Experimental Evaluation of TCP Protocols for
High-Speed Networks

Yee-Ting Li, Douglas Leith and Robert N. Shorten
Hamilton Institute, NUI Maynooth

Abstract—In this paper we present experimental results eval-
uating the performance of the Scalable-TCP, HS-TCP, BIC-TCP,
FAST-TCP and H-TCP proposals in a series of benchmark tests.

Index Terms— TCP Congestion control; Evaluation of TCP
protocols; High-speed networks.

I. INTRODUCTION

The TCP congestion control algorithm has been remarkably
successful in making the current internet function efficiently.
However, in recent years it has become clear that it can
perform very poorly in networks with high bandwidth-delay
product (BDP) paths. The problem stems from the fact that
the standard TCP AIMD congestion control algorithm in-
creases the congestion window too slowly. This is illustrated
in Figure I which plots evolution of the cwnd of a single
flow, and its throughput time histories measured on a 1Gb/s
trans-atlantic path between Dublin, Ireland and Chicago. The
propagation delay is 100ms and the bandwidth-delay product
approximately 8000 packets. On reducing cwnd by a half,
when delayed acking is used it takes 8000 round-trip times i.e.
800s for the cwnd to fill the pipe again. This is simply too slow
for most applications as it would lead to prohibitively long file
transfer times. In the example shown, it takes over 1200s for
the flow to recover after a backoff and the average throughput
achieved is only 218Mb/s. This inability to utilise network
capacity is not confined to long distance inter-continental
paths. With the continuing rollout of gigabit-speed (and faster)
links, latencies of only a few tens of milliseconds are quite
sufficient to create bandwidth-delay products that yield poor
throughput performance with the current TCP congestion
control algorithm.

A solution to this problem that has been pursued by many
authors is to increase the rate at which cwnd is increased
and thereby shorten the congestion epoch duration. However,
backward compatibility requirements with existing TCP flows
requires that any new protocol should behave similarly to
standard TCP on paths with low bandwidth-delay product.
This immediately leads to consideration of some form of
low-speed/high-speed mode switch as part of proposed al-
gorithms. Early work along these lines includes the HS-TCP
proposal of Floyd[7], the Scalable-TCP proposal of Kelly[11]
and the FAST-TCP proposal of Low et al[8]; more recent
new proposals include BIC-TCP[20] and H-TCP[13]. These
proposals have all been the subject of considerable interest
and experimentation in recent years.

16000

ham02dvh=wldchi standard TCP
T T

14000 o3
12000 | +
10000 - =

B000 |-

cwnd (packs s

a0on

cwnd (packets)
4000

2000 thioughput (x10Wbs)

o

I | I I I
i} 00 400 600 200 1000 1200

Fig. 1. Measured cwnd and throughput time histories on 1Gb/s path between
Dublin, Ireland and Chicago, USA. Over 1200s, the average throughput
achieved is only 218Mb/s. These particular measurements were taken on
the afternoon of Dec 9th 2003 using a dedicated trans-atlantic link with no
significant competing traffic.

Due in no small part to the volume of work that has been
carried out in this area, a real need has developed for sys-
tematic screening of proposals to identify suitable candidates
for more detailed evaluation. Evaluating the performance of
new TCP proposals is not easy. One principal difficulty arises
form the lack of an agreed set of performance measures.
As a result of the latter, different studies typically employ
performance tests that highlight particular aspects of TCP
performance while casting little light on other, equally im-
portant, properties of proposed protocols. Most existing work
also fails to control for variations in performance associated
with differences in network stack implementation that are
unrelated to the congestion control algorithm (see below). This
is an important practical aspect that is frequently ignored in
academic studies on the topic. In view of these facts it is
not surprising that concrete conlusions relating to the merits
of competing proposals have been difficult to make based on
currently available published results.

Our aim in this paper is to compare the performance of com-
peting TCP proposals in a systematic and repeatable manner.
Our approach is to define and use a set of benchmark tests that
probe a number of important aspects of new protocols, and
to consistently apply these tests to all proposals. Specifically,
we present experimental measurements of the performance
of the HS-TCP, Scalable-TCP, FAST-TCP, BIC-TCP and H-



TCP! proposals. These tests highlight a number of specific
deficiencies of the protocols studied, and suggest future re-
search directions to render these suitable for deployment in
real networks.

In summary, we find that both Scalable-TCP and FAST-
TCP consistently exhibit substantial unfairness, even when
competing flows share identical network path characteristics.
Scalable-TCP, HS-TCP, FAST-TCP and BIC-TCP all exhibit
much greater RTT unfairness than does standard TCP, to the
extent that long RTT flows may be completely starved of
bandwidth. Scalable-TCP, HS-TCP and BIC-TCP all exhibit
slow convergence and sustained unfairness following changes
in network conditions such as the start-up of a new flow. FAST-
TCP exhibits complex convergence behaviour. The mode
switch mechanism in H-TCP is a source for concern with this
algorithm and needs to be studied in more detail before this
algorithm, in its current form, can be deployed.

The paper is structured as follows. In Section II we discuss
some issues that limit the utility of previous evaluation studies
and motivate the present work. In Sections III and IV we
introduce our testing framework and in Section V we present
our experimental measurements. The implications of these
results are discussed in more detail in Section VII and the
conclusions are summarised in Section IX.

II. SOME PITFALLS

Comparing the performance of TCP proposals is not always
easy and many pitfalls exist. Examples include the following.

Different network stack implementations. In almost all re-
cent studies on high-speed networks, publicly available Linux
patches provided by the authors of TCP proposals are used.
The performance of these patches are then compared directly.
However, patches may relate to different operating system
versions. More seriously, performance issues relating to the in-
efficiency of the network stack implementation, particularly in
relation to SACK processing, are known to have a significant
impact on performance. As a result, most patches implement-
ing proposed changes to the TCP congestion control algorithm
also implement numerous changes to the network stack that are
unrelated to the congestion control algorithm. Consequently,
direct performance comparisons of these patches risk revealing
more about the efficiency of the network stack implemen-
tation than about the performance of the congestion control
algorithm. In this paper, we use a common network stack
implementation with all of the congestion control algorithms
studied in order to focus solely on the latter’s performance.

Congestion control action not exercised. It is important to
design experiments that exercise the TCP congestion control
algorithm rather than other elements of the network stack. For
example, it is essential that the bandwidth of the network is
lower than that of the server network interface card (NIC), i.e.
that the network bottleneck lies external to the server being

'We note that H-TCP is developed by some of the authors of this paper.
We emphasise therefore that all of the protocols studied are put through
identical tests yielding quantitative and repeatable measurements. While space
restrictions prevent us from including all of our experimental measurements
in this paper, the measurements are available at www.hamilton.ie/net/eval.

tested. Otherwise, it is often the case that the transport layer
congestion control algorithm is effectively inactive (packet
drops are virtual) and performance measurements merely
evaluate the efficiency of the NIC driver.

Performance measures too narrow. We argue that it is not
sufficient to focus solely on TCP throughput performance.
Fairness, responsiveness, backward compatibility, support for
incremental rollout efc should also be evaluated.

