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Abstract

We consider a class of algebraic Riccati equations arising in the study of positive
linear time-delay systems. We show that this class admits diagonal positive
definite solutions. This implies that exponentially stable positive linear time-
delay systems possess Lyapunpov-Krasovskii functionals of a simple quadratic
form. We also show that for this class of equations, the existence of positive-
definite solutions is equivalent to a simple spectral condition on the coefficient
matrices.
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1. Introduction

The algebraic Riccati equation (ARE) arises in various guises in numerous areas
of Control Theory [20, 14]. In particular, the role of the symmetric and her-
mitian ARE in the theory of H∞ control and its connection with the bounded
real lemma are well known [5]. The ARE also arises in characterising complex
stability radii for linear time-invariant (LTI) systems [15], and in the construc-
tion of Lyapunov-Krasovskii functionals for linear time-delay systems [18]. The
work of this short note is motivated by the connection between the ARE and
the stability of linear time-delay systems.
In particular, Theorem 3.1, the main result of this paper, addresses the following
problem, which was posed in [18]. Characterise those pairs of matrices A, B in
Rn×n for which the continuous algebraic Riccati inequality (ARI)

ATP + PA+Q+ PBQ−1BTP ≺ 0 (1)
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admits positive definite solutions P , Q. Throughout the paper, X ≺ 0 denotes
that X = XT is negative definite.
A major motivation for considering this problem arises in the study of the linear
time-delay system

ẋ = Ax(t) +Bx(t− τ). (2)

In fact, if P,Q satisfy (1), then the functional

V (φ) = φ(0)TPφ(0) +

∫ 0

−τ
φ(s)TQφ(s)ds (3)

defined on the space of continuous functions on [−τ, 0] defines a Lyapunov-
Krasovskii functional [19] for the system (2) for every τ ≥ 0. The existence of
such a functional implies that the zero equilibrium of (2) is exponentially stable
(in an abuse of notation, we say that the system (2) is exponentially stable
when its zero equilibrium is exponentially stable). Note that it is not in general
true that any exponentially stable system (2) possesses a Lyapunov-Krasovskii
functional of this simple form.
Positive systems, for which non-negative initial conditions give rise to non-
negative evolutions arise in applications ranging from Biology to Economics
[2, 3, 17, 7]. It is known [7] that the time-delay system (2) is positive if and
only if

(i) A is Metzler meaning that aij ≥ 0 for i 6= j;

(ii) B is a non-negative matrix meaning bij ≥ 0 for all i, j.

The stability properties of positive linear delay systems have been extensively
studied recently (see for example [7, 8, 9, 10, 11, 12, 17]). In particular, the
results of [17, 7] show that the following statements are equivalent:

(a) (2) is exponentially stable for τ = 0;

(b) there exists an entry-wise positive vector v such that V (φ) = vTφ(0) +∫ 0

−τ v
TBφ(s)ds is a Lyapunov-Krasovskii functional for (2) for every τ ≥ 0;

(c) (2) is exponentially stable for every τ ≥ 0.

Under the assumption that the delayed system (2) is positive, in Theorem 3.1
we provide simple conditions for (1) to admit positive definite solutions P,Q.
In fact, we show that such solutions exist if and only if the matrix A + B is
Hurwitz (meaning all of its eigenvalues lie in the open left half plane). Moreover,
we show that the matrix P can be chosen to be diagonal in this case. In view
of the remarks made above, this result implies that conditions (a), (b), (c)
above are also equivalent to the existence of a diagonal Lyapunov-Krasovskii
functional of the form (3) for (2). Thus, Theorem 3.1 shows that a key property
of exponentially stable positive linear time-invariant (LTI) systems, namely the
existence of diagonal Lyapunov functions, extends to positive linear time-delay
systems.
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The layout of the paper is as follows. In Section 2, we establish common notation
and recall some necessary results from convex analysis and matrix theory. In
Section 3 the main result of the paper concerning the existence of diagonal solu-
tions to (1) is presented and proven. In Section 4, we discuss some implications
of Theorem 3.1 and describe a counterexample to one potential generalisation
of this result. Finally, in Section 5, we present our conclusions.

