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Abstract— In this paper we establish the convergence to
an optimal non-interfering channel allocation of a class of
distributed stochastic algorithms. We illustrate the applica-
tion of this result via (i) a communication-free distributed
learning strategy for wireless channel allocation and (ii) a
distributed learning strategy that can opportunistically exploit
communication between nodes to improve convergence speed
while retaining guaranteed convergence in the absence of
communication.

I. I NTRODUCTION

In this paper we consider the problem of allocating radio
channels in a wireless network. The channel allocation task
has been the subject of a considerable literature, spanning
cellular networks (e.g. see the survey paper [9]), wire-
less LANs (e.g. see [2], [6], [4], [7], [3] and references
therein) and graph theory (our channel allocation task is
equivalent to the classical graph-colouring problem). Almost
all of this work has, however, been concerned either with
centralised schemes or with distributed schemes that rely
upon extensive message-passing. In this paper we consider
distributed channel allocation strategies that do not require
any communication or message-passing.

Figure 1 shows an example of interfering wireless net-
works (WLANs). Transmissions within the AP1 and AP2
WLANs can interfere, with the interference range of each
WLAN indicated by the dashed circles (the use of circles
is purely indicative – interference domains may be much
more complex depending upon the distribution of client
nodes, physical obstacles, etc). The level of interference
between any particular pair of transmissions depends on
the physical locations of the communicating stations. The
channel selection problem considered here is equivalent to
graph colouring. To see this, define the interference graph
by associating a node with each WLAN (e.g. with each BSS
in an 802.11 network) and inserting an edge between nodes
that interfere. For example, Figure 2 shows the interference
graph corresponding to the wireless network in Figure 1.
A colouring of the graph assigns colours to each node,
and a proper colouring is an assignment of colours to each
node such that no adjacent nodes share the same colour.
A non-interfering channel allocation is thus equivalent toa
proper colouring of the interference graph associated witha
wireless network. In this simple example the optimal channel
selection itself is straightforward to see, but this need not
be the case in more complex topologies. Indeed, since the

Fig. 1. Example of interfering 802.11 WLANs. Dashed circlesindicate
interference radius, shaded circles indicate communication radius.

Fig. 2. Interference graph of Figure 1.

underlying channel selection problem considered here is
equivalent to graph colouring it is thus known to be NP-
hard.

Our main result in this paper is to establish the conver-
gence to an optimal non-interfering channel allocation of a
class of distributed stochastic algorithms. The result is quite
general and creates a broad framework within which the
design of efficient algorithms with guaranteed convergence
can be studied. We illustrate the application of this result
via (i) a communication-free distributed learning strategy for
wireless channel allocation and (ii) a distributed learning
strategy that can opportunistically exploit communication
between nodes to improve convergence speed while retaining
guaranteed convergence in the absence of communication.



II. M AIN RESULT

We are interested in establishing a class of distributed
algorithms with guaranteed convergence to an optimal non-
interfering channel allocation. LetG = (V, E) denote the
interference graph associated with a wireless network.V
denotes the set of graph nodes andE the edges. LetC(Vi) ∈
{1, 2, ..., c} denote the channel used by nodeVi andN(Vi)
denote the set of neighbours. We begin by defining “success”
at nodeVi to be when nodeVi selects a different channel
from all of its neighbours i.e. whenC(Vi) ∩ {C(Vj) : Vj ∈
N(Vi)} = ∅, and have “failure” at nodeVi otherwise. We
allow determination of the “success” or “failure” of a channel
selection at nodeVi to take sensing timeT (Vi) ≥ 0. For
example, in a wireless context this might reflect the time
to sense channel quality using a packet error rate measure
derived from multiple packet transmissions on the selected
channel. We require that there exists an upper boundT (Vi) ≤
Tmax ∀Vi ∈ V but otherwise place no restrictions on the
sensing times. In particular, we do not require sensing events
to be synchronised.

We consider distributed algorithms where each node up-
dates its channel selection after sensing “success” or “failure”
with the current choice of channel. We consider the class of
algorithms with the following two properties:

1) When a channel selection yields “success” at nodeVi,
that node continues to use the same channel. Note
that this guarantees that any channel allocation which
removes interference between all nodes is an absorbing
state.

2) When a channel selection yields “failure”,every other
channel has at least probabilityprlb > 0 of being
chosen next.

We refer to such algorithms as Distributed Learning (DL)
algorithms.

Theorem 1 Suppose each node in a graph G operates a
DL algorithm. Assume that the channel allocation problem
is feasible (i.e. the number of available channels c is greater
than or equal to the chromatic number χ of G). Then the
algorithm converges, with probability one, to an optimal
channel allocation.

