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Abstract

We consider the problem of common linear copositive fumcégistence for positive switched
linear systems. In particular, we present a necessary dficiesat condition for the existence of
such a function for switched systems with two constituemédir time-invariant (LTI) systems.

A number of applications of this result are also given.
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. INTRODUCTION

An outstanding problem in systems theory concerns the Istalality properties of dy-
namic systems whose states are confined to the positivenbriach systems are generally
referred to as positive systems and arise frequently in aeuamf important applications in
Biology, Communications, Probability, Economics and in otfields. In particular, many
applications in Communication networks involve algorithimat lead to extremely complex
positive systems, typically involving significant nonlaréy, abrupt parameter switching,

and state resets. These applications, which include nksmemploying TCP and other
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congestion control applications [10], synchronisatioobpems [5], wireless power control
applications [8], and applications of learning automatalistributed coloring problems
[6], typically require advanced analysis tools to proveirtteability and convergence
properties. Given the widespread application of positivgems, it is surprising that only
recently has the stability of switched and nonlinear pesigystem become a topic of
major interest to the systems theory community [3]. We cwithis line of work in the

current paper. Specifically, we consider the question ofetkistence ofcopositive linear

Lyapunov functions, defined below, for a class of switcheditpe systems. We give an
elegant necessary and sufficient condition for determimihgn such a function exists and

provide a number of applications of this condition to specases.

[1. NOTATION AND MATHEMATICAL BACKGROUND

Throughout,R denotes the field of real numberR!" stands for the vector space of all
n-tuples of real numbers ari®@™*" is the space ofn x n matrices with real entries. Far

in R", z; denotes the&'” component ofz, and the notation: > 0 (z = 0) means that; > 0
(z; > 0) for 1 <i < n. The notationst < 0 andx < 0 are defined in the obvious manner.
R" denotes the closed positive orthant®f, R} = {z € R" : = 0}, and Int(R?)
denotes its interior{x € R™ : x > 0}. Similarly, for a matrixA in R**", a,; denotes the
element in the(s, j) position of A, and A > 0 (A > 0) means that;; > 0(a;; > 0) for

1<i,j<n.

We write AT for the transpose oft and we shall occasionally abuse notation by writing
A~T for the inverse ofAT. For P in R™*" the notation” > 0 means that the matri® is

positive definite.

The spectral radius of a matri® is the maximum modulus of the eigenvalues/Afand
is denoted byp(A). Also we shall denote the maximal real part of any eigenvaluel
by n(A). If u(A) < 0 (all the eigenvalues oft are in the open left half plane) is said
to be Hurwitz



For a real number we define the functiorign(z) by

1 if x>0
sign(z) =<0 ifz=0
-1 ifxz<DO.
Note that if a matrixA € R"*" is Hurwitz, thensign(det(A)) = (—1)".
Throughout this paper, we shall be concerned with the gl switched positive linear
systemsi = A(t)x, A(t) € {Ai,...,A,} constructed by switching between positive

LTI systems. Before proceeding, we shall now recall somechfasits about positive LTI

systems.
Positive LTI systems and MetzZler matrices
The LTI system
Ya:x(t)=Ax(t), x(0)=xg

is said to be positive ifty = 0 implies thatz(t) > 0 for all ¢ > 0. Basically, if the
system starts in the non-negative orthantRdf, it remains there for all time. See [2] for

a description of the basic theory and several applicatidnsositive linear systems.

It is well-known [2] that the systert 4 is positive if and only if the off-diagonal entries of
the matrixA are non-negative. Matrices of this form are knowrMatzler matrices. IfA is
Metzler we can writeA = N — o/ for some non-negativé/ and a scalarv > 0. Note that
if the eigenvalues oN are )\, ... \,, then the eigenvalues &f —al are\; —a, ...\, —a.
Thus the Metzler matrixXV — o is Hurwitz if and only ifa > p(N).

There are a number of equivalent conditions for a Metzlerim#bd be Hurwitz [4], [1].
The following result records two of these conditions whick elevant for the work of

this paper.
Theorem 2.1: Let A € R"*" be Metzler. Then the following are equivalent:

(i) A is Hurwitz;

(i) There is some vectov > 0 in R™ with Av < 0;



(i) A=t =<0.
Convex Cones and Separation Theorems

Much of the work presented later in the paper is concernell determining conditions
for the intersection of two convex conesli¥. Recall that a sef2 in R™ is a convex cone
if forall z,y € Q,and allA > 0,4 > 0 in R, Az + py is in 2. The convex coné! is said
to be open (closed) if it is open (closed) with respect to the usual Euclidegootogy on

R". For an open convex corfe, we denote the closure 6t by Q.

