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Abstract—In this paper we establish the convergence to
an optimal non-interfering channel allocation of a class of
distributed stochastic algorithms. We illustrate the appica- # client2
tion of this result via (i) a communication-free distributed ' N \\\_

N

B .\'.\ \\\\
learning strategy for wireless channel allocation and (ii)a \\\\.\_

distributed learning strategy that can opportunistically exploit
communication between nodes to improve convergence speed
while retaining guaranteed convergence in the absence of
communication.
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I. INTRODUCTION

In this paper we consider the problem of allocating radio
channels in a wireless network. The channel allocation task
has been the subject of a considerable literature, spanning
cellular networks (e.g. see the survey paper [9]), wire-
less LANs (e.g. see [2], [6], [4], [7], [3] and references
therein) and graph theory (our channel allocation task is R
equivalent to the classical graph-colouring problem). édin
all of this work has, however, been concerned either withig. 1. Example of interfering 802.11 WLANSs. Dashed circledicate
centralised schemes or with distributed schemes that refjerference radius, shaded circles indicate communpicadius.
upon extensive message-passing. In this paper we consider
distributed channel allocation strategies that do not irequ

any communication or message-passing. APl WLAN AEDWLER
Figure 1 shows an example of interfering wireless net- R

works (WLANS). Transmissions within the AP1 and AP2 APIAVLAN

WLANSs can interfere, with the interference range of each T

WLAN indicated by the dashed circles (the use of circles AP4 WLAN

is purely indicative — interference domains may be much
more complex depending upon the distribution of client
nodes, physical obstacles, etc). The level of interference
between any particular pair of transmissions depends on
the physical locations of the communicating stations. The
channel selection problem considered here is equivalent tmderlying channel selection problem considered here is
graph colouring. To see this, define the interference gramyuivalent to graph colouring it is thus known to be NP-
by associating a node with each WLAN (e.g. with each BS8ard.

in an 802.11 network) and inserting an edge between nodesOur main result in this paper is to establish the conver-
that interfere. For example, Figure 2 shows the interfezengence to an optimal non-interfering channel allocation of a
graph corresponding to the wireless network in Figure Xklass of distributed stochastic algorithms. The resultuigeq

A colouring of the graph assigns colours to each nodgeneral and creates a broad framework within which the
and a proper colouring is an assignment of colours to eadesign of efficient algorithms with guaranteed convergence
node such that no adjacent nodes share the same colaan be studied. We illustrate the application of this result
A non-interfering channel allocation is thus equivalentato via (i) a communication-free distributed learning strgtéor
proper colouring of the interference graph associated withwireless channel allocation and (ii) a distributed leagnin
wireless network. In this simple example the optimal channetrategy that can opportunistically exploit communicatio
selection itself is straightforward to see, but this neetl ndbetween nodes to improve convergence speed while retaining
be the case in more complex topologies. Indeed, since tiggiaranteed convergence in the absence of communication.

Fig. 2. Interference graph of Figure 1.



Il. MAIN RESULT (length of the longest shortest path between two nodes) by

We are interested in establishing a class of distributet- ) )
algorithms with guaranteed convergence to an optimal non- The system may avoid stafeby some node undergoing
interfering channel allocation. Le¥ = (V, E) denote the repeated same channel collisions. Property 2 of our DL
interference graph associated with a wireless netwdrk. lgorithm is required to prevent this happening. We show
denotes the set of graph nodes dithe edges. Lef/(V;) ¢  that if the system has reached a configuration with some
{1,2, ..., ¢} denote the channel used by nodeand N (V;) colour §_elect|op p(obabmtu_as very small there is a pusiti
denote the set of neighbours. We begin by defining “syuccesBfobability that it will return in two steps to our standatelts
at nodeV; to be when nodé/; selects a different channel S- Thus__(_with some probability) the initial col_qur selec_tion
from all of its neighbours i.e. whe@'(V;) N {C(V;) : V; € probab|llt|es will have no effect on the probability of a giv
N(V;)} = 0, and have “failure” at nod&’; otherwise. We €volution. _ _ _
allow determination of the “success” or “failure” of a chahn ~ Lemma. From any configuration of the system, if after
selection at nodd/; to take sensing tim&’(V;) > 0. For WO steps the system ha_t; not converged, the system is in
example, in a wireless context this might reflect the timétateS with some probabilityprs > 0. _
to sense channel quality using a packet error rate measure r0of of Lemma. After any stefdl;, there was either global
derived from multiple packet transmissions on the selecte®/ccess (and convergence) or at least two nodes suffered a
channel. We require that there exists an upper bafid) < collision. Starting at timel, we allow the system to evolve
Tmaz VVi € V but otherwise place no restrictions on thefor 2 more steps and lower bound the probability of the
sensing times. In particular, we do not require sensingteverfyStém not being in staté. We ignore nodes who succeed
to be synchronised. and then collide as their colour selection probabilities ar

