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1. INTRODUCTION

A basic problem in the design of communication
networks is the development of congestion control
algorithms. Conventional congestion control algo-
rithms were deployed for two principal reasons: (a)
to ensure avoidance of network congestion collapse
; and (b) to control the degree of network fairness.
Attempts to deal with network congestion have
resulted in the widely applied Transmission Con-
trol Protocol (TCP) . While the current TCP con-
gestion control algorithm has proved remarkably
durable, it is likely to be less effective on the next
generation of communication networks and it is
widely agreed within the networking community
that new congestion control algorithms must be
developed to accompany the realization of such
networks.

The task of developing such algorithms is non-
trivial. In addition to the requirement of avoiding
congestion collapse, fundamental requirements of
congestion control algorithms include: efficient use
of bandwidth; the ability to control fair alloca-
tion of bandwidth among sources; and network
responsiveness. These requirements must be met
while respecting key constraints including: de-
centralised design (TCP sources have restricted
information available to them); scalability (the
qualitative properties of networks employing con-
gestion control algorithms should be independent
of the size of the network and of a wide variety of

network conditions); and backward compatibility
with conventional TCP sources.

The balance between fairness, efficiency and re-
sponsiveness currently achieved by TCP is a del-
icate one that remains relatively poorly under-
stood. Many of the proposals for changes to
TCP congestion control to improve performance
advocate increasing the AIMD backoff factor
(e.g. High-Speed TCP, H-TCP, TCP-Westwood
). However, it is known (e.g. ) that network dy-
namics can be strongly influenced by this param-
eter and that changes may disrupt the existing
balance between fairness, efficiency and respon-
siveness. In this paper we present new results on
the dynamics of networks of AIMD flows, with
particular emphasis on the the impact of changes
to the AIMD backoff factor. We prove a surprising
partitioning and invariance result that indicates
the possibility of developing soundly-based adap-
tive AIMD schemes with arbitrary changes to the
AIMD backoff factor without sacrificing network
stability and responsiveness.

The paper is organised as follows. In Section 2 we
begin by briefly reviewing some recent results on
the modelling and analysis of TCP in networks
with drop-tail queues (the prevalent queueing dis-
cipline in the internet). We then present our main
results and illustrate how they might be used to
form the basis of a soundly-based adaptive AIMD
strategy. Finally, we conclude by summarising our
results.



2. PRELIMINARIES

The TCP congestion control algorithm regulates
the congestion window, cwnd, of a flow, which
determines the number of unacknowledged pack-
ets in flight. The standard congestion control
algorithm updates the congestion window cwnd
according to an Additive Increase Multiplicative
Decrease (AIMD) control law. In the congestion
avoidance phase, when a source i receives a TCP
ACK, it increments cwnd according to cwnd →
cwnd+α/cwnd where α = 1 for the standard TCP
algorithm. When packet loss is detected, cwnd
is reduced by a backoff factor β: thus cwnd →
βcwnd, where β = 0.5 for standard TCP.

Following we consider communication networks
for which at congestion every source experiences
a packet drop. In this case the network dynamics
may be modelled as follows .

W (k + 1) = AW (k), (1)

where WT (k) = [w1(k), · · · , wn(k)], wi(k) denotes
the congestion window of flow i at the kth network
congestion event and
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The matrix A is a positive matrix (all the entries
are positive real numbers) and it follows that
the synchronised network (1) is a positive linear
system . The following theorem will prove useful
in the sequel.

Theorem 1. ; Let A be defined as in Equation
(2). Then A is a column stochastic matrix with
Perron eigenvector xT

p = [ α1

1−β1

, ..., αn

1−βn
] and

whose eigenvalues are real and positive. Further,
the network converges to a unique stationary
point Wss = Θxp, where Θ is a positive con-
stant such that the constraint (??) is satisfied;
limk→∞ W (k) = Wss; convergence is geometric
and the rate of convergence of the network to
Wss is bounded by the second largest eigenvalue
of A; the second largest eigenvalue of A lies in the
interval [β1, β2] where the network backoff factors
are ordered as β1 ≥ β2 ≥ .....βn.

The following facts follow immediately from The-
orem 1:

(i) Fairness: Congestion window fairness at
each congestion event is achieved when the
Perron eigenvector xp is a scalar multiple of
the vector [1, ..., 1]; that is, when the ratio

αi

1−βi
does not depend on i. Further, since

it follows for conventional TCP-flows ( α =
1, β = 1/2) that α = 2(1 − β), any new
protocol operating an AIMD variant that
satisfies αi = 2(1 − βi) will be TCP-friendly
(i.e. fair with legacy TCP flows).

