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Abstract—Delay-based TCP variants continue to attract a large
amount of attention in the networking community. Potentially,
they offer the possibility to efficiently use network resources while
at the same time achieving low queueing delay and virtually
zero packet loss. One major impediment to the deployment of
delay-based TCP variants is their inability to coexist fairly with
standard loss-based TCP. In this paper we propose a simple
strategy to make the fair coexistence possible and to ensure that
delay-based flows will revert back to the delay-based operation
when loss-based flows are no longer present. Analytical and
ns-2 simulation results are presented to validate the proposed
algorithm.

I. INTRODUCTION

A longstanding question in the networking community is

whether queueing delay may be used as a reliable basis

for network congestion control [1], [2]. Despite much work

on this topic [3]–[19], the case for delay-based congestion

control remains compelling. Potentially, allocation of network

bandwidth between competing sources can be achieved

with low (zero) packet loss, with very low queueing delay,

and with full utilisation of network links. Networks which

exhibit this property are said to operate at the knee of the

throughput-delay curve [20]. Motivated by these and other

potential benefits, delay-based congestion control remains

an active area of research and new algorithms continue to

be developed. Recent examples include: Fast TCP [3], [21];

Microsoft Compound [22] (partially based on delay); more

recent delay-based additive increase multiplicative decrease

(AIMD) variants [23]–[25]; and this present work which is an

outcome of a Cisco-funded project to investigate delay-based

congestion control in harsh network environments.

Traditionally, a number of arguments are usually put

forward that question the use of delay in congestion control

applications. These include: the difficulty in obtaining delay

estimates from network measurements [1]; network sampling

issues [1], [2], [26]; the inability of existing delay-based

algorithms to maintain a low standing queue [26]; and the

inability of delay-based flows to coexist fairly with loss-based

flows in mixed environments. These items have been the

subject of much discussion [1], [2], [26] which we do not

repeat here. Rather, we focus the specific issue of coexistence.

We wish to develop delay-based algorithms that coexist fairly

with loss-based counterparts, e.g., standard TCP. Note that the

issue here is not just simple coexistence; after all, delay-based

flows may simply switch to a loss-based mode once a packet

loss is detected thereby solving the fairness problem. The

issue that makes coexistence difficult is that delay-based flows

must revert back to delay-based operation when loss-based

flows are no longer present.

Our attempt to solve the aforementioned coexistence

problem is motivated by recent work concerning Active

Queue Management (AQM) emulation from end-hosts

using delay measurements (PERT) [25], and its subsequent

extension [27], where the original algorithm was modified, to

address particularly coexistence issues. The strategy followed

in this extension was to make PERT adapt in heterogeneous

environments to achieve some form of coexistence. For

convenience we refer to this modification as mPERT in this

paper. While we believe this work, and its extension, to be

of great promise, a number of issues nevertheless remain

unresolved before, in our opinion, delay-based AIMD can be

deployed successfully.

A key question to be addressed concerns that of incremental

deployment. Namely, it is very important that any delay-based

AIMD results in networks that not only operate at the knee

of the delay-throughput curve, but also perform well in the

presence of normal loss-based TCP flows (referred to as

mixed or heterogeneous environments). In this latter context

it is also important that network properties such as loss rate

and bottleneck utilisation are not adversely affected when

delay based flows are deployed in mixed environments.

A further issue concerns whether delay-based flows can

accurately infer the presence of loss-based TCP flows. In

prior work [11], mode switches have been used to switch

delay-based flows into a loss-based mode once the presence

of conventional TCP flows are detected. While detection of

loss-based flows can be easily inferred from packet losses, it

is not trivial to ensure that the delay-based flows revert back

to delay-based behaviour when the loss-based flows are no



longer present (we refer to this as on/off switching).