We will show that in a determined finite amount of
steps the system has some minimum positive probability of
convergence. We show that starting from any configuration
the system can reach some standard state after two steps.
From this standard state we show that the system can then
potentially reach a state where every node experiences a
failure simultaneously, allowing convergence without issues
of dependence between node states. Hence the network
always has positive probability of global success and so will
almost surely converge.

In the sequel we refer to two nodes choosing the same
channel as a “collision”. We say that the stateS consists
of all possible non converged configurations with all colour
selection probabilities strictly greater thanprlb. Denote the
maximum node degree bymd and the diameter of the graph

(length of the longest shortest path between two nodes) by
D.

The system may avoid stateS by some node undergoing
repeated same channel collisions. Property 2 of our DL
algorithm is required to prevent this happening. We show
that if the system has reached a configuration with some
colour selection probabilities very small there is a positive
probability that it will return in two steps to our standard state
S. Thus (with some probability) the initial colour selection
probabilities will have no effect on the probability of a given
evolution.

Lemma. From any configuration of the system, if after
two steps the system has not converged, the system is in
stateS with some probabilitypr5 > 0.

Proof of Lemma. After any stepT0 there was either global
success (and convergence) or at least two nodes suffered a
collision. Starting at timeT0 we allow the system to evolve
for 2 more steps and lower bound the probability of the
system not being in stateS. We ignore nodes who succeed
and then collide as their colour selection probabilities are
clearly at leastprlb. Consider any just collided node; after
the collision on colouri1, it has probabilitypr1 > prlb of
choosing some specific other colouri2 and probabilitypr2 >
(c − 1)prlb of choosing any colour other thani1. So the
probability of two repeated collisions on the same colour
at a specific node ispr3 < 1 − (c − 1)prlb. In the whole
system the probability of some node having two consecutive
same colour collisions ispr4 < n(1− (c−1)prlb)−

(

n
2

)

(1−
(c− 1)prlb)

2 + · · · < 1. Hence with some probabilitypr5 >
1 − pr4 > 0 the system has no node with consecutive same
colour collisions. Thus after these two steps with probability
pr5 all colour selection probabilities of nodes which have
just collided are strictly greater thanprlb and the system is
in stateS. �

Proof of Theorem 1. Suppose that the system is in state
S (below we include the probabilitypr5 of this happening
in our final calculations). We now describe a specific evo-
lution of the system which concludes with all nodes failing
simultaneously, providing some probability of global success
after the next step. Using the fact that immediately after a
collision all colour selection probabilites of nodes are strictly
non zero, after any collision any colour choice is possible.
Hence the probabilitypr6 of our specific evolution (while
small) is strictly positive.

In stateS by definition we have not converged and two
nodesk1 andk2, say, have just experienced a collision. By
way of notational convenience we say these two nodes were
visited at step2. Suppose now thatk1 collides with its first
non visited neighbourk3 (if any) at step3. Suppose also
that k2 collides with its first non visited neighbour (if any,
potentially k3 also) at step3 also. We say that such nodes
are visited at step3. Inductively suppose now that a node
once visited collides with all its nonvisited neighbours in
consecutive steps. This is possible because a visited node
having just collided can potentially choose any colour. Note
that a node being visited simultaneously (along two different
equal length paths fromk1 andk2 say) is also possible.



Suppose that once a node has collided with all its non-
visited neighbours it then repeatedly chooses colour1 until
stepT1 = T0 + 3 + md × D. We note that as a nodek4 is
colliding with its nonvisited neighbours some of them may
become visited from other nodes before they collide withk4;
we suppose then thatk4 does not visit such nodes. Note also
that md×D upper bounds the time needed for this visiting
procedure to visit every node.

We assume without loss of generality that the graph is
connected. Thus at timeT1 − 1 it is possible for every node
to have been visited and to be choosing colour1. Hence
every node is colliding and at the next step any possible
colour configuration is possible. So we can finally suppose
that at stepT1 that every node selects a colour so that no
collisions occur.

Using finiteness and conditioning on the system being in
stateS after the first two steps, there is some probability
pr7 > 0 such thatpr6 > pr7 irrespective of the initial
colour selection probabilities and which nodes collided
initially. Defining pr8 = pr7pr5 to ensure being in stateS
after the first two steps we can say that every2 + md × D
steps the system will converge with probability at leastpr8.
Hence afterj(2 + md × D) steps we have converged with
probability at least1 − (1 − pr8)

j which converges to1 as
j → ∞. �

This proof actually provides a partial answer to a further
question, namely how quickly the algorithm converges to an
optimal allocation. We have the following property.