We consider distributed algorithms where each node uglearly at leasipry,. Consider any just collided node; after
dates its channel selection after sensing “success” dutégi  the collision on colouri,, it has probabilitypr, > pry, of
with the current choice of channel. We consider the class 6100Sing some specific other colayrand probabilityprs >
algorithms with the following two properties: (¢ — 1)pryy, of choosing any colour other thah. So the

1) When a channel selection yields “success” at ntige probability of two repeated collisions on the same colour

that node continues to use the same channel. Nofé & SPecific node igr; < 1 — (¢ — 1)pry. In the whole
that this guarantees that any channel allocation whichyStem the probability of some node having two consecutive

removes interference between all nodes is an absorbifig™® COIOUJ collisions ipry < n(1—(c—1)pr) - (3)(1-
state (¢c—1D)pryp)®+--- < 1. Hence with some probabilityr; >

2) When a channel selection yields “failureery other 1 —pry > 0 the system has no node with consecutive same

channel has at least probabiligr;, > 0 of being colour collisions. Thus after these two steps with proligbil
chosen next prs all colour selection probabilities of nodes which have

We refer to such algorithms as Distributed Learning (DL1USt collided are strictly greater than, and the system is

algorithms n states. m
’ . Proof of Theorem 1. Suppose that the system is in state

S (below we include the probabilityrs; of this happening
in our final calculations). We now describe a specific evo-
lution of the system which concludes with all nodes failing
simultaneously, providing some probability of global sess
after the next step. Using the fact that immediately after a
collision all colour selection probabilites of nodes arrécsty
non zero, after any collision any colour choice is possible.
We will show that in a determined finite amount ofHence the probabilityrs of our specific evolution (while
steps the system has some minimum positive probability aimall) is strictly positive.
convergence. We show that starting from any configuration In stateS by definition we have not converged and two
the system can reach some standard state after two stepsdesk; and k-, say, have just experienced a collision. By
From this standard state we show that the system can themy of notational convenience we say these two nodes were
potentially reach a state where every node experiencesvigited at step2. Suppose now that; collides with its first
failure simultaneously, allowing convergence withouuss non visited neighbouks (if any) at step3. Suppose also
of dependence between node states. Hence the netwdkt k5 collides with its first non visited neighbour (if any,
always has positive probability of global success and sb wipotentially k3 also) at ste also. We say that such nodes
almost surely converge. are visited at step3. Inductively suppose now that a node
In the sequel we refer to two nodes choosing the sam@ce visited collides with all its nonvisited neighbours in
channel as a “collision”. We say that the st&econsists consecutive steps. This is possible because a visited node
of all possible non converged configurations with all colouhaving just collided can potentially choose any colour.eNot
selection probabilities strictly greater than;,. Denote the that a node being visited simultaneously (along two diffiere
maximum node degree byd and the diameter of the graph equal length paths frorh; and k. say) is also possible.

Theorem 1 Suppose each node in a graph G operates a
DL algorithm. Assume that the channel allocation problem
is feasible (i.e. the number of available channels ¢ is greater
than or equal to the chromatic number y of G). Then the
algorithm converges, with probability one, to an optimal
channel allocation.