Our starting point in this paper is the recently proposed

algorithm mPERT [27] that is designed to ensure coexistence

of loss-based and delay-based TCP flows. Study of this

algorithm reveals that several features might make incremental

deployment difficult. In particular, we show that mPERT

may lead to excessive network loss rates in the presence of

loss-based TCP flows, and that the aforementioned problem

of on/off switching is not fully resolved by the proposed

extension to PERT [27]. The first issue, that of increased

loss rate, is caused by a positive feedback loop that is

at the heart of the mPERT. As loss rates increase, the

mPERT flows become more aggressive, thereby increasing

the loss rate further, and leading finally beyond the limit of

the applicability of the square-root formula [28] on which

mPERT is based. A further consideration is the operation

of mPERT in many known situations in which square-root

formula is not valid (e.g., networks with drop-tail buffers,

networks with high-speed TCP, etc.). The other issue that

raises our concern about mPERT, is that of on/off switching.

As long as the network buffers remain nearly full, mPERT

will operate in its loss-based mode with the associated high

loss rates.

Given these basic observations, we suggest here an alternative

strategy to ensure gentle coexistence between loss- and delay-

based AIMD flows. In particular, our principal contribution in

this paper is to propose a new strategy that allows delay-based

(PERT-like) TCP flows to coexist fairly with loss-based flows

when they are present, without any increase in network

loss rate, and without any assumptions based on the square

root formula [28]. Furthermore, our modification allows

delay-based AIMD flows to revert to delay-based behaviour

whenever loss-based flows are no longer present.

Our paper is structured as follows. In Section II we describe

the PERT and mPERT algorithms. We then present a number

of experimental results that outline some of the problems de-

scribed above. Next, in Section III we introduce an alternative

strategy for coexistence that is suitable for deployment in

heterogeneous environments, along with a number of simu-

lations that illustrate its efficacy. Finally, in Section IV we

provide mathematical analysis that describes the ability of the

proposed solution to switch between loss-based and delay-

based operation regimes.

II. PRIOR WORK: THE PERT ALGORITHM

Our work is motivated by the recently published PERT

algorithm. While much work has been published on delay-

based congestion control [3]–[10], [12]–[19], PERT provides

an initial focus for our work because of its recent publication

(in this sense it constitutes state-of-the art), because of its

great potential, and because of its (in modified form) ability

to coexist with conventional TCP flows.
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delay

Response
probability

pmax

1

Tmin Tmax 2·Tmax (0.65· max for mPERT)

Fig. 1. PERT’s back-off probability function

The basic idea behind Probabilistic Early Response TCP

(PERT) proposed by Reddy et al. in [25], is very simple and

involves responding to delay in a probabilistic rather that

deterministic manner. By judiciously selecting the manner

of the probabilistic response the designers of PERT are able

to emulate, from end-hosts, the behaviour of a range of

AQM’s. To facilitate such AQM emulation, each PERT flow

probes the network for congestion as a normal AIMD flow,

but reduces its congestion window in a probabilistic manner

that depends on the estimated network delay. We refer to

this back-off mechanism as a back-off policy. The authors

of PERT demonstrate that (in principle) any AQM can be

emulated by selecting the back-off policy appropriately. A

sample back-off policy, chosen by Reddy et al. to emulate a

RED AQM in [25] is depicted in Fig. 1. As can be seen from

this figure the back-off policy is characterised by a non-zero

response probability above a minimum delay threshold (Tmin)

that is linearly increasing to the probability pmax at the Tmax

threshold (as in RED).

PERT, and its various embodiments, is examined

experimentally in [25]. The paper discusses issues such

as estimation of delay (δ), estimation of maximum (RTTmax)

and minimum RTT (RTTmin), operation of PERT in single

and multiple bottleneck environments, and convincingly

demonstrate both that PERT can be easily implemented (i.e.,

all signals can be estimated), and that networks in which

it is implemented, perform as would be expected if packets

were marked by router based AQM’s. Our purpose here is

not to repeat this work; rather we wish to consider how this

basic idea may fit networks in which standard, loss-based

TCP flows are for time-to-time present. In particular, we

would like the delay-based flows to coexist with loss-based

counterparts when loss-based flows are present, and to revert

to delay-based operation (to achieve low network queueing

delays) when the loss-based flows are off.