2. Background

Throughout the paper, R and Rn denote the field of real numbers and the vector
space of all n-tuples of real numbers, respectively. Rn×n denotes the space of
n × n matrices with real entries. For x ∈ Rn and i = 1, . . . , n, xi denotes the
ith coordinate of x. Similarly, for A ∈ Rn×n, aij denotes the (i, j)th entry of
A. For a vector x ∈ Rn: x ≥ 0 means that xi ≥ 0 for 1 ≤ i ≤ n; x > 0 means
that x ≥ 0 and xi > 0 for some i; x� 0 means that xi > 0 for 1 ≤ i ≤ n. The
notations x ≤ 0, x < 0 and x� 0 are defined in the obvious way.
We denote the n× n matrix all of whose entries are equal to one by 1n×n.
The space of symmetric matrices in Rn×n is denoted by Sym(n,R). We use the
notation A � 0 (A � 0) to denote that the matrix A ∈ Sym(n,R) is positive
definite (semi-definite). The notation A ≺ 0, (A � 0) denotes that A is negative
definite (semi-definite).
For A ∈ Rn×n, we denote the spectrum of A by σ(A). The spectral radius of A
is denoted by ρ(A). Also, the notation µ(A) denotes the spectral abscissa of A
which is defined as follows:

µ(A) := max{Re(λ) : λ ∈ σ(A)}.

A matrix A for which µ(A) < 0 is said to be Hurwitz, while A is said to be
Schur-Cohn if ρ(A) < 1.
A nonnegative matrix A is irreducible if for every nonempty proper subset K
of N := {1, · · · , n}, there exists an i ∈ K, j ∈ N \ K such that aij > 0.
The next result concerning Metzler matrices is standard and follows from the
Perron-Frobenius theorem [6].

Theorem 2.1. Let A ∈ Rn×n be Metzler. Then µ(A) ∈ σ(A). In addition,
there exist vectors v ≥ 0, w ≥ 0 such that vTA = µ(A)vT , Aw = µ(A)w.

Let E be a finite-dimensional Euclidean space equipped with an inner product
〈·, ·〉. The following well-known result on separation of convex sets in E shall
be needed in the next section. Recall that a subset C of E is a cone if for all
t > 0, x ∈ C, we have tx ∈ C.

Proposition 2.1. [16] Let C1, C2 be non-empty convex subsets of E. Further,
assume that C2 is a cone and C1 ∩ C2 is empty. Then there exists a non-zero
vector v ∈ E such that

〈v, x〉 ≥ 0 for all x ∈ C1,

〈v, x〉 ≤ 0 for all x ∈ C2.
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In the next Section, we shall apply the above result to convex sets in the Eu-
clidean space Sym(n,R) of n × n real symmetric matrices equipped with the
inner product

〈A,B〉 = trace(AB).

3. Diagonal Riccati stability and positive linear time-delay systems

The main result of this section establishes that if A ∈ Rn×n is Metzler and B
is nonnegative, then there exists a positive definite diagonal matrix D and a
positive definite matrix Q satisfying the Riccati inequality

ATD +DA+Q+DBQ−1BTD ≺ 0 (4)

if and only if A+B is Hurwitz.
We next recall three technical lemmas, which shall prove useful in proving this
result. The first of these concerns the existence of common diagonal Lyapunov
functions for positive LTI systems and a proof can be found in [22].

Lemma 3.1. Let A ∈ Rn×n be Metzler and B ∈ Rn×n be nonnegative. If A+B
is Hurwitz, then there exists a positive definite diagonal matrix D satisfying

ATD +DA ≺ 0

(A+B)TD +D(A+B) ≺ 0 (5)

Recall that for any H = HT � 0 in Rn×n, h2ij ≤ hiihjj . The following fact,
which also follows from Lemma 2 in [21], is an easy consequence of this obser-
vation.

Lemma 3.2. Let A ∈ Rn×n be Metzler and let H = HT � 0 be positive semi-
definite. Define the vector v ∈ Rn by vi =

√
hii for 1 ≤ i ≤ n. Then

trace[vvTA] ≥ trace[HA].

The next result is based on the Schur complement and follows from Theorem
7.7.6 in [4].

