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Introduction
Within  the  Southern  Benguela  ecosystem,  five  different  groups  (detritus,  phytoplankton, 
zooplankton, pelagic fish and demersal fish) were considered by (Mullon  et al., 2004) in a 
dynamical model of biomass evolution. They studied this model in a viability perspective, 
trying to assess, for a given constant yield, whether each species biomass remains inside a 
given interval, taking into account the uncertainty on the interaction coefficients. Instead of 
studying the healthy states of this marine ecosystem with a constant yield, we focus here on 
the yield policies which keep the system viable. Using the mathematical concept of viability 
kernel (Aubin, 1991), we examine how yield management might guarantee viable fisheries. 
Numerical simulations are provided to illustrate the main findings.

Results and discussion
The viability model the Southern Benguela ecosystem

Following a  classical  approach  (Walters  et  al.,  1997),  we suppose  that  the  biomass  flux 
between a recipient species  i and a donor species  j depends linearly on the recipient  and 
donor biomasses, with respective coefficients rij  and dij:
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This leads to the following expression of the global flow between species:
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where Bi is the biomass of species i, gi is the growth efficiency of species i, Yi is the yield of 
species i. 
Mullon  et al. (2004) take into account  the uncertainty on parameters  rij and  dij,  which is 
expressed by: 
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To guarantee a perennial system, the viability constraints are defined by:

0 i i im B M≤ ≤ ≤ ,

where mi is the minimum level for the resource and Mi the maximal biomass which can be 
contained in the ecosystem.
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The controls are the yield on the different species, Yi.

We use the evaluation of the parameters provided in (Mullon et al., 2004).

The viability analysis

The viability theory (Aubin, 1991) aims at controlling dynamical systems with the goal to 
maintain them inside a given set of admissible states, K, called the viability constraint set. A 
state  is called  viable if,  starting from this  state,  there exists  at  least  one evolution which 
remains in  K indefinitely. The viability kernel is the set of all viable states and is denoted 
Viab(K). Aubin (1991) proved the viability theorems which enable to determine the viability 
kernel,  without considering the combinatorial  exploration  of control  actions  series.  These 
theorems also provide the control functions that maintain viability.

Such  problems  are  frequent  in  ecology  or  economics,  when  the  systems  die  or  badly 
deteriorate when they leave some regions of the state space. For instance Béné et al. (2001) 
studied the management of a renewable resource as a viability problem. They pointed out 
irreversible  overexploitation  configurations  related  to  the  resource  extinction.  Bonneuil 
(2003) studied the conditions the prey-predator dynamics must satisfy to avoid the extension 
of one or the other species as a viability problem.

Numerical simulations

To approximate the viability kernels, we use a new algorithm which is built on previous work 
from (Saint-Pierre, 1994). Its main characteristic is to use an explicit analytical expression of 
the viability kernel approximation, in order to make it possible to use standard optimisation 
methods  to  compute  the  control.  This  analytical  expression  is  provided  by  a  learning 
procedure, the support vector machines (SVMs) (Vapnik, 1998, Cristianini & Show-Taylor, 
2000)

This algorithm is interesting in the case we study, because the analytical expression of the 
viability kernel allows us to use optimisation techniques in high dimensional control spaces.

From a non viable point, one could compute the yield policy which allows to come back to a 
viable state in a minimum time, or minimising some additional cost, which corresponds to the 
definition of the resilience proposed in (Martin, 2004).

Conclusion
Solving the viability problem provides all yield policies if any which guarantees a perennial 
system.

One of the main practical  difficulties up to now with the viability theory was the lack of 
methods to solve the problem in large dimensions. The use of learning procedures such as 
SVMs gives this theory a larger practical potential.
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