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Abstract8

We study the viability and resilience of languages, using a simple dynamical model of two languages in9

competition. Assuming that public action can modify the prestige of a language in order to avoid language10

extinction, we analyze two cases: (i) the prestige can only take two values, (ii) it can take any value but11

its change at each time step is bounded. In both cases, we determine the viability kernel, that is, the set12

of states for which there exists an action policy maintaining the coexistence of the two languages, and13

we define such policies. We also study the resilience of the languages and identify configurations from14

where the system can return to the viability kernel (finite resilience), or where one of the languages is15

lead to disappear (zero resilience). Within our current framework, the maintenance of a bilingual society16

is shown to be possible by introducing the prestige of a language as a control variable.17

Introduction18

The study of language dynamics using computer simulations has become a research field of increasing19

interest in the scientific community. Models studying language dynamics range from social impact theory20

applied to language competition [1] to genetic approaches for the evolution of universal grammar [2]. We21

are here interested in the problem of language competition, i.e., the dynamics of language use among a22

population of interacting agents speaking different languages. Around 50% of the 6000 languages spoken23

today are in danger and will disappear during the current century according to the recent studies in24

language contact [3]. Beyond Weinreich’s Languages in contact [4], several studies in sociolinguistics have25

addressed questions regarding the level of endangerment of specific languages [5] and the challenge to26

find a common pattern that might relate language choice to ethnicity, community identity or the like [6].27

Lately, the need to provide a quantitative analysis in the field of sociolinguistics is getting an increasing28

attention [7]. This fact has triggered an effort in order to model and understand the mechanisms within29

scenarios of language competition: some models study the competition between many languages in order30

to reproduce the distribution of language sizes in the world in terms of the number of speakers [8,9]; while31

others focus on the case of language contact between few languages (for a review see Refs [10, 11]). In32

particular, Abrams and Strogatz [12] proposed a simple mathematical model of competition between two33

languages. The model describes the system by aggregated variables that represent the fraction of speakers34

of each language, where a higher local density of speakers and a higher prestige, the relative status of35

a language, tend to increase the density of speakers of a language. The analytical study of the model36

and the fitting to real data from the competition between Quechua-Spanish, Scottish Gaelic-English and37

Welsh-English, predict that the coexistence of two languages is unstable, irrespective of the prestige of38

the languages and their initial density of speakers in the model, in contrast to the evidence that bilingual39

societies exist today. The paper finished with the following remarks:40

Contrary to the model’s stark prediction, bilingual societies do, in fact, exist. [...] The41

example of Quebec French demonstrates that language decline can be slowed by strategies such42

as policy-making, education and advertising, in essence increasing an endangered language’s43
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status. An extension to [the model] that incorporates such control on s through active feedback1

does indeed show stabilization of a bilingual fixed point.2

Several modifications and extensions of this model of language competition have investigated deeper3

this problem: (i) developing agent-based models in order to study the behavior of the model in regular4

networks [13], in which the path to a final scenario of extinction of one of the languages is analyzed in finite5

size systems; (ii) introducing geographical dependencies in terms of a reaction-diffusion equation, which6

allow the survival of the two languages, with speakers of different languages mostly located in different7

geographical areas [14, 15]; (iii) implementing Lotka-Volterra type modifications to the original model8

which can lead to a scenario of coexistence of the two languages in the same geographical area [16]; (iv)9

introducing bilingualism in the model: individuals can use both languages [17,18]. In this last extension10

[18], and in the same parameter setting studied by Abrams and Strogatz, introducing bilingualism keeps11

the coexistence of both languages unstable. This extension of the model has been extensively studied12

and compared to the seminal model of Abrams and Strogatz for the case of socially equivalent languages13

and linear dependence on the density of speakers [19]. The analysis has been done in agent based models14

in finite systems where social structure has been taken into account using complex social networks. The15

models have been studied in two-dimensional regular lattices and small-world networks [19], as well as in16

networks with community structure [20,21].17

The prestige of a language has been considered as one of the main factors affecting language com-18

petition since Labov’s Sociolinguistic Patterns [22]. It measures the status associated to a language due19

to individual and social advantages related to the use of that language, being higher according to its20

presence in education, religion, administration and the media. Minett and Wang [23] defined simple21

strategies for modifying the prestige to maintain the coexistence of the two languages, following the re-22

marks of the seminal work quoted above [12]. Beyond this initial effort in proposing simple strategies to23