Range of network conditions. Frequently results are
presented from a single test run only and/or for a specific
network condition or small range of network conditions. A
huge variety of conditions exist in modern networks. We
argue that it is essential, as a minimum, to characterise
TCP performance across a broad range of bandwidths
(not just on high-speed links), propagation delays (not just
trans-continental links) and router buffer sizes (not just very
large or very small buffers).

Such issues limit the utility of previous evaluation studies
and motivate the approach taken in the present paper. We do
not claim that our tests in this paper are exhaustive. We do,
however, seek to demonstrate their utility and discriminating
power and to initiate wider debate on this topic in the
networking community.

III. COMPARATIVE TESTING

An immediate difficulty that arises in our work, even for
the limited scenarios that we consider, is that the question as
to what exactly constitutes a good network protocol is itself
a topic of much debate. We do not attempt to answer this
question here. Instead, we seek to support decision making
by characterising some important aspects of the behaviour of
new protocols in a consistent and objective manner. While
we lack agreed metrics for ranking performance, we do have
the existing TCP standards-based algorithm against which to
compare the performance of new protocols. We therefore pro-
pose taking a comparative approach to the protocol evaluation
problem. Namely, we propose taking the performance of the
current start-of-the-art TCP algorithm? as a baseline against
which the behaviour of new proposals can be compared.

It is also important to emphasise that our goal in this paper
is not to achieve exhaustive testing, but rather to perform
initial screening of proposals. We therefore seek to define a
series of benchmark tests that can be consistently applied and
that exercise the core functionality of TCP. The performance
problems of standard TCP over high bandwidth-delay product
paths are largely associated with bulk data transfers. It is
therefore natural to take this as our starting point in testing
new TCP proposals. In addition to restricting our attention
to long-lived flows, we also confine consideration to drop-
tail queues, since this is the prevalent queueing discipline
in current networks, and to a single shared bottleneck link.
Short-lived TCP flows, and indeed non-TCP flows, constitute

2Implementations of standard TCP do differ in their behaviour. However,
differences in implementation are largely confined to areas such as timeout
handling, undo actions efc. and there is generally consistency in the imple-
mentation of the congestion control algorithm itself. In this paper we consider
the Linux 2.6 TCP implementation.



a large proportion of traffic in real networks. Similarly, not
all routers operate drop-tail queueing disciplines. However, as
we shall see, restricting our attention to long-lived TCP flows
operating in drop-tail environments is already sufficient to
highlight many important features of new TCP proposals. The
corresponding behaviour of the standard TCP algorithm is well
studied and its use as a baseline for comparisons immediately
suggests a number of fundamental characteristics to consider.

A. Fairness.

The formal fairness requirement on new protocols is unclear
and many definitions of fairness exist. Nevertheless, we can
make the following observations. On a path with a single
bottleneck, we expect that competing long-lived flows with the
same round-trip time should achieve approximately the same
average throughput. Flows with different round-trip times will
be unfair when the standard TCP congestion control algorithm
is used, with short round-trip time flows generally achieving
greater average throughput than long round-trip time flows
(e.g., see [16]). We therefore require that our tests of new
TCP proposals should, as a minimum, evaluate the impact of
round-trip time on the relative throughputs of competing flows.

B. Efficiency.

That is, utilisation of the available network resources. It is
known that the efficiency of standard TCP is influenced by
the queue provisioning within the network: for a single flow
(or with multiple synchronised flows) link utilisation falls as
the queue size is reduced below the delay-bandwidth product
of a path. The number of competing flows is also known to
influence efficiency (e.g. see [2]). As a minimum we therefore
expect our tests to characterise efficiency with respect to these
parameters. Since network conditions are not static, we are
also interested in the ability to rapidly acquire and release
bandwidth as conditions change, e.g. flows start and stop.

C. Overhead.

The standard TCP AIMD congestion control algorithm
generates packet losses as part of its proper operation; that is,
even a single flow on an uncongested link will generate packet
losses owing to the probing action of the AIMD algorithm.
These packet losses reduce goodput and are an overhead of the
congestion control algorithm that we expect our tests should
measure.

D. Backward compatibility.

It seems clear that a basic, practical, requirement on new
protocols is that they support incremental rollout. That is, they
immediately offer a tangible benefit without creating a large
negative impact on users operating legacy protocols.

IV. BENCHMARK TESTS
A. Definitions

Letting u;(t) denote the rate of packets transferred by the
7’th flow per unit time, the average throughput is

e
lim T/o u;(s)ds, (D

The average aggregate throughput, U, of n flows sharing a
link is .
U:=> . 2)

It will also be useful to distinguish between the throughput of
the ¢’th flow and the goodput of the i’th flow. The goodput, z;,
is the rate at which data is successfully transferred by the i’th
flow per unit time, i.e. throughput less losses. The aggregate
goodput of n flows sharing a link is defined similarly. We also
define the short-term average throughput as the exponentially
weighted moving average

a(t); = /0 exp[—A(t — s)]u;(s)ds (3)

Here, the exponential term introduces fading memory so
that 4(t); is, roughly speaking, the running average over a
window of past data with the window size determined by the
parameter A\. We choose A to be proportional to the bandwidth-
delay product so that the averaging window scales with the
congestion epoch duration. We define the e-convergence time
following startup of a new flow to be the time before the short-
term average throughput of the new flow is within a factor ¢ of
its long-term average value. Typically, we use € = 0.8 yielding
the 80% convergence time.

B. Test Setup

The observations in Section III directly motivate the tests
defined in this section. Before proceeding, we consider some
issues common to all of our proposed tests.

Fig. 2. Dumbbell topology. Bandwidth of bottleneck link is B, round-trip
propagation delay of bottleneck link is 7" and queue size iS ¢maz; round-trip
propagation delays of edge links are 7% and 7% respectively.

We define our tests on the dumbbell topology shown in
Figure 2. We recognize that this topology is a limited one, but
the behaviour of standard TCP on this topology is well studied
and so it provides a natural starting point.

We consider round-trip propagation delays in the range
16ms-320ms and bandwidths ranging from 1Mb/s-250Mb/s.
We do not consider these values to be definitive — the upper
value of bandwidth considered can, in particular, be expected
to be subject to upwards pressure. We do, however, argue that
these values are sufficient to capture an interesting range of
network conditions that characterises current communication
networks. In all of our tests we consider delay values of
16ms, 40ms, 80ms, 160ms, 320ms and bandwidths of 1Mb/s,
10Mb/s, 100Mb/s and 250Mb/s. This defines a grid of mea-
surement points where, for each value of delay, performance
is measured for each of the values of bandwidth.



Test durations are chosen long enough to provide accurate
measurements of average throughput.

An essential feature of the proposed approach is that we
always carry out the full range of tests for standard TCP
so as to provide a baseline against which we can evaluate
the performance of new TCP proposals. By always taking
measurements for standard TCP, we have a common baseline
for making comparisons.