Suppose that once a node has collided with all its non- 3) On a successful choice of chanrglipdatep as
visited neighbours it then repeatedly chooses colountil

stepTy = Ty + 3 + md x D. We note that as a node, is pi = Llp;j=0Vj#i (1)
CO”IdIng with its nonvisited neighbours some of them may i.e. on a successful choice we use the same channel
become visited from other nodes before they collide with for the next round.

we suppose then that, does not visit such nodes. Note also  4) On failure on channel, updatep as
thatmd x D upper bounds the time needed for this visiting

procedure to visit every node. pi = (L="b)pipj =(1-0b)p; + b Vi £(@)
We assume without loss of generality that the graph is c—1

connected. Thus at tim#, — 1 it is possible for every node i.e. on a failure multiplicatively decrease the probabil-

to have been visited and to be choosing colauHence ity of using that channel, redistributing the probability

every node is colliding and at the next step any possible  evenly across the other channeldgs a design param-
colour configuration is possible. So we can finally suppose  eter,0 <b < 1.
that at stepl’; that every node selects a colour so that no 5) Return to 2.
collisions occur. We observe that the CFL algorithm employs a linear
Using finiteness and conditioning on the system being ireward - penalty learning automata [16] at each node. These
stateS after the first two steps, there is some probabilitautomata are coupled via the interference graph but do
pr7 > 0 such thatprg > pr; irrespective of the initial not otherwise communicate or use message-passing (hence
colour selection probabilities and which nodes collidedvhy we describe this as a communication-free learning
initially. Defining prg = przprs to ensure being in staté  algorithm). It can be seen immediately that the CFL al-
after the first two steps we can say that evBr¢ md x D gorithm satisfies Properties 1 and 2 (with;, = Cfl). It
steps the system will converge with probability at lemst.  therefore follows from Theorem 1 that with probability one
Hence afterj(2 + md x D) steps we have converged withthe CFL algorithm converges exponentially to an optimal
probability at leastl — (1 — prs)? which converges td as non-interfering channel allocation. We note that previous
j — oo. B work on learning automata has largely focussed on indi-
vidual automata rather than the interconnection of a large
This proof actually provides a partial answer to a furthenumber of automata, with few previous results known about
guestion, namely how quickly the algorithm converges to athe properties of interconnected learning automata. To our
optimal allocation. We have the following property. knowledge, Theorem 1 is one of the first convergence results
for interconnected learning automata.

Corollary 1 Let T denote the stopping time of the DL
algorithm. Then prob[r > k] < ae~"*, for positive constants

a, .

B. Opportunistic Partial Communication

The foregoing CFL algorithm is unusual in that it requires
no communication or message-passing between nodes. As
That is, the stopping time probability decays exponemntiall noted previously, the wireless channel allocation task has
Our argument does not yield a tight estimate of the exponeheen the subject of a considerable literature, spannirig-cel
~, which determines the precise convergence rate of thar networks (e.g. see the survey paper [9]), wireless LANs
algorithm, but given that the underlying colouring problem(e.g. see [2], [6], [4], [7], [3] and references therein) and

is NP-hard this is unsurprising. graph theory. Almost all of this work has, however, been
concerned either with centralised schemes or with digeibu
I1l. A PPLICATIONS schemes that rely upon extensive message-passing.
A. Distributed Learning Automata The requirement for message passing means in such

schemes is clearly problematic in many realistic contexts
ere interfering networks may belong to different admin-
ative domains (e.g. interfering wireless networks rbay
ti%erated by different households or businesses), whilkgbac
niffing on the radio channel runs into the difficulties that
ackets may be encrypted and/or the distance over which
packets are readable is typically much less than the distanc
over which network transmissions interfere (thus intenigr
access points may well not be able to sniff each others pack-
ets). Moreover, most of the proposed distributed schemes
are heuristic in nature and come with few performance
1) Initialisep = [1/c,1/c,...,1/c] guarantees (partly due to the NP-hard nature of the channel
2) Toss a weighted coin to select a channel, wiftthe  ajlocation problem, although NP-hardness only relates to
probability of selecting channel Sense the channel the computational complexity of the problem). A distrituite
quality. channel allocation strategy, such as the CFL algorithm,

Our main result establishes the convergence of a cl
of distributed channel allocation algorithms. We first note,
that this class includes interconnected learning automa
Specifically, letc denote the number of available channel
and let each access point with responsibility for chann
selection maintain a element state vectar. Let p; denote
theith element ofp with >"7 p; = 1. Consider the following
distributed learning algorithm for updatingat each node.