foster language coexistence, the aim of this work is to provide a more general approach to determine the24

actions on the prestige to maintain the coexistence of both languages.25

We adopt a viability theory perspective: viability theory [24] provides theoretical concepts and prac-26

tical tools, in order to maintain a dynamical system inside a given set of a priori desired states, called the27

viability constraint set. This set represents the “good health” of a system beyond which its safe existence28

would be jeopardized; in the context of language maintenance, it characterizes the safe coexistence of29

both languages. The goal of viability theory is to determine policies (viable policies) that always keep the30

system inside the viability constraint set, rather than to optimize some criterion. The main concept is the31

viability kernel: the set of states, given some possible control actions on the system, for which the system32

can be maintained inside the viability constraint set. It provides the actual constraints of the system:33

inside the viability kernel, there is at least one control policy which maintains the system indefinitely34

inside the constraint set; outside the viability kernel, the system will break the constraint set, irrespective35

of the policy applied. Moreover, viability theory provides a particularly appropriate framework to define36

rigorously the concept of resilience [25], the capacity of a system to undergo some exogenous disturbances37

and to maintain some of its dynamical properties. Resilience is often defined within the dynamic systems38

theory: it can be measured as a function of the time needed to return to equilibrium after a perturba-39

tion [26], or as a function of the distance to bifurcation points [27], where these are defined as points40

where the stability of a fixed point changes. In the viability framework, the desired properties can be41

defined by viability constraints, and resilience, which refers to viable states, becomes the capacity to drive42

the system inside its viability kernel when a perturbation pulls it off. It focuses on the ways by which the43

system can recover from such a perturbation by providing control policies (if any) that will drive back44

the system to a safe coexistence scenario with a minimal cost of restoration. Applying viability theory45

to the Abrams-Strogatz model, We identify the configurations for which an indefinite coexistence can be46

insured, and provide the corresponding action policies on the prestige. Following Ref [25]’s approach,47

we study the resilience of the model by identifying configurations from where the system can return to48

a state of coexistence (finite resilience) and other configurations from where one of the languages faces49
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extinction irrespective of the policy applied (zero resilience).1

This paper is organized as follows: first, we introduce the Abrams-Strogatz model, briefly describing2

the model and the stability analysis depending on the parameters; we then study the viability of the3

languages by defining action policies that maintain the system within its viability kernel; finally, we4

compute the resilience of the two languages using two different criteria. We finally discuss the results5

and draw some conclusions.6

Results7

Language Dynamics: the Abrams-Strogatz Model8

To study the competition between languages in a given population, Abrams and Strogatz proposed a9

simple model to represent a population with two languages (A and B) in competition for speakers. Let Σ10

be the fraction of A-speakers and 1−Σ the fraction of B-speakers. A B-speaker can become an A-speaker11

with the probability PBA(Σ), and the inverse event happens with the probability PAB(Σ). In this way,12

the time evolution for Σ is:13

dΣ
dt

= (1 − Σ)PBA(Σ) − ΣPAB(Σ). (1)

Speakers change their language according to the attractiveness of the other language, which depends on14

the fraction of speakers and on two parameters: the prestige of the language, s, and the volatility, a. The15

probability for B-speakers to become A-speakers reads:16

PBA(Σ) = Σas. (2)

The prestige of language A is modelled as a scalar, s ∈ [0, 1] (the prestige of language B is 1 − s),17

which aggregates the multiple factors affecting the prestige of a language. Notice that the case s = 0.518

corresponds to the case of socially equivalent languages. The functional form of PBA(Σ) is shaped by19

the parameter a, which we define as volatility (see Figure 1). For the case a = 1, we have the special20

case of linear transition probabilities (marginal volatility); a high volatility regime is obtained for a < 1,21

where the transition probabilities are larger than linear (agents are likely to change language); while a22

low volatility regime is obtained for a > 1 where happens the opposite (agents more rarely change their23

language). Similarly, the probability for A-speakers to become B-speakers is:24

PAB(Σ) = (1 − Σ)a(1 − s). (3)

Equations 2 and 3 incorporate the assumption that if a language has no speakers or has zero prestige,25

the probability for a speaker to change for this extinct language is zero.26

Introducing Eqns 2 and 3 in Eqn 1, the Abrams-Strogatz model results in the following population27

dynamics28

dΣ
dt

= (1 − Σ)Σ[Σa−1s − (1 − Σ)a−1(1 − s)]. (4)