C. Fairness

To evaluate fairness, we consider two TCP flows and
propose the following tests:

(i) Fairness under symmetric conditions. Measure the aver-
age throughput of each flow under symmetric network
conditions i.e. when each flow operates the same conges-
tion control algorithm, has the same propagation delay
and a shared bottleneck link. Measurements are taken for
a range of propagation delays and link bandwidths (see
above) and the queue is sized as a constant proportion of
the bandwidth-delay product (we suggest 20% and 100%
of the bandwidth-delay product, roughly corresponding
to conditions with small and large queues).

Fairness with different RTT’s. Measure the average
throughputs as the propagation delay of the first flow is
held constant and that of the second flow is varied from
16ms-320ms. Measurements are taken for a range of link
bandwidths and propagation delays of the first flow; the
queue is sized as a constant proportion of the bandwidth-
delay product.

(ii)

D. Backward compatibility

To evaluate backward compatibility, we repeat the foregoing
fairness measurements but now with the first flow operating
the standard TCP algorithm and the second flow operating the
new TCP congestion control algorithm being studied.

E. Efficiency

To evaluate efficiency (link utilisation) and overhead (intrin-
sic packet loss®), we consider two TCP flows having the same
propagation delay and propose the following two tests:

(1) Efficiency vs Queue Provisioning. Measure average
throughput and loss overhead as the queue provisioning is
varied from 1% to 100% of the bandwidth-delay product.
Efficiency vs RTT. Measure average throughput and loss
overhead as the propagation delay is varied and the queue
size scaled to be a constant proportion of the bandwidth-
delay product.

(i)

As noted above, these tests are carried out for a range of
propagation delays and link bandwidths.

3In our experiments we measure the loss overhead by measuring packet
retransmissions.

F. Response Function

To evaluate the impact of random packet loss on efficiency,
similarly to Padhye er al [16] and Floyd[6] we consider the
following test. Configure the network to generate random
packet losses with constant per-packet drop probability — this
can be achieved at the TCP receiver end host using standard
tools. Measure the average throughput of a single TCP flow
as the level of random packet losses is varied. As usual, these
measurements are carried out for a range of propagation delays
and link bandwidths.

G. Convergence Time

We evaluate the responsiveness of TCP flows to changing
network conditions by measuring the 80% convergence time
following the startup of a second flow. We recommend that
tests be repeated with a range of start times of the second flow
that span at least one congestion epoch of the first flow. In this
way we can evaluate the average performance independent of
the specific start time used. As usual, measurements are carried
out for a range of propagation delays and link bandwidths.

V. EVALUATING HIGH-SPEED PROTOCOLS

In this section we measure the performance of the following
high-speed proposals: Scalable-TCP, high-speed TCP (HS-
TCP), BIC-TCP, FAST TCP and H-TCP. These proposals have
all been the subject of considerable interest and experimenta-
tion in recent years, with patches implementing each of these
protocols on the Linux operating system publicly available.

Before proceeding, we very briefly review the basic
operation of each of of these competing proposals. The
reader is referred to the original literature for more detailed
information.

A. Scalable-TCP [11]

The basic idea in Scalable-TCP is to make the recovery
time after a congestion event independent of window size.
Specifically, Scalable-TCP proposes that the TCP cwnd be
updated as follows

Ack:

Loss:

cwnd <« cwnd+ «

cwnd <« 3 X cwnd

Suggested values for the parameters o and 3 are 0.01 and
0.875, respectively. A mode switch is used whereby the
standard TCP cwnd update rules are used when cwnd is
less than a threshold, Low_Window, and the Scalable-TCP
update rules are used for larger cwnd values.

B. HS-TCP [7]

HS-TCP uses the current TCP cwnd value as an indication
of the bandwidth-delay product on a path. The AIMD increase
and decrease parameters are then varied as functions of cwnd.



That is, HS-TCP proposes that the TCP cwnd be updated as
follows

Ack:  cwnd <« cwnd+ Jalcwnd)
cwnd
Loss: cwnd <« gg(cwnd) x cwnd

In [7] logarithmic functions are proposed for f,(cwnd) and
gp(cwnd), whereby f,(cwnd) increases with cwnd and
gp(cwnd) decreases. Similarly to Scalable-TCP, HS-TCP
uses a mode switch so that the standard TCP update rules are
used when cwnd is below a specified threshold.

C. H-TCP [13]

HTCP uses the elapsed time A since the last congestion
event, rather than cwnd, to indicate path bandwidth-delay
product and the AIMD increase parameter is varied as a
function of A. The AIMD increase parameter is also scaled
with path round-trip time to mitigate unfairness between
competing flows with different round-trip times. The AIMD
decrease factor is adjusted to improve link utilisation based
on an estimate of the queue provisioning on a path. In more
detail, H-TCP proposes that cwnd be updated as follows

2(1 - B)fa(A)

Ack:  cwnd <« cwnd+
cund
Loss: cwnd <« gg(B) X cwnd
with
1 A<A
fald) = . -
max(fo(A)Tmin, 1) A > AL

B(k+1)—B(k
| BB 5 A

05(B) = {0'5 (

mm(%, 0.8) otherwise

where Ay is a specified threshold such that the standard TCP
update algorithm is used while A < Ap. A quadratic increase
function f,, is suggested in [13], namely f,(A) = 14+10(A —
Ar)+0.25(A — Ap)?. Tyin and T4, are measurements of
the minimum and maximum round-trip time experienced by a
flow. B(k + 1) is a measurement of the maximum achieved
throughput during the last congestion epoch.

D. BIC-TCP [20]

. BIC-TCP employs a form of binary search algorithm to
update cwnd. Briefly, a variable w; is maintained that holds a
value halfway between the values of cwnd just before and just
after the last loss event. The cwnd update rule seeks to rapidly
increase cwnd when it is beyond a specified distance S,,q,
from wy, and update cwnd more slowly when its value is close
to wy. Multiplicative backoff of cwnd is used on detecting
packet loss, with a suggested backoff factor 3 of 0.8. In more

detail, the BIC-TCP update algorithm is as follows.

d = (wy — cwnd)/B
Ack: fa(8,cwnd)
cwnd «— cwnd + “< 2=

{HQB X cwnd cwnd < wy

w1 =
cwnd otherwise
Loss:
we = cuwnd
cwnd — 3 X cwnd
with
B/o (0 <1,cwnd < wy)
or (wq < cwnd < wy + B)
fa(d,cwnd) = 0 1< < Shaz, cund < wy
wi/(B—1) B <cwnd—w; < Spaez(B—
Smax otherwise

BIC-TCP also implements an algorithm whereby upon low
utilisation detection, it increases its window more aggressively.
This is controlled with the Low_Util and Util_Check param-
eters. In order to maintain backwards compatibility, it uses
the standard TCP update parameters when cwnd is below
threshold Low_Window.

