
SVM Viability Controller Active Learning

Laetitia Chapel laetitia.chapel@cemagref.fr
Guillaume Deffuant guillaume.deffuant@cemagref.fr

Cemagref - LISC, 24 rue des Landais BP 50085, 63172 Aubiere Cedex, France

Abstract

We use support vector machines (SVMs) to
compute the actions which maintain a dy-
namical system within a defined subset of its
state space. The principles of our method
are inspired by the viability theory. We use
SVMs to approximate the viability kernel
which is the set of states from which it is
possible to maintain the system. The actions
to perform on the system can then be eas-
ily computed from the SVM, whatever the
starting point. The major limitation of the
approach is the exponentially growing num-
ber of training examples when the dimension
of the state space increases. We use active
learning to limit this number.

1. Introduction

We focus on a general control problem: how to main-
tain a dynamical system inside a given set of admis-
sible states? Such a problem is frequent in ecology or
economics, where the systems die or badly deteriorate
when they leave some regions of the state space, and
it can thus be called a viability problem. The via-
bility theory (Aubin, 1991) provides several concepts
and results which help to solve it. The set of admissi-
ble states K, is called the viability constraint set. The
main concepts of the viability theory are:

• Viable state: A state is called viable if there exists
at least one control function for which the whole
trajectory from this state remains in K.

• Viability kernel : The set of all viable states is
called the viability kernel and is denoted V iab(K).

Aubin (1991) proved the viability theorems which en-
able to determine the viable states, without consid-

Appearing in Kernel machines for reinforcement learning
workshop, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

ering the combinatorial exploration of control actions
series. These theorems also provide the control func-
tions that maintain viability.

Saint-Pierre proposed an algorithm (Saint-Pierre,
1994) which computes the exact discrete viability ker-
nel of the approximated discrete problem defined on a
grid. It is very fast but its result is the set of points of
the grid that are viable, which is not very convenient
to manipulate. Moreover, using standard optimisa-
tion methods to compute the controls is not possible
in this approach. When the control space is of high
dimension, using such methods is necessary, because
the computational time of an exhaustive search for a
viable control grows exponentially with the dimension
of the control space.

We proposed to use classification procedures in order
to approximate the boundary of viability kernels. An
important benefit is expected if the classification pro-
vides an explicit analytical expression of the viability
kernel approximation, because it makes possible to use
standard optimisation methods to compute the con-
trol. We established the mathematical conditions that
the classification procedure should fulfill in order to
guarantee the convergence to the actual viability ker-
nel (Deffuant et al., submitted). We consider the sup-
port vector machines (SVMs) (Vapnik, 1995; Vapnik,
1998; Cristianini & Shawe-Taylor, 2000) as a particu-
larly relevant classification procedure in this context.
In particular, SVMs provide an analytical definition
of the viability kernel approximation which is easy to
use for optimizing the control, even on several time
steps. Then the SVM can easily be used to control the
system.

However, one important limitation of the approach
remains: the number of examples to train the SVM
grows exponentially with the dimension of the state
space. This problem is general in optimal control prob-
lems, but it is even more crucial in our approach be-
cause of the time for training the SVM which grows
quadratically with the number of training examples.
Our general line of research is to apply active learning

SVM Viability Controller Active Learning

techniques to minimise the number of training exam-
ples. In this paper, we propose a first step in this
direction. Instead of considering all the examples of
the grid, we choose the ones which are close to the
boundary, and have better chances to become support
vectors. This approach allows us to use a number of
training examples which approaches the one we get
with one dimension less.

We propose some first experiments of the method on
a simple dynamical system representing the evolution
of a population on a limited space.

This paper is organized as follows: in the first section,
we recall the principles for learning an SVM viability
controller with a grid of points covering the constraint
set. Then, we describe the active learning algorithm,
and illustrate it on an example. Finally, we propose a
discussion and draw some perspectives.