We focus now on a brief stability analysis of the model. When a �= 1, the stability analysis shows29

that there are three fixed points: Σ∗ = 1 and Σ∗ = 0 which correspond to consensus in the state A or B,30

respectively; and the other one corresponds to coexistence:31

Σ∗ =

((
s

1 − s

) 1
a−1

+ 1

)−1

. (5)

• For a > 1, the two first fixed points are stable, and the third one is unstable, leading to a scenario32

of dominance of one of the languages and extinction of the other.33
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• For a < 1 instead, the stability of the fixed points changes: consensus becomes unstable giving rise1

to the coexistence of the two languages. A change in the status does not change the stability of2

the fixed points, but changes its value; the higher the difference in the relative prestige, the higher3

the difference in densities between the two languages in the third fixed point. Notice that the case4

s = 0.5 corresponds to the case of socially equivalent languages, and for this case, the transition5

probabilities (Eqns 2 and 3) become symmetric and the third solution is Σ∗ = 0.5 independently of6

a.7

• For a = 1, and s �= 0.5, Eqn 4 becomes the logistic-Verhulst equation [13]:8

dΣ
dt

= (2s − 1)Σ(1 − Σ). (6)

In this case, there exist just two fixed points: (i) Σ∗ = 0 and (ii) Σ∗ = 1. For s < 0.5, (i) is9

stable and (ii) unstable while for s > 0.5 it happens the opposite. For the case s = 0.5, we obtain10

dΣ/dt = 0 with a degeneracy of fixed points: any initial condition is a fixed point of the dynamics.11

This special case of socially equivalent languages and linear transition probabilities corresponds to12

the voter model dynamics, extensively studied in complex networks [28–31].13

Language Viability14

In this work, we are interested in how active policies in favor of an endangered language might lead to a15

coexistence of the two languages in competition. Abrams and Strogatz already suggested that [12]:16

An extension to Eqn 4 that incorporates such control on s through active feedback does17

indeed show stabilization of a bilingual fixed point.18

We now give evidence of this remark by studying the Abrams-Strogatz model in a viability theory19

framework. We consider three values of the volatility parameter: a = 0.2, 1 and 2. Note that in the case20

a = 0.2 (in general for a < 1), the fixed point corresponding to coexistence of the two languages is stable,21

and thus no control parameter on s needs to be included to stabilize a bilingual fixed point. However,22

when the difference in the prestige of the two languages is very large, the fixed point might lay outside23

the constraint set.24

Stating the Viability Problem25

Viability theory [24] focuses on how to maintain a dynamical system inside a viability constraint set.26

The system is composed by state variables, that describe the system, and by control variables that allow27

one to act on it. The viability constraint set defines a state set outside which the system escapes from28

an a priori desired setting. A state is called viable if there exists at least one control function that29

maintains indefinitely the system inside the viability constraint set; the set of all these viable states is30

called the viability kernel. The viability problem is thus to define a control function that keeps the system31

viable. On the contrary, for states located outside the viability kernel, all possible evolutions break the32

constraints in finite time. As shown below, the viability kernel is essential in order to define action policies33

that maintain viability and the main task in order to solve a viability problem is thus to determine its34

viability kernel.35

When defining the viability constraint set in the case of language competition, in general, in order36

to characterize a language as endangered, the fraction of people speaking it is not enough: other crucial37

aspects include the point at which children no longer learn the language as their mother tongue; as well as38

the increase of the average age of speakers (in an endangered language, eventually only older generations39

speak the language) [32]. However, these factors are out of the scope of the current approach, and we40

will assume in this work, as a first approximation, that a fraction of speakers below a critical value41
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becomes an endangered situation. Building up from this point, in the Abrams-Strogatz model, we want1

to determine all the couples of density of speakers and language prestige which let the coexistence of the2

two languages. The viability constraint set is defined by setting minimal and maximal thresholds on the3

density of speakers. Below the minimal threshold, Σ, or above the maximal threshold, Σ, we consider4

that language A, or B respectively, is endagered, meaning that the system is not viable. We set Σ = 1−Σ5

such that there is no need to consider explicitly language B: if Σ is outside the constraint set, so does6

1 − Σ.7

As it is advocated in Ref [12], we introduce prestige s as the control variable. The enhancement of8

the prestige of an endangered language can be triggered by political actions such as the increase of the9

prestige, wealth and legitimate power of its speakers within the dominant community, the strong presence10

of the language in the educational system, the possibility that the speakers can write their language down,11

and the use of electronic technology by its speakers [3]. The computation of the viability kernel for the12

