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Introduction

We want to control a dynamical system such that it can
survive inside a given set of admissible states

State x(t), controls u(t), in discrete time{
x(t + dt) = x(t) + ϕ(x(t), u(t))dt, for all t ≥ 0
u(t) ∈ U(x(t))

(1)

x

K

Reinforcement learning problem, negative reward outside K
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Viability theory
Definitions

Viable state: There exists at least one control function for
which the whole trajectory remains in K
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Viability theory
Definitions

Viability kernel: Set of all viable states
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Viability theory
Definitions

Viability controller: The viability kernel is instrumental to
define viable control policies
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Viability theory
Algorithms

There is no explicit formula to determine the viability kernel

Saint-Pierre: based on the discretization of K . But:
• not convenient to manipulate
• control space dimensionality curse
• state space dimensionality curse

Ultra-Bee: using a value function. But:
• only for state space of 2 dimensions
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SVM viability controller
Viability kernel approximation

Algorithm based on the discretization of K

Iterative approximation of Viab(K)

Points of the grid viable at the next step → label +1
the others → label -1

SVM function provides a kind of barrier function on the
viability kernel boundary, which enables to use gradient
techniques to find a viable control

L. Chapel & G. Deffuant SVM viability controller active learning 10 / 32



SVM viability controller
Viability kernel approximation

Initialization

Discretization of the state space
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SVM viability controller
Viability kernel approximation

Initialization

Initialization of non-viable examples
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SVM viability controller
Viability kernel approximation

Iteration n + 1

SVMn is available
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SVM viability controller
Viability kernel approximation

Iteration n + 1

Gradient method to find a viable control
f (x) =

∑n
i=1 αiyik(xi , x) + b

u0

f(x)=+1

f(x)=+0.5
f(x)=0

f(x)=-0.5

f(x)=-1

Possible to extend to several time steps
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SVM viability controller
Viability kernel approximation

Iteration n + 1

Gradient method to find a viable control
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SVM viability controller
Viability kernel approximation

Iteration n + 1

Update of the labels from SVMn

+

+

+

+ +

-

-

-

+

+

+

-

-

+

+

+

+

-

-

-

+-

+

+

-

+

+

+

-

-

+

+

+

+

-

-

+

+

+

+

+

+

L. Chapel & G. Deffuant SVM viability controller active learning 15 / 32



SVM viability controller
Viability kernel approximation

Iteration n + 1

Define SVMn+1
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SVM viability controller
Viability kernel approximation

Theorem: Under general assomptions on the quality of
learning and on function ϕ, the algorithm provides an
approximation of the viability kernel which converges to the
actual viability kernel when the resolution of the grid tends
to 0
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SVM viability controller
Application example

Simplified model of the growth of a population in a limited
space

Dynamical system{
x(t + dt) = x(t) + x(t)y(t)dt
y(t + dt) = y(t) + u(t)dt

(2)

Under constraints
- x ∈ [a, b]
- y ∈ [d , e]
- u ∈ [−c , c]
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SVM viability controller
Application example

Progressive approximation of the viability kernel

State space in 2 dimensions, grid of 2601 points, 6 time steps

12 iterations, 19 SV
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SVM viability controller
SVM Heavy Controller

SVM Heavy Controller

Same control u0 until the next step reaches f (x) < ∆

Find a viable control using the gradient ascent on function f

More or less cautious controller, anticipating on several time
steps
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SVM viability controller
SVM Heavy Controller

Example of controller (5 time steps anticipation)
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SVM viability controller active learning
Focusing on the boundary

The previous algorithm allows to work with control of high
dimension

But what about the dimension of the state space?

Active learning: limits the number of points to label / to use
for SVM training

• labeling instances is time consuming
• the size of the grid is exponential with the dimension
• training the SVM is roughly quadratic with the training sample

size
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SVM viability controller active learning
Focusing on the boundary

Starting from a given SVM
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SVM viability controller active learning
Focusing on the boundary

Test the points that are likely to leave
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SVM viability controller active learning
Focusing on the boundary

Are they -1 and near +1?
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SVM viability controller active learning
Focusing on the boundary

Keep a -1 (on the grid) and a +1
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SVM viability controller active learning
Application example

Progressive approximation of the viability kernel

State space in 2 dimensions, grid of 2601 points, 6 time steps

12 iterations, 19 SV, 11% of the grid to compute the SVM
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SVM viability controller active learning
Application example

Extending the state space

State space in 4 dimensions, grid of ≈ 200 000 points, 4 time
steps

14 iterations, 347 SV, 26% of the grid to compute the SVM
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Discussion and perspectives

Advantages of using SVMs to approximate viability kernels:

Enable to use gradient techniques to find viable controls,
which is more efficient than systematic search

Provide easily more or less cautious controllers

Active learning allows to decrease of one dimension the number of
SVM training examples

Perspectives

More efficient active learning techniques should decrease more
significantly training samples size

Goal: Use training set of size similar to the number of SV
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