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Abstract— In this paper, we present a number of results
concerned with the stability of positive switched linear systems.
In particular, we show that a recent conjecture concerning the
existence of common quadratic Lyapunov functions (CQLFs)
for positive LTI systems is true for second order systems,
and establish a class of switched linear systems for which
CQLF existence is equivalent to exponential stability under
arbitrary switching. However, this conjecture is false for
higher dimensional systems and we illustrate this fact with
a counterexample. A number of stability criteria for positive
switched linear systems based on common diagonal Lyapunov
functions (CDLFs) are also presented, as well as a necessary
and sufficient condition for a general pair of positive LTI
systems to have a CDLF. To the best of the authors’ knowledge,
this is the first time that a necessary and sufficient condition
for CDLF existence for n-dimensional systems has appeared
in the literature.

I. I NTRODUCTION

The theory of positive LTI systems has historically assumed
a position of great importance in systems theory and has
been applied in the study of a wide variety of dynamic
systems [1], [2], [3], [4]. Recently, new application studies
in congestion control of the Internet [5], formation flying
[6], and other areas, have highlighted the importance of
time-varying positive linear systems (PLS) and, in partic-
ular, positive switched linear systems. While positive LTI
systems are well understood, the basic properties of positive
switched linear systems have yet to be ascertained. The most
important of these concerns their stability and in this paper
we report the results of some initial work on the stability
of positive switched linear systems.

Our main concern throughout the paper is the problem
of determining conditions that guarantee the stability of
positive switched linear systems under arbitrary switching.
In this context, it is well-known that the existence of a
common quadratic Lyapunov function (CQLF) for the LTI
systemsΣAi

: ẋ = Aix 1 ≤ i ≤ k, is sufficient for
the exponential stability, under arbitrary switching, of the
associated switched linear system

ΣS : ẋ = A(t)x A(t) ∈ {A1, . . . , Ak}. (1)

Formally, V (x) = xT Px is a CQLF forΣAi
, 1 ≤ i ≤ k,

if P = PT > 0 and AT
i P + PAi < 0 for 1 ≤ i ≤ k.

While CQLF existence is not in general necessary for
the exponential stability of switched linear systems [7],
recent work has established a number of system classes
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for which this is not necessarily the case [8], [9]. It is
the authors’ belief that the identification of such system
classes is a highly interesting and important problem. Some
initial results and extensive numerical simulations led to the
conjecture, presented in [10], that a necessary and sufficient
condition for a pair of stable positive LTI systemsΣA1 ,
ΣA2 , to have a CQLF was that the productA1A

−1
2 has

no negative real eigenvalues. This would mean that CQLF
existence was not conservative for the exponential stability
of positive switched linear systems. We show below that
while it is indeed true for pairs of second order positive LTI
systems, the general conjecture for higher order systems is
false.

As well as CQLFs, two other types of Lyapunov functions
arise naturally when considering positive linear systems;
namely diagonal Lyapunov functions and copositive Lya-
punov functions [11]. The functionV (x) = xT Dx is
a common diagonal Lyapunov function(CDLF) for the
positive LTI systems,ΣAi

, 1 ≤ i ≤ k, if D is diagonal,
positive definite and satisfies

AT
i D + DAi < 0, 1 ≤ i ≤ k.

While for general LTI systems, the problem of determining
whether or not a given system has a diagonal Lyapunov
function is extremely difficult [12], [13], any stable positive
LTI system is known to have such a Lyapunov function [3],
[2]. This fact naturally gives rise to the possibility of basing
stability criteria for positive switched linear systems on the
existence of CDLFs, and to the question of whether or not
it is possible to obtain necessary and sufficient conditions
for a family of positive LTI systems to have a CDLF.

In this paper we present some simple sufficient conditions
for the stability of positive switched linear systems based
on CDLFs and also, in Theorem 5.2 below we derive,
following similar arguments to those presented in [14], an
algebraic condition that is necessary and sufficient for a
pair of positive LTI systems to have a CDLF. While the
obtained condition is not simple to check, it does provide
insight into the existence of such functions and it is hoped
that it will provide a basis for the development of useful
stability criteria for positive switched linear systems.