Abrams-Strogatz model will allow us to answer questions like: for a given density of speakers, are there13

action policies performed in favor of the endangered language that will keep the coexistence of the two14

languages? If the answer is yes, which are convenient policies? To answer this question, Minett and15

Wang [23] proposed strategies in a simple framework (only two control values are considered). The main16

advantage of using viability theory is that it provides general tools and methods to determine the set17

of initial density of speakers for which it is possible to control the system such that the coexistence is18

ensured.19

First Case: Two Prestige Values20

Following the idea of Minett and Wang [23], we consider first a setting where the control u is the prestige21

s of language A, and we restrict the possible values of the control to only two discrete values u1 and u2.22

We consider the following viability problem: Find the action policies (a function defining the action in23

time), such that the dynamical system24 {
dΣ
dt

= (1 − Σ)Σ
(
Σa−1s − (1 − Σ)a−1(1 − s)

)
s = u ; u ∈ {u1, u2}

(7)

remains in the viability constraint set K:25

K = [Σ, Σ]. (8)

Our aim is to find the set of values of Σ for which there exists at least one control function that keeps26

the states of the system defined by Eqn 7 always inside the viability constraint set (Eqn 8). The set of27

all the values of Σ satisfying Eqns 7 and 8 constitutes the viability kernel associated to the model with28

such control settings, and is denoted V iab(1)(K).29

Computation of the viability kernel. We will assume that the critical threshold of the density30

of speakers is 20% of the size of the whole population. Thus we set Σ = 0.8 and Σ = 1 − Σ = 0.2, the31

viability constraint being K = [0.2, 0.8]. We also suppose that some action can switch the prestige of32

language A at any time from u1 = 0.4 to u2 = 0.6. The theoretical boundaries of the viability kernel33

can be determined analytically. Table 1 gives the boundaries of viability kernels for three values of the34

volatility a: a = 0.2, 1 and 2. The details and proofs are given in Appendix S1.35

For a ≤ 1, the viability kernel is the whole constraint set. This means that it is possible to maintain36

language coexistence between 0.2 ≤ Σ ≤ 0.8, irrespective of the initial density of speakers A and the37

initial value of the prestige (given that the initial state belongs to the constraint set, K). For a > 1,38

the maintenance is only possible for initial densities of speakers A between 0.4 and 0.6. When a state39

Σ /∈ V iab(1)(K), the system will leave the viability constraint set, irrespective of the actions applied.40

Determining heavy viable trajectories. We are interested now in how frequently policy actions41

must be performed. We use the heavy control principle, which specifies to change the control only when42

viability is at stake. The principle of the heavy control algorithm is as follows:43
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• consider an initial state Σ located inside the viability kernel and an initial control u0;1

• anticipate the state of the system at the next time step, keeping the same control;2

• if the obtained state is inside the viability kernel, then the control does not change;3

• on the contrary, if it is outside the viability kernel, then change the control.4

Viability theory guarantees that this procedure maintains language coexistence. However, there may be5

many action policies that ensure coexistence: the only requirement is that the chosen controls never lead6

outside the viability kernel. Figure 2 displays viability kernels and control policies. For a < 1, there7

exists a stable fixed point and the trajectory leads to equilibrium. Starting from any initial density of8

A-speakers and prestige, there is no need to apply any control policy; the equilibrium is naturally reached.9

For a ≥ 1, there are no stable fixed points inside the viability constraint set. The control procedure is10

then applied at each time step: the control is changed only when it leads to a point located outside the11

viability kernel.12

Second Case: Prestige Chosen in a Continuous Interval13

In this section, instead of taking only two values, we suppose that the prestige can take any value s ∈ [0, 1]14

but the action on the prestige is not immediate: the time variation of the prestige ds
dt is bounded by a15

constant denoted c. This bound reflects that changes in prestige take time: to reach a prestige value s116

starting from an initial prestige s0 < s1, the stakeholder will have to anticipate at least s1−s0
cΔt time steps,17

where c is the maximum change per unit time Δt. We consider the viability problem to define a function18

u of time, which maintains the dynamical system:19 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dΣ
dt

= (1 − Σ)Σ
(
Σa−1s − (1 − Σ)a−1(1 − s)

)
ds

dt
= u

u ∈ [−c,+c] ; c ∈ [0, 1]

(9)

inside the viability constraint set K:20

K = [Σ, Σ] × [0, 1]. (10)