Lemma 3.3. Let A ∈ Rn×n, B ∈ Rn×n be given. Then the matrices P � 0,
Q � 0 in Rn×n satisfy (1) if and only if:

S :=

(
ATP + PA+Q PB

BTP −Q

)
≺ 0. (6)

Theorem 3.1. Let A ∈ Rn×n be Metzler and B ∈ Rn×n be nonnegative. Then
there exists a positive definite diagonal matrix D and a positive definite matrix
Q satisfying the Riccati inequality (4) if and only if A+B is Hurwitz.
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Proof: First assume that there exists a positive definite diagonal D and a
positive definite Q satisfying (4). From Lemma 3.3, it follows that for any
x 6= 0 in Rn,

(xT , xT )

(
ATD +DA+Q DB

BTD −Q

)(
x
x

)
< 0

which implies that xT (ATD +DA+BTD +DB)x < 0. Hence

(A+B)TD +D(A+B) ≺ 0

and it follows from the classical Lyapunov theorem [6] that A+B is Hurwitz.
Conversely assume that A+B is Hurwitz. As A is Metzler and B is nonnegative,
it follows from Lemma 3.1 that there exists a positive definite diagonal matrix
D satisfying (5). Choose some such D. To complete the proof, we shall show
that, for this D, there exists a Q � 0 such that(

ATD +DA+Q DB
BTD −Q

)
≺ 0. (7)

By way of contradiction, suppose that no such Q exists. Consider the sets

C1 :=

{(
ATD +DA+Q DB

BTD −Q

)
: Q � 0, Q ∈ Sym(n,R)

}
,

C2 := {X ∈ Sym(2n,R) : X ≺ 0}.

By assumption, C1 ∩ C2 = ∅. It is immediate that the set C2 is a convex cone
in the Euclidean space Sym(2n,R), while a straightforward calculation shows
that C1 ⊂ Sym(2n,R) is non-empty and convex. Hence from Proposition 2.1,
there exists some non-zero H ∈ Sym(2n,R) such that

〈H,X〉 ≥ 0 ∀ X ∈ C1, (8)

while
〈H,X〉 ≤ 0 ∀ X ∈ C2. (9)

By continuity, (9) implies that 〈H,X〉 ≥ 0 for all X � 0 in Sym(2n,R). Noting
that for every x ∈ R2n, X = xxT � 0, it follows that H � 0. (See also Corollary
7.5.4 of [4].)
Now partition H as

H =

(
H11 H12

HT
12 H22

)
, (10)

where H11, H22 are in Sym(n,R) and H12 ∈ Rn×n. Equation (8) implies that

trace

[(
H11 H12

HT
12 H22

)(
ATD +DA+Q DB

BTD −Q

)]
≥ 0
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for all Q � 0. Expanding this equation,we see that

trace[H11(ATD +DA) +H12B
TD +HT

12DB] + trace[H11Q−H22Q] ≥ 0

for all Q � 0. Rearranging the above inequality, it follows that for all Q � 0 we
must have

trace[H11(ATD +DA) +H12B
TD +HT

12DB] ≥ trace[Q(H22 −H11)]. (11)

Now if trace[Q(H22 −H11)] > 0 for any Q � 0, we can choose t > 0 sufficiently
large to ensure that trace[tQ(H22 − H11)] is greater than trace[H11(ATD +
DA) +H12B

TD+HT
12DB]. It follows that the right hand side of (11) must be

non-positive for all Q � 0. Furthermore, if

trace[H11(ATD +DA) +H12B
TD +HT

12DB] < 0

then we could choose t > 0 sufficiently small to ensure

trace[tQ(H22 −H11)] > trace[H11(ATD +DA) +H12B
TD +HT

12DB].

