SVM viability controller active learning

Laetitia Chapel Guillaume Deffuant

Laboratory of Engineering for Complex Systems (LISC)

workshop krl - ICML 2006, June 29, 2006

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Introduction

- We want to control a dynamical system such that it can survive inside a given set of admissible states
- State x(t), controls u(t), in discrete time

$$\begin{cases} x(t+dt) = x(t) + \varphi(x(t), u(t))dt, \text{ for all } t \ge 0\\ u(t) \in U(x(t)) \end{cases}$$
(1)

• Reinforcement learning problem, negative reward outside K

Outline

- 1. Viability theory
- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Outline

- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Viability theory Definitions

• Viability kernel: Set of all viable states

< A

- Saint-Pierre: based on the discretization of K. But:
 - not convenient to manipulate
 - control space dimensionality curse
 - state space dimensionality curse
- Ultra-Bee: using a value function. But:
 - only for state space of 2 dimensions

Viability theory Algorithms

Outline

1. Viability theory

- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

- Algorithm based on the discretization of K
- Iterative approximation of Viab(K)
- Points of the grid viable at the next step \rightarrow label +1 the others \rightarrow label -1
- SVM function provides a kind of barrier function on the viability kernel boundary, which enables to use gradient techniques to find a viable control

Initialization

Discretization of the state space

< □ > < ---->

Initialization

• Initialization of non-viable examples

< □ > < ---->

Iteration n+1

• SVM_n is available

< A

Iteration n+1

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

- 4 A -

Iteration n+1

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

- 4 A -

Iteration n+1

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

- 4 A -

Iteration n+1

• Gradient method to find a viable control $f(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$

Possible to extend to several time steps

Iteration n+1

• Update of the labels from SVM_n

Iteration n+1

• Define SVM_{n+1}

< 17 ▶

• Theorem: Under general assomptions on the quality of learning and on function φ , the algorithm provides an approximation of the viability kernel which converges to the actual viability kernel when the resolution of the grid tends to 0

- Simplified model of the growth of a population in a limited space
- Dynamical system

$$\begin{cases} x(t+dt) = x(t) + x(t)y(t)dt\\ y(t+dt) = y(t) + u(t)dt \end{cases}$$
(2)

- Under constraints
 - $-x \in [a, b]$
 - $-y \in [d, e]$
 - $u \in [-c, c]$

Progressive approximation of the viability kernel

• State space in 2 dimensions, grid of 2601 points, 6 time steps

• 12 iterations, 19 SV

SVM viability controller SVM Heavy Controller

SVM Heavy Controller

- Same control u_0 until the next step reaches $f(x) < \Delta$
- Find a viable control using the gradient ascent on function f
- More or less cautious controller, anticipating on several time steps

SVM viability controller SVM Heavy Controller

Example of controller (5 time steps anticipation)

Outline

- 2. SVM viability controller
- 3. SVM viability controller active learning
 - Discussion and perspectives

- The previous algorithm allows to work with control of high dimension
- But what about the dimension of the state space?
- Active learning: limits the number of points to label / to use for SVM training
 - labeling instances is time consuming
 - the size of the grid is exponential with the dimension
 - training the SVM is roughly quadratic with the training sample size

• Starting from a given SVM

Progressive approximation of the viability kernel

SVM viability controller active learning Application example

Progressive approximation of the viability kernel

• State space in 2 dimensions, grid of 2601 points, 6 time steps

 $\bullet~12$ iterations, 19 SV, 11% of the grid to compute the SVM

Extending the state space

• State space in 4 dimensions, grid of \approx 200 000 points, 4 time steps

• 14 iterations, 347 SV, 26% of the grid to compute the SVM

Outline

- 2. SVM viability controller
- 3. SVM viability controller active learning
- 4. Discussion and perspectives

Discussion and perspectives

Advantages of using SVMs to approximate viability kernels:

- Enable to use gradient techniques to find viable controls, which is more efficient than systematic search
- Provide easily more or less cautious controllers

Active learning allows to decrease of one dimension the number of SVM training examples

Perspectives

- More efficient active learning techniques should decrease more significantly training samples size
- Goal: Use training set of size similar to the number of SV