The first step is to determine the viability kernel V iab(2)(K), defined by all couples (Σ, s) that are solution21

of the system, Eqn 9, for which there exists at least one control function keeping the system indefinitely22

inside the viability constraint set defined by Eqn 10.23

Computation of the viability kernel. We still assume again that the critical threshold of the24

density of speakers is 20% of the size of the whole population. Therefore, the viability constraint set is25

K = [0.2, 0.8] × [0, 1]. The theoretical boundaries of the viability kernel can be computed analytically26

(Appendix S2). In general, there exists no explicit formula to define the viability kernel boundaries and27

algorithms have been proposed to approximate them. In this paper and in addition to the theoretical28

boundaries, we approximate the viability kernel using the algorithm described in Ref [33], that considers29

the dynamics in discrete time Δt. The obtained approximation enables us to use a simpler heavy control30

procedure. Figure 3 shows the analytical and approximated viability kernels of the system for a = 0.2,31

1, and 2. The thick grey lines corresponding to the fixed points of the dynamics has been obtained32

using Eqn 5. We set c = 0.1, which means that the time variation of the prestige cannot be higher than33

10%. The figure shows how for states with a low A or B-speakers density, the prestige associated to this34

language must be strong enough to maintain viability. In situations where the density of one language35

is high, smaller values of its associated prestige also give raise to viable situations. On the contrary,36

non-viable states correspond to situations where the density of one language and its associated prestige37

are low at the same time. In this case, if the actions in favor of this language come too late, its density of38



Viability and Resilience of Languages in Competition 7

speakers will get below the critical threshold 20% while the other will spread through the majority of the1

population (above 80%). As a increases, the viability kernel shrinks. Indeed, the higher the parameter2

a, the more rarely agents change their language (low volatility regime). The impact of the change on3

the prestige is then lower as a increases, which means that when a language is close to the boundary4

of the viability kernel, even with the maximal government action, the effect on the density of speakers5

will be too slow to avoid leaving the viability constraint set. On the contrary, as a decreases, agents are6

likely to change their language (high volatility regime) and to restore coexistence. Note that for a = 0.2,7

the viability kernel is not the whole constraint set: non-viable states reach a stable fixed point located8

outside K.9

Determining heavy viable trajectories. The control procedure models an action to enhance the10

prestige of an endangered language, and we assume that such an action is costly. Therefore, if among11

different possible action policies to maintain language coexistence, doing nothing keeps the system in a12

viable situation, we assume that this strategy will be chosen in order to reduce costs. In other words,13

we suppose that, if several situations with −c ≤ u ≤ c lead to viable situations, the best choice is u = 0.14

The principle of the control algorithm is roughly as follows:15

• consider an initial state (Σ, s) located inside the viability kernel;16

• anticipate the trajectory in the next time steps, by considering u = 0;17

• if the obtained state is located inside the viability kernel, do not change the control;18

• otherwise, choose a control that brings the system away from the viability kernel’s boundary as19

much as possible.20

This control procedure is described in more details in Ref [33]. We use here the viability kernel approx-21

imation boundary instead of the analytical one because it makes easier to check if the anticipation of22

the trajectory leads to a point outside the kernel and to approximate the distance to the viability kernel23

boundary. Figure 4 presents some examples of trajectories for three different values of a, and the time24

evolution of the control (c = 0.1), during 750 time steps. For a < 1, there exist stable fixed points cor-25

responding to coexistence of the two languages and the dynamics settles there, keeping u = 0 along the26

trajectory. For a ≥ 1 instead, there are no stable fixed points inside the viability kernel, and the control27

procedure must be applied at each time step. As long as the trajectory is far away from the kernel’s28

boundary, the control is kept to zero ; when it approaches the boundary, the control that brings the29

system away from the boundary corresponds to the maximum value of the control with the appropriate30

sign, ±c.31

Language Resilience32

In the previous section, we studied the viability of the language model, supposing that one language is33

endangered when its density of speakers goes below a critical value. However, being endangered does not34

necessarily mean that the language will disappear. In this section, we are interested in how to maintain35

or restore coexistence of the two languages when the system is in danger, meaning that a disturbance36

pulls it outside the viability constraint set. We deal only with the second case, where the prestige is37

chosen on a continuous interval.38

As we pointed out in the introduction, resilience is the capacity of a system to restore its properties of39

interest, lost after disturbances. In this section, we define resilience of system Eqns 9 and 10 by considering40

its capacity to return into its viability kernel when a perturbation pulls it out from it, following Ref [25]41

definition of resilience.42
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Stating the Resilience Problem1

