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1. Implementation Issues 
 
1.1. SACK algorithm inefficient 
Packets in flight and not yet acknowledged are held on the writequeue linked list at the transmitter.  On receipt of 
SACK information, the writequeue is walked and the relevant packets tagged as sacked or lost.   In the original 
implementation writequeue is walked for each sack block (i.e. up to three times) and again to mark packets as lost.  
Lost packets are retransmitted via another walk of writequeue.  For large delay-bandwidth products, the 
writequeue is very large (many thousands of packets) and these walks become too time consuming to complete 
between the arrival of ACKs.   
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                                           (a)                                                                                   (b) 
Figure 1 Example illustrating impact of SACK processing inefficiency.  Transfer between servers (Dell 1650, 
2.8GHz Xeon, PCI-X 133Mhz/64bit & Intel Pro/1000 NICs) running Linux 2.4.23 with web100 
(sbufmode=0=rbufmode; WAD_IFQ=1, WAD_FloydAIMD=1) via dummynet router of same specification 
running FreeBSD 4.8. 
 
Repeated timeouts during loss recovery are evident in Figure 1(a) (timeouts occur due to throttle action of softirq 
queue when rate at which incoming packets are serviced is persistently too low – see below).  The corresponding 
performance with a more efficient SACK processing algorithm is shown in Figure 1(b).  More test results are 
presented in a later section. This algorithm incorporates the following changes. 
 

- Tagging algorithm modified to walk writequeue holes (i.e. packets not yet sacked), rather than walking 
entire writequeue.  Walk therefore now scales with number of lost packets rather than delay-bandwidth 
product. 

- Tagging algorithm modified to make a single walk rather than a walk per sack block (possibl;e by pre-
sorting sack blocks by sequence number). 

- We now cache pointers for the retransmission (using idea of Kelly) walk and also for walk on receipt of a 
dsack (for which a walk of the writequeue holes is insufficient). 

- when number of holes in writequeue becomes large, sack blocks of incoming ACK’s are cached and the 
walk of the writequeue performed less frequently – typically there is redundancy in the SACK 
information of ACK’s whereby later sack information subsumes that in earlier ACK’s and so caching 
leads to significant efficiency savings.  Note that Kelly proposes an alternative approach based on 
specific redundancy in the sack blocks between ACK’s – this fails when ACK’s are being frequently lost 
(which is commonly the case on high-speed links due to pressure on the computational resources and 
associated dropping from softirq queue). 
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1.2. Throttle action excessively severe  
On overflow, the netdev softirq queue enters a throttle state whereby all incoming packets are dropped until the 
queue empties.  This invariably leads to a TCP timeout.  The timeout is often particularly damaging as the throttle 
action breaks ACK clock (many incoming ACK’s are dropped) so that recovery from the timeout can be very slow 
for large delay-bandwidth products. 
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Figure 2 TCP transfer between Geneva, Switzerland and Stanford, California using Linux 2.4.23 with web100 and 
standard SACK processing algorithm.  The slow recovery from the throttle-induced TCP timeouts is evident. 
 
It is proposed that the throttle action be disabled as being unnecessarily severe.   Instead, a receiver just drops 
incoming packets when the softirq queue overflows.   Note that simply increasing the length of the netdev queue is 
often not a good alternative solution as the additional queueing delay can lead to frequent TCP timeouts.  
Disabling of the throttle action also does not remove the need for a more efficient SACK processing algorithm (see 
previous section).  Disabling the throttle action while retaining an inefficient SACK processing algorithm leads to 
a heavy processor burden with large numbers of ACK’s being dropped and an associated loss of SACK 
information and damage to the TCP ACK clock. 
 
 
1.3. Prevalence of SACK reneging 
Inspection of data flows on high speed links reveals that sack reneging by receivers (i.e. ACKing of a packet that 
has already been acknowledged via a SACK) is surprisingly common.  Presumably this arises due to pressure on 
the receiver at high data rates.   The standard Linux TCP implementation treats sack reneging in a similar way to a 
timeout i.e. it resets cwnd to one and enters loss state.  This is unnecessarily severe.  It is proposed that the 
implementation be modified to reset the SACK tagging of the packets in flight (i.e. the packets on writequeue) but 
otherwise leave cwnd unchanged (i.e. still enter loss state to take care of packet accounting etc, but do not reset 
cwnd  and snd_ssthresh). 
 