(ii) Network responsiveness: The magnitude
of the largest backoff factor β1 bounds the
convergence rate of the entire network, with
the 95% rise time measured in congestion
epochs bounded by log 0.05/ logβ1. Conse-
quently, fast convergence to the equilibrium
state (the Perron eigenvector) is guaranteed
if the largest backoff factor in the network is
small.

3. MAIN RESULTS

We have the following main results.

3.1 Invariance and Partitioning

Let us partition the network flows into two classes
(i) flows with congestion window wi lying within
a δ neighbourhood of the equilibrium value wi(∞)

i.e. with |wi−wi(∞)|
wi(∞) ≤ δ and (ii) other flows. Then

we have the following result.

Theorem 2. Consider a network of the form de-
scribed in (1). Let wi(0) = wi(∞) + δi δi ∈ R

denote the initial condition of the i’th flow wi(k),
and wi(∞) denote the asymptotic value. Let the
network backoff factors be ordered according to
β1 ≥ β2 ≥ .. ≥ βn, with βi = β for all i ∈ [m +

1, n]. Suppose that ‖
β−βj

1−βj
‖≤ 1 for all j ∈ [1, m].

Then the following statements are true.

(P1) Invariance.

Let δ = sup{ |w1(0)−w1(∞)|
w1(∞) , ..., |wm(0)−wm(∞)|

wm(∞) }.

Then |wi(k)−wi(∞)|
wi(∞) ≤ δ for all k > 0 and for

i ∈ [1, m].
(P2) Convergence.

|wi(k)−wi(∞)|
wi(∞) ≤ |βkδi| + |δ| for all k > 0,

i ∈ [m + 1, n].

Proof 1. We prove each of our claims in turn.
For convenience we assume without any loss of
generality that wi(∞) = αi

1−βi
.

Property P1 : Denote the i’th component of the
vector AW (0) by vi where 1 ≤ i ≤ m. We have:

vi − wi(∞)

w(∞)
= βiδ+(1 − βi)

m
∑

j=1

β − βj

1 − βj

αjδj



= βiδi + (1 − βi)∆

Since βi ∈ [0, 1] it follows from convexity that

|
vi − wi(∞)

w(∞)
| ≤ max{|δi|, |∆|},

for all 1 ≤ i ≤ m. Now assume that β and βj are

chosen such that ‖
β−βj

1−βj
‖≤ 1 for all 1 ≤ j ≤ m.

One can see that this is always possible since β is
fixed, and the other βj are upper bounded by β1.
Then

|
m

∑

j=1

β − βj

1 − βj

αjδj | ≤ max{|δj|}, (3)

for all 1 ≤ j ≤ m. Hence, it follows that

|
vi − wi(∞)

w(∞)
| ≤ |δ|,

for all 1 ≤ i ≤ m.

Property P2 : In the spirit of P1 we have that

|
wi(k) − wi(∞)

w(∞)
| ≤ |βkδi| + (1 − βk)|δ|,

for all m + 1 ≤ i ≤ n and for all k > 0. It follows
that

|
wi(k) − wi(∞)

w(∞)
| ≤ |βkδi| + |δ|,

as claimed.

Theorem 2 states (i) that flows which start within
a δ neighbourhood of equilibrium will remain
within a δ neighbourhood for all time i.e. pertur-
bations to other network flows have a strictly lim-
ited impact on flows already close to equilibrium,
and (ii) flows starting from outside a δ neighbour-
hood of equilibrium will converge geometrically to
a δ neighbourhood at rate β i.e. the convergence
rate is unaffected by the backoff factors of those
flows already close to equilibrium.

3.2 Convergence of Time-Varying AIMD Networks

Suppose the flow AIMD parameters α and β are
now time-varying so that the network dynamics
become

W (k + 1) = A(k)W (k) (4)

where A(k) is appropriately defined. We have the
following convergence result for this time-varying
systems.

We begin formally by denoting for any T ∈ R
n×n,

T ∗ as the restriction of T to n − 1 dimensional

subspace S that is orthogonal to vector yT =
[1, 1 . . . , 1]. Recall that if T is column stochastic
and positive then T ∗ is contraction on S and
therefore ‖T ∗‖ < 1 .

Theorem 3. Let {A(k)}k∈N be a stochastic pro-
cess which corresponds to synchronized, time-
varying, network (this means that A(k) is a pos-
itive matrix and is am element of a finite set of
positive matrices M). If all matrices in M have
common right Perron eigenvector xp then W (k)
converges to xpy

T W (0). Moreover convergence is
geometrical with convergence rate not larger then

µ = max{‖M∗‖ : M ∈ M}

Proof 2. The proof follows from standard results
on infinite products of positive matrices.