Before proceeding we note that the existence of diagonal
Lyapunov functions is an important research area in its
own right, and that several papers have appeared on this
topic [12], [13], [15], [16], [17]. These functions arise in
the study of decentralised and interconnected systems,[18],
[19], as well as in the study of neural networks, and
asynchronous computation [20]. The existence question for



common diagonal Lyapunov functions arises naturally as
the study of such systems extends to interconnections of
time-varying and switched systems.

Traditionally, the conditions for CQLF and CDLF existence
are imposed globally in the state space. This is unduly
restrictive for positive systems as the state is constrained to
the non-negative orthant. Thus, it is enough to require the
existence of a functionxT Px such thatxT Px is positive,
andxT (AT

i P +PAi)x is negative for all non-zerox in the
non-negative orthant, for1 ≤ i ≤ k. Such a function is
called acommon quadratic copositive Lyapunov function.
We shall also briefly consider the existence question for
such functions here, giving necessary and sufficient con-
ditions for existence in the case of pairs of second order
systems.

The paper is organised as follows. In Section 2, we intro-
duce the notation used through the paper as well as some
preliminary results that are used later. Then in Section 3
we show that the conjecture of [10] is true for second order
systems and provide a counterexample demonstrating that it
is false for higher order systems. We then turn our attention
to stability criteria based on common diagonal Lyapunov
functions and after giving some simple sufficient conditions
for CDLF existence in Section 4, we derive, for the first
time, a necessary and sufficient condition for a general pair
of positive LTI systems to have a CDLF in Section 5. Two
simple applications of this result are also given.

II. M ATHEMATICAL PRELIMINARIES

Throughout,R denotes the field of real numbers,Rn stands
for the vector space of alln-tuples of real numbers and
Rm×n is the space ofm × n matrices with real entries.
For x in Rn, xi denotes theith component ofx, and the
notationx � 0 (x � 0) means thatxi > 0 (xi ≥ 0) for
1 ≤ i ≤ n. Similarly, for a matrixA in Rn×n, aij denotes
the element in the(i, j) position ofA, andA � 0 (A � 0)
means thataij > 0(aij ≥ 0) for 1 ≤ i, j ≤ n. A � B
(A � B) means thatA−B � 0 (A−B � 0). We writeAT

for the transpose ofA. For P in Rn×n the notationP > 0
means that the matrixP is positive definite.

The spectral radius of a matrixA is the maximum modulus
of the eigenvalues ofA and is denoted byρ(A). Also we
shall denote the maximal real part of any eigenvalue ofA
by µ(A). If µ(A) < 0, A is said to beHurwitz. Finally for
two matrices,A,B ∈ Rn×m, we denote the entrywise or
Hadamardproduct [21] ofA andB by A ◦B.

Positive LTI systems and Metzler matrices:

The LTI system

ΣA : ẋ(t) = Ax(t), x(0) = x0

is said to be positive ifx0 � 0 implies thatx(t) � 0 for
all t ≥ 0. See [3] for a description of the basic theory and

several applications of positive linear systems.

It is well-known that the systemΣA is positive if and only
if the off-diagonal entries of the matrixA are non-negative.
Matrices of this form are known asMetzlermatrices. IfA is
Metzler we can writeA = N−αI for some non-negativeN
and a scalarα ≥ 0, and the Metzler matrixN −αI will be
Hurwitz if and only if α > ρ(N). Metzler Hurwitz matrices
are closely related to the class of so-called M-matrices [2],
[21]. In fact, a matrixA in Rn×n is an M-matrix if and
only if −A is Metzler and Hurwitz.

We now record some fundamental properties ofirreducible
Metzler matrices corresponding to those established for
non-negative matrices in the classical Perron-Frobenius
Theorem [2]. For the definition of an irreducible matrix,
see [22].

Theorem 2.1:Let A = N − αI ∈ Rn×n be Metzler and
irreducible. Then

(i) µ(A) = ρ(N)− α is an eigenvalue ofA of algebraic
(and geometric) multiplicity one;

(ii) There is an eigenvectorx � 0 with Ax = µ(A)x.

The next result concerning positive combinations of Metzler
Hurwitz matrices was pointed out in [21].

Lemma 2.1:Let A1, A2 be Metzler and Hurwitz. Then
A1 +γA2 is Hurwitz for all γ > 0 if and only if A1 +γA2

is non-singular for allγ > 0. (EquivalentlyA1A
−1
2 has no

negative real eigenvalues.)