Communication Free Learning (CFL) Algorithm



with guaranteed convergence that does not depend upor6) On a successful choice of chanrglipdatep as
communication or message-passing is therefore potgntiall

very attractive from a practical viewpoint. pi = 1, p;=0 Vj#i
Of course, while we do not want to rely upon communi- i.e. on a successful choice we use the same channel
cation, when communicatiois possible we would like our for the next round.

channel allocation algorithm to take advantage of thisuieat ~ 7) On failure on channel, updatep as

as we would expect it to increase performance e.g. reduce b
convergence time. We therefore consider extending thebasi i = (1 ="b)pi, pj = (1 —b)p; + e #1
CFL algorithm to allow it to opportunistically take advagé

of packet sniffing on the radio channel when this is possible.
We note that channel conditions can be expected to vary
stochastically and transmissions from neighbouring may be
intermittent. Moreover, the distance over which transioiss eter,0 <b < 1.

interfere (which defines the neighbours of a node) is gener- 8) Return to 2.

ally greater than the distance over which transmissions can This algorithm is identical to the CFL algorithm apart from
be decoded (which determines the maximum communicatifige Opportunistic communication steps 3 and 4. The modified
set of neighbours). LeV,(V;,#)} € N(V;) denote the set algorithm clearly satisfies the absorbing property 1. Since
of neighbours for which nod#; is able to decode packet there is always some probablidyof following the original
transmissions at rountl of operation. We have a situation CFL algorithm, the channel selection probabilities are als
where the membership dﬁc(‘/ia t) varies Stochastica”y in lower bounded i.e. property 2 is also satisfied. It followetth
time and where allowable values &.(V;,t) include the convergence of the modified algorithm is guaranteed with
empty set. It is important to emphasise that this opportienis Probability one by Theorem 1.

partial communication scenario is fundamentally différen

i.e. on a failure multiplicatively decrease the probabil-
ity of using that channel, redistributing the probability
evenly across the other channéiss a design param-

10°

from the communication models assumed in most other work e
on distributed algorithms for channel allocation. In pois '  dsodes
work, algorithms require local communication betwesh . . 25 nodes
nodes in an interference neighbourhood or perhaps all nodes

in a k-hop interference neighbourhood. That§,(V;,t)} C + '

N(V;) is inadmissible and it is strictly required that that
Ne(Vi, 1)} 2 N(Vi).

We consider the following opportunistic communication
extension to the basic CFL algorithm. We assume that the
frame headers are augmented to include the outcome for the
transmitting node of the weighted coin toss at step 2 of the
algorithm. This corresponds to the channel selection tiet t
transmitting node will use at the next round of updates (or ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
the current channel selection if no update is planned e.g. CE MY s R
when updates are not synchronised).

10

mean # iterations

Fig. 3.  Mean number of iterations to converge to an optimainciel

Opportunistic Learning Algorithm allocation vs communication radius in interference grapmgom disk
graphs with radius R=0.5, mean is taken over 1000 graphsbeuraf

1) Initialisep = [1/e,1/c,...,1/d] channels: = 1.2x, b =01, =01

2) Toss a weighted coin to select a channel, withthe
probability of selecting channel Let C' denote the The benefit of opportunistically exploiting communication
outcome of the coin toss i.e. the channel selected. is illustrated in Figure 3. In this example the network

3) Read the frame headers of any neighbouring packetterference graph is modeled as a random disk graph; that is
transmissions and opportunistically record the plannedodes are uniformly randomly located in a unit square and
channel selection. Let'y, denote this set of planned the WLANs associated with two nodes interfere when the
channel selections. nodes are located within a radiigsof each other. A “failure”

4) If CNCy, =0, then do nothing. Otherwise, we know or “collision” occurs when neighbouring nodes select the
that our choiceC' of channel will lead to a failure (a same channel at a given iteration of the channel allocation
neighbour will choose the same channel) and so walgorithm, and a “success” when a node selects a different
revisit our channel selection. With probability— § channel from all of its neighbours. For each interference
we choose a channel uniformly randomly from the segraph the chromatic number gives the minimum possible
of channels not irCy, and with probabilityy we stay number of channels for a feasible solution. We model com-
with the original channel selectiofi. munication between nodes as an embedded disk graph with