We are interested in situations of crisis, which take place when the system leaves the viability constraint2

set. We distinguish two types of states located outside the viability kernel:3

• States for which there exists at least one evolution driving back the system to the viability kernel4

after leaving the constraint set, are called resilient. The system is resilient to a perturbation which5

leads it into a resilient state;6

• States for which irrespective of the control policy applied, the system remains outside the viability7

kernel, are called non-resilient. The system is not resilient to perturbations leading the system into8

a non-resilient state.9

For states located inside the viability kernel, the resilience is infinite. Reference [25] also introduces the10

notion of cost of restoration in its resilience definition. This cost measures the distance between the11

evolution of the state of the system and the property of interest (i.e. being inside the viability kernel).12

Its definition must fulfill three conditions. First, the cost of an action which keeps the property of interest13

indefinitely is zero: maintaining this property may lead to some action update, but they are not taken14

into account in the cost computation. Second, when the property of interest can not be restored, the cost15

of restoration is infinite. Third, when the property can be restored, the cost is finite. It is often defined16

by the minimum time the system is outside the viability kernel or the minimal deficit accumulated along17

the trajectory. Then, the resilience is the inverse of the restoration cost of the properties of interest lost18

after disturbances. The trajectory starting from (Σ, s) with a minimal cost defines the sequence of “best”19

action policies to perform, and thus defines the resilience value. Resilience values can be approximated20

numerically using Ref [34]’s algorithm, which is based on the Ref [33]’s viability kernel approximation21

algorithm. In the context of language competition, the use of viability theory provides a measure of the22

cost associated to a policy action which will favor an endangered language.23

Determining the Resilient and Non-Resilient States24

All the states can undergo a disturbance. For instance, immigration: people speaking language A exile to25

another country, hence the density of A-speakers reduces dramatically in the home country, and increases26

in the destination country. Another perturbation to the system can be due to an abrupt change in the27

prestige of a language because of political actions such as invasion, occupation, etc. The states resulting28

from disturbances might bring the system outside the constraint set, leading to situations where the29

density of speakers is lower than the minimal threshold or higher than the maximal threshold. Thus, we30

consider now the set of all the possible situations H = [0, 1]×[0, 1], where the first dimension represent the31

density of speakers of language A and the second the prestige of language A, and we study the resilience32

of the system in H.33

First, we determine the set of states of infinite resilience, that are the states located inside the viability34

kernel of the system defined by Eqn 9 associated to constraint set defined by Eqn 10. It corresponds35

to the dark blue area on Figure 5. Then, we look for all the states for which at least one evolution36

drives the system back to the viability kernel after spending a finite time in the critical area H\K (where37

E\F is the complementary set of the set F in the set E). These are the resilient states, in colored light38

blue in Figure 5. Note that states located in K\V iab(2)(K) can have a finite resilience: when coming39

back towards V iab(2)(K), the trajectory leaves the constraint set and reaches V iab(2)(K) after spending40

time in the critical area. The states that, irrespective of the applied policy, remain outside the viability41

kernel are in the white zone. For these states, the desired level of language coexistence is impossible and42

resilience is zero (given the assumed value of c, which limits the effect of action).43

In Figure 5, we show the resilient and non-resilient states for a = 0.2, 1, and 2. For a small value of44

a, all the states are resilient, except Σ = 0 and Σ = 1, irrespective of the value of s. As we pointed out45

previously, the fixed point corresponding to coexistence is stable for a < 1. Therefore, the desired level46



Viability and Resilience of Languages in Competition 9

of coexistence for the two languages is ensured or can be reached, irrespective of their initial density of1

speakers and their prestige, except when a perturbation leads to a situation where one language is already2

extinct. For a = 1, nearly for all the initial density of speakers and prestige, reaching the desired level3

of languages coexistence is possible, except if the initial state represents a large density of speakers of4

language A associated with high prestige (language B becomes extinct, irrespective of the action applied)5

or vice versa. For a > 1, the set of resilient states becomes smaller as it can be seen in Figure 5. The6

larger the value of a, the smaller the set of resilient states is. Indeed, as mentioned before for the shrinking7

of the viability kernel, a high value of a means that agents rarely change their language and the effects8

of increasing or decreasing the prestige of a language become less effective.9

Computing Resilience Values10

As we pointed out previously, the resilience value is then defined as the inverse of its restoration cost.11

There exist several ways of defining a cost of restoration, depending on the situations and the point of12

view. We studied two possibilities for the cost: on the one hand, we considered that the time needed to13

restore viability is the only ingredient under consideration, the cost value is then the time the system14

is outside the viability kernel. The cost function C1 that associates to a state x the minimal cost of15

restoration among all the trajectories starting from x is defined by:16

C1(x) = minx(.)