III. A CONJECTURE ONCQLF EXISTENCE FOR

POSITIVE LTI SYSTEMS

In [10], it was conjectured that given two stable positive
LTI systemsΣA1 , ΣA2 , the matrix productA1A

−1
2 having

no negative eigenvalues was a necessary and sufficient
condition for:

(i) the existence of a CQLF for the LTI systemsΣA1 ΣA2 ;
(ii) global exponential stability, under arbitrary switching,

of the associated switched linear system (1).

A. Second order systems

We now show that the above conjecture is true for second
order systems. To begin with we recall the result of [8]
which described necessary and sufficient conditions for the
existence of a CQLF for a pair of general second order LTI
systems.

Theorem 3.1:Let A1, A2 ∈ R2×2 be Hurwitz. Then a
necessary and sufficient condition forΣA1 , ΣA2 to have
a CQLF is that the matrix productsA1A2 andA1A

−1
2 have

no negative eigenvalues.

We next show that it is only necessary to check one of
the products in the above theorem if the individual systems



ΣA1 ,ΣA2 are positive systems.

Lemma 3.1:Let A1, A2 ∈ R2×2 be Hurwitz and Metzler.
Then the productA1A2 has no negative eigenvalue.

Proof: First of all, asA1, A2 are both Hurwitz, the determi-
nant ofA1A2 must be positive. Secondly, a straightforward
calculation shows that all of the diagonal entries ofA1A2

must be positive. Hence the trace ofA1A2 is also positive.
It now follows easily that the productA1A2 cannot have
any negative eigenvalues as claimed.

A straightforward combination of Theorem 3.1 and Lemma
3.1 yields the following result.

Theorem 3.2:Let ΣA1 ,ΣA2 be stable positive LTI systems
with A1, A2 ∈ R2×2. Then A1A

−1
2 having no negative

eigenvalues is a necessary and sufficient condition forΣA1 ,
ΣA2 to have a CQLF.

Comment: The above result establishes that if two second
order positive LTI systemsΣA1 , ΣA2 have no CQLF, there
is someγ > 0 for which A1 + γA2 is non-Hurwitz. It
now follows from results presented in [23] that there exists
some switching sequence for which the associated switching
system

ΣS : ẋ = A(t)x A(t) ∈ {A1, A2}

is not exponentially stable. Thus for this class of switching
system CQLF existence is equivalent to exponential stability
under arbitrary switching.

Note that Theorem 3.2 implies thatA1A
−1
2 having no

negative real eigenvalues is also a sufficient condition for
ΣA1 , ΣA2 to have a common quadratic copositive Lyapunov
function also. On the other hand, ifA1A

−1
2 has a negative

eigenvalue, then there existγ > 0, λ ≥ 0 and a vector
x � 0 such that(A1+γA2)x = λx. It follows from this that
there cannot be a common quadratic copositive Lyapunov
function forΣA1 , ΣA2 . Thus, we have the following result.

Theorem 3.3:Let A1, A2 be Metzler, Hurwitz matrices in
R2×2. Then there exists a quadratic common copositive
Lyapunov function for the systemsΣA1 , ΣA2 if and only if
A1A

−1
2 has no negative real eigenvalues.

B. Higher order systems

The above conjecture arose from considering the situation
where two stable positive LTI systemsΣA1 , ΣA2 have no
CQLF but there is a solutionP = PT ≥ 0 to

AT
i P + PAi = Qi ≤ 0 i ∈ {1, 2}.

Numerical testing indicated that the matricesQi occurring
above were of rankn−1. Based on this, we believed that it
would be possible to prove the conjecture following similar
arguments to those used successfully to derive conditions
for second order systems and systems in companion form

in [14], [24]. Unfortunately this is not the case and we now
present a counterexample to the conjecture.

Example 3.1:Consider the two Hurwitz matricesA1, A2 ∈
R3×3

A1 =

 −0.5302 0.0012 0.0873
0.2185 −0.7494 0.5411
0.7370 0.1543 −0.3606


A2 =

 −0.5136 0.4419 0.3689
0.1840 −0.3951 0.0080
0.3163 0.6099 −1.0056

 .