Given a set of points{zy,...,z,} in R", we shall use the notatio@O(z,...,xz,,) to

denote the convex hull of4, ..., x,,. Formally:

CO(z1,...,xm) = {Zaixi co; > 0,1<i<m, and Zai =1}.
i=1 1=1

The theory of finite-dimensional convex sets is a well establd branch of mathematical
analysis [9]. In the next section, we shall make use of thieviehg special case of more

general results [9] on the existence of separating hypeegldor disjoint convex cones.

Theorem 2.2: Let ), 2, be open convex cones k. Suppose tha; NQ, = {0}. Then

there is some vectar € R” such that
vl <0 forall xe O

and

vlz >0 for all z € Q,.

[11. PRELIMINARIES ON LINEAR COPOSITIVELYAPUNOV FUNCTIONS

The linear functionV (z) = v'z defines a linear copositive Lyapunov function for the

positive LTI system> 4 is and only if the vectow € R™ satisfies:

(i) v 0;
(i) ATv <0.

It follows from Theorem 2.1 that a positive LTI system is apyatically stable if and only

if it has a linear copositive Lyapunov function. The primamgntribution of this paper is



to derive a simple algebraic necessary and sufficient dondibr a pair of asymptotically
stable positive LTI systemsy,,, ¥4, to have a common linear copositive Lyapunov
function V(z) = v’z, wherev = 0 and A7v < 0 for i = 1,2. This condition is given in

Theorem 4.1 below and our derivation will be based on thefalg preliminary result.

Theorem 3.1. Let A;, A, € R™*" be Metzler, Hurwitz matrices such that there exists no
non-zero vectow = 0 with ATy < 0 for i = 1,2. Then there existy; = 0, wy = 0 in R"
such that

Ajwy + Aswy = 0.
Proof: Fori = 1,2, let V4, be given by
Vi, ={v=0:ATv < 0}. (1)
ThenV,,, V,4, are open convex cones and it follows from Theorem 2.1 that
Va, = —A7" (Int(RY)) )

fori=1,2.

By hypothesisV,, N V4, = {0}. Thus, from Theorem 2.2 there is some vector R”
with v A Tw < 0 andv” A; 7w > 0 for all w = 0. But this implies thaty, = —A;'v,

wy = Ay v are both positivew; = 0, w, = 0, and that

A1w1 + Agwg =—v+v= 0.

IV. MAIN RESULTS

Given A € R™" and an integef with 1 < i < n, A®” denotes theé'” column of A. Thus,

A® denotes the vector iR" whosej™ entry isa;; for 1 < j < n.

For a positive integer,, we denote the set of all mappings: {1,...,n} — {1,2} by
Cn2. Now, given two matricesd;, A, in R™*" and a mappingr € C, ., we define the
matrix A,(A;, Ay) by:

Ag(Ar, Ay) = (AT AR, . AW, 3)

(
o(1



Thus, A, (A, Ay), is the matrix inR"*" whose:"* column is thei*" column of A,;, for
1 < i < n. We shall denote the set of all matrices that can be formedhisyway by
S(Ay, Ag).

S(Al, AQ) = {A0<A1, AQ) L0 € Cmg}. (4)
Theorem 4.1: Let A;, A, be Metzler, Hurwitz matrices ilR"*". Then the following state-

ments are equivalent:

(i) The positive LTI systemst,,, X4, have a common linear copositive Lyapunov
function;

(i) The finite setS(A;, As) consists entirely of Hurwitz matrices.
Proof:

(1) = (ii): As X 4,, X4, have a common linear copositive Lyapunov function, thesoise
vectorv = 0 in R™ with v7'4; < 0 for i = 1,2. This immediately implies thatTAl(j) <0
fori=1,2, 1 <j <n and hence we have that

vl A <0forall Ae S(Al,A2>. (5)

Now note that asi;, A, are Metzler, all matrices belonging to the s#tA,, A,) are also
Metzler. It follows immediately from (5) and Theorem 2.1 ttlemch matrix inS(A;, As)

must be Hurwitz.

(if) = (i): We shall show that it 4,, > 4, do not have a common linear copositive Lyapunov

function, then at least one matrix belonging to theSét;, A;) must be non-Hurwitz.