Such an extension to PERT has already been proposed

in [27]. Roughly speaking, in this work, Kotla and Reddy

propose to sense the presence of loss-based TCP flows by

observing whether the network queueing delay exceeds some

threshold. Once a loss-based flow is detected, the modified

PERT (mPERT) flows compensate for the higher back-off



On receipt of each ACK:

Estimate the current queueing delay, δcurrent

Set p = g(δcurrent) (function shown in Fig. 1)

Pick a random number rand, uniformly from 0 to 1

if rand < p and only once per RTT then

reduce cwnd by β ∗ cwnd
(0 ≤ β = δcurrent

δcurrent+δmax
≤ 0.5)

else

increment cwnd by α/cwnd
(1 ≤ α = f(δcurrent) ≤ αmax = 32)

end if

Fig. 2. pseudo-code for mPERT algorithm

rates that they experience by adjusting the rate at which

they probe for new bandwidth (i.e., additive increase factor,

α) and by adjusting the manner in which they reduce their

congestion window (i.e., multiplicative decrease factor, β).
These adjustments are made based on the estimated network

loss rate, and are outlined in pseudo-code form in Fig. 2.

Specifically, mPERT assumes that there are no loss-based

flows in the network as long as the delay stays below

50% of maximum observed queueing delay (δmax). Once

this threshold is exceeded, mPERT anticipates the presence

of a loss-based flow and to be able to compete with the

loss-based counterpart, starts increasing the TCP congestion

window variable (cwnd) upon receipt of each ACK by

min(1 + p
′

/p, αmax)/cwnd, where ratio of the back-off

and drop rates (p
′

/p) is estimated as for TCP friendly rate

control (TFRC) algorithm [29]. The TCP’s window back-off

factor is adjusted accordingly to reflect the ratio of current

queueing delay (δcurrent) and maximum observed queue size

(δcurrent + δmax), so the most conservative setting (that of

standard TCP) is achieved when the queue is full.

While the aforementioned modifications do indeed improve

the behaviour of PERT flows in the presence of loss-based

TCP flows, a number of issues of concern do arise upon

examination of the basic algorithm. This can be summarised

as follows.

(i) Fairness : mPERT makes no attempt to ensure that

PERT based flows compete fairly with loss-based flows.

(ii) Loss rate : The effect of increasing the aggressiveness

with which PERT flows probe for bandwidth increases

the network loss rate. This in turn leads to an increase in

aggressiveness with which the flows probe for bandwidth

and constitutes an unstable positive feedback loop

which results in high network loss rate. As the loss rate

increases the mPERT flows may get beyond the limit of

the applicability of the square-root formula.

(iii) Detection : The presence of loss-based flows is inferred

through an increase in the average queueing delay

TABLE I
SIMULATION PARAMETERS

PARAMETER NAME VALUE / RANGE

Number of flows 30

Access link
(each flow)

bandwidth: 100Mbps
one-way propagation delay: 5-30ms

(random)

Bottleneck link bandwidth: 10-100Mbps
(for fairness and loss rate experiments)

bandwidth: 40Mbps
(for on/off switching experiments)
one-way propagation delay: 5ms

Queue size at bottleneck 500·(bandwidth/40 Mbps) packets

Tmin 5ms

Tmax 20ms

δmax (initial value) 100ms

MTU size / Data payload 1000 / 960 Bytes

Intermittent loss-based
flow (on/off switching
experiments only)

on-time: 200 s
off-time: 275 s

Simulation time 500 s

beyond some threshold. This is an unreliable indicator.

In particular, it will be shown in Section II-A that

in the presence of many PERT flows, the average

queueing delay will not reduce below this threshold once

loss-based flows leave the network.

(iv) Square root formula : The design of mPERT is based

on the square root formula. However, there are many

situations in which this formula is not valid. These

include situations in which new high speed TCP flows

are present, or when drop-tail buffers are present.

Our objective in this paper is to propose changes to delay-

based AIMD that address the coexistence issue, and that cir-

cumvent the issues mentioned above. Our key idea is to retain

probabilistic back-off policies that are at the heart of PERT.

However, rather than emulating a RED AQM, we carefully

select a back-off policy to ensure both fair coexistence and

appropriate on/off switching behaviour. As we shall see in

Section III, this strategy is a better alternative than adapting

AIMD parameters to the network environment in the sense

that it avoids all of the objections raised above.