The eigenvalues of the productA1A
−1
2 are given by

{−0.8217+0.0835i,−0.8217−0.0835i, 2.2234}. However
the systemsΣA1 , ΣA2 have no CQLF as can be verified
by showing that there exist positive semi-definite matrices
P1, P2 satisfying AT

1 P1 + P1A1 + AT
2 P2 + P2A2 > 0

[25] using the standard MATLAB LMI toolbox. Thus the
condition thatA1A

−1
2 has no negative eigenvalues is not

sufficient for CQLF existence.

Furthermore, in a recent paper [26], it has been shown that it
is possible forA1A

−1
2 to have no negative real eigenvalues,

and for the associated positive switched linear system to
fail to be exponentially stable under arbitrary switching.
While the conjecture of [10] is not true for general systems,
two points are worthy of note. Firstly, counterexamples to
the conjecture appear to be quite rare and hence there is
a possibility that related, simple necessary and sufficient
conditions may be derived for CQLF existence for positive
LTI systems. This is currently the subject of ongoing
research by the authors. Secondly, we shall see in the
next section that the rationale that led to the conjecture
can be successfully applied to derive algebraic necessary
and sufficient conditions for general pairs of positive LTI
systems to have CDLFs.

IV. SUFFICIENT CONDITIONS FORCDLF EXISTENCE

In this section, we turn our attention to obtaining stability
criteria for positive switched linear systems based on the
existence of CDLFs. In particular, in Theorem 4.1 below,
we present a number of simple sufficient conditions for a
pair of stable positive LTI systems to have a CDLF. For a
proof of this theorem, consult [28].

Theorem 4.1:Let A1, A2 be Metzler, Hurwitz matrices in
Rn×n. Then the following conditions are all sufficient for
the existence of a CDLF for the LTI systemsΣA1 , ΣA2 .

(i) −A1A
−1
2 and−A−1

2 A1 are both Metzler and Hurwitz;
(ii) A1A

−1
2 andA−1

2 A1 are both non-negative matrices;
(iii) there is some finite collection of columns

ci1 , ci2 , . . . , cim taken from A1A
−1
2 , and some

finite collection of rowsrT
j1

, rT
j2

, . . . , rT
jl

taken from



A−1
2 A1 such that

ci1 + ci2 + · · ·+ cim
� 0,

rj1 + rj2 + · · ·+ rjl
� 0;

(iv) AT
1 A2 + AT

2 A1 > 0 andA1A
T
2 + A2A

T
1 > 0.

Note that conditions (i) and (ii) of Theorem 4.1 were
previously reported in [10] and that Ooba and Funahashi
have derived a stronger version of condition (iv) for CDLF
existence for pairs of discrete-time positive LTI systems in
[27].

V. NECESSARY AND SUFFICIENT CONDITIONS FOR

CDLF EXISTENCE

In this section, we continue to focus on the CDLF existence
question and we shall see how the ideas that led to the
conjecture discussed in section III can be successfully
applied to derive a compact necessary and sufficient con-
dition for the existence of a CDLF for a generic pair of
positive LTI systems. In this regard, the result of Corollary
5.1 is particularly noteworthy as it establishes that for an
irreducible Metzler, HurwitzA in Rn×n, if D ≥ 0 is
diagonal andAT D + DA = Q ≤ 0, then the rank ofQ
must ben− 1.

To begin with we present a number of technical preliminary
results that are required in the proof of the main result of
this section, which is given in Theorem 5.2 below.

A. Preliminary results on Metzler matrices and diagonal
Lyapunov functions

For detailed proofs of the lemmas in this subsection, consult
[28]. The following simple result is easily verified by direct
computation.

Lemma 5.1:Let A ∈ Rn×n be a Metzler matrix. Then for
any non-zero diagonal matrixD ≥ 0 in Rn×n, AT D+DA
is also Metzler.

The next result is concerned with diagonal matricesD ≥ 0
such thatAT D + DA ≤ 0, and establishes that any such
matrix must in fact be positive definite ifA is irreducible.

Lemma 5.2:Let A in Rn×n be Metlzer, Hurwitz and irre-
ducible. Suppose thatAT D + DA ≤ 0 for some diagonal
D ≥ 0 in Rn×n. ThenD > 0.

The next result establishes that ifA ∈ Rn×n is Metzler,
Hurwitz and irreducible, andD ≥ 0 a diagonal matrix such
thatAT D+DA = Q ≤ 0, thenQ must be irreducible also.

