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Introduction

Control a dynamical system such that
• Viability perspective: it survives inside a given set of admissible

states
• Resilience perspective: it maintains or restores its property of

interest lost after disturbances

State x(t), controls u(t){
x ′(t) = ϕ(x(t), u(t)), for all t ≥ 0
u(t) ∈ U(x(t)) ⊂ Rq (1)
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Introduction
Resilience in the viability theory framework

Specific framework

Viability theory (Aubin)

Tool: viability algorithm (Saint-Pierre)

First step: viability kernel approximation
• But the algorithm suffers the dimensionality curse, in the state

and control space

Second step: compute the resilience values

Third step: control the system

Idea: sum up the set of points by a function
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Introduction
SVMs

Support vector machines (SVMs)

Classification method
• Inputs: training set, n points with labels +1/− 1
• Outputs: linear combination f (x) =

∑n
i=1 αiyik(x , xi ) + b

Particular solution
• αi : influence of a point on the solution → parsimonious
• k(x , xi ) (virtually) maps the points on a feature space
• non-linear solution in the input space

k(x , xi ) = exp
(
−‖x−xi‖2

σ

)
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Introduction
Objectives

Objectives

Viability kernel and resilience values approximation algorithms
• in a high (?) state space
• in a high control space

Compact and fast controllers

View points

Theoretical

Practical
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SVMs viability kernel approximation
One simple example: population problem

Simple example of a population growth in a limited space

Dynamical system{
p(t + dt) = p(t) + p(t)y(t)dt
y(t + dt) = y(t) + u(t)dt

(2)

Under constraints
- p ∈ [pmin, pmax ]
- y ∈ [ymin, ymax ]
- u ∈ [−umax , umax ]

u=min

K
p
min

p
max

y
min

y
max
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SVMs viability kernel approximation
One simple example: population problem

How controlling a dynamical system such that it always remains in
K ?

Approximate the viability kernel of the system

u=min

u=max
K

u=min

u=max

x−

x−

x+
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SVMs viability kernel approximation
One simple example: population problem

How controlling a dynamical system such that it always remains in
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Viability heavy controller

K

Viab(K)
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SVMs viability kernel approximation
Viability kernel approximation with a classification method

Viability kernel approximation with a classification method

Iterative algorithm, based on the Saint-Pierre algorithm

Discretization de K

Learning set, contains the grid points with labels
• +1 if the point is viable at the next iteration
• −1 otherwise
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SVMs viability kernel approximation
Viability kernel approximation with a classification method

Theorem

Under some conditions on the learning quality and on the
dynamics, the algorithm gives an approximation that converges
towards the actual kernel when the grid resolution tends to 0

OK OK non OK
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SVMs viability kernel approximation
Viability kernel approximation with a classification method

SVMs as a classification procedure: pros

Allows one to use a optimization method (gradient descent)
to find a viable control

Allows one to work with several time steps at the same time

The SVMs function can be defined as a controller

The solution is parcimonious: less points in memory?
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SVMs viability kernel approximation
Viability kernel approximation with a classification method

Labels update

Saint-Pierre

Exhaustive test of the
discretized controls

with SVMs

Optimization to find a viable
control

Extension to j time steps
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SVMs viability kernel approximation
Application example

Progressive approximation of the viability kernel

State space in 2 dimensions, 2601 points, 6 time steps

12 iterations, 19 SV
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SVMs viability kernel approximation
SVMs viability heavy controller

SVMs viability heavy controller

Same control u0 until the next state reaches f (x) < ∆

Find a viable control, using a gradient descent on f

More or less cautious controller, anticipating on several time
steps
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SVMs viability kernel approximation
SVMs viability heavy controller

Controller example (5 steps anticipation)
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SVMs viability kernel approximation
Conclusion (1)

Conclusion [Viability kernel approximation]

Use of SVMs to approximate a viability kernel
• defines compact controllers
• allows one to deal with problems on high control space (thanks

to the control optimization)
• doesn’t allow to deal with problems on high state space

(discretization of the state space)

Laetitia Chapel Principles for computing viability kernels and resilience values 18 / 38



Sommaire

1. SVMs viability kernel approximation

2. Viability kernels active learning

3. Approximating capture basins with SVMs

4. Resilience computation

5. Conclusion - In practice

Laetitia Chapel Principles for computing viability kernels and resilience values 19 / 38



Viability kernels active learning
Definitions

active learning: limits the number of points to label / the
training set size

• label points is costly
• the grid size is exponential with the dimension
• learning a SVM function is quadratic with the training set size

We use the parsimonious property of the SVMs
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Viability kernels active learning
Active learning algorithm