(∫ +∞
0

χV (x(t))dt
)

and χV (x(t)) = 1 when x(t) /∈ V iab(2)(K) and 0 otherwise,
(11)

where x represents the state (Σ, s), x(t) is the state at time t and x(.) is the trajectory starting from this17

state. Hence the cost value is zero when the system is inside the viability kernel. On the other hand, we18

considered a more complete cost function composed of two terms: the first one that accounts for the time19

the system is not viable, and the second one, representing the distance to the viability constraint set.20

This cost function, denoted C2, thus associates the time of restoration and the measure of the density of21

speakers above or below the thresholds of the viability constraint set:22

C2(x) = minx(.)

(∫ +∞
0

χV (x(t))dt + c2χK(x(t))dt
)

and χK(x(t)) = d(x(t), K) when x(t) /∈ K and 0 otherwise,
(12)

where d(x(t), K) = max
(
Σ − Σ(t), Σ(t) − Σ

)
measures the distance between the density Σ(t) at time t23

and the density thresholds. Equation 12 takes into account that the cost of restoration of a state near24

extinction is more costly than the one for states located near the boundary of K. Parameter c2 reflects25

the relative weight of each cost, fixing the cost of being far from K relatively to the time spent outside26

the viability kernel.27

Figure 6 compares resilience values for the Abrams-Strogatz model for different values of a, and for28

the two cost functions defined (with an arbitrary cost parameter c2 = 20 for the second cost function).29

The difference of cost between two iso-cost curves is 4.8, and therefore the difference in resilience is30

1
4.8 ≈ 0.2 (the 4.8 value is arbitrary and is linked to the parametrization of the algorithm in Ref [34]).31

The darker the line, the higher the cost value is. In the white area, cost is infinite, meaning that restoring32

coexistence of both languages is impossible. For a = 0.2, the maximal cost of restoration is equal to 4.833

for cost function C1 defined by Eqn 11 and 19.2 for the cost C2 defined by Eqn 12. The cost associated34

to the function defined by Eqn 12 is bigger than the one associated with Eqn 11 because it introduces an35

additional part (the distance to viability) on the final cost. For a = 1, the maximal cost of restoration is36

more important (14.4 for Eqn 11 and 62.4 for Eqn 12). For a = 2, the resilient zone is smaller and the37

costs of restoration are larger (24 for Eqn 11 and 67.2 for Eqn 12). This means that for higher values of38

a, where the resilient set is smaller, the cost of restoration is larger: there are less resilient situations and39

the action policies to perform in order to restore viability are the most costly.40
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Determining Action Policies to Restore Viability at Minimum Cost1

Computing resilience values is instrumental to define action policies that drive back the system inside the2

viability kernel. Here, we use an optimal controller instead of a heavy controller: we do not look for one3

action policy that keeps the system in a resilient state, but we define a sequence of actions that allows the4

system to return to the viability kernel at the lowest cost of restoration. It can be shown (see Ref [34])5

that choosing the action that decreases the cost at each step (or increases the resilience), minimizes the6

whole cost of restoration. Hence, theoretically this approach also provides a means to compute resilient7

policies, which minimizes the cost of restoration along the trajectory. The procedure is roughly as follows:8

• consider an initial state (Σ, s) for which resilience is finite;9

• choose the action policy that decreases the cost at maximum at each time step, until the trajectory10

reaches the viability kernel;11

• once the state is viable, use the heavy control procedure described previously to ensure the indefinite12

maintenance of the system.13

Figure 7 displays some trajectories starting from resilient states for a = 0.2, 1 and 2. Considering the cost14