 
1.4. Prevalence of packet re-ordering 
Re-ordering of packets is common on high-speed networks (e.g. due to router implementations) and can lead to 
spurious entry of the TCP recovery state.  The undo mechanism in Linux will then back out of this state once 
reordering becomes evident.  
 

- in original implementation, undo mechanism is switched off (prior_ssthresh reset to zero) after first 
entry into recovery state.  Reordering during recovery or repeated reordering therefore cannot be undone.  
Implementation modified to retain undo mechanism after first entry to recovery state. 

- original undo mechanism usually stores 0.75cwnd in prior_ssthresh and resets snd_ssthresh to 
prior_ssthresh on an undo; if cwnd is below snd_ssthresh then it slow start’s up to 
snd_ssthresh before re-entering congestion avoidance.  This is inaccurate, and performs poorly when 
reordering etc causes repeated undo actions, see for example Figure 3.  Implementation is modified to 
save exact undo value of snd_ssthresh. 

 
Use of accurate snd_ssthresh undo is activated when sysctl net.ipv4.tcp_htcp_undo>0, otherwise 
original algorithm is used.   
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Figure 3 TCP transfer between Dublin and Stanford using modified Linux implementation with 
net.ipv4.tcp_htcp_undo=0 (original undo mechanism).  The impact of inaccuracy in the undo mechanism is 
evident.  Compare with the time history shown in Figure 8 which uses the same Linux implementation but with 
net.ipv4.tcp_htcp_undo=1 (accurate undo mechanism). 
 
1.5.Burst moderation inefficient 
Moderation to reduce packet bursts due to dropped ACK’s etc is achieved in original linux implementation by 
capping cwnd based on the estimated number of packets in flight.   In high-speed networks the accounting for 
packets in flight is often inaccurate during loss recovery. 
 

- Packets in flight cap on cwnd in routine cwnd_down() removed.  Change activated when sysctl 
net.ipv4.tcp_htcp_cap>0.  The negative impact of the cap in cwnd_down() can be seen in Figures 
4 and 5.  Compare with the time history shown in Figure 8 which uses the same Linux implementation 
but with net.ipv4.tcp_htcp_cap=1 (cap removed). 

- burst moderation is re-implemented using direct accounting of packets transmitted per ACK during loss 
recovery.  Changes activated when sysctl net.ipv4.tcp_htcp_moderation>0, otherwise original 
algorithm is used.  The negative impact of the original burst moderation mechanism can be seen in 
Figures 6 and 7. 
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Figure 4 TCP transfer between Dublin and Stanford using modified Linux implementation with 
net.ipv4.tcp_htcp_cap=0 (cwnd restricted to packets_in_flight+1 in cwnd_down()).   
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                                           (a)                                                                                      (b) 
Figure 5 Detail from Figure 4 showing packet reordering episodes with associated invocation of the undo 
mechanism.  During packet re-ordering the impact of capping cwnd is evident (compare with Figure 3).  Also 
shown are a number of backoff events due to packet loss.  Notice that capping cwnd leads to a large reduction in 
cwnd during loss recovery, followed by the slow starting of cwnd back up to snd_ssthresh. It can be seen 
from Figure 5(b) that this reduction in cwnd (these events are regular loss recovery, not timeouts) can be 
sufficiently large that the ACK clock is damaged, leading to very slow loss recovery. 
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Figure 6 TCP transfer between Dublin and Stanford using modified Linux implementation with 
net.ipv4.tcp_htcp_moderation=0 (original burst moderation mechanism).   
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                                          (a)                                                                                  (b) 
Figure 7 Detail from Figure 6 showing episodes with associated invocation of the undo mechanism.   
 