E. FAST-TCP [8]

FAST-TCP is a delay based algorithm. In outline, FAST-
TCP proposes updating cwnd as follows

Ack:  cwnd — min(2 x cwnd,
Tmin
(1= y)ewnd 4 o[22 cund + o (B, T,))
Loss: cwnd <« cwnd/2
with

axcwnd T,=0

« ByT = =
fa ) { otherwise

fa(B)

where ~ is a design parameter, 7,,;, and T are the minimum
and average observed latencies of the flow respectively and
T, is the estimated round trip queuing delay. The function
fa(B) depends upon the measured throughput B achieved by
the flow: currently, fa(B) is set to 8, 20 and 200 for achieved
throughputs of less than 10Mbit/sec, less than 100Mbit/sec
and greater than 100Mbit/sec respectively. (These thresh-
olds are specified by the sysctl entries (mOa, mOu,mll),
(mla,mll,mlu) and (m2a, mll, m2u) respectively). FAST-
TCP also includes rate pacing.

F. Experimental Setup

All tests were conducted on an experimental testbed. Com-
modity high-end PCs were connected to gigabit switches to
form the branches of a dumbbell topology, see Figure 3. All
sender and receiver machines used in the tests have identical
hardware and software configurations as shown in Table I
(see Appendix) and are connected to the switches at 1Gb/sec.
The router, running the FreeBSD dummynet software, can
be configured with various bottleneck queue-sizes, capacities



O ]
= =
TCP1 TCP
sender e receiver

=i —a

QL GigE Dummynet GigE ] s
—_— switch Rout switch —
TCP2 outer Tcp
sender receiver

Fig. 3. Experimental set-up.

and round trip propagation delays to emulate a range network
conditions.

Apart from the router, all machines run a modified version
of the Linux 2.6.6 kernel. Each of the congestion control
algorithms studied have independent patches that are publicly
available. However, these patches are often for different ver-
sions of Linux and typically also make changes to the network
stack that are not directly related to the congestion control
algorithm; for example, it is common for patches to alter
the SACK processing algorithm to improve its efficiency as
the standard implementation has known performance problems
in high-speed environments[12]. To provide consistency, and
control against the influence of differences in implementation
as opposed to differences in the congestion control algorithm
itself, we therefore built the congestion control algorithms into
a common kernel. This kernel is referred to as the altAIMD
kernel, see Appendix for further details*.

The kernel is instrumented with the web100 extensions [15]
to allow measurement of TCP variables.

In order to minimise the effects of local hosts queues and
flow interactions, unless otherwise stated we only ran one flow
per PC. Flows are injected using iperf into the testbed.
Each individual test was run at least ten minutes each. In the
case of tests involving Standard TCP, we ran individual tests
for up to an hour as the congestion epoch duration becomes
very long on large bandwidth-delay products paths. In order
to obtain a good representation of the run-to-run variability
in performance metrics, all individual tests were repeated at
least 5 times and the arithmetic mean taken. An error on the
measurement was taken as the standard error from this mean.

VI. RESULTS

Owing to space restrictions, we cannot include the results
of all our tests here. We therefore present results for a subset
of network conditions that are representative of the full test
results obtained.

A. Fairness Test.

Figure 4 plots the ratio of measured throughputs for two
flows with the same propagation delay sharing a common
bottleneck link as the path propagation delay is varied. Tests

4We note that the implementation of BIC-TCP included in the standard
Linux 2.6.6 kernel distribution is known [14] to be incorrect (this has
subsequently been corrected). In our tests we use a corrected implementation
based upon the original Linux patch developed by the BIC-TCP authors.

are of 10 minutes duration. Results are shown both for a
bottleneck link bandwidth of 10 Mb/s and 250Mb/s, roughly
corresponding to low and high-speed network conditions.
Figure 5 shows the ratio of measured throughputs when the
propagation delay of the first flow is held constant at 162ms
and the propagation delay of the second flow is varied. Again,
Results are shown both for a bottleneck link bandwidth of
10 Mb/s and 250Mb/s. Results are shown when the queue is
sized at 20% BDP but similar results are also obtained when
the queue is 100% BDP.

Comment: As a validation check, also plotted on Figure
5 are the throughputs for standard TCP predicted by the
theoretical analysis in [18]. Namely, the throughput given by
the expression N
YN 9) @
where « and ( are the AIMD increase and decrease parameters
(having values of 1 and 0.5, respectively, for standard TCP),
T; is the round-trip time of flow ¢, A; is the synchronisation
factor i.e. the proportion of network congestion events at
which the flow ¢ experiences a packet drop and backs off
its cwnd (A; is estimated from the measured cwnd time
histories). It can be seen that the experimental and theoretical
throughputs are in good agreement.

B. Backward Compatibility Test.

Figure 6 plots the ratio of measured throughputs of two
flows with the same propagation delay and a shared bottleneck
link. The first flow operates the standard TCP algorithm
while the second flow operates a new TCP variant. Results
are shown both for bottleneck link bandwidths of 10 Mb/s
and 250Mb/s.

C. Efficiency Test.

Figure 7 shows measured aggregate throughput of two
TCP flows with the same propagation delay as a function of
queue size on a 100Mb/s link.

Comment: As a validation check, also plotted on
Figure 7 is the efficiency for standard TCP predicted by
NS simulations. It can be seen that the experimental and
simulation throughputs are in good agreement.

D. Overhead Test.

Figure 8 shows the measured packet loss rate of the various
protocols versus queue size. Figure 9 also shows measured
packet loss rate versus propagation delay.

E. Response Function Test.

Measurements of the response functions are shown in
Figure 10.



Fairness Fatio

o ——tanclardTCP
—8— HETCP
- —m— HTCP -
—#— EicTCF

2
10 10
RTT {mzec)

Fairness with 10 Mbitisec Bottleneck

=

Fairness Fatio

=—t— Gtandard1CF
S +'Sca]ab1&TCP' .
—— FasT o

2
10 10
RTT {msec)

Faitress Ratio

b GtardardTCP
—HB—HSTCP ¢

RTT {msec)

Fairness with 250 Mbit/sec Bottleneck

Fairness Fatio

—— StordardTCF |
0.1 |- —&— SealableTCP -5
—k— FAST :

1 2
10 1a

RTT {msec)

Fig. 4. Ratio of throughputs of two flows under symmetric conditions (same propagation delay, shared bottleneck link, same congestion control algorithm) as
path propagation delay is varied. Results are shown for 10Mbit/sec and 250Mbit/sec bottleneck bandwidths. The bottleneck queue size is 20% BDP. Observe
that while standard TCP and H-TCP are essentially fair (the competing flows achieve, to within 5%, the same average throughput) under these conditions,
Scalable-TCP and FAST-TCP are notably unfair. HS-TCP and BIC-TCP can also be seen to exhibit significant unfairness, albeit to a lesser degree than

Scalable-TCP and FAST-TCP.

FE. Convergence Time Test.

Figure 11 plots the measured convergence time following
startup of a second flow. The values plotted are the average of
multiple tests and a range of random start times for the second
flow. The convergence time is plotted versus path propagation
delay (both flows have the same propagation delay in this
experiment) and results are presented for link rates of 10Mb/s
and 250Mb/s.

VII. DISCUSSION

Two questions that we seek to answer in this paper are:
(1) by using the performance of standard TCP as a baseline
for evaluating new TCP proposals can we obtain meaningful
results without the need to define absolute metrics (e.g. without
adopting a specific fairness concept) and (ii) in view of the
complexity of modern networks, do simple tests have any real
value. We argue that our case study on high-speed protocols
answers both questions positively.