C2 of Eqn 12, the controller produces a trajectory that avoids situations where the density of speakers15

is too small or too large, because these are the most costly. Notice that for a = 0.2, the trajectory first16

reaches the equilibrium line outside K, but in order to bring the system inside the viability kernel, the17

control function is chosen such that it does not get stuck on this fixed point. The procedure leads the18

system to a second fixed point, located this time inside the viability kernel. Even if the starting point is19

located inside K but outside the viability kernel (see for example case a = 1), the trajectory crosses the20

viability constraint set before going back to V iab(2)(K), as it is not possible by definition for these states21

to directly reach the viability kernel.22

Conclusion23

In this paper, we provide general means for determining action policies to maintain the coexistence of24

two languages in competition within the Abrams-Strogatz model [12] by using the framework of viability25

theory. We compute viable policies of action on the prestige variable to keep language coexistence within26

a given constraint set, computing the viability kernel of the system. We thus give evidence of the Abrams27

and Strogatz remark: language coexistence is unstable if we consider a fixed prestige, but introducing28

the prestige as a control variable of the model enables the maintenance of a bilingual society, where29

both languages have a density above a critical value. We also define the resilience of the system in the30

formalism of viability theory: the system is resilient to a perturbation if, after the perturbation, there31

exists an action policy driving back the system to its viability kernel. In this way, we determine the action32

policies that minimize the cost to drive an endangered language to coexistence (i.e. to the viability kernel33

of the system). In the paper, we have analyzed the role played by the two parameters of the model: the34

prestige of the language, s, and the volatility, a. The prestige has been considered as the control variable35

of the system; we have shown how the viability kernel shrinks as the volatility parameter increases, due36

to the fact that agents become less likely to change their language.37

The whole approach illustrates the new definition of resilience proposed in Ref [25], which enlarges38

previous definitions of resilience, yet with a precise mathematical meaning. In particular, we don’t need to39

define the resilience relatively to the attractors of the dynamics, whereas the presence of such attractors is40

generally required in previous mathematical views of resilience [26,27]. In the future, it will be interesting41

to consider the extension of the Abrams-Strogatz model that includes bilingual speakers [19, 23], and42

compare the results with the ones presented in this paper in order to illustrate which is the role of43

bilingual agents in the dynamics of language competition from the viability theory perspective.44
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Figure Legends29

Figure 1: Dependence on the volatility parameter a for the transition probability to change
from state B to state A, PBA. Case of socially equivalent languages (s = 0.5). Marginal volatility
(a = 1, solid line), high volatility regime (a < 1, dashed line), and low volatility regime (a > 1, dotted
line).

Tables30
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Figure 2: Viability kernels and trajectories that maintain the system viable for a = 0.2, 1 and
2. The viability kernels are represented in blue and stable attractors (if any) by dots. Arrows represent
the field direction and the controls to choose. For a = 0.2, any control is convenient because they lead
the system to a stable fixed point. For a = 1 and 2, when trajectory lead to a point located outside the
viability kernel, the control value must be changed in order to ensure coexistence.

Figure 3: Viability kernel for the Abrams-Strogatz model, with c = 0.1 and Δt = 0.05. The
continuous black lines represent the theoretical curves of the viability kernel, and the area in blue the
approximation. The continuous grey line represents stable fixed points and the dotted grey lines unstable
fixed points.

Figure 4: (Left panel) Examples of trajectories (in green) starting from an initial state x0 for
three values of a (a = 0.2, 1 and 2), and (right panel) evolution of the control, with c = 0.1.
The continuous grey line represents stable fixed points and the dotted grey line unstable fixed points.

Figure 5: Resilient (blue) and non resilient states (in white) in the model associated to
dynamics Eqn 9 with constraint set Eqn 10, for three values of a: a = 0.2, a = 1, a = 2.
Viability kernel is in dark blue.

Figure 6: Resilience values of the Abrams-Strogatz model. In dark blue, the viability kernel;
between the level lines (light blue area), the cost of restoration is finite (one level line corresponds to a
cost of 4.8 and the darker the line, the higher the cost); in the white area, the cost is infinite and the
resilience is zero. (Left panel) Cost function C1 (Eqn 11); (Right panel) cost function C2 (Eqn 12).

Figure 7: Examples of trajectories (in green) starting from a point x0 during 750 time steps,
that allow the system to restore its viability at the minimal cost of restoration, using cost
function Eqn 12. The continuous grey line represents stable fixed points and the dotted grey line
unstable fixed points. Note that for an initial state x0 located inside K but outside V iab(2)(K), the
trajectory crosses the viability constraint set boundaries before reaching V iab(2)(K).

Table 1: Boundaries of the viability kernel for the dynamics associated to system Eqn 7 and
Eqn 8.

Lower Bound Upper Bound
a = 0.2 0.2 0.8
a = 1 0.2 0.8
a = 2 0.4 0.6
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