A. Side-effects of mPERT

Before proceeding, we now present a number of ns-2 [30]

simulations to illustrate the side-effects (items (i)-(iii)

mentioned above) of adaptive AIMD parameters.

1) Basic experimental setup: In the following simulations

we consider a mix of 30 flows (20 mPERT flows and 10

standard TCP flows for the fairness and loss rate tests, and

29 mPERT flows and a single standard TCP flow for on/off

switching tests). These flows compete for available bandwidth

in a single-bottleneck dumb-bell topology. The bottleneck

capacity varies from 10 to 100Mbps in fairness and loss rate
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Fig. 3. Coexistence of 20 mPERT flows and 10 standard TCP flows in terms of average throughput, for following capacity of bottleneck: (a) 10 Mbps; (b)
40 Mbps; (c) 70 Mbps; and, (d) 100 Mbps .

experiments, whereas for on/off switching it is set to 40Mbps.

One-way propagation delay in the bottleneck is set to 5ms

for all experiments. All access links are 100Mbps links with

uniformly distributed one-way propagation delay (5-30ms).

Loss-based flows use standard TCP (conventional AIMD),

while all mPERT flows operate according to the algorithm

described in [27]. The most important simulation parameters

are summarised in Table I.

2) Fairness: Our first set of experiments demonstrates that

mPERT can be made to coexist with standard TCP, but not

fairly. In Fig. 3 we present plots for the average throughput

obtained by each of the flows in a scenario with a (20, 10) mix

of delay/loss-based flows. As can be seen in all cases (a-d)

the average value of the throughput for the loss based flows

is noticeably lower than for theirs mPERT counterparts. This

observed unfairness is caused by the increased aggressiveness

of the mPERT flows in the presence of loss-based flows.

Presented experiments demonstrate clearly that fairness

aspects must be taken into consideration while addressing

coexistence.

3) Loss rate: We now examine the effect on the network

loss rate when mPERT operates in its loss-based mode.

Specifically, we compare the behaviour of 20 mPERT flows

coexisting with 10 standard TCP flows, with scenario in

which all 30 flows are standard TCP (conventional AIMD).

The respective loss rates are shown in Fig. 4. As can be seen,

mPERT leads to loss rates that are an order of magnitude

higher than would be the case with only loss-based flows.

This observation makes incremental deployment of mPERT

extremely problematic, since observed loss rates exceed the

limit of the applicability of the square-root formula, on

validity of which mPERT is based. Such an increased loss

rate for mPERT flows is a consequence of a positive feedback

loop that exists between the over-aggressive mechanism for

increasing mPERT’s cwnd and increased network loss rate it

provokes.
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Fig. 5. Coexistence of mPERT flows with a single loss-based flow switching
on and off: (a) queueing delay at the bottleneck; and, (b) loss rate.
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Fig. 6. Per-packet back-off probability as a function of observed delay

4) On/Off switching: The presence of loss-based flows is

inferred by a mPERT flow by observing an increase in the

average queueing delay beyond 50% of the δmax value. Here

we show that this detection strategy is not a reliable indicator

of the presence of a loss-based flow. Specifically, we consider

a scenario with 29 mPERT flows and one intermittent loss-

based flow that is active between 200 s and 275 s. Notice that

the average queueing delay does not reduce back below this

50% threshold once the loss-based flow leaves the network.

Clearly, in this situation mPERT is unable to revert to the

low queueing delay regime and stays in the loss-based mode

(Fig. 5a), which is characterised by increased network loss

rate (Fig. 5b) and high queueing delays, even though there

are no loss-based AIMD flows present in the network.

III. AQM EMULATION TO ENSURE FAIR COEXISTENCE

WITH LOSS-BASED FLOWS

We now present an alternative method, sketched initially

in [31], to ensure coexistence of loss- and delay-based AIMD

flows. As we shall see, this method avoids the problems of

adjusting AIMD parameters, and ensures that the delay-based

flows revert to delay-based operation when loss-based flows

are no longer present in then network, even though these flows

do not attempt to sense the presence of such flows directly.

In what follows, we assume that δ, RTTmin, RTTmax can

be estimated reliably by all delay-based flows in the network.