2. SVM viability controller trained on a
complete grid

2.1. Viability theory

Consider a dynamical system which survives only in-
side a viability constraint set K, defined by its state
~x(t) ∈ Rn, and suppose that its evolution can be mod-
ified by controls ~u(t), in discrete time:{

~x(t + dt) = ~x(t) + ϕ(~x(t), ~u(t)).dt, for all t ≥ 0
~u(t) ∈ U(~x(t)) ⊂ Rq.

(1)

The viability problem is to determine a control func-
tion t→ ~u(t) which enables to keep the viability con-
straints satisfied indefinitely. Aubin (1991) defined the
concept of a viable state for which such a function ex-
ists: {

~x(0) = ~x0

∃~u(.),∀t ≥ 0, ~x(t) ∈ K.
(2)

The set of all the viable states is called the viability
kernel, noted V iab(K):

V iab(K) = {~x0 ∈ K,∃~u(.),∀t ≥ 0, ~x(t) ∈ K} . (3)

Viability kernels have interesting properties: equilib-
ria, trajectories of periodic solutions, limit sets and at-
tractors, if any, are all contained in the viability kernel.
Moreover, it is shown that the viability kernel is instru-
mental to define viable control policies. The simplest
rule (called heavy control) is to apply any control while
the next time step is anticipated in the kernel, and to
choose the first control which keeps the system in the
viability kernel otherwise (we are sure that at least one
exists). This procedure guarantees that the trajectory

always remains in K from any state of Viab(K). We
can easily derive more sophisticated control policies if
the distance from a point to the boundary of the via-
bility kernel can be computed.

The main task to solve a viability problem is therefore
to determine its viability kernel. The viability theo-
rems enable to determine viable states without consid-
ering the combinatorial exploration of control actions
series over time. These theorems hold true for a large
class of systems, called Marchaud systems: beyond im-
posing some weak technical conditions, the only severe
restriction is that, for each state ~x, the set of velocities
ϕ(~x, ~u) when ~u ranges over U(~x) is convex.

In general, there are no explicit formulas providing the
viability kernel. The viability theorems are the ba-
sis for the algorithm proposed by Saint-Pierre (1994),
which computes approximations of viability kernels.
Considering a grid Kh of resolution h covering the ad-
missible states, it determines a discrete approximation
of the dynamical system. Then, the algorithm com-
putes a series Kn

h of subsets of Kh, beginning with
K0

h = Kh. At step n + 1 the algorithm initializes
Kn+1

h = Kn
h , and eliminates from Kn+1

h all the points
which have none of their successors in Kn

h . It can be
shown that after a finite number of steps p, we get
Kp+1

h = Kp
h, and the algorithm stops.

Saint-Pierre shows that, under some conditions on ϕ,
the finite discrete viability kernel tends to the viability
kernel of the initial viability problem when the resolu-
tion h of the grid tends to 0.

The algorithm is very fast, but at each step the approx-
imation of the viability kernel is defined as a discrete
set of points, which not very convenient to handle (this
set can be very large). Moreover it requires to test
exhaustively all the possible controls because it is im-
possible to use standard optimisation methods to find
a control which keeps the system inside K.

More recently, other techniques were tested to solve vi-
ability problems: the Ultra-bee Scheme (Bokanowski
et al., to appear). The viability problem is con-
sidered as an optimal control problem, solved with
a value function, with particular anti-diffusive tech-
niques. This method shows good results but it is cur-
rently only defined for two-dimensional problems.

Our approach builds on Saint-Pierre’s algorithm, and
introduces SVMs to approximate the viability kernel.

SVM Viability Controller Active Learning

2.2. SVM viability kernel approximation

We consider a grid Kh covering the viability constraint
set K:

∀~x ∈ K,∃~xh ∈ Kh such that ‖ ~x− ~xh ‖< β(h). (4)

We define the set-valued map G : X X:

G(~x) = {~x + ϕ(~x, ~u)dt for ~u ∈ U(~x)} . (5)

We suppose that G is µ-Lipschitz with closed images,
and we define the discrete differential inclusion:{

~xn+1 ∈ G(~xn)
~x0 = ~x0.