Corollary 1 Let τ denote the stopping time of the DL
algorithm. Then prob[τ > k] < αe−γk, for positive constants
α, γ.

That is, the stopping time probability decays exponentially.
Our argument does not yield a tight estimate of the exponent
γ, which determines the precise convergence rate of the
algorithm, but given that the underlying colouring problem
is NP-hard this is unsurprising.

III. A PPLICATIONS

A. Distributed Learning Automata

Our main result establishes the convergence of a class
of distributed channel allocation algorithms. We first note
that this class includes interconnected learning automata.
Specifically, letc denote the number of available channels
and let each access point with responsibility for channel
selection maintain ac element state vectorp. Let pi denote
the ith element ofp with

∑c

i pi = 1. Consider the following
distributed learning algorithm for updatingp at each node.

Communication Free Learning (CFL) Algorithm

1) Initialise p = [1/c, 1/c, . . . , 1/c]
2) Toss a weighted coin to select a channel, withpi the

probability of selecting channeli. Sense the channel
quality.

3) On a successful choice of channeli, updatep as

pi = 1, pj = 0 ∀j 6= i (1)

i.e. on a successful choice we use the same channel
for the next round.

4) On failure on channeli, updatep as

pi = (1 − b)pi, pj = (1 − b)pj +
b

c − 1
∀j 6= i(2)

i.e. on a failure multiplicatively decrease the probabil-
ity of using that channel, redistributing the probability
evenly across the other channels.b is a design param-
eter,0 < b < 1.

5) Return to 2.

We observe that the CFL algorithm employs a linear
reward - penalty learning automata [16] at each node. These
automata are coupled via the interference graph but do
not otherwise communicate or use message-passing (hence
why we describe this as a communication-free learning
algorithm). It can be seen immediately that the CFL al-
gorithm satisfies Properties 1 and 2 (withprlb = b

c−1
). It

therefore follows from Theorem 1 that with probability one
the CFL algorithm converges exponentially to an optimal
non-interfering channel allocation. We note that previous
work on learning automata has largely focussed on indi-
vidual automata rather than the interconnection of a large
number of automata, with few previous results known about
the properties of interconnected learning automata. To our
knowledge, Theorem 1 is one of the first convergence results
for interconnected learning automata.

B. Opportunistic Partial Communication

The foregoing CFL algorithm is unusual in that it requires
no communication or message-passing between nodes. As
noted previously, the wireless channel allocation task has
been the subject of a considerable literature, spanning cellu-
lar networks (e.g. see the survey paper [9]), wireless LANs
(e.g. see [2], [6], [4], [7], [3] and references therein) and
graph theory. Almost all of this work has, however, been
concerned either with centralised schemes or with distributed
schemes that rely upon extensive message-passing.

The requirement for message passing means in such
schemes is clearly problematic in many realistic contexts
where interfering networks may belong to different admin-
istrative domains (e.g. interfering wireless networks maybe
operated by different households or businesses), while packet
sniffing on the radio channel runs into the difficulties that
packets may be encrypted and/or the distance over which
packets are readable is typically much less than the distance
over which network transmissions interfere (thus interfering
access points may well not be able to sniff each others pack-
ets). Moreover, most of the proposed distributed schemes
are heuristic in nature and come with few performance
guarantees (partly due to the NP-hard nature of the channel
allocation problem, although NP-hardness only relates to
the computational complexity of the problem). A distributed
channel allocation strategy, such as the CFL algorithm,



with guaranteed convergence that does not depend upon
communication or message-passing is therefore potentially
very attractive from a practical viewpoint.

Of course, while we do not want to rely upon communi-
cation, when communicationis possible we would like our
channel allocation algorithm to take advantage of this feature
as we would expect it to increase performance e.g. reduce
convergence time. We therefore consider extending the basic
CFL algorithm to allow it to opportunistically take advantage
of packet sniffing on the radio channel when this is possible.
We note that channel conditions can be expected to vary
stochastically and transmissions from neighbouring may be
intermittent. Moreover, the distance over which transmissions
interfere (which defines the neighbours of a node) is gener-
ally greater than the distance over which transmissions can
be decoded (which determines the maximum communicating
set of neighbours). LetNc(Vi, t)} ⊆ N(Vi) denote the set
of neighbours for which nodeVi is able to decode packet
transmissions at roundt of operation. We have a situation
where the membership ofNc(Vi, t) varies stochastically in
time and where allowable values ofNc(Vi, t) include the
empty set. It is important to emphasise that this opportunistic
partial communication scenario is fundamentally different
from the communication models assumed in most other work
on distributed algorithms for channel allocation. In previous
work, algorithms require local communication betweenall
nodes in an interference neighbourhood or perhaps all nodes
in a k-hop interference neighbourhood. That is,Nc(Vi, t)} ⊂
N(Vi) is inadmissible and it is strictly required that that
Nc(Vi, t)} ⊇ N(Vi).