Furthermore, we do not consider the issue of slow start for

delay-based flows. These, and other issues are discussed in

the original PERT publication and in other previous work:

refer [1], [2], [23], [26].

Our basic idea, as briefly described in [31], is to carefully

select the back-off policy to achieve fairness and on/off

behaviour. Specifically, we select probabilistic back-off

strategies of the form depicted in Fig. 6. As can be observed,

the per-packet back-off probability function p = g(δ) has

two parts; a part that increases monotonically with the delay

δ (Region A), and a part that decreases monotonically with δ
(Region B). This form of AQM emulation has the following

properties:
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Fig. 8. Coexistence of 20 delay-based flows and 10 standard TCP flows in terms of average throughput, for following capacity of bottleneck: (a) 10 Mbps;
(b) 40 Mbps; (c) 70 Mbps; and, (d) 100 Mbps .

On receipt of each ACK:

Estimate the current queueing delay: δcurrent

Set p = g(δcurrent) (function shown in Fig. 6)

Pick a random number rand, uniformly from 0 to 1

if rand < p and cwnd ≥ w0 then

reduce cwnd by 0.5 · cwnd
else

increment cwnd by 1/cwnd
end if

Fig. 7. Pseudo-code for delay-based AIMD algorithm

(i) Assuming that pmax is large enough, the network

stabilises in Region A when only delay-based flows are

present.

(ii) When loss-based flows are present, the network is driven

to Region B, and delay-based flows behave as loss-based

flows due to the low per-packet back-off probability.

(iii) When loss-based flows switch off, the network cannot

stabilise in this region due to a backward pressure

exerted by the probability function. Namely, as the

flows experience back-offs, the queueing delay reduces,

thereby increasing the per-packet back-off probability,

thus making further back-offs more likely. This process

continues until the network stabilises in Region A.

As can be seen, this type of strategy should achieve co-

existence of loss- and delay-based AIMD flows, without a

discernible increase in network loss rate. Furthermore, the

back-pressure described in (iii) should ensure on/off behaviour.

Note also that the strategy makes no reference to the square-

root formula. The basic algorithm is summarised in Fig. 7.

A. Experimental results

We now repeat the experiments presented in Section II.



1) Basic experimental setup: The aforementioned strategy

is basically a modification of the well known RED AQM.

Consequently, one method to select the parameter values for

δmin, δth and pmax is to use the rules for RED parameter

settings [25]. δmax is estimated for each flow separately,

the default value is 100 [ms]. For purpose of comparative

analysis with mPERT, we follow this strategy. The parameters

δmin, δth and pmax for proposed back-off policy correspond

to the following parameters of mPERT: Tmin, Tmax and

pmax, respectively and are given in Table I. Otherwise, the

simulation scenarios are the same as in case of the mPERT

analysis provided in Section II.

2) Fairness: We begin by repeating the fairness experiments

that we used to evaluate the ability of mPERT to coexist with

standard loss-based TCP flows. Fig. 8 depicts the results of a

series of experiments; for a (20, 10) mix of delay/loss-based

flows, and the bottleneck bandwidth changing from 10 to

100Mbps respectively. Note that although there is a bias in

favour of the loss-based flows (due to the fact that the delay-

based flows experience a small number of non-loss induced

back-offs in the high-queue regime), there is a reasonably fair

coexistence of the loss-based and delay-based AIMD flows.

Furthermore, in contrast to mPERT, the aforementioned bias

in favour of loss-based flows can be controlled by carefully

selecting the back-off policy. Notwithstanding this latter

observation, the experiments nevertheless demonstrate very

good coexistence of the delay-based and loss-based flows as

measured by average throughput.

3) Loss rate: Next, we examine the effect of our algorithm

on the network loss rate. To do this we repeat the analogous

mPERT experiment where a mix of loss and delay-based flows

coexist, and compare this to the corresponding situation of a

network of loss-based flows only. The results are depicted in

Fig. 9. Observe that the proposed algorithm does not increase

significantly network loss rate in presence of loss-based flows.