(6)

At each step n, we define a discrete set Kn
h ⊂ Kn−1

h ⊂
Kh which contains all the viable states at the nth iter-
ation. This discrete set can be generalized by a contin-
uous one, noted L(Kn

h), which constitutes the current
approximation of the viability kernel. This set is ob-
tained by training an SVM on a learning set S, from
the points ~xh of the grid associated with label +1 if
~xh ∈ Kn

h and with label −1 otherwise. The SVM pro-
vides a function fn:

fn(x) =
n∑

i=1

αiyik(xi, x) + b. (7)

where k(., .) is the kernel function used in the SVM.
The support vectors are defined by αi > 0. The con-
tinuous set L(Kn

h) is defined by:

L(Kn
h) = {~x ∈ K such that fn(~x) ≥ −δ} . (8)

Parameter δ allows to dilate more or less the set
L(Kn

h), in order to fulfill the conditions of the algo-
rithm’s convergence.

Algorithm 1 shows the different steps of the approxi-
mation procedure.

Deffuant et al. (submitted) show that the convergence
of the general algorithm is guaranteed when the reso-
lution of the grid tends to 0, when the SVM function
satisfies some conditions on the regularity of L(Kn

h)
and on the dilatation of the set L(Kn

h).

The main advantage of using SVMs to approximate
viability kernels is that it provides a analytical expres-
sion of the boundary of the kernel. This property can
be used to find controls that keep the system inside the
current viability kernel. For points that are not too
far from the boundary of L(kn

h), the directions where
fn(~x) increases are going inside the current approxi-
mation and the directions where fn(~x) decreases are
going outside. Therefore, a way to determine if there

Algorithm 1 SVM controller training on complete
grid

K0
h = Kh

L(K0
h) = K

S ← ∅
repeat

for all ~xh ∈ Kh do
if d(G(~xh), L(Kn

h)) ≤ µβ(h) then
S ← S + (~xh,+1)

else
S ← S + (~xh,−1)

end if
end for
Compute fn+1(~x) from S
Define L(Kn+1

h) and Kn+1
h

until Kn
h = Kn+1

h

return L(Kn+1
h)

is at least one control to allow to stay in the current
viability kernel at the next step is to look for the con-
trol that maximises fn(~x + ϕ(~x, ~u)dt). To solve this
problem, we use a gradient descent procedure because
it is fast and easy to implement. Furthermore, instead
of considering the evolution of a state at the next step,
it is possible to consider a sequence of j times steps
and to make the optimization to determine j optimal
controls. We show on our example that increasing this
number can considerably enhance the quality of the
approximation.

2.3. SVM viability controller

The idea of heavy control procedure comes from
Aubin. Its principle is to change the action applied
on the system only when it approaches the limit of the
viability kernel. By definition, while this limit is not
crossed, there always exists an action which maintains
the system within it. The idea is here to change the
action only when it is necessary. It is straightforward
to adapt this idea when an analytical approximation
of the viability kernel is available. We first define the
functions of distance from a point inside L(Kp

h) to the
boundary of the viability kernel (noted ∂V iab(K)) and
the boundary of its approximation (noted ∂L(Kp

h)):

v(~x) = d(~x, ∂V iab(K)). (9)

a(~x) = d(~x, ∂L(Kp
h)). (10)

For ∆ a given positive real number, we define:

A∆ = {~x such that a(~x) ≥ ∆} . (11)

Considering an initial ~x0 ∈ A∆, and a randomly chosen

SVM Viability Controller Active Learning

control ~u0 ∈ U(~x), the procedure associates a control
~un+1 at the (n + 1)th iteration as follows:

• If (~xn + ϕ(~xn, ~un)dt) ∈ A∆, we keep the same
control (~un+1 = ~un),

• Else, ~un+1 = arg max
~u∈U(x)

a (~xn + ϕ(~xn, ~u)dt) .