Lemma 5.3:Let A ∈ Rn×n be Metzler, Hurwitz and
irreducible. Suppose that for some non-zero diagonalD ≥ 0
in Rn×n, AT D+DA = Q ≤ 0. ThenQ is also irreducible.

As an immediate consequence of the previous results, we
have the following surprising corollary.

Corollary 5.1: Let A ∈ Rn×n be Metzler, Hurwitz and
irreducible. Suppose thatD ∈ Rn×n is diagonal,D ≥ 0,
and thatAT D + DA = Q ≤ 0. Then rank(Q) = n − 1,
and there is some vectorv � 0 such thatQv = 0.

Proof: It follows from Lemma 5.1 and Lemma 5.3 that
Q is an irreducible Metzler matrix. Furthermore, asQ ≤
0, µ(Q) = 0. The result now follows immediately from
Theorem 2.1.

Necessary conditions:

Finally for this subsection, we present a simple necessary
condition for a pair of LTI systems to have a CDLF, and
a corresponding necessary condition for a single stable LTI
system to have a diagonal Lyapunov function. Note how
the condition of the next lemma is related to the necessary
conditions previously established for the general CQLF
problem (see for instance [14]).

Lemma 5.4:Let A1, A2 be Hurwitz matrices inRn×n such
that ΣA1 , ΣA2 have a CDLF. Then for all non-singular
diagonal matricesD in Rn×n, A1 + DA2D and A−1

1 +
DA2D are Hurwitz and hence non-singular.

The fact thatΣA has a diagonal Lyapunov function if and
only if ΣA, ΣA−1 have a CDLF leads to the following
necessary conditions for a single stable LTI system to have
a diagonal Lyapunov function.

Corollary 5.2: Let ΣA be a stable LTI system withA ∈
Rn×n. Then a necessary condition forΣA to have a diago-
nal Lyapunov function is thatA + DA−1D andA + DAD
are Hurwitz for all non-singular diagonal matricesD ∈
Rn×n.

B. The main result

We now consider a pair of stable positive LTI systems
ΣA1 , ΣA2 , whereA1, A2 in Rn×n are Hurwitz, Metzler and
irreducible. We shall derive below a necessary and sufficient
condition forΣA1 , ΣA2 to have a CDLF that is related to
the matrix pencil conditions obtained for the general CQLF
existence problem in [14], [24].

The following theorem considers the situation of two sys-
temsΣA1 ,ΣA2 for which there is no CDLF but for which
there is a non-zero diagonalD ≥ 0 satisfying

AT
1 D + DA1 ≤ 0 (2)

AT
2 D + DA2 ≤ 0.

We shall see that in this situation, the necessary conditions
of Lemma 5.4 are violated.

Theorem 5.1:Let A1, A2 in Rn×n be Hurwitz, Metzler and
irreducible. Assume that there is no CDLF for the associated
LTI systems,ΣA1 , ΣA2 . Furthermore, suppose that there is
some non-zero diagonalD ≥ 0 satisfying (2). Then there



exists a diagonal matrixD0 > 0 such thatA1 + D0A2D0

is singular.

Proof: First of all, it follows from Corollary 5.1 thatQ1 =
AT

1 D+DA1, andQ2 = AT
2 D+DA2 must both have rank

n−1, and that we can choose vectorsx1 � 0, x2 � 0 such
that Q1x1 = 0, Q2x2 = 0.

The next step in the proof is to show that there can be no
diagonal matrixD′ with

xT
1 D′A1x1 < 0 (3)

xT
2 D′A2x2 < 0. (4)

For details consult [28].

As there is no diagonal solution to (3), (4) it can be shown
that there is some constantk > 0 such that

xT
1 D′A1x1 = −kxT

2 D′A2x2 (5)

for all diagonalD′ in Rn×n. In fact, we can takek = 1 as
we may replacex2 with x2/

√
k if necessary.

On expanding out equation (5) (withk = 1) and equating
coefficients, it follows that

x1 ◦A1x1 = −x2 ◦A2x2. (6)

Now as x1 � 0, x2 � 0, there is some diagonal matrix
D0 > 0 such thatx2 = D0x1. But then, it follows from
(6) that A2x2 = −D−1

0 A1x1 and hence that(D−1
0 A1 +

A2D0)x1 = 0. This means thatdet(A1 + D0A2D0) = 0
which completes the proof.