Theorem 3 states that the network (4) will con-
verge to a unique fixed point if each of the ma-
trices in the set M has the same Perron eigen-
vector. Consider the family Σ(A), A ∈ M of time-
invariant systems Σ(A) : W (k+1) = AW (k). The
equilibrium point of Σ(A) is determined by the
Perron eigenvector of A. The requirement that the
A share the same Perron eigenvector is equivalent
to the requirement that the Σ(A) share the same
equilibrium point.

4. APPLICATION OF MAIN RESULTS:
ADAPTIVE AIMD

The TCP congestion control has undergone a
number of changes since the original design by
Jacobson and this process continues as the inter-
net evolves. For example, increasing link speeds
have led to paths with high bandwidth-delay
product becoming more common and it known
that the current TCP congestion control algo-
rithm can exhibit very sluggish convergence on
such paths. This occurs because while the network
may have a 95% rise time bounded by 4 con-
gestion epochs (see above), the duration of each
congestion epoch scales linearly with bandwidth-
delay product. Link speeds have increased by sev-
eral orders of magnitude over the last decade or
so, with consequent impact on the TCP conges-
tion epoch durations experienced. Many of the
proposals for changes to TCP congestion con-
trol to improve performance on high bandwidth-
delay paths advocate increasing the AIMD back-
off factor (e.g. High-Speed TCP, H-TCP, TCP-
Westwood ). Larger backoff factors mean that
flows reduce their congestion window by less upon
detecting network congestion and thus are less
likely to empty network queues. As a result, link
utilisation tends to increase as the backoff factor



increased. Increasing the backoff factor will, unfor-
tunately, have a negative impact on network con-
vergence times unless corrective action is taken,
see for example Figure 1.
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Fig. 1. Illustrating poor responsiveness with larger
backoff factors using an NS network simula-
tion of a network with a 20Mb bottleneck
link, a 150ms delay, a maximum queue size
of 50 packets and backoff factor of 0.75.

The results in the present paper suggest, however,
that we can design a number of controllers to
address the different performance requirements (a
controller to ensure high network utilisation, a
controller to ensure rapid convergence) and switch
between these as network conditions change 1 .
Adaptive algorithms that involve mode switching
are known to be difficult to design and to analyse
.

Start-up or responding to a network
disturbance

No network disturbances

Mode A

Fast network
convergence

Mode B

Efficient link
utilisation

Fig. 2. Switched adaptive congestion control algo-
rithm.

To see how we might use Theorem 2 in this con-
text, let us partition the network flows into two
classes (i) flows with congestion window wi lying
within a δ neighbourhood of the equilibrium value

1 Note that TCP currently includes a slow start mode to

accelerate convergence at startup of a new flow. However,

slow start action is essentially confined to the first conges-

tion epoch following flow startup and cannot be invoked

to deal with the effect of network disturbances during the

‘congestion avoidance’ phase of TCP.

wi(∞) i.e. with |wi−wi(∞)|
wi(∞) ≤ δ and (ii) other

flows. Select the backoff factors of class (i) flows
to be βi ≤ β̄. Select the backoff factors of class (ii)

flows to be a small value β such that |
β−β

1−β
| ≤ 1.

Then we have from property (P1) that the class (i)
flows will remain within a δ neighbourhood of the
equilibrium for all time while from property (P2)
we have that class (ii) flows will converge geomet-
rically to a δ neighbourhood of the equilibrium at
rate β. Notice that the latter convergence rate is
determined solely by the backoff factor β of the
class (ii) flows; choosing β = 0.5 we recover the
convergence rate of standard TCP. In other words,
we may select a β̄ and β (largest and smallest
backoff factor) and specify a disturbance thresh-
old δ. Any source whose perturbation from the
equilibrium is within this threshold will remain in
this bounded region and can choose their back-
off factors freely (in particular, they can choose
their backoff factors to maximise link utilisation).
Sources that are perturbed outside of this region
can ensure rapid convergence to the region as k
increases by selecting a small backoff factor.

This yields the following decentralised switching
strategy,

βi(k + 1) =

{

βi |δi| ≤ δ
β otherwise.

(5)

where βi = min[
RTTmin,i

RTTmax,i
, β], δi = |wi−wi(∞)|

wi(∞) and

β, β are selected to satisfy |
β−β

1−β
| ≤ 1.

