A and B of the
same dimensions as ‖A−B‖.

• The rank of A equals the number of its nonzero singular values.

• Suppose k is a nonegative integer strictly less than the rank r of A. Then in a certain
sense (which can be made precise), a matrix of rank k which is “closest” to A is given by

Ak = UΣkV
∗

where Σk is the diagonal matrix with diagonal elements

σ1, σ2, . . . , σk, 0, . . . , 0︸ ︷︷ ︸
p−k zeros

that is, the first k diagonal elements of Σk are the same as those of Σ and the remaining
diagonal elements are zero. Also, the “distance” between Ak and A is σk+1. So, the smallest
nonzero singular value σr of A is a measure of the distance between A and the closest matrix
of rank r−1.

• Suppose A has rank r and

U =
(

u1 u2 . . . um
)

, V =
(

v1 v2 . . . vn
)

Then the vectors
u1, u2, . . . , ur

form an orthonormal basis for the range of A and the vectors

vr+1, vr+2, . . . , vn

form an orthonormal basis for the null space of A
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MATLAB

>> help svd

SVD Singular value decomposition.

[U,S,V] = SVD(X) produces a diagonal matrix S, of the same

dimension as X and with nonnegative diagonal elements in

decreasing order, and unitary matrices U and V so that

X = U*S*V’.

By itself, SVD(X) returns a vector containing diag(S).

[U,S,V] = SVD(X,0) produces the "economy size"

decomposition. If X is m-by-n with m > n, then only the

first n columns of U are computed and S is n-by-n.
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Example 244
A =

1 1 1

1 -1 0

1 1 1

1 1 1

[u s v] = svd(A)

u =

0.5774 -0.0000 -0.8165 -0.0000

-0.0000 -1.0000 -0.0000 -0.0000

0.5774 -0.0000 0.4082 -0.7071

0.5774 -0.0000 0.4082 0.7071

s =

3.0000 0 0

0 1.4142 0

0 0 0

0 0 0

v =

0.5774 -0.7071 0.4082

0.5774 0.7071 0.4082

0.5774 0.0000 -0.8165

So A has rank 2 and a basis for its range is given by




0.5774
0

0.5774
0.5774


 ,




0
−1

0
0


 .

A basis for the null space of A is given by




0.4082
0.4082

−0.8165
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