A. Fairness

Perhaps the most striking results are obtained from the
fairness test where the throughputs of competing flows with
the same propagation delay are compared, see Figure 4.
Under these conditions, the standard TCP congestion control
algorithm consistently ensures that each flow achieves the
same (to within less than 5%) average throughput. However,
the measurements shown in Figure 4 indicate that many of
the proposed protocols exhibit substantial unfairness under the
same conditions. While both FAST-TCP and Scalable-TCP
display very large variations in fairness, BIC-TCP and HS-
TCP also display significant levels of unfairness.

In view of the somewhat surprising nature of these results,
it is worthwhile investigating this behaviour in more detail.
We consider in turn each of the protocols exhibiting greater
levels of unfairness than standard TCP.

e Scalable-TCP. Figure 12 shows typical examples of mea-
sured cwnd time histories. It can seen that the cwnd’s
either do not converge to fairness or else converge



Fairness Ratio

Fairness Ratio

Fig. 5.

Fairness with 10 Mbit/sec Bottleneck

0.1

0.01 ‘o StandardTCP +—+—
BiCTCP +---x--4
FAST :--%---:
HSTCP &
HTCP +-m--1
ScalableTCP ---o---!
StandardTCP Tlheory @l

10 100
RTT (msec)

0.001

Fairness with 250 Mbit/sec Bottleneck

0.1

StasldardTCP —+—t
“HUBIGTCP kexena

T

ScalableTCP +--o---
StandardTCP Tlheory @

10 100
RTT (msec)

0.001

Ratio of throughputs of two competing flows as the propagation

delay of the second flow is varied. Results are shown for 10Mbit/sec (top)
and 250Mbit/sec (bottom) bottleneck bandwidths. Flow 1 has RTT of 162ms,
the RTT of Flow 2 is marked on the x-axis of the plots. Queue size is 20%

BDP.

very slowly indeed (not reaching fairness within the
10 minute duration of these tests). Although sometimes
expressed as a modified additive increase algorithm, it is
easily shown that the Scalable-TCP algorithm is in fact
a multiplicative-increase multiplicative-decrease (MIMD)
algorithm. It has been known since the late 1980s [4] that
in drop-tail networks such algorithms may not converge
to fairness.

FAST-TCP. Figure 13 shows typical examples of mea-
sured cwnd time histories when using the FAST-TCP
algorithm. The upper figure shows measurements taken
on a 250Mb/s path with 42ms propagation delay. Rapid
variations in cwnd are evident which are somewhat
surprising in view of the delay-based rather than loss-
based nature of the FAST-TCP algorithm. The lower
figure shows the cwnd’s measured when the propagation
delay on the path is increased to 162ms. The rapid vari-
ations in cwnd are no longer present, but the flows now
exhibit a number of abrupt changes in cwnd including
a sharp increase in unfairness after 500s. It is perhaps
worth emphasising that these examples are representative

Fairness Ratio

Fairness Ratio

Fairness with 10 Mbit/sec Bottleneck

0.1

0.01
StandardTCP #—+—t
BiCTCP ---x--+
FAST :--%---
HSTCP & &
HTCP +-m--1
ScalabIFTCP Lm0 -t

10 100
RTT (msec)

0.001

Fairness with 250 Mbit/sec Bottleneck

0.1

e

0.01 R
StandardTCP F—iz—
BiCTCP ---x--+
FAST :--%---
HSTCP &
HTCP +--m--1
ScalableTCP --o--

10 100
RTT (msec)

0.001

Fig. 6. Ratio of throughputs of competing New-TCP and standard TCP flows
as path propagation delay is varied. Results are shown for 10Mbit/sec (top)
and 250Mbit/sec (bottom) bottleneck bandwidths. Both flows have the same
RTT. Queue size is 20% BDP.

of our measurements across a wide range of network
conditions and are not selected as worst case behaviours.
Our purpose in this paper is not to analyse or explain the
FAST-TCP algorithm or its performance. We do, however,
comment that the behaviour in the low latency example
appears to be associated with use of a large value of
a leading to flooding of the queue and consequently
generating many packet losses (e.g. see Figures 7 and 8),
while the behaviour in the high-latency example appears
to be associated with the adaptive switching of the &
parameter value.

e HS-TCP. Figure 14 shows examples of HS-TCP cwnd

time histories for flows with the same round-trip time
following startup of a second flow. It can be seen that the
flows do converge to fairness, but that the convergence
time can be long. This effect becomes more pronounced
as the path propagation delay is increased. These exper-
imental measurements are in good agreement with the
simulation results previously reported in [17]. Recall that
the AIMD increase parameters are functions of cwnd in
HS-TCP. The slow convergence appears to originate in



Total Throughput (mbit/sec)

100

StandardTCP +—+—
BiCTCP =--x--4

FAST : :

HSTCP :

HTCP
ScalableTCP ~
StandardTCP NS2 :---e---:

0.1 1
Queuesize (Fraction of BDP)

Fig. 7. Aggregate throughput of two competing TCP flows with 100Mbit/sec
bottleneck bandwidth. Both flows have end-to-end round-trip propagation
delays of 82ms. BDP is 683 packets.

Fraction Bytes Retransmitted per Mbit/sec

0.001
le-04 g
1le-05
1e-06
1le-07 ‘
16-08 F Siandard TGP ——— -
BIiCTCP +--x--+
FAST :--%---
1e-09 F HSTOP oot ¥
HTCP +--m--1
ScalableTCP *---o--
le-10
0.01 01 .

Queuesize (Fraction of BDP)

Fig. 8. Loss overhead versus queue size for two competing TCP flows.
100Mbit/sec bottleneck bandwidth, both flows have an 82ms propagation

delay.

the asymmetry that exists in HS-TCP between the AIMD
parameters of newly started flows (with small cwnd) and
existing flows (with large cwnd). Existing flows with
large cwnd have more aggressive values of increase and
decrease parameters than do newly started flows which
have small cwnd. Hence, sustained unfairness can occur.
We also comment briefly upon the 250Mb/s, 42ms mea-
surement for HS-TCP shown in Figure 4. The cwnd time
histories corresponding to this measurement are shown
in Figure 14, and in more detail in Figure 15. It can
be seen that there appears to be long-term unfairness
between the two flows that persists after the flows have
converged to steady-state. Also shown in Figure 15 are
the measured values of the AIMD « and 3 parameters for
each flow. The long-term unfairness appears to be due to
the granularity of the lookup table used to implement the
HS-TCP cwnd update rules, although this issue requires

Overhead with 10 Mbit/sec Bottleneck

0.1 5

0.01 g

0.001

1e-04 |

1le-05

le-06

StandardTCP +—+—
1e-07 BicTCP +---x--+

1e-08

Fraction Bytes Retransmitted per Mbit/sec

ScalableTCP +:-o--!