Putting these observations together, we see that

trace[Q(H22 −H11)] ≤ 0 for all Q � 0 (12)

trace[H11(ATD +DA) +H12B
TD +HT

12DB] ≥ 0. (13)

For 1 ≤ i ≤ 2n, write hii for the ith diagonal element of the full matrix H
in (10). Define the vector v ∈ R2n by vi =

√
hii for 1 ≤ i ≤ 2n and write

vT = [uT , wT ] for u ∈ Rn, w ∈ Rn. Then u2i is the ith entry along the main
diagonal of the matrix H11 and w2

i is the ith entry along the main diagonal of
the matrix H22. It follows from (12) that H22 −H11 � 0 and thus ui ≥ wi ≥ 0
for 1 ≤ i ≤ n. Moreover, u 6= 0 as otherwise all diagonal entries of H11, H22

would be zero and hence, as H11, H22 and H are positive semi-definite, it would
follow that H = 0, which is a contradiction.
Next note that

trace[H11(ATD+DA)+H12B
TD+HT

12DB] = trace

[
H

(
ATD +DA DB

BTD 0

)]
.

(14)
As H is positive semi-definite and the matrix(

ATD +DA DB
BTD 0

)
is Metzler, it follows from Lemma 3.2 that

trace

[
vvT

(
ATD +DA DB

BTD 0

)]
≥ trace

[
H

(
ATD +DA DB

BTD 0

)]
.

(15)
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Combining (14), (15) and (13), we see that

trace

[
vvT

(
ATD +DA DB

BTD 0

)]
≥ 0. (16)

Now recall that vT = [uT , wT ] with ui ≥ wi ≥ 0 for 1 ≤ i ≤ n and u 6= 0.
Expanding equation (16), we see that

trace[uuT (ATD +DA) + uwTBTD + wuTDB] ≥ 0 (17)

which is equivalent to
uTDAu+ uTDBw ≥ 0. (18)

But, we know that B and D are both nonnegative, and moreover ui ≥ wi ≥ 0
for 1 ≤ i ≤ n. Thus, it follows from (18) that

uT (DA+DB)u ≥ 0

which implies that

uT (ATD +DA+BTD +DB)u ≥ 0 (19)

contradicting the fact that D satisfies (5). This contradiction shows that there
must exist a matrix Q � 0 satisfying (7) and hence that there exists a Q � 0
such that D,Q satisfy the Riccati inequality (4). This completes the proof.

4. Riccati stability, common Lyapunov solutions and the stability of
positive linear time-delay systems

We next describe the connection of Theorem 3.1 to known results relating the
spectral properties of A,B to the existence of solutions to (1).

In [18], the following necessary condition for the existence of positive definite
solutions to (1) was given.

Theorem 4.1. If there exist positive definite matrices P,Q satisfying (1), then
A is Hurwitz and A−1B is Schur-Cohn.

As noted in [18], no complete converse of this theorem is known. In Theorem 2
and Theorem 3 of [18], partial converses are described. First, it is shown that if
A−1B is Schur-Cohn, then by pre-multiplying A and B by a suitable orthogonal
matrix we obtain a pair of matrices admitting positive definite solutions to the
associated Riccati inequality. Second, for any Hurwitz A, there exists a matrix
B such that A−1B is Schur-Cohn and (1) has positive definite solutions. We use
Theorem 3.1 to show in Corollary 4.1 that if A is Metzler and B is non-negative,
the converse of Theorem 4.1 is true. We first present a simple lemma concerning
nonnegative matrices, whose proof is included in the interest of completeness.

Lemma 4.1. Let T ∈ Rn×n be nonnegative. Suppose there exists some w > 0
such that Tw ≥ w. Then ρ(T ) ≥ 1.
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Proof: By way of contradiction, suppose that ρ(T ) < 1. By continuity of
eigenvalues, ρ(T + δ1n×n) < 1 for sufficiently small δ > 0. Moreover, T + δ1n×n
is irreducible. From the classical Perron-Frobenius Theorem [4], it follows that
there exists some vector v � 0 with

vT (T + δ1n×n) = ρ(T + δ1n×n)vT � vT .

This implies that vT (T + δ1n×n)w < vTw. However as v � 0 and Tw ≥ w, we
must have

vT (T + δ1n×n)w ≥ vTTw ≥ vTw.
This contradiction shows that ρ(T ) ≥ 1 as claimed.

Corollary 4.1. Let A ∈ Rn×n be Metzler and let B ∈ Rn×n be nonnegative.
Assume that A is Hurwitz and A−1B is Schur-Cohn. Then there exist positive
definite matrices P,Q satisfying (1).