Of course such an adaptive strategy yields time-
varying network dynamics and immediately raises
questions as to its impact on network stability
properties. Theorem 3, however, guarantees sta-
bility under mild conditions. Specifically, it fol-
lows from the previous discussion that the A ∈
M matrices share a common Perron eigenvector
[x1...xn]T when

αi(A)

1 − βi(A)
= xi (6)

where αi(A), βi(A) denote the AIMD parameters
used in matrix A ∈ M for the ith flow. Equation
(6) states that to ensure a common Perron eigen-
vector we require that variations in the AIMD
parameters αi, βi of the ith flow be constrained
such that the ratio αi/(1 − βi) remains constant.
Observe that we have that this ratio is 2 for stan-
dard TCP. We therefore have immediately that
constraining the ratio αi(A)/(1 − βi(A)) to have
the value 2 for all flows simultaneously yields (i) a
common Perron eigenvector that ensures a unique
fixed point that is fair and (ii) ensures backward
compatibility and TCP friendliness.



The complete switched adaptive AIMD algorithm
is therefore

βi(k + 1) =

{

βi |δi| ≤ δ
β otherwise.

(7)

αi(k + 1) = 2(1 − βi(k + 1)) (8)

where βi = min[
RTTmin,i

RTTmax,i
, β], δi = |wi−wi(∞)|

wi(∞) and

β, β are selected to satisfy |
β−β

1−β
| ≤ 1.

Comment 1: Typically we might use β = 0.5 and

β = 0.75.

Comment 2: The switching threshold δ is a de-
sign parameter that determines the performance
trade-off between efficiency and responsiveness.
When δ is large, the mode switch is rarely invoked
and the switching strategy reduces to the previ-
ously discussed adaptive backoff strategy. When
δ = 0, the switching strategy corresponds to the
standard TCP strategy with backoff factor β.

Comment 3: This decentralised switching strat-
egy requires that the ith flow can measure or infer
distance from the equilibrium congestion window
wi(∞). In current networks wi(∞) generally can-
not be measured and so this distance must be es-
timated. There are many ways in which such esti-
mation might be carried out. One simple approach
is to estimate the distance from the magnitude of
wi(k + 1) − wi(k).

4.1 Example

The impact on responsiveness of introducing a
mode switch is illustrated in Figure 3. The net-
work conditions are identical to those in Figure
1, with a backoff factor β of 0.75 for efficient link
utilisation. The additive increase parameter α is
adjusted with β such that α/(1 − β) = 2 and so
α reduces when β increases, as is evident in the
figure. When a second flow starts at 75s, each flow
decreases its backoff factor to 0.5, reverting to
0.75 when the congestion window is within 10%
of its equilibrium value. The 95% rise time to
this boundary region is 4 congestion epochs owing
to the 0.5 backoff factor used, compared to 11
congestion epochs when the backoff factor is 0.75.
Note that while in this example both flows switch
to small backoff factors in response to the change
in network conditions, in general only those flows
that are perturbed outside the boundary region
need adjust their backoff factors to ensure fast
convergence. This is illustrated, for example, in
Figure 4 where a network of 10 flows subject to
a cross-flow disturbance between 200s and 205s is
considered. After the cross-flow disturbance ends
at 205s, it can be seen that the network rapidly
converges back to equilibrium. In this example

only 5 out of the 10 flows move outside the bound-
ary region and reduce their backoff factors to 0.5.
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Fig. 3. Improvement in responsiveness with adap-
tive mode switch compared with Figure 1.
(NS simulation, 20Mb bottleneck link, 150ms
delay, queue size 50 packets).

200 205 210 215

5

10

15

20

25

30

35

time (s)

cw
nd

 (
pa

ck
et

s)

Fig. 4. Adaptive mode switch for multiple flows
subject to a cross-flow disturbance from 200s
to 205s. (NS simulation, 10 flows, 20Mb bot-
tleneck link, 150ms delay, queue size 50 pack-
ets).

5. CONCLUDING REMARKS

In this paper we present new results on the dy-
namics of networks of AIMD flows. The results
reveal a surprising invariance and partitioning
property that suggests the potential exists for the
design of soundly-based adaptive AIMD strate-
gies. We show that adaptation can be used to
achieve high network utilisation without compro-
mising rapid network convergence.

We also note that the results in this paper are
focussed on networks that exhibit drop synchro-
nisation. While relatively few networks exhibit
this property, we argue that the study of such
networks is a useful starting point for developing



analysis tools suited to drop-tail environments.
Further, even though drop synchronisation is rel-
atively rare in real networks, it is a fact that
some networks do experience synchronisation (for
example, in some long distance networks ), and
consequently such networks merit study in their
own right. In this context we note several previous
studies in this area ; ; ; ; .
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