10 100
RTT (msec)

le-09

IStandardTCP —t—i
BiCTCP +-----

0.001

le-04

1le-05

1le-06

le-07

le-08

Fraction Bytes Retransmitted per Mbit/sec

1le-09

10 100
RTT (msec)

Fig. 9. Loss overhead versus propagation delay for two competing flows
with 10Mbit/sec (top) and 250Mbit/sec (bottom) bottleneck bandwidth. Both
flows have same RTT. Queue size is 20% BDP.

further investigation that is beyond the scope of the
present paper.

e BIC-TCP. Figure 16 shows examples of the cwnd time
history of BIC-TCP following startup of a second flow.
It can seen that as the path propagation delay increases
the cwnd’s converge increasingly slowly, not reaching
fairness within the 10 minute duration of these tests
when the path propagation delay is large. This behaviour
manifests itself in Figure 4 as a fall in the measured
fairness as propagation delay increases.

e HTCP Figure 17 shows cwnd time histories of H-TCP
following startup of a second flow. The equal sharing
achieved between the two competing flows is evident.

B. RTT Unfairness

Considering now the situation when competing flows have
different round-trip times, with the exception of H-TCP it can
be seen from Figure 5 that all of the new proposals exhibit
significantly greater RTT unfairness than standard TCP. The
degree of unfairness can be nearly an order of magnitude
greater than that with standard TCP and is such that long
round-trip time flows may be essentially starved of bandwidth;



1000 ¢ . 3 T T T
b N Standard TCP F=—t+—i
" HSTCP +----+
ScalableTCP :--%:--:
S HSTCP Theory -
— ScalableTCP Theory -
g 100w < Standard TCP Theory ----:- E
2 E
o
E
5
g 10
[=2) F
g E
<
=
=
g
= 1k
!\\_\
0.1 =
le-07 1le-06 1le-05 0.0001 0.001 0.01 0.1 1
Random Loss Rate (packets)
1000 ¢ T T T
E o HTCP +—+—
FAST
- BIicTCP :--%:--:
* $ HSTCP Theory
- ScalableTCP Theory
g 100 Standard TCP Theory E
2
o
E
5
£ 10t
j=2} F
3
IS
=
=
g
= 1t
0.1 L
le-07 1le-06 1le-05 0.0001 0.001 0.01 0.1 1

Random Loss Rate (packets)

Fig. 10. Measured response functions with 250Mbit/sec bottleneck link and
162ms RTT.

for example, see Figure 18.

C. Backward Compatibility

Figure 6 shows the unfairness between new TCP proposals
and standard TCP in low and high-speed network conditions.
It can be seen that Scalable-TCP and FAST-TCP exhibit the
greatest degree of unfairness in both low and high-speed
conditions.

D. Efficiency

It can be seen from Figure 7 that for queue sizes above
10% of the bandwidth-delay product, the new protocols uni-
formly achieve better throughput than standard TCP. Observe,
however, that in all cases the throughput falls rapidly when the
queue size becomes less than about 2% of the bandwidth-delay
product (or less than about 8% BDP in the case of FAST-TCP).
Further investigation indicates that this is associated with
micro-scale packet bursts (associated with ACK clocking and
scheduling granularity within the end host operating systems)
flooding the queue in this extreme operating regime. That
packet bursts lead to a significant performance degradation
in FAST-TCP is also independently noted in [19].

0.8 Convergence Time with 10 Mbit/sec Bottleneck

StandardTCP +—+—
BiCTCP +--x--+
2
— Lo X
g 100 |- ScalableTCP ---o-- S
L .
£
[
Q
(5]
c
(5]
2
¢ 10
c
=]
O
1
10
RTT (msec)
0.8 Convergence Time with 250 Mbit/sec Bottleneck
StandardTCP +=—+— o
BICTCP +--%--4
FAST &--%--2"
HSTCP %
—~ HTCP -1
® 100 | ScalableTCR, -~
K2 3
° )
£
[
Q
Q
c
[
=y
o 10
2 e
=]
o
- e
SR
1 .
10 100

RTT (msec)

Fig. 11. 80% Mean 80% convergence time following startup of a second flow.
Results are shown for 10Mbit/sec (top) and 250Mbit/sec (bottom) bottleneck
bandwidths. Both flows have same RTT. Queue size is 20% BDP. Missing
points along the ordinate axis indicate that the flows did not converge to
within the 80% fairness ratio over the 10 minute duration of the test — this
is especially evident with Scalable-TCP and standard TCP for long delays at
250Mb/sec.

Figure 8 shows the associated packet loss overhead versus
queue size, while Figure 9 shows the loss overhead versus
path propagation delay. With the notable exception of FAST-
TCP, it can be seen that the new protocols behave similarly
and uniformly carry a greater overhead than standard TCP.
The packet loss overhead of FAST-TCP is observed to be
strongly dependent on queue provisioning: with small queues
FAST-TCP has the largest overhead, while for large queues
FAST-TCP has smallest overhead. On a 250Mb/s link, for
propagation delays below 40ms, the overhead of FAST is more
than two orders of magnitude greater than standard TCP and
more than an order of magnitude greater than the other new
protocols. Above 100ms, the overhead of FAST-TCP is an
order of magnitude less than standard TCP.

E. Convergence Time

The mean convergence times following startup of a second
TCP flow are shown in Figure 11. Results are shown for
both 10Mb/s and 250Mb/s links, corresponding roughly to



1200
1000
800
600
400
200

I ScalabIeTCi:’ 1 —
ScalableTCP2 -~ B

cwnd (packets)

100 200 300 400

Time (seconds)

500 600

4500

2200 WMWWMMMMMMWMMMMWMWMMWWWW il

3000
2500
2000
1500
1000

500

ScalabIeTCP 1 —

cwnd (packets)

300 400
Time (seconds)

100 500 600

Fig. 12.  Scalable-TCP cwnd time histories following startup of a second
flow. RTT of both flows is 42ms (top) and 162ms (bottom). Bottleneck
bandwidth is 250Mbit/sec, queue size 20% BDP.

1200 — .
1000 . foied b b
800 [ | N S i ‘ W

mw i b i L ;‘\‘ 8 | | | i

il
1 ] | i

600
400
200 TP i
; R il i
O L 1 Il il i 1
100 200 300 400 500 600
Time (seconds)

cwnd (packets)

- o
] y

4000
3500
3000
2500
2000 F P
1500 {4
1000

500

|
R
.

cwnd (packets)

100 200 300 400

Time (seconds)

500 600

Fig. 13. FAST-TCP cwnd time histories following startup of a second flow.
RTT is 42ms (top) and 162ms (bottom). Bottleneck bandwidth is 250Mbit/sec,
queue size 20% BDP.

low and high speed conditions. We note that, in line with
the previous discussion, that Scalable-TCP, HS-TCP and BIC-
TCP all exhibit extremely slow convergence times (or, indeed,
non-convergence). We comment briefly on H-TCP and FAST-
TCP.

e H-TCP. H-TCP exhibits similar convergence times to
standard TCP under low-speed conditions. In higher-
speed conditions the 80% convergence time levels off at
around 30s. This behaviour is illustrated, for example, in
Figure 17.