We consider the following opportunistic communication
extension to the basic CFL algorithm. We assume that the
frame headers are augmented to include the outcome for the
transmitting node of the weighted coin toss at step 2 of the
algorithm. This corresponds to the channel selection that the
transmitting node will use at the next round of updates (or
the current channel selection if no update is planned e.g.
when updates are not synchronised).

Opportunistic Learning Algorithm

1) Initialise p = [1/c, 1/c, . . . , 1/c]
2) Toss a weighted coin to select a channel, withpi the

probability of selecting channeli. Let C denote the
outcome of the coin toss i.e. the channel selected.

3) Read the frame headers of any neighbouring packet
transmissions and opportunistically record the planned
channel selection. LetCNc

denote this set of planned
channel selections.

4) If C ∩CNc
= ∅, then do nothing. Otherwise, we know

that our choiceC of channel will lead to a failure (a
neighbour will choose the same channel) and so we
revisit our channel selection. With probability1 − δ
we choose a channel uniformly randomly from the set
of channels not inCNc

and with probabilityδ we stay
with the original channel selectionC.

5) Sense the channel quality.

6) On a successful choice of channeli, updatep as

pi = 1, pj = 0 ∀j 6= i

i.e. on a successful choice we use the same channel
for the next round.

7) On failure on channeli, updatep as

pi = (1 − b)pi, pj = (1 − b)pj +
b

c − 1
∀j 6= i

i.e. on a failure multiplicatively decrease the probabil-
ity of using that channel, redistributing the probability
evenly across the other channels.b is a design param-
eter,0 < b < 1.

8) Return to 2.

This algorithm is identical to the CFL algorithm apart from
the opportunistic communication steps 3 and 4. The modified
algorithm clearly satisfies the absorbing property 1. Since
there is always some probablityδ of following the original
CFL algorithm, the channel selection probabilities are also
lower bounded i.e. property 2 is also satisfied. It follows that
convergence of the modified algorithm is guaranteed with
probability one by Theorem 1.
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Fig. 3. Mean number of iterations to converge to an optimal channel
allocation vs communication radius in interference graph (random disk
graphs with radius R=0.5, mean is taken over 1000 graphs, number of
channelsc = 1.2χ, b = 0.1, δ = 0.1)

The benefit of opportunistically exploiting communication
is illustrated in Figure 3. In this example the network
interference graph is modeled as a random disk graph; that is,
nodes are uniformly randomly located in a unit square and
the WLANs associated with two nodes interfere when the
nodes are located within a radiusR of each other. A “failure”
or “collision” occurs when neighbouring nodes select the
same channel at a given iteration of the channel allocation
algorithm, and a “success” when a node selects a different
channel from all of its neighbours. For each interference
graph the chromatic numberχ gives the minimum possible
number of channels for a feasible solution. We model com-
munication between nodes as an embedded disk graph with
radiusRc ≤ R i.e. a node can decode packet transmissions



from neighbouring nodes that lie within communication
radius Rc. Figure 3 shows the mean number of iterations
for the network to convergence to an optimal non-interfering
channel allocation vs the communication radius and number
of nodes. Note that a log scale is used on the y-axis. It can
be seen that a significant improvement in provided by the
communication step (performance with no communication
at all is illustrated by the communication radiusRc being
zero). The greatest gain in performance, roughly an order
of magnitude reduction in convergence time, is achieved
when Rc = R i.e. when a node can communicate with
all of its interfering neighbours. Interestingly, we can also
see that the performance gain is strongly dependent on the
level of communication. A significant proportion of node
neighbours must be able to communicate before the most
substantial performance gains are realised. In particular, we
note that a common guideline is that the communication
radius may be approximated as half the interference radius.
This corresponds toRc = 0.25 in Figure 3 sinceR = 0.5.
Hence, for example, with 25 nodes the mean convergence
time is 95 iterations whenRc = 0, 40 iterations when
Rc = 0.25 and 6.5 iterations whenRc = R = 0.5.
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We can gain some insight into the source of this im-
provement in convergence rate by considering an interference
graph with an optimal channel allocation and adding a
new node. For example, Figure 4 shows simulation results
for a network with a random disk interference graph. In
this example we take a network where nodes are located
randomly in the plane and nodes interfere if they are within

a distanceR of one another. We then randomly1 add a
single new node and record the probability of success and
the number of collisions that occur. We do this repeatedly
(always starting from the same network and randomly adding
one new node) to sample the distribution. We expect that
the convergence time will depend upon the number of free
channels in the neighbourhood that the new node could
select to achieve a proper channel allocation. In Figure 4 we
therefore bin the simulation data according to the number of
local solutions.