5) Sense the channel quality. radiusR. < R i.e. a node can decode packet transmissions



from neighbouring nodes that lie within communicatiora distanceR of one another. We then randorhlyadd a
radius R.. Figure 3 shows the mean number of iterationsingle new node and record the probability of success and
for the network to convergence to an optimal non-interfgrinthe number of collisions that occur. We do this repeatedly
channel allocation vs the communication radius and numbéailways starting from the same network and randomly adding
of nodes. Note that a log scale is used on the y-axis. It came new node) to sample the distribution. We expect that
be seen that a significant improvement in provided by théhe convergence time will depend upon the number of free
communication step (performance with no communicationhannels in the neighbourhood that the new node could
at all is illustrated by the communication radilis being select to achieve a proper channel allocation. In Figure 4 we
zero). The greatest gain in performance, roughly an ordénerefore bin the simulation data according to the number of
of magnitude reduction in convergence time, is achieveldcal solutions.

when R, = R i.e. when a node can communicate with Also shown in Figure 4 are the predictions corresponding
all of its interfering neighbours. Interestingly, we carsal to the following simple analysis. L. denote the set of free
see that the performance gain is strongly dependent on tbkannels initially that the new node might select to acheeve
level of communication. A significant proportion of nodenon-interfering channel allocation. Assume, for the motnen
neighbours must be able to communicate before the masiat F.. consists of only one channel. Letk) denote the
substantial performance gains are realised. In particwlar probability of the new node choosing this channel at iterati
note that a common guideline is that the communicatioh. Assume that the channel allocation of nodes in the original
radius may be approximated as half the interference radiusetwork remains unchanged. Then on a colligids updated
This corresponds t&®. = 0.25 in Figure 3 sinceR = 0.5. according to

Hence, for example, with 25 nodes the mean convergence plk+1) = (1= b)p(k) + b/(c— 1) (3)

time is 95 iterations whenk. = 0, 40 iterations when

R. =0.25 and 6.5 iterations whe®. = R = 0.5. We have thatE[F(0)] = 1 — p(0) and E[F(k + 1)] =
E[F(K)](1 — p(k + 1)) with E[S(k)] = 1 — E[F(k)].
Evidently, this argument can be directly generalised t@sas
when F,. contains more than one channel. This analysis can
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be applied provided there exists at least one local solution
and it can be seen from Figure 4 that in such situations it
yields remarkably accurate predictions. This indicatest th
the channel allocations of the nodes in the original network
possess sufficient “inertia” that they do indeed effecyivel
remain unchanged (this is also confirmed by direct measure-

S ment of the network channel allocations before and after the
T addition of a new node). It follows immediately from this in-
N sight that partial communication with its neighbours epabl
Sl the new node to select a free channel with higher probapility
AR - | thereby accelerating convergence. Note that the conveegen
- - rate depends geometrically on the probability of selecting
free channel and thus very substantial performance gains ar
B ‘ e ‘ possible.
0 10 2 0 o o0 60 70 80 It can of course happen that there existlocal solutions,

i.e. all of the available channels are already used by the
neighbours of the new node. This situation is marked as the
“zero solutions” curve in Figure 4. In this case a non-local
re-allocation of channels is necessary in order to achieve a
non-interfering channel allocation and the previous asialy
cannot be applied. It can be seen from Figure 4 that the
convergence is this case is slower than when local solutions
exist. This is, of course, to be expected as non-local re-
allocation requires both at least one of the original nodes
to change channel and for the new node to then select one

We can gain some insight into the source of this imef the resulting free channels.
provement in convergence rate by considering an interéeren We can carry out an approximate analysis of this case as
graph with an optimal channel allocation and adding #llows. Denote the set of nodes neighbouring the new node
new node. For example, Figure 4 shows simulation results
for a network with a random disk interference graph. In *The network is located in the plane, making it straightfouivio add a

. new node. Specifically, we select uniformly randamand y co-ordinates
this example we take a network where nodes are locat

! . ) ““"¥or the new node and then determine its neighbours usingntieeférence
randomly in the plane and nodes interfere if they are withiredius R.

probability of failure

Fig. 4. Probability of failure (1- prob of success) vs iteatfollowing
addition of a new node. Dashed lines are analytic predistié8olutions”
refer to the number of possible channels that the new node salegt to
achieve a proper channel allocation without disturbing d@liecations of
the original nodes. (20 node random disk interference graitih R=0.5,
number of channels=12 (1.25x), b = 0.1.)



by N. We know that these nodes make use of all availablig] A. Raniwala, T. Chiueh. “Architecture and algorithmsr fan IEEE

channels. Our measurements on many hundreds of thousand&02-11-based multi-channel wireless mesh network”. Poc IEEE
International Conference on Computer Communications, 2005.

