Lake eutrophication: using resilience evaluation to compute sustainable policies

Laetitia Chapel Sophie Martin Guillaume Deffuant

Laboratory of Engineering for Complex Systems (LISC)
Cemagref

10th International Conference on Environmental Science and Technology - September 2007

- 1 Lake eutrophication
- 2 Viability kernel
- Resilience value computation
- 4 Summary

Definition

Definition

Definition

- is the most critical nutrient
- used by the farmers in form of fertilizer or animal feed supplements
- excess P accumulates in the soil and is transported to the lakes

Simplified model in 3 dimensions (L, P, M)

Property of interest

Property of interest

 the lake must remain in an oligotrophic state (population point of view)

$$P \in [0; P_{max}]$$

• the profitability of the farmers activities must be ensured $L \in [L_{min}; L_{max}]$

We evaluate the resilience of this property of interest

Viability kernel

M=0

Viability kernel

Viable state: there exists at least one evolution which allows staying in the viability constraint set

Concentration of phosphorus (P)

M=0

Viability kernel

Viability kernel: set of all viable states = states for which the property of interest can be maintained

Concentration of phosphorus (P)

M=0

Martin proposed a mathematical interpretation of resilience

S. Martin

The cost of restoration as a way of defining resilience: a viability approach applied to a model of lake eutrophication. Ecology and Society, 9(2), 2004.

- Resilience: inverse of the cost of restoration of the property of interest
- Based on the viability theory framework

Cost function

Viability kernel is the 0-level of the cost function

M=0

Resilience value computation Methods

Algorithm to compute resilience values

- Approximating viability kernel algorithm can be used to compute resilience values
- Use a classification method: Support Vector Machines
- We propose a new algorithm that
 - deals with more realistic systems
 - allow to introduce uncertainties on the parameters

Restoration costs

M=1

Resilience

- Inverse of the cost to restore the property of interest, lost due to exogenous disturbances
- Maximal disturbance: jump of magnitude P = 0.5

Concentration of (P)

M=1

Summary

- Resilience can be defined thanks to viability theory
- We propose a new algorithm that enhances the potential of the approach
- Resilience values allow to define sustainable policies, with the minimal cost