Also shown in Figure 4 are the predictions corresponding
to the following simple analysis. LetFc denote the set of free
channels initially that the new node might select to achievea
non-interfering channel allocation. Assume, for the moment,
that Fc consists of only one channel. Letp(k) denote the
probability of the new node choosing this channel at iteration
k. Assume that the channel allocation of nodes in the original
network remains unchanged. Then on a collisionp is updated
according to

p(k + 1) = (1 − b)p(k) + b/(c− 1) (3)

We have thatE[F (0)] = 1 − p(0) and E[F (k + 1)] =
E[F (k)](1 − p(k + 1)) with E[S(k)] = 1 − E[F (k)].
Evidently, this argument can be directly generalised to cases
whenFc contains more than one channel. This analysis can
be applied provided there exists at least one local solution,
and it can be seen from Figure 4 that in such situations it
yields remarkably accurate predictions. This indicates that
the channel allocations of the nodes in the original network
possess sufficient “inertia” that they do indeed effectively
remain unchanged (this is also confirmed by direct measure-
ment of the network channel allocations before and after the
addition of a new node). It follows immediately from this in-
sight that partial communication with its neighbours enables
the new node to select a free channel with higher probability,
thereby accelerating convergence. Note that the convergence
rate depends geometrically on the probability of selectinga
free channel and thus very substantial performance gains are
possible.

It can of course happen that there existno local solutions,
i.e. all of the available channels are already used by the
neighbours of the new node. This situation is marked as the
“zero solutions” curve in Figure 4. In this case a non-local
re-allocation of channels is necessary in order to achieve a
non-interfering channel allocation and the previous analysis
cannot be applied. It can be seen from Figure 4 that the
convergence is this case is slower than when local solutions
exist. This is, of course, to be expected as non-local re-
allocation requires both at least one of the original nodes
to change channel and for the new node to then select one
of the resulting free channels.

We can carry out an approximate analysis of this case as
follows. Denote the set of nodes neighbouring the new node

1The network is located in the plane, making it straightforward to add a
new node. Specifically, we select uniformly randomx and y co-ordinates
for the new node and then determine its neighbours using the interference
radius R.



by N . We know that these nodes make use of all available
channels. Our measurements on many hundreds of thousands
of disk graphs indicate that we almost never see adjacent
nodes such that the neighbourhoods ofboth nodes make use
of all available channels. We therefore assume that the neigh-
boursN do themselves have the freedom to change channel.
Consider the behaviour of the new node: because there is no
local solution it must choose the same channel as one of its
neighbours. By assumption, a neighbour will change channel
with probability at leastb/(c− 1) and otherwise stay on the
same channel. Note that it can occur that more than one
neighbour shares the same channel, in which case we need
all such neighbours to change channel in order to free up that
colour. This possibility is neglected in our model because
simulations show it is a rare occurrence. Hence our model
predicts that independently at each timestep, the system will
reconverge approximately with probability at leastb/(c−1).
The accuracy of this approximate analysis is illustrated in
Figure 4. Again, it follows immediately from this analysis
that the convergence rate can be made significantly faster
when even partial communication between nodes is possible.
Specifically, all nodes operate the opportunistic learning
algorithm, including the neighboursN . The new node will
necessarily induce failures at its neighboursN since no local
solutions exist. Communication facilitates these neighbours
selecting a channel that does not collide with the new node
or their own neighbours, thereby freeing up channels in
the neighbourhood of the new node and this accelerating
convergence.

IV. CONCLUSIONS

In this paper we establish the convergence to an opti-
mal non-interfering channel allocation of a class of dis-
tributed stochastic algorithms. The result is quite general
and creates a broad framework within which the design
of efficient algorithms with guaranteed convergence can be
studied. We illustrate the application of this result via (i) a
communication-free distributed learning strategy for wireless
channel allocation and (ii) a distributed learning strategy that
can opportunistically exploit communication between nodes
to improve convergence speed while retaining guaranteed
convergence in the absence of communication.
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