of disk graphs |nd|catg that we almost never see adJaC@['?} B.J. Leung, K.K. Kim, “Frequency assignment for IEEE 8DPwireless
nodes such that the neighbourhood$ath nodes make use  networks”. Proc. 58th IEEE Vehicular Technology Conference, 2003.

of all available channels. We therefore assume that thenneig8l B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiakin. Diot,
“Self Organization of Interfering 802.11 Wireless Accesetiorks,”,

boursV do themselves have the freedom to change channel.|\ria Technical Report, August 2005.
Consider the behaviour of the new node: because there is [9p L. Narayanan, “Channel assignment and graph multidedgr Hand-

local solution it must choose the same channel as one of itsPook of wireless networks and mobile computing, Wiley series on parallel
and distributed computing, 2002.

n(?'ghbours-__By assumption, a ne'ghbourW”_l Change Channﬁb] P. Sparl, J. Zerovnik, “2-local 5/4-competitive algbm for multi-
with probability at leasb/(c — 1) and otherwise stay on the  coloring triangle-free hexagonal graphsfiformation Processing Letters
same channel. Note that it can occur that more than one 90, 2004. , .

. . . éll K. S. Sudeep, S. Vishwanathan, “A technique for multdog
neighbour shares the same channel, in which case we N€€;angie free hexagonal graphsDiscrete Mathematics 2002.
all such neighbours to change channel in order to free up thiab] J. Janssen, D. Krizanc, L. Narayanan, S. M. Shende tfibiged on-

colour. This possibility is neglected in our model because line frequency assignment in cellular networkBroc. of the 15th annual

. . o symposium on theoretical aspects of computer science, Lecture Notes in
simulations show it is a rare occurrence. Hence our model compyter Science Vol. 1373, 1998.

predicts that independently at each timestep, the systéim wii3] L. Narayanan, S. M. Shende, “Static frequency assigrrirecellular
reconverge approximately with probability at leagtc—1). networks”, Algorithmica 29 (2001).
Th 9 ppf hi y . P Iy' . ;ﬁ( ) d .H4] I. Finocchi, A. Panconesi, R. Silvestri, “Experiment@nalysis of
X € accuracy.o _t 1S apprc_mmate_ analysis 1S '. ustrate _ ! simple, distributed node coloring algorithms_lgorithmica 41 (2005).
Figure 4. Again, it follows immediately from this analysis[15] M. Kubale, L. Kuszner, “A better practical algorithmrfdlistributed
that the convergence rate can be made significantly fastergraph coloring"Proc. of IEEE PARELEC 02, 2002.
h tial ication between nodes is bossib éﬁ] K. Narendra, M. A. L. Thathachar, “Learning Automatan Atroduc-
w en_ _even parlial communica = p "M*tion”, Prentice Hall, 1989.
Specifically, all nodes operate the opportunistic learninfl7] A. Rao, I. Stoica, An overlay MAC layer for 802.11 netker Proc.

algorithm, including the neighbou®. The new node will _ HotNets, 2005. . o
ilv ind fail . ighbolysi | | [18] D. Aguayo, J. Bicket, S. Biswa, G. Judd, R. Morris. “Lidvel
necessarily induce failures at its neighborsince no loca measurements from an 802.11b mesh netwdfkdc. ACM SSGCOMM,

solutions exist. Communication facilitates these neighbo  Boston, 2004. B .

selecting a channel that does not collide with the new nodé?] M. Heusse, F. Rousseau, R. Guillier, A. Duda, “ldle e optimal
hei iahb therebv freeina up channels in access method for high throughput and fairness in rate stivetireless

or their own neighbours, y g up N LANSs. Proc. ACM SGCOMM, Philadephia, 2005.

the neighbourhood of the new node and this accelerating

convergence.

IV. CONCLUSIONS

In this paper we establish the convergence to an opti-
mal non-interfering channel allocation of a class of dis-
tributed stochastic algorithms. The result is quite gelnera
and creates a broad framework within which the design
of efficient algorithms with guaranteed convergence can be
studied. We illustrate the application of this result vipgi
communication-free distributed learning strategy foreléss
channel allocation and (i) a distributed learning stratttat
can opportunistically exploit communication between reode
to improve convergence speed while retaining guaranteed
convergence in the absence of communication.
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