0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

time (s)

cw
nd

 (p
ac

ke
ts

)

 
Figure 8 TCP transfer between Dublin and Stanford using full functionality of modified Linux implementation.   
The data shown in Figures 3-8 was collected on the evening of Wednesday March 24th 2004; all transfers were 
carried out within a single one hour period.  Unless otherwise stated, all tests are made using the H-TCP variant of 
TCP. 



2. Brief Test Results 
 
Dublin machine is a Dell PowerEdge 1750, 2.4GHz Xeon, PCI-X 133MHz/64bit & Intel Pro/1000 NIC. 
 

Dublin, Ireland – SLAC, California 
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traceroute to iepm-resp.slac.stanford.edu (134.79.240.36), 30 hops max, 38 byte packets 
 1  calpurnia-vlan7.bh.access.hea.net (193.1.31.97)  0.818 ms  0.811 ms  0.867 ms 
 2  mantova-vlan3.bh.access.hea.net (193.1.198.245)  0.354 ms  0.222 ms  0.246 ms 
 3  hyperion-gige3-3-0.bh.core.hea.net (193.1.196.121)  0.479 ms  0.350 ms  0.372 ms 
 4  deimos-gige5-1.cwt.core.hea.net (193.1.195.129)  0.605 ms  0.599 ms  0.621 ms 
 5  heanet.ie1.ie.geant.net (62.40.103.229)  0.730 ms  0.723 ms  0.746 ms 
 6  ie.uk1.uk.geant.net (62.40.96.138)  13.221 ms  13.090 ms  13.112 ms 
 7  uk.ny1.ny.geant.net (62.40.96.169)  81.836 ms  81.738 ms  81.765 ms 
 8  esnet-gw.ny1.ny.geant.net (62.40.103.214)  81.748 ms  81.741 ms  89.963 ms 
 9  chicr1-oc192-aoacr1.es.net (134.55.209.57)  102.141 ms  102.106 ms  102.132 ms 
10  snvcr1-oc192-chicr1.es.net (134.55.209.53)  150.311 ms  150.283 ms  150.110 ms 
11  slac-pos-snv.es.net (134.55.209.2)  150.498 ms  150.484 ms  150.594 ms 
12  * * * 
13  * * * 
14  iepm-resp.slac.stanford.edu (134.79.240.36)  151.768 ms  151.830 ms  151.775 ms 
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traceroute to net100.lbl.gov (131.243.2.93), 30 hops max, 38 byte packets 
 1  calpurnia-vlan7.bh.access.hea.net (193.1.31.97)  0.810 ms  1.434 ms  0.868 ms 
 2  mantova-vlan3.bh.access.hea.net (193.1.198.245)  0.230 ms  0.223 ms  0.247 ms 
 3  hyperion-gige3-0-0.bh.core.hea.net (193.1.196.173)  0.355 ms  0.349 ms  0.373 ms 
 4  deimos-gige5-1.cwt.core.hea.net (193.1.195.129)  0.605 ms  0.600 ms  0.621 ms 
 5  heanet.ie1.ie.geant.net (62.40.103.229)  0.730 ms  0.725 ms  0.747 ms 
 6  ie.uk1.uk.geant.net (62.40.96.138)  13.098 ms  13.090 ms  13.237 ms 
 7  uk.ny1.ny.geant.net (62.40.96.169)  81.803 ms  81.800 ms  81.820 ms 
 8  esnet-gw.ny1.ny.geant.net (62.40.103.214)  81.803 ms  81.798 ms  81.820 ms 
 9  chicr1-oc192-aoacr1.es.net (134.55.209.57)  102.041 ms  102.050 ms  102.154 ms 
10  snvcr1-oc192-chicr1.es.net (134.55.209.53)  150.128 ms  150.095 ms  150.126 ms 
11  lbl-snv-oc48.es.net (134.55.209.6)  151.485 ms  151.470 ms  151.508 ms 
12  lbnl-ge-lbl2.es.net (198.129.224.1)  153.971 ms  153.207 ms  153.247 ms 
13  ir1000gw.lbl.gov (131.243.128.210)  151.612 ms  151.588 ms  151.621 ms 
14  net100.lbl.gov (131.243.2.93)  151.484 ms  151.597 ms  151.500 ms 
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traceroute to 192.91.239.4 (192.91.239.4), 30 hops max, 38 byte packets 
 1  calpurnia-vlan7.bh.access.hea.net (193.1.31.97)  0.885 ms  0.831 ms  1.023 ms 
 2  mantova-vlan3.bh.access.hea.net (193.1.198.245)  0.370 ms  0.244 ms  0.228 ms 
 3  hyperion-gige3-3-0.bh.core.hea.net (193.1.196.121)  0.505 ms  0.375 ms  0.362 ms 
 4  deimos-gige5-1.cwt.core.hea.net (193.1.195.129)  0.639 ms  0.639 ms  0.633 ms 
 5  heanet.ie1.ie.geant.net (62.40.103.229)  0.911 ms  0.917 ms  0.757 ms 
 6  ie.uk1.uk.geant.net (62.40.96.138)  13.342 ms  13.205 ms  13.341 ms 
 7  uk.fr1.fr.geant.net (62.40.96.89)  20.543 ms  28.688 ms  20.408 ms 
 8  fr.ch1.ch.geant.net (62.40.96.29)  28.713 ms  28.563 ms  28.580 ms 
 9  switch-bckp-gw.ch1.ch.geant.net (62.40.103.22)  28.813 ms  28.831 ms  28.792 ms 
10  r04gva-v-7.cern.datatag.org (192.91.239.234)  28.847 ms  28.792 ms  28.767 ms 
11  w04gva-ge-0.cern.datatag.org (192.91.239.4)  28.941 ms  28.787 ms  28.664 ms 