In practice, we can define a more or less cautious
controller, by anticipating on k time steps instead
of one. Starting from ~xn, we check for i = 1, .., k
if applying k times the control ~un, leads to a point
t(~xn, ~un, ~un, ..., ~un) which belongs to A∆. If it does,
we move of one step (with a constant control). If
not, we determine a sequence of controls that keep
t(~xn, ~un+1, ~un+2, ..., ~un+k) inside A∆, and we apply the
corresponding control ~un+1.

The conditions in which this procedure guarantees to
keep the system inside V iab(K) are discussed in (Def-
fuant et al., submitted).

2.4. Application example

We use the Sequential Minimal Optimization algo-
rithm to compute the SVMs, because it has the good
property to require a memory space growing linearly
with the sample size (Platt, 1998). We consider a
gaussian kernel:

K(~x1, ~x2) = exp

(
−‖~x1 − ~x2‖2

2σ2

)
(12)

and we use the library LIBSVM (Chang & Lin, 2001),
which implements a SMO-type algorithm, to compute
the SVM.

We consider a simple dynamical system of population
growth on a limited space. The state (x(t), y(t)) of
the system represents the size of a population x(t),
which grows or diminishes with the evolution rate y(t).
The population must remain in an interval K = [a, b],
with a > 0. The dynamical system was studied by
Maltus and later on by Verhulst, and then redeveloped
by Aubin (2002) with an inertia bound. The inertia
bound c limits the derivative of the evolution rate at
each time step. The system in discrete time defined
by a time interval dt can be written as follows:

{
x(t + dt) = x(t) + x(t)y(t)dt
y(t + dt) = y(t) + u(t)dt

with − c ≤ u(t) ≤ +c.
(13)

It is possible to derive analytically the viability kernel
of this problem (Aubin, 2002), it has the following
expression (for dt→ 0):

Figure 1. Final approximation using a whole grid of 2601
points (51 points by dimension). Above, the optimisation
is made on 2 time steps, and below on 8 time steps. dt is
computed for defining moves of size β(h) in one time step.

Viab(K) = {(x, y) such that: x ∈ [a, b] and

y ∈
[
−
√

2c log
(

b
x

)
,
√

2c log
(

x
a

)] .
(14)

Figure 1 shows the result of the viability kernel ap-
proximation with an optimisation on different number
of time steps.

Figure 2 shows an example of the functioning of the
controller for the population problem in dimension 2.
We start from the approximation of the viability kernel
given by Figure 1 with 8 time steps. We put ∆ = 12
and we compare two types of controller: a first one,
anticipating on 2 time steps, and a more cautious one,
with 8 time steps anticipation.

This example illustrates some advantages of SVM vi-
ability controllers: good quality of the approximation,
facility to compute the control actions. However, a
strong limitation remains: the SVM is trained on all
the examples of the grid, and their number grows expo-
nentially with the dimension of the state space. To try
to decrease this number, we consider an active learning
approach.

SVM Viability Controller Active Learning

Figure 2. Example of heavy trajectories from a point in
A∆. The difference between L(Kp

h) and A∆ is in dark
gray. The trajectories include 200 time steps, and start
with the point located close to the upper border of the
viability kernel. Above: 2 time steps anticipation. Below:
8 time steps anticipation.

3. SVM viability controller active
learning

3.1. Principles

In many supervised tasks, the cost of labeling instances
is important. Active learning tries to minimize the
number of labeled examples and actively choose the
training data. Support Vector Machines have received
much attention in this context (Tong & Chang, 2001;
Schohn & Cohn, 2000), because they provide a sub-
set of the most informative points, the support vec-
tors, to define the separating surface. The SVM ac-
tive learner thus attempts to minimize the number of
the non-support vectors labeled. Schohn and Cohn
(2000) propose a simple heuristic to choose the in-
stances, based on their proximity to the SVM separat-
ing surface. They show that this approach frequently
significantly decreases the computing time.