Proof: We shall show that the assumptions that A is Hurwitz and A−1B is
Schur-Cohn imply that A+B is Hurwitz. The result then follows from Theorem
3.1.
By way of contradiction, assume that A + B is not Hurwitz. It follows from
Theorem 2.1 that there exists a non-zero vector v ≥ 0 and some real number
λ ≥ 0 with

(A+B)v = λv (20)

⇒ (I +A−1B)v = λA−1v

⇒ (−A−1B)v = v − λA−1v.

As A is Metzler and Hurwitz, −A−1 is nonnegative ([6], Chapter 2); hence
−A−1B is nonnegative and moreover −λA−1v ≥ 0. Thus, it follows from (20)
that

(−A−1B)v ≥ v. (21)

It now follows from Lemma 4.1 that −A−1B and hence A−1B is not Schur-
Cohn. This contradiction shows that A+ B must be Hurwitz. The result now
follows from Theorem 3.1.

In the proof of Theorem 3.1, we have shown that for any positive definite diago-
nal D satisfying the Lyapunov inequalities ATD+DA ≺ 0, (A+B)TD+D(A+
B) ≺ 0 there exists a positive definite Q such that D,Q satisfy (4). Moreover,
the first part of the proof can be readily adapted to show that if there exist
positive definite matrices P,Q satisfying (1), then P must satisfy

ATP + PA ≺ 0 (22)

(A+B)TP + P (A+B) ≺ 0

In view of these observations, it may be tempting to conjecture that the existence
of P � 0 satisfying (22) is also sufficient for the existence of positive definite
solutions to (1) for general A,B. However, this is not the case as is made clear
by the following example.
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Example 4.1. Consider the matrices A,B in R2×2 given by

A =

(
−3 2
−3 1

)
, B =

(
1 −1
1 −2

)
.

It is simple to verify that neither of the matrices A−1(A + B), A(A + B) has
any real, negative eigenvalues. It follows from the results of [13] that there
exists a positive definite matrix P satisfying (22). Now consider the matrix
H ∈ Sym(4,R) in the block form (10) with

H11 =

(
7.9 10.6
10.6 16.9

)
, H22 =

(
6.7 9.5
9.5 14.9

)
, H12 =

(
−1.2 −4.2
−5.2 −10.8

)
The following can be verified by direct computation.

(i) H > 0;

(ii) H11 −H22 > 0;

(iii) AH11 +H11A
T +BHT

12 +H12B
T > 0.

It follows immediately from points (ii) and (iii) that for all positive definite P,Q
we must have

trace[P (AH11 +H11A
T +H12B

T +BHT
12) +Q(H11 −H22)] > 0

⇒ trace[H11(PA+ATP ) +H12B
TP +HT

12PB) +Q(H11 −H22)] > 0

⇒ trace

[(
H11 H12

HT
12 H22

)(
ATP + PA+Q PB

BTP −Q

)]
> 0.

As H > 0, this immediately implies that there exist no positive definite matrices
P,Q satisfying (6) and hence that no positive definite solutions exist to the
Riccati inequality (4).

5. Concluding remarks

Motivated by a question posed in [18], we have considered a form of the algebraic
Riccati inequality (ARI) that arises in the stability theory of linear time-delay
systems. Specifically, for positive linear time-delay systems, we have given a
simple necessary and sufficient condition for the corresponding ARI to possess
positive definite solutions. Moreover, we have shown that in this case, the
matrix P in (1) can be chosen to be diagonal. Combining this result with
previous work in [7, 17], we see that the stability properties of positive linear
time-delay systems mirror those of positive LTI systems in a straightforward
manner.
It is natural to ask if Theorem 3.1 can be extended beyond the class of Metzler
A and nonnegative B. Example 4.1 shows that the existence of a common
Lyapunov solution for the matrices A, A+B is not in general sufficient for (1)
to have positive definite solutions. This of course implies that Theorem 3.1 is
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not true in general. However, it is worth investigating whether or not a similar
result may hold under stronger conditions such as the existence of a common
diagonal Lyapunov solution. Hopefully, some results along these lines will be
obtained in the near future.
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