e FAST-TCP. FAST-TCP has the smallest measured conver-
gence time of all the algorithms studied. These results
need to be interpreted with some care however. For
example, it can be seen from Figure 13 that while FAST
may converge quickly initially, flows may later diverge
again. It is important to emphasise that only the initial

1200
1000
800
600
400
200

cwnd (packets)

200 300 400

Time (seconds)

500

4000
3500 ”W
3000 !
2500
2000
1500
1000
500

HSTCP1 —— |
HSTCP 2

) “/‘/\AAA‘AAAA
ML

SAAAASAAA

A

AAAAAAAAAAAAAAAA/AAA
V/VVVVVW/V WV VWV

cwnd (packets)

300 400
Time (seconds)

500

8000
7000

6000
|
5000 L \/ﬂ/ V/\/L/A /)

4000 . 44 A4 11/

) HSTCP1 —— |
\ ) HSTCP 2

3000
2000 T
1000 [-ifbereetler L0

cwnd (packets)

100 200 300 400

Time (seconds)

500 600

Fig. 14. HS-TCP cwnd time histories following startup of a second flow.
RTT is 42ms (top), 162ms(middle) and 324ms (bottom). Bottleneck bandwidth
250Mbit/sec, queue size 20% BDP.

convergence time is captured by our convergence time
metric.

VIII. RELATED WORK

Performance measurements are included in many papers
proposing modifications to the TCP congestion control al-
gorithm and we briefly mention here the main studies rele-
vant to the present paper. In [11], Kelly presents an experi-
mental comparison of the aggregate throughput performance
of Scalable-TCP and standard TCP. In [10], Low and co-
authors present throughput and packet loss measurements from
a lab-scale test network for FAST-TCP, HS-TCP, Scalable-
TCP, BIC-TCP and TCP-Reno. Only aggregate throughput
measurements are presented, thus preventing the fairness of
the TCP algorithms from being evaluated; only a single queue
size is used and network convergence time is not considered.
In [9], aggregate throughput measurements are presented for
FAST-TCP and TCP Reno. In [8], throughput and cwnd time
histories of FAST-TCP, HS-TCP, Scalable-TCP and TCP Reno
are presented for a lab-scale experimental testbed. Aggregate
throughput, throughput fairness (measured via Jain’s index)
and a number of other measures are presented, but only for
an 800Mb/s bottleneck bandwidth setting and 2000 packet
queue. In [20], V.S simulation results are presented comparing
the performance of HS-TCP, Scalable-TCP, BIC-TCP and
standard TCP.

We note that the foregoing papers all propose changes
to the TCP congestion control algorithm and thus present



1200 T
HSTCP1 ——
5 1000 [t} HSTCP 2 ]
2 800 HH
8 600 Ly
= VAT A A mh
T a0 A M
2
© 200
0
80 100 120 140 160 180 200
Time (seconds)
10 1
s St 08
R o S 11| S SO s S RN
-5 ’ ”UUHUULUU 1 LH\JMLLLH\JLH\UUUL ' %
® 4 : : - 404 2
3 3bha
2 Beta - 7 02
beta
0 L 0
80 100 120 140 160 180
Time (seconds)
Fig. 15. Detailed HS-TCP cwnd time histories (top) and «, (3 time

histories (bottom) following startup of a second flow. RTT is 42ms, bottleneck
bandwidth 250Mbit/sec, queue size 20% BDP.

performance measurements in support of these changes. While
the design of congestion control algorithms for high-speed
networks has been the subject of considerable interest, the
evaluation of competing proposals per se has received far less
attention. Notably, [3], [5] present evaluation studies specifi-
cally targeted at measuring the performance of TCP proposals.
Experimental measurements are presented for Scalable-TCP,
HS-TCP, FAST-TCP, H-TCP, BIC-TCP, HSTCP-LP and P-
TCP (i.e. 16 parallel standard TCP flows) over network paths
within the U.S and between the U.S and Europe. Measure-
ments presented include aggregate throughput and throughput
fairness (via Jain’s index). RTT unfairness, convergence time
and impact of queue provisioning are not considered.

In all of the experimental tests noted above, no attempt
is made to control for changes to the Linux network stack
implementation that are unrelated to the congestion control
algorithm.

IX. SUMMARY AND CONCLUSIONS

In this paper we present experimental results evaluating the
performance of the Scalable-TCP, HS-TCP, BIC-TCP, FAST
TCP and H-TCP proposals in a series of benchmark tests.

We find that many recent proposals perform surprisingly
poorly in even the most simple test, namely achieving fairness
between two competing flows in a dumbbell topology with the
same round-trip times and shared bottleneck link. Specifically,
both Scalable-TCP and FAST TCP exhibit very substantial
unfairness in this test.

We also find that, with the notable exception of H-TCP,
all of the proposals studied induce significantly greater RTT
unfairness between competing flows with different round-trip
times. The unfairness can be an order of magnitude greater
than that with standard TCP and is such that flows with longer
round-trip times can be completely starved of bandwidth.

While the TCP proposals studied are all successful at
improving the link utilisation in a relatively static environment
with long-lived flows, many of the proposals exhibit poor

1200
1000 Hi|
800

BicTCP1 —
BIcTCP 2 '-

] by
400 ‘mwmv‘ m%&wmm,

200

cwnd (packets)

100 200 300 400

Time (seconds)

500 600

4000
3500
3000 .
4
gggg e
1500
1000
500

| BicTcCP1 —— |
BicTCP 2

i
I

n I
HEE

=

cwnd (packets)

200 300 400

Time (seconds)

500

8000
7000
6000
A

proot Ve S Y0 VR YR VA

14 v 7S/ Y f
3000
2000
1000

BicTcCP1 —— |
BicTCP 2

cwnd (packets)

100 200 300 400

Time (seconds)

500 600

Fig. 16. BIC-TCP cwnd time histories following startup of a second flow.
RTT is 42ms (top), 162ms(middle) and 324ms (bottom). Bottleneck bandwidth
is 250Mbit/sec, queue size 20% BDP.

responsiveness to changing network conditions. We observe
that Scalable-TCP, HS-TCP and BIC-TCP can all suffer from
extremely slow (> 100s) convergence times following the
startup of a new flow. We also observe that while FAST-
TCP flows typically converge quickly initially, flows may later
diverge again to create significant and sustained unfairness.

We argue that our results demonstrate that the consistent
application of standardised tests can yield results of consider-
able value. Not only can this be used to screen new proposals
prior to full-scale experimental testing, with its associated
costs in time and resources, but can also provide a useful step
towards establishing a sound basis for the development of new
protocols.

REFERENCES

[1] M.Allman, TCP Congestion Control with Appropriate Byte Counting
(ABC). IETF RFC 3465, February 2003.

G. Appenzeller, 1. Keslassy, N. McKeown, Sizing router buffers. Proc.
SIGCOMM 2004.

H. Bullot, R.L. Cottrell, R. Hughes-Jones, Evaluation of Advanced TCP
Stacks on Fast Long Distance Production Networks. J.Grid Comput,
2003.

D.M. Chiu, R. Jain, Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks. Computer Networks
and ISDN Systems, 1989.