First of all, we make the stronger assumption (than norntemx¢g of a common linear
copositive Lyapunov function) that there is no non-zeroteee = 0 with v7A; < 0 for
1 = 1,2. It follows from Theorem 3.1 that there are vectars, w, such thatw, = 0,

wo > 0 and
Ajwy + Aywy = 0. (6)

Asw; > 0, wy > 0, there is some positive definite diagonal mattix= diag(d,, ds, . .., d,)

in R™" with wy, = Dw,. It follows from (6) that, for thisD,

det(A; + A;D) = 0. )



Now, for then-tuple,(di, . . .,d,)" € R" and a mapping € C,, », we shall uséd,, ..., d,)" !

to denote the product ofy, ..., d, given by

(i, ..o dy) ™t =[] a7 (8)
=1
In terms of this notation, we can now write
det(A; + AsD) = > det(Aq (A, Ag))(d, ..., dy)7 7" ©)
0€Cn,2

Now if all matrices in the sef(A;, A;) were Hurwitz, thendet(A, (A, As)) > 0 for all
o € Cpno if nis even andlet(A,(A;, A2)) < 0 for all o € C,,» if n is odd. In either case,
this would contradict (7) which implies that, for the posttireal numberg,, ..., d,,
> det(As(Ar, A)(dy, ..., dy)" " = 0. (10)
c€Cn,2

Hence, there must exist at least ane C, » for which A,(A;, As) is non-Hurwitz.

For the remainder of the proof, we shall assume that the diroen is even. In this case,

for a Hurwitz A € R™*", det(A) > 0. The case of oda follows in an identical manner.

We have shown that iP4, N V4, = {0}, then at least one matrix belonging & A;, A,)
must be non-Hurwitz. In fact, as botly, and A, are Hurwitz, in this case, it follows from
(9) and (7) thatdet(A) < 0 for at least oned belonging toS(A4;, As). Next suppose that

there is some non-zero= 0 in V4, NV,, but that the intersection of the open cones
Va, N Vy, (11
is empty.

Now, denote byl, the matrix in R"*™ consisting entirely of onesl((i,j) = 1 for
1 < 4,5 < mn)and for alle > 0, write A;(¢) = A; + €1, for i = 1,2. Then it is
straightforward to see that

Vai(e) N Vaye = {0}

for all ¢ > 0. Thus, if we choose any > 0 sufficiently small to ensure that,(¢) and
Ay(e) are Hurwitz and Metzler, it follows from the above argumdmdttthere must be at

least one non-Hurwitz matrix in the s8(A;(¢), Az(e)). A limiting argument now shows



that at least one matrix in the s8tA;, A,) is non-Hurwitz. This completes the proof of

the theorem.
We now present a simple example to illustrate the use of togeatheorem.

Example 4.1: Consider the Metzler, Hurwitz matrices ®**? given by

—0.7125 0.7764 —1.3768 0.8066
Al - ,AQ =
0.5113  —0.9397 0.9827  —1.3738

Then it is easy to see that both of the matrices

—0.7125 0.8066 —1.3768 0.7764

0.5113  —1.3738 0.9827  —0.9397
are Hurwitz. It now follows from Theorem 4.1 that the systemg, >4, have a common
linear copositive Lyapunov function. In fact, for= (1.1499, 1.1636)7, it can be checked
that ATv < 0 for i =1,2.

Remarks:

(i) Note that the result of Theorem 4.1 relates the existesfca common Lyapunov
function for a pair of positive LTI systems, and the asymiptstability of the asso-
ciated switched linear system, to the stability of a finite afepositive LTI systems.
Formally, the existence of a common linear copositive Lyagwfunction for> 4,
Y4, IS equivalent to the stability of each of ti# positive LTI systems). 4 for
A € S(A1, As). Of course, it follows that the asymptotic stability of tHisite family
of systems is sufficient for the asymptotic stability of thdtshed systenr = A(t)x,
A(t) € {Aq, Ay}

(i) A common linear copositive Lyapunov function far,,, >4, will also define a linear
copositive Lyapunov function for each of the systemsg with A € S(A4;, A,).

(i) In the proof of Theorem 4.1, the non-existence of a camnntinear copositive Lya-
punov function is related to the existence of a diagonal imafr > 0 such that
A; + A D is singular. It is interesting to compare this with the recessult in [7],
which established that the non-existence of a common dadgorapunov function
for a pair of positive LTI systems implied the existence ofiaggnal D > 0 such

that A; + DA, D is singular. The precise relationship between copositiyaplLnov



functions, diagonal Lyapunov functions and quadratic luaqy functions for general
switched positive linear systems is in itself an interegptquestion, and the above

result may prove useful in clarifying this relationship.
The next result follows easily from the above remarks andofém 4.1.

Corollary 4.1: Let A;, A, be Metzler, Hurwitz matrices iR"*". Then the following

statements are equivalent:

(i) There exists a common linear copositive Lyapunov fusctor the system& 4,, ¥ 4,;
(i) There is a common linear copositive Lyapunov functiam the set of systems
(iii) All matrices in the convex hullCO(S(A;, As)) are Hurwitz;

(iv) All matrices inS(A;, A,) are Hurwitz.