In our problem of learning a viability controller, label-
ing instances is time consuming, because it requires
to optimise the control. But the main problem is to
limit as much as possible the number of instances used
to train the SVM, because to take them all becomes
rapidly impossible when the dimension of the state
space increases. In this section, we propose to select
the most ”informative” instances, in accordance with
the concepts of SVM active learning. Moreover, ap-
proximating a viability kernel is a very specific prob-
lem, and some heuristics to choose the most interesting

instances can easily be elaborated.

3.1.1. What are the states that must be
labeled?

To compute L(Kn+1
h), one must label the points that

are likely to leave the set Kn
h at the next j time steps

whatever the applied control. These points are neces-
sarily located inside Ln

h and close to ∂L(Kn
h), because

there is a maximum distance that the system can move
during a fixed number of time steps. It is useless to
compute the label of the other points, because one can
be sure that it won’t change. To identify the interest-
ing points, we calculate the distance between a point
and ∂L(Kn

h) and compare it with the maximal dis-
tance of a move. Let us define γ this maximal move:

γ = j × dt (15)

where j is the number of time steps and dt the time
step.

3.1.2. What are the points that can be kept
in the training set?

The support vectors defining L(Kn+1
h) are always

among the points of the grid which are the closest
to ∂L(Kn+1

h). It is therefore enough to select the
examples for which the label would change if they
were translated of 2β(h) in the direction normal to
∂L(Kn+1

h). Since L(Kn+1
h) is not determined yet, we

approximate this direction by the direction normal to
∂L(Kn

h). In order to find these points, we start from
points xh inside L(Kn

h) + 2β(h)B (B being the ball
of radius 1) which are at a maximum distance γ of
∂L(Kn

h), and with a negative label. Then we translate
them at a distance of 2β(h), in the direction of the
gradient of fn. This defines the point g(~xh):

g(~xh) = ~xh −
∇xfn

h (~xh)
‖∇xfn

h (~xh)‖
× 2β(h) (16)

If the label of g(~xh) is positive, it means that the
boundary of L(Kn+1

h) lies between ~xh and g(~xh), and
we store ~xh and g(~xh) into the learning set.

3.2. Active learning algorithm

Algorithm 2 presents the implementation of the above
described principles. S is the set of SVM training ex-
amples.

This algorithm selects all the negative examples of the
grid which are closer than 2β(h) of ∂L(Kn+1

h), and
adds to each of them a positive example located closer
than 2β(h). This training set covers locally the space
around ∂L(Kn+1

h), with a resolution of 2β(h). The ef-
fect of this training set is the same as the one of the

SVM Viability Controller Active Learning

Algorithm 2 SVM controller active learning
repeat

S ← ∅
for all ~xh ∈ Kn

h +2β(h)B such that d(~xh, ∂Ln
h) ≤

γ do
if d(G(~xh), L(Kn

h)) > µβ(h) then
Compute g(~xh)
if d(G(g(~xh)), L(Kn

h)) ≤ µβ(h) then
S ← S + (~xh,−1)
S ← S + (g(~xh),+1)

end if
end if

end for
Compute fn+1 on S
Define L(Kn+1

h) and Kn+1
h

until Kn
h = Kn+1

h

whole grid, except that the SVM is not constrained
on the borders of K, and can thus make undesired
classifications in these unconstrained areas. It is then
necessary to check that we make no mistakes for the
points lying on the boundary of K. If there are mis-
classified points, we add them to the training set and
redefine L(Kn+1

h) until there is no error.

At the first iteration of the algorithm, no SVM is avail-
able yet and we label the points which are at a distance
lower than γ from the border of K. To compute g(~xh),
we take the direction normal to the boundary of K.

3.3. Application example

We consider the same dynamical system as previously.