We can now apply Lemma 5.4 and Theorem 5.1 to derive
the main result of this section.

Theorem 5.2:Let A1, A2 in Rn×n be Hurwitz, Metzler and
irreducible. Then a necessary and sufficient condition for
the positive LTI systems,ΣA1 ,ΣA2 , to have a CDLF is
that A1 + DA2D is non-singular for all diagonalD > 0.

Proof: The necessity was proven in Lemma 5.4. Now
suppose that there is no CDLF forΣA1 , ΣA2 . Then,

(i) For α > 0 sufficiently large,ΣA1−αI , ΣA2 will have
a CDLF.

(ii) If we define

α0 = inf{α : ΣA1−αI ,ΣA2 have a CDLF},

thenΣA1−α0I , ΣA2 satisfy the conditions of Theorem
5.1.

(iii) It follows that there is some diagonalD > 0 such that
A1 − α0I + DA2D is singular.

From item (iii), it follows thatA1 +DA2D is not Hurwitz.
However bothA1 andDA2D are Hurwitz Metzler matrices,
and it therefore follows from Lemma 2.1 that there is some
positiveγ > 0 such thatA1 + γDA2D is singular. Hence,
definingD̄ =

√
γD, we have thatA1 + D̄A2D̄ is singular.

This completes the proof of the theorem.

Comment:

The condition of Theorem 5.2 can be thought of as a multi-
variable matrix pencil condition for CDLF existence and, as
such it relates to the conditions for CQLF existence already
derived in [14], [8]. Furthermore, to the best of the authors’
knowledge Theorem 5.2 is the first result of its kind, giving
necessary and sufficient conditions for CDLF existence
for systems of arbitrary dimension. While the condition is
extremely difficult to check, it is hoped that the insights
provided by the result will lead to the derivation of simpler
conditions for CDLF existence that may be used in the
design of positive switched linear systems. This is currently
the subject of ongoing research and future advances will be
published as they are made.

C. Two simple applications

We now present two simple applications of Theorem 5.2.
First of all, note the following easily verifiable facts.

(i) It follows from Corollary 5.2 thatDA1D + A1 is
Hurwitz and Metzler for all diagonalD > 0.

(ii) If B is any Metzler matrix withA1 � B, then B is
also Hurwitz [21].

(iii) If A1 � B, then for any diagonalD > 0, DA1D +
A1 � DA1D + B.

Thus if A1 � A2, it follows from item (iii) that for all
positive diagonalD, DA1D + A1 � DA1D + A2. Hence
from (i) and (ii) it follows thatDA1D + A2 is Hurwitz for
all diagonalD > 0. Thus applying Theorem 5.2 we have
the following known result [10], [29].

Theorem 5.3:Let A1, A2 ∈ Rn×n be Metzler, Hurwitz and
irreducible, and supposeA1 � A2. Then the positive LTI
systems,ΣA1 ,ΣA2 , have a CDLF.

It is in fact possible to slightly strengthen Theorem 5.3 by
noting that, for a fixed diagonalD1 > 0, asD ranges over
all positive diagonal matrices, so too doesDD1 = D1D. So
if we know thatDD1A1D1D + A2 is non-singular for all
positive diagonalD, thenDA1D +A2 is also non-singular
for all positive diagonalD. This gives us the following
result.

Corollary 5.3: Let A1, A2 ∈ Rn×n be Metzler, Hurwitz
and irreducible. Suppose that for some diagonalD1 > 0,
D1A1D1 � A2. Then the positive LTI systems,ΣA1 ,ΣA2 ,
have a CDLF.

VI. CONCLUSIONS

In this paper we presented a number of preliminary results
on the stability of positive switched linear systems. In par-
ticular, we have shown that a recently made conjecture con-
cerning CQLF existence for pairs of positive LTI systems
is true for second order systems, and that for the related



class of positive switched linear systems, CQLF existence is
equivalent to exponential stability under arbitrary switching.
We have also presented a counterexample showing that
the conjecture is in general untrue for higher dimensional
systems. However, the underlying ideas that led to the con-
jecture have been used to derive a new algebraic condition
that is necessary and sufficient for CDLF existence for pairs
of positive LTI systems of arbitrary dimension. A number of
simple stability criteria for positive switched linear systems
based on the existence of CDLFs have also been presented.
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