R.L. Cottrell, S. Ansari, P. Khandpur, R. Gupta, R. Hughes-Jones, M.
Chen, L. Maclntosh, F. Leers, Characterization and Evaluation of TCP
and UDP-Based Transport On Real Networks. . Proc. 3rd Workshop on
Protocols for Fast Long-distance Networks, Lyon, France, 2005.
S.Floyd, K.Fall, Promoting the use of end-to-end congestion control in
the internet. IEEE/ACM Transactions on Networking, August 1999
S.Floyd, HighSpeed TCP for Large Congestion Windows . Sally Floyd.
IETF RFC 3649, Experimental, Dec 2003.

[2]
[3]

[4]

[5]

[6]
[7]



cwnd (packets)

cwnd (packets)

cwnd (packets)

HTCP1 ——
il HTCP 2 s

300 400
Time (seconds)

500

4000
3500 ]
3000 |
2500
2000
1500
1000
500

HTCP1 —— |
HTCP 2

400
Time (seconds)

500

8000
7000
6000 14
5000 L
4000 A Ty A A .
3000 VI NANA /l Py

2000
1000 |

HTCP1 —— |
HTCP 2

100 200 300 400

Time (seconds)

500 600

Fig. 17. H-TCP cwnd time histories following startup of a second flow. RTT
is 42ms (top), 162ms (middle) and 324ms (bottom). Bottleneck bandwidth is
250Mbit/sec, queue size 20% BDP.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

C. Jin, D.X. Wei, S,H. Low, FAST TCP: motivation, architecture,
algorithms, performance. Proc IEEE INFOCOM 2004.

C. Jin, D. X. Wei, S. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L.
A. Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini,
S. Ravot, S. Singh, FAST TCP: From Theory to Experiments. IEEE
Network, 19(1):4-11, 2005

S. Hegde, D. Lapsley, B. Wydrowski, J. Lindheim, D.Wei, C. Jin, S. Low,
H. Newman, FAST TCP in High Speed Networks: An Experimental
Study. Proc. GridNets, San Jose, 2004.

T. Kelly, On engineering a stable and scalable TCP variant, Cam-
bridge University Engineering Department Technical Report CUED/F-
INFENG/TR.435, June 2002.

D.J.Leith, Linux implementation issues in high-speed networks. Hamil-
ton Institute Technical Report, 2003, www.hamilton.ie/net/
LinuxHighSpeed.pdf.

D.J.Leith, R.N.Shorten, H-TCP Protocol for High-Speed Long-Distance
Networks. Proc. 2nd Workshop on Protocols for Fast Long Distance
Networks. Argonne, Canada, 2004.

Y.T.Li, D.J.Leith, BicTCP implementation in Linux kernels. Hamil-
ton Institute Technical Report, 2004, www.hamilton.ie/net/
LinuxBicTCP.pdf.

M. Mathis, J Heffner and R Reddy, Web100: Extended TCP Instru-
mentation for Research, Education and Diagnosis. ACM Computer
Communications Review, July 2003.

J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, Modeling TCP Reno
performance: a simple model and its empirical validation. Proc. SIG-
COMM 1998 (Also IEEE/ACM Transactions on Networking, 2000).
R.N.Shorten, D.J.Leith,J.Foy, R.Kilduff, Analysis and design of con-
gestion control in synchronised communication networks. Automatica,
2004.

R.N.Shorten, F. Wirth,F, D.J. Leith, A positive systems model of
TCP-like congestion control: Asymptotic results. IEEE/ACM Trans
Networking, to appear.

D.X. Wei, S. Hegdesan, S.H. Low, A burstiness control for TCP, Proc.
PFLDNET 2005, Lyon.

L. Xu, K. Harfoush, I. Rhee, Binary Increase Congestion Control for
Fast Long-Distance Networks. Proc. INFOCOM 2004

3500 [ .
Is BicTCP 162ms n
™ 3000 BicTCP 22ms
@ 2500
S |
g 2000 m
;’ 1500 it
€ 1000 LM
© 500 | :
0 e 1
100 200 300 400 500 600
Time (seconds)
250
o
o 200
=
Qo
E 150 \
3 100 \
g
o 50 BicTCP 162ms Goodput n
o BicTCP 22ms Goodput
0
100 200 300 400 500 600
Time (seconds)
Fig. 18. BIC-TCP cwnd and goodput time histories following startup of a

second flow. RTT of first flow is 162ms and of second flow 22ms. Bottleneck
bandwidth is 250Mbit/sec, queue size 20% BDP.

X. APPENDIX

[ I Description |
CPU Intel Xeon CPU 2.80GHz
Memory 256 Mbytes
Motherboard Dell PowerEdge 1600SC
Kernel Linux 2.6.6 altAIMD-0.6
txqueuelen 1,000
max_backlog 300
NIC Intel 82540EM Gigabit
Ethernet Controller
NIC Driver e1000 5.2.39-k2
TX & RX Descriptors 4096

TABLE I
HARDWARE AND SOFTWARE CONFIGURATION.

The altAIMD kernel incorporates the following changes:

®

New-TCP Stacks. Each of the congestion control algo-
rithms studied have independent patches that are publicly
available. To provide consistency, and control against the
influence of differences in network stack implementation
as opposed to differences in the congestion control algo-
rithm itself, we have incorporated the implemented con-
gestion control algorithms into a common network stack.
A single sysctl is used to switch between congestion
control algorithms on-the-fly, without the requirement of
rebooting the machine.

(i1) Appropriate Byte Sizing (RFC3465)[1]. The counting of

(iii)

ack’s by the number of bytes acknowledged rather than
the number of ack’s received to counter the problems of
cwnd growth under delayed ack’s.

SACK Processing Improvements [12]. The current im-
plementation of SACK processing in the Linux kernels
requires a processing time which is O(cwnd). This has
serious performance implications when dealing with a
large number of packets in flight which is common
with large bandwidth-delay product paths. We have im-



[ TCP Protocol |

Parameters

HS-TCP

High_P=1~", Low_Window=31
and High_Window=83, 000

Scalable-TCP

a=0.01, 3 =0.875
and Low_Window=16

H-TCP AL =1sec, Ap = 0.2
BIC-TCP Smaz =32, B=4,0 =20, 3=0.8
Low_Util=15%, Util_Check=2
and Low_Window=14
FAST-TCP v = 50, m0a=8, mla=20, m2a=200

mOu=1500, m11=1250,
mlu=15000 and m21=12500

DEFAULT NEW-TCP PARAMETERS USED IN ALL TESTS.

plemented a more robust algorithm with complexity of
O(lost packets).

(iv) Throttle Disabled [12]. A build-up of ack packets at the
sender can cause an overflow in the Linux network ring
buffers which invokes a throttle action that causes all
packets to be dropped. We have modified this behaviour
so that the ring buffers operate a pure drop-tail discipline.

(v) Webl00 [15]. The TCP stack was instrumented using

Web100.

The various parameters associated with each high speed
TCP algorithm that were used in the tests are shown in
Table II. The values used are taken from the publicly released
Linux patches by the relevant proposal authors implementing

the TCP proposals.

TABLE I