Figure 3 presents the last steps of an example of pro-
gressive approximation of the viability kernel. In gray,
we represent the current viability kernel L(Kn

h) and
the points are those used to train L(Kn+1

h). The last
figure represents the final kernel approximation, using
the same parameters than Figure 1 with 8 time steps.
With the active learning, we use only 234 points at
the maximum (11% of the size of the grid). The final
approximation of the viability kernel is very similar to
the one obtained with the whole grid.

The population model can be artificially extended to
larger dimensions: In dimension 4 for instance, we con-
sider points of the space defined as: ~x = (x1, x2, x3, y),
with dynamics defined only on components x1 and y:

x1(t + dt) = x1(t) + x1(t)y(t)dt
x2(t + dt) = x2(t)
x3(t + dt) = x3(t)
y(t + dt) = y(t) + u(t)dt

with − c ≤ u(t) ≤ +c.

(17)

Figure 3. Progressive approximation of the viability kernel
using the SVM controller active learning. The last figure
represents the final approximation.

Figure 4 presents a projection of the final approxima-
tion of the viability kernel for the problem in dimension
4. With the active learning, we use only 26% of the
size of the grid.

SVM Viability Controller Active Learning

Figure 4. Approximation of the viability kernel for the pop-
ulation problem in dimension 4. The horizontal axis rep-
resents variable x1, the vertical axis y, x2 = 3 and x3 = 3.
The total grid includes 194,481 points and we use only
51, 370 points at the maximum. dt is computed for defining
moves of size 2β(h) in one time step and the optimisation
is made on 4 time steps.

4. Discussion

SVM viability controllers show interesting features.
They enable to use optimisation methods to define the
controls, which opens the possibility to deal with larger
dimensionality control spaces. Moreover, SVM prop-
erties can be used to minimise the number of training
examples in an active learning approach. We presented
a first step in this direction, which builds a training set
locally surrounding the boundary of the next viability
kernel approximation. This method allows us to get
a number of examples corresponding to a problem of
one dimension less. In the future, we plan to reduce
more the training set, and to make several trainings
on closer and closer training examples. Our goal is to
use training sets which are not much larger than the
final number of support vectors. This could allow us
to tackle problems in significantly larger dimensions,
because we noted that the final number of support
vectors is generally very small compared to the total
number of points in the grid.

References

Aubin, J.-P. (1991). Viability theory. Birkhäuser.

Aubin, J.-P. (2002). Elements of viability theory for
the analysis of dynamic economics. Ecole thématique
du CNRS ‘Economie Cognitive’.

Bokanowski, O., Martin, S., Munos, R., & Zidani, H.
(to appear). An anti-diffusive scheme for viability
problems. Applied Mathematics and Numerics.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Cristianini, N., & Shawe-Taylor, J. (2000). Sup-
port vector machines and other kernel-based learning
methods. Cambridge University Press.

Deffuant, G., Martin, S., & Chapel, L. (submitted).
Approximating viability kernel with support vector
machines. Submitted on IEEE Transactions on Au-
tomatic Control.

Platt, J.-C. (1998). Fast training of support vector ma-
chines using sequential minimal optimization (Tech-
nical Report). 98-14, Microsoft Research, Redmond,
Washington.

Saint-Pierre, P. (1994). Approximation of the viability
kernel. Applied Mathematics & Optimization, 29,
187–209.

Schohn, G., & Cohn, D. (2000). Less is more: Active
learning with support vector machines. ICML ’00:
Proceedings of the Seventeenth International Con-
ference on Machine Learning (pp. 839–846). San
Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Tong, S., & Chang, E. (2001). Support vector ma-
chine active learning for image retrieval. MULTI-
MEDIA ’01: Proceedings of the ninth ACM inter-
national conference on Multimedia (pp. 107–118).
New York, NY, USA: ACM Press.

Vapnik, V. (1995). The nature of statistical learning
theory. Springer Verlag.

Vapnik, V. (1998). Statistical learning theory. Wiley.

