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Introduction

Control a dynamical system such that it can survive inside a
given set of admissible states (and possibly reach a target)

State x(t), controls u(t), in discrete time{
x(t + dt) = x(t) + ϕ(x(t), u(t))dt, for all t ≥ 0
u(t) ∈ U(x(t))

(1)

x

K
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Introduction

Problem: control a system in order to keep it inside K

Control a population such that it stays inside a given interval

Drive a bike on a track

Drive a car such that it can reach the top of the hill
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Outline

1. Population problem

2. Bike on a track

3. Car on the hill
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Population problem
System

Simplified model of the growth of a population in a limited
space

Dynamical system{
x(t + dt) = x(t) + x(t)y(t)dt
y(t + dt) = y(t) + u(t)dt

(2)

Under constraints
- x ∈ [a, b]
- y ∈ [d , e]
- u ∈ [−c , c]

u=min

K
a b

d

e
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Population problem
System

How controlling the system such that it always stays in K?

Dynamic programming approach
- Coquelin, Martin & Munos, A dynamic programming approach to

viability problem, ADPRL07

SVM viability controller
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Population problem
Support Vector Machines

Support Vector Machines

Separating hyperplane in a feature space

f (x) =
∑n

i=1 αiyiK (xi , x) + b with αi > 0 SV

SVM function: function such that f (x) = 0
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Population problem

First task: approximate the viability kernel of the system
• SVM viability algorithm, based on the discretization of K
• Use of active learning techniques to work in higher dimensional

spaces

Second tack: using SVM function to control the system
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Population problem
Viability kernel approximation

SVM viability kernel approximation

Iterative algorithm: points of the grid viable at the next step
→ label +1 the others → label -1

SVM function provides a kind of barrier function on the
viability kernel boundary

How determine the label of the points? Gradient method to
find a viable control

u0

f(x)=+1

f(x)=+0.5
f(x)=0

f(x)=-0.5

f(x)=-1
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Population problem
Viability kernel approximation

SVM viability controller active learning

Combine an adaptive grid and active learning procedure

Active learning: limits the number of points to use for SVM
training

• the size of the grid is exponential with the dimension
• training the SVM is roughly quadratic with the training sample

size

Aim: use a number of points near the number of SV

Which points to choose? We focus on the boundary
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Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Viability kernel approximation

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

28 SV, 124 (2%) max in S

L. Chapel & G. Deffuant SVM viability controller active learning 12 / 21



Population problem
Controller

SVM Heavy Controller 6= optimal controller

Same control u0 until the next step reaches f (x) < ∆

Find a viable control using the gradient ascent on function f

More or less cautious controller, anticipating on several time
steps
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Population problem
Controller

Example of controller (5 time steps anticipation)
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Outline

1. Population problem

2. Bike on a track

3. Car on the hill
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Bike on a track
System

Randlov: drive a bike to a target

6-dimensional system
• angle the handlebars are displaced from vertical and velocity of

the angle
• angle from the bicycle to vertical and its velocity
• position of the front wheel and angle of tilt of the bike

2 control variables
• torque applied to the handlebars
• displacement of the bike

Constraints on the states
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Bike on a track
Results

First task: approximate the viability kernel in dimension 6
• 531441 points on the whole grid
• 3914 SV, 34028 (6.5%) max in S

Second task: control the system
• Aim: driving a bike in a track without going outside and

without falling
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Bike on a track
Results

Step 2: control on a 2d track

X
0
'
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Outline

1. Population problem
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3. Car on the hill
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Car on the hill

Car on the hill: the car much reach the top of the hill,
without falling

State space in 2 dimensions, 1 dimensional control

target

time t ≤ 1× dt

time t ≤ 2× dt

K
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Conclusion

Viability theory: control a system to maintain it inside K (and
possibly reach a target)

SVM allow to use active learning techniques

But

Based on the distance of the points to the SVM boundary,
which is not direct to compute → greedy in time
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