Aim: use a number of points close to the number of SVs

We progressively add the points the more likely to be SVs (in
couple)

Question: which points to chose? → we focus on the
boundary

We use a virtual multi-resolution grid
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Viability kernels active learning
Active learning algorithm

In action

Multi-resolution grid of depth 3
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Viability kernels active learning
Application example (population)

11 points by dimension, grid of depth 4 → 6561 points on the
whole grid

6 SVMs learning by iteration

28 SV, 761 (12%) max labeled, 124 (2%) max in S
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Viability kernels active learning
Conclusion (2)

Conclusion [Active learning]

Allows one to limit the size of the training set size
• but the approximation time is still exponential
• produces a fast and compact controller
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Approximating capture basins with SVMs
A simple example: the car on the hill

The car has to reach as fast as possible the top of the hill,
while staying in a given state space

Dynamical system{
p(t + dt) = p(t) + v(t)dt
v(t + dt) = v(t) + f (u(t))dt

(3)

Under constraints
- p ∈ [pmin, pmax ]
- v ∈ [vmin, vmax ]
- u ∈ [−umax , umax ]
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Approximating capture basins with SVMs
Définition

Capture basin at time tMax : set of initial states that can reach
the target before time τ ≤ tMax , while staying in K

Algorithm: addition of one dimension, the time τ ′ = −1

Approximation of the viability kernel of the extended system,
with K × [0, tMax ]

−if x /∈ C FC (x , τ) =

{
x ′(t) = F (x(t), u(t))
τ ′(t) = −1

−if x ∈ C FC (x , τ) = 0
(4)
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Approximating capture basins with SVMs
Algorithm

Approximation algorithm in the initial state space

Iterative algorithm, based on the viability kernel algorithm

Initialization: +1 if x ∈ C , -1 otherwise

Learning set: points of the grid with label
• +1 if there exists a control that will lead the point to the

current target at the next time step
• −1 otherwise
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Approximating capture basins with SVMs
Algorithm

Theorem [outer approximation]

Under some conditions on the learning quality and on the
dynamics, the algorithm provides a capture basin approximation
that converge towards the actual capture basin when the resolution
of the grid tends to 0

Theorem [inner approximation]

Under some conditions on the learning quality and on the
dynamics, the algorithm provides a capture basin approximation
that converge towards the actual capture basin when the resolution
of the grid tends to 0
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Approximating capture basins with SVMs
Application example

Progressive outer approximation of the capture basin

2 dimension state space, grid of 5041 points, 8 time steps

target

position

sp
ee

d

Capture basin active learning
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Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Contrôleur

Contrôleur optimal

Optimal control from the inner approximation

position

sp
ee

d

0

Laetitia Chapel Principles for computing viability kernels and resilience values 31 / 38



Approximating capture basins with SVMs
Conclusion (3)

Conclusion [Capture basin approximation]

Two versions of the algorithm
• allows one to define a controller that guarantee to reach the

target
• allows one to work in high dimensional control space
• doesn’t allows one to deal with high dimensional state space
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Resilience computation
Extension of the capture basin algorithm

Extension to resilience values computation

Definition [Martin] : inverse of the restoration cost of the
properties of interest lost after disturbances

Property of interest: viability constraint set

Under some conditions, we can use the capture basin
approximation algorithm

• target: viability kernel
• set of states that can go back to the target with a cost

c ≤ cmax
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Resilience computation
Application example

Progressive inner approximation of the resilience values

AS model

viability kernel
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Conclusion - In practice

How to obtain a good approximation?

Know your system and dynamics! especially the speed of the
dynamics, in order to define good time step, grid size, dt etc.

Especially with the resilience computation

How to know if I can rely on my approximation?

Use the controller! Starting from several starting points, you
can produce a trajectory that remains inside the kernel +
leaves K

Laetitia Chapel Principles for computing viability kernels and resilience values 37 / 38



Principles for computing viability kernels and
resilience values

Laetitia Chapel

Patres tutorial workshop
22 october 2009


	Introduction
	Resilience in the viability theory framework
	SVMs
	Objectives

	SVMs viability kernel approximation
	One simple example: population problem
	Viability kernel approximation with a classification method
	Application example
	SVMs viability heavy controller
	Conclusion (1)

	Viability kernels active learning
	Definitions
	Active learning algorithm
	Application example (population)
	Conclusion (2)

	Approximating capture basins with SVMs
	A simple example: the car on the hill
	Définition
	Algorithm
	Application example
	Contrôleur
	Conclusion (3)

	Resilience computation
	Extension of the capture basin algorithm
	Application example

	Conclusion - In practice