4) On/Off switching: Our primary objective in this work

was to develop a delay-based algorithm that behaves as a loss-

based TCP when competing with loss-based TCP flows, but

otherwise reverts to delay-based operation. This behaviour is

depicted in Fig. 10. Here 30 flows (all delay-based except for

a single loss-based flow) compete for the available bandwidth.

From 200 to 275 second, when the loss-based flow appears

in the network, the delay-based flows behave as standard

TCP flows and compete fairly for bandwidth. Otherwise they

strive in a cooperative manner to keep queueing delay below

a certain threshold (δth). Note also that the mode switching

occurs automatically (and swiftly) without any complicated

sensing or signal processing to determine whether or not the

loss-based flows have left the network. We believe that this

mechanism is novel in the context of delay-based congestion

control.
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Fig. 10. Coexistence of delay-based flows with a single loss-based flow
switching on and off: (a) queueing delay at the bottleneck; and, (b) loss rate.



B. Limitations

To conclude this section we note a number of potential

limitations of proposed algorithm. (A) The maximum

equilibrium loss rate is given by pmax. This means that the

network will revert to a loss-based network if there is a

very large number of network flows; namely, if the required

equilibrium loss rate is greater than pmax. This property is

very desirable as it is well known that estimation of queueing

delay is difficult in networks with very large multiplexing

of flows [26]. (B) Our algorithm works best in multiplexed

environments with standing queues. In situations where this

assumption is not valid, some unfairness may result. (C) A

crucial part of the algorithm is the assumption that all flows

use the same per-packet drop probability function and sense

the same queueing delay. If this assumption is not valid,

unfairness can be introduced. (D) The behaviour of networks

(in the fluid limit) in which this algorithm is deployed is

described by the Kelly framework [32].

IV. STABILITY OF PROPOSED SOLUTION

Next, an analytical description of the process described

qualitatively in Section III is given. We demonstrate that

N delay-based flows operating in the high-delay regime,

will eventually return to low-delay regime (when loss-based

flows are no longer present). More formally we show that

this system has at most two equilibrium points, a low-delay

and high-delay one. Furthermore, the low-delay equilibrium

is stable, and the high-delay equilibrium is unstable. To

demonstrate this we use a standard fluid model [32] to

analyse the system of N flows with non-homogeneous RTT
competing at a bottleneck link with capacity C.

By δ(t) and Wi(t) i = 1, . . . , N we denote the queueing

delay and cwnd’s at time t. Those quantities are related as
∑N

i=1
Wi(t)

RTTi+δ(t) = C. Recall in RED that in steady state the

average window sizes do not depend on the round trip time;

these are just a scaling for the speed of the evolution. Thus

W1(t) = W2(t) = · · · = WN (t) =: W (t) and together we get

W (t) = C
∑

N

i=1

1
RT Ti+δ(t)

. Using the standard fluid model the

evolution of cwnd is given by:

∆Wi(t)

∆t
=

1

RTTi + δ(t)
−

qi
0

∆t
·
Wi(t)

2
, (1)

where qi
0 is the probability that during the time interval (t, t+

∆t) a back-off of the i′th flow occurred. We denote by M i
0

the number of packets that belong to flow with cwnd equal

to Wi(t) that are sent in the interval (t, t + ∆t). Then M i
0 =

∆t·Wi(t)
RTTi+δ(t) , and it follows that qi

0 can be approximated as:

qi
0 = 1− (1− p)Mi

0 ≈ pM i
0 = p∆t·Wi(t)

RTTi+δ(t) . It therefore follows
that (1) can be written as:

∆Wi(t)

∆t
=

1

RTTi + δ(t)

(

1 −

p

2

(

C
∑

N

i=1
1

(RTTi+δ(t))

)2)

(2)

As the right hand side of this equation no longer depends

on ∆t we can now write Ẇi(t) instead of
∆Wi(t)

∆t
. The

network equilibria are given by p

2

(

C
∑

N

i=1

1
(RT Ti+δ(t))

)2

= 1.

