Voice and Data over 802.11

Hamilton Institute Wireless Group

20 Jun 2005

Completed voice work

Extended Bianchi model to *nonsaturated* 802.11b. This enables:

- theoretical justification of maximum number of voice calls, confirming experimental and back-of-envelope calculations;
- practical optimisation of parameters such as CWmin;
- consideration of heterogeneous demands.

- Within capacity, voice alone should work OK.
- Capacity can't be significantly increased by tuning CWmin.
- Mixing voice and (saturated) data looks like bad news.
- Access point crunch?

Can 802.11e help?

802.11e EDCF allows the adjustment of several parameters:

- CWmin
- AIFS
- TXop

How can these be used improve voice performance?

Modelling

- Different CWmin values are relatively easy to model/understand.
- AIFS is more subtle. Strongly load dependant.
- TXop can be easily modelled under certain buffering assumptions.
- Combined nonsaturated 802.11b model with a saturated 2-class 802.11e model of Battiti.

Modelling supports notion that AIFS has little impact in low loads but should be dramatic for heavy loads.

To operate voice and data:

- Increase AIFS of data by 4 to protect voice.
- If voice capacity is small, use CWmin = 16, else CWmin = 32.
- Use admission control to prevent voice swamping data.

TXop can also be used to improve access point crunch.

Further work

- Writing up use of model for parameter selection.
- Adjustment of CWmin, AIFS and TXop can be tuned on Atheros based wireless cards using minor changes to the Linux/FreeBSD driver ('madwifi'). Results being validating results on small wireless network here.