The previous corollary shows that the Hurwitz-stabilityté finite collection of matrices
S(Aq, Ag) is sufficient to ensure the asymptotic stability under aajt switching of the
system

= A(t)xr A(t) € CO(S(Ay, Ar)).
Also, the equivalence of points (iii) and (iv) above mearst tihhe Hurwitz-stability of the

setS(A;, A;) is necessary and sufficient for the Hurwitz-stability of ¢snvex hull.

A close examination of the proof of Theorem 4.1 shows thaf@dhewing characterisation

of linear copositive Lyapunov function existence also Bold

Corollary 4.2: Let Ay, A, € R™" be Metzler, Hurwitz matrices. Then the systems,,
Y4, have a common linear copositive Lyapunov function if andyahl

sign(det(A)) = (—1)"
for all A € S(A;, Ay).

V. APPLICATIONS TO SYSTEMS DIFFERING BY RANK ONE

We next present two corollaries to Theorem 4.1 for the speeaise of a pair of Hurwitz,

Metzler matricesA;, A, in R™*™ with rank(A; — A;) = 1. Before we formally state the



following simple corollaries to Theorem 4.1 recall that formatrix B in R™*™ and an

integeri € {1,...,n}, we write B®%) for the column vector given by th&" column of B.

Corollary 5.1: Let A;, Ay, = A;+B be Hurwitz, Metzler matrices iR™*"™ with rank(B) =
1. Furthermore, suppose that there is soimeith 1 < i < n such thatB® is the only
non-zero column ofB. Then the positive LTI systemS,,, ¥4, have a common linear

copositive Lyapunov function.

Proof: From Theorem 4.13,4,, ¥ 4, have a common linear copositive Lyapunov function
if and only if all matrices belonging to the s8tA,, A,) are Hurwitz. However, under the

hypotheses of the corollary, it is easy to see that
S(A17A2) = {AlaAQ}' (12)
The result now follows immediately.

The previous result establishes that for Metzler, Hurwitatmoes A,, A, which differ
in only one column, the associated LTI systehs,, ¥4, must have a common linear
copositive Lyapunov function. Moreover, it follows thatettassociate switched linear

system
i=At)x A(t) € {A, Ay},

must be uniformly asymptotically stable under arbitraryitskng. It might seem reason-
able to expect that a similar result to Corollary 5.1 wouladisld for the case of matrices
differing by a general rank one matrix. However, the follogriexample shows that this is

unfortunately not the case.

Example 5.1: Consider the3 x 3 Metzler, Hurwitz matricesA;, A, = A, + bc’ where

—1.4528 0.6435  0.7266 0.0589 1
A= 0.4983 —1.5714 0.4120 ,b=1 —04251 |,c=1] —1.1802
0.2140  0.9601 —1.1469 —0.1798 —0.448

It is simple to check that the matrigA{" A%Y A% is not Hurwitz and hence it follows
from Theorem 4.1 that the systems,,, ¥4, do not have a common linear copositive

Lyapunov function.



The above example shows that two stable positive LTI systefmsse system matrices
differ by a rank one matrix need not in general have a commoeah copositive Lya-
punov function. However, the next corollary provides a damgufficient condition for the

existence of a common linear copositive Lyapunov functionthis case.

Corollary 5.2: Let A;, Ay = A1+ B be Metzler, Hurwitz matrices iR™*", with rank(B) =
1. For eachi € {1,...,n}, letT; € R™™ be the matrix given by
7o) BY if j =

AD i £
Then the positive LTI systems;,,, X4, have a common linear copositive Lyapunov
function if for 1 <i < n, eithersign(det(7;)) = (—1)" or sign(det(7;)) = 0.

Proof: Suppose that fot < i < n, eithersign(det(7;)) = (—1)" or sign(det(7;)) = 0.
As rank(B) = 1, we can writeB = bc! for column vectord, c € R™. (Thus, all columns
of B are scalar multiples of each other.) It follows from thisdahe linear dependence
of the determinant function on each column, that for ahy¥ S(A;, A,), there is some

set of indices{iy,...,ix} C {1,...,n} such that

k
det(A) = det(A;) + > _ det(T},). (13)

7j=1
Hence, asign(det(7;)) is either(—1)" or 0 for 1 < i < n, it follows thatsign(det(A)) =
(—1)™ for all A € S(A;, As). It now follows immediately from Corollary 4.2 that,,,

Y4, have a common linear copositive Lyapunov function as cldime

VI. CONCLUSIONS

In this paper we have presented a method for determininghghetr not a given switched
positive continuous time linear system is exponentialipkt. Our approach is based upon
determining verifiable conditions for the existence of a own copositive linear Lyapunov
function for a pair of positive LTI systems. Future work willvolve extending this result
to arbitrary finite sets of such LTI systems, and developygltesis procedures to exploit

our result for the design of stable switched positive system
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