We denote by p∗(δ), the locus of equilibria: p∗(δ(t)) =
2

C2

(

∑N

i=1
1

RTTi+δ(t)

)2

. Recall that the per-packet back-off

rate p is a function of the delay δ: p = g(δ). Therefore,

the system (1) is in equilibrium at the points of intersection

of curves p∗(·) and g(·). Those two curves have zero or

one, or two points of intersection δ∗1 < δ∗2 (see Fig. 6).

Our objective is to design the network so that there are two

equilibria (the regular regime). Using the Lyapunov function

V (δ(t)) = δ(t)2, it is easily deduced that the right point of

intersection (δ∗2) is an unstable equilibrium and that the other

left equilibrium (δ∗1) is a stable one. It also follows that if

δ becomes smaller than δ∗2 the system will be driven to the

stable equilibrium δ∗1 . We formalise these statements in the

following theorem.

Theorem 1: The system (1), has 0,1 or 2 equilibrium points:

(i) If p∗(δth) < pmax there are two equilibrium points: δ∗1 <
δ∗2 .The right equilibrium point δ∗2 is unstable and the left one,

δ∗1 is stable. (ii) If p∗(δth) = pmax there is one, unstable,

equilibrium and the cwnd dynamics is mainly driven by the

packet drops, when the queue is full. (iii) If p∗(δth) > pmax

there is no equilibrium, and the cwnd dynamics is mainly

driven by the packet drops, when the queue is full.

Proof: For any given δ̂ ∈ R we have that if p(δ̂) < p∗(δ̂)
then Ẇi(t) > 0, and if p(δ̂) > p∗(δ̂) then Ẇi(t) < 0 for all

i = 1, . . . , n.
(i) Let W 1

i be the steady state value of Wi(t) at the equilibrium
δ1 for all i = 1, . . . , n.
For the stability of the equilibrium at δ1 we regard the

following shifted system, where W̃i(t) = Wi(t) − W 1
i with

δ̃(t) = δ(t) − δ1.

A Lyapunov function for this system is V (t) = δ̃2(t). It is
obviously proper and positive definite. And we have:

V̇ (t) = 2δ̃(t) ˙̃δ(t) = 2δ̃(t)
1

C
(−C +

n
∑

i=1

Wi(t)

RTTi + δ(t)
) (3)

Here we have two distinct possibilities.

(a) if δ̃(t) < δ1 then
˙̃Wi(t) > 0 for all i = 1, . . . , n and

thus −C +
∑n

i=1
Wi(t)

RTTi+δ(t) > 0 and V̇ (t) is negative

(b) if δ̃(t) > δ1 then
˙̃Wi(t) < 0 for all i = 1, . . . , n and

thus −C +
∑n

i=1
Wi(t)

RTTi+δ(t) < 0 and V̇ (t) is again

negative.

This proves that V (t) is a Lyapunov function for our system

and that the equilibrium at δ1 is stable. The instability of the

second equilibrium and part (ii) of the theorem follow when

we consider the shifted system, where W̃i(t) = Wi(t) − W 2
i



with δ̃(t) = δ(t) − δ2, where W 2
i is the steady state value of

Wi(t) at the equilibrium δ2 for all i = 1, . . . , n. The same

Lyapunov function as before ensures the instability. For part

(iii) of the theorem for all possible δ ∈ R we have that p(δ) <
p∗(δ). And hence Ẇi(t) > 0 for all t ≥ 0 and the claim

follows.

Comment: To ensure that the system eventually returns

to the low delay equilibrium we exploit the fact that the

probability that δ < δ∗2 at some time instant, is positive, due

to the random effects in the network. This fact is sufficient to

guarantee that the network converges to the stable equilibrium

after loss-based flows leave the network.

V. CONCLUSION

In this paper we have presented a method that can be

used to ensure that delay-based AIMD flows operate as

loss-based flows when loss-based flows are present in the

network, allowing fair coexistence with their loss-based

counterparts, and otherwise revert to delay-based operation

mode. This work was motivated by the PERT algorithm and

its derivatives, which despite focusing on the coexistence

issue failed to provide a fair solution capable of switching

back to a low queueing delay regime once the loss-based

flows are no longer present. Initial results provided for a

single-bottleneck scenario indicate that this very simple idea

is of merit, and requires more attention to address identified

limitations as well as further evaluation in more complex

scenarios.
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