 

 

Delay-bandwidth product for this path is thought to be around 2000 packets, with a 4096 packet queue located at 
the link in CERN. 



CERN, Switzerland – SLAC, California 

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

time (s)

cwnd (packets) 

throughput (x10Mbs) 

 
traceroute to iepm-resp.slac.stanford.edu (134.79.240.36), 30 hops max, 38 byte packets 
 1  r04chi-v-570.caltech.datatag.org (192.91.239.56)  116.555 ms  116.392 ms  116.368 ms 
 2  abilene-tge.cern.ch (192.91.236.197)  116.563 ms  116.539 ms  116.527 ms 
 3  iplsng-chinng.abilene.ucaid.edu (198.32.8.77)  124.311 ms  126.566 ms  120.273 ms 
 4  kscyng-iplsng.abilene.ucaid.edu (198.32.8.81)  129.591 ms  129.539 ms  129.494 ms 
 5  dnvrng-kscyng.abilene.ucaid.edu (198.32.8.13)  148.182 ms  140.079 ms  140.110 ms 
 6  snvang-dnvrng.abilene.ucaid.edu (198.32.8.1)  164.923 ms  164.923 ms  164.857 ms 
 7  losang-snvang.abilene.ucaid.edu (198.32.8.94)  172.375 ms  172.364 ms  172.363 ms 
 8  hpr-lax-gsr1--abilene-LA-10ge.cenic.net (137.164.25.2)  172.931 ms  173.353 ms  172.542 ms 
 9  dc-lax-dc1--lax-hpr1-ge.cenic.net (137.164.22.12)  172.726 ms  172.737 ms  172.650 ms 
10  dc-sac-dc1--lax-dc1-pos.cenic.net (137.164.22.127)  181.870 ms  181.945 ms  181.971 ms 
11  dc-oak-dc2--csac-dc1-ge.cenic.net (137.164.22.110)  184.068 ms  183.861 ms  183.716 ms 
12  dc-oak-dc1--oak-dc2-ge.cenic.net (137.164.22.36)  184.009 ms  184.273 ms  183.627 ms 
13  dc-stan--oak-dc1-ge.cenic.net (137.164.23.42)  184.681 ms  184.716 ms  184.623 ms 
14  rtr-dmz1-vlan401.slac.stanford.edu (192.68.191.85)  175.147 ms  175.081 ms  175.092 ms 
15  * * * 
16  iepm-resp.slac.stanford.edu (134.79.240.36)  175.039 ms  175.049 ms  175.062 ms 
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