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On buffering hypothesis in 802.11 analytic models
K. D. Huang and K. R. Duffy

Abstract— Using detailed statistical analysis of data taken from
simulations and test-bed experiments, we have recently reported
the inappropriateness of a queue-decoupling approximation that
has been implicitly adopted by many distinct authors to in-
corporate queueing behavior in analytic models of finite load
802.11 networks. In the present paper we show that this flawed
hypothesis leads to network throughput prediction errors in the
presence of stations with asymmetric offered loads. We suggest
that care should be taking in drawing deductions from models
that adopt this hypothesis and that further modeling innovation
is necessary.

Index Terms— WLAN, IEEE 802.11, Performance Evaluation.

I. INTRODUCTION

Bianchi’s seminal papers [1][2] introduced a celebrated
mean-field Markov model of saturated WLANs employing
IEEE 802.11. Assuming that each station in the network
always has packets to send, this modeling approach enables the
accurate prediction of the long run maximum stable throughput
of an 802.11 infrastructure mode network. Bianchi’s methodol-
ogy is based on a collision decoupling approximation. Assume
that each station i has a fixed probability of collision given
it is attempting transmission, pi, that does not dependent
on collision history. Then the station’s back-off counter can
be identified as an irreducible, aperiodic Markov chain from
which the stationary probability that station i is attempting
transmission, τi := τi(pi), can be determined explicitly as a
function of pi, as well as station and network parameters. The
self-consistent fixed point equations

1− pi =
∏
j 6=i

(1− τj(pj)), for each station i, (1)

state that the probability station i experiences no collision
given it is attempting transmission is the probability that no
other station is attempting transmission. The unique solution
{p∗i } of the system of equations (1) determines the operating
point of the network. From {p∗i }, fundamental performance
quantities, such as per-station throughput, can be predicted.

Due to its intuitive appeal and its predictive accuracy,
Bianchi’s approach has been widely adopted and developed
for use in models that expand on its original range of ap-
plicability. For example, as stations in a typical network are
not saturated, many authors have extended the paradigm to
incorporate stations with finite load. For these models to be
mathematically tractable, packet arrival at stations are assumed
to follow a Poisson process. In these finite load models, if
stations can buffer only a single packet, then no additional
hypotheses beyond Bianchi’s original decoupling assumption
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are necessary (e.g. [3][4][5]). These models continue to make
accurate predictions.

To analytically model stations with packet buffers, two
distinct approaches have been proposed: (A) the expansion of
the original model’s state space to include buffer occupancy
(e.g [6]); (B) the adoption of an additional queue-decoupling
assumption, which we explain below. The drawback of the
former approach is that the stationary distribution of the
resulting Markov chain cannot be determined explicitly, so that
identifying the functions τi(pi) is numerically time consuming.
Solving these models can take as long as the time to run a
packet-level simulation. The potential difficulty with the latter
methodology is that an additional approximation has been
adopted and thus there is the possibility of new approximation
errors. The advantage of that methodology is that τi(pi) is,
typically, determined as an explicit function, leading to simpler
and faster numerics, giving these models a significant run-time
advantage over simulations.

The queue-decoupling approximation, which is often im-
plicitly assumed by authors, can be described as follows.
Select a given station. After the kth successful transmission,
define define Qk := 0 if the station’s packet buffer is empty
and Qk := 1 if the station’s packet buffer is not empty. That is,
Qk = 1 if there is at least one packet awaiting transmission
in the station’s buffer immediately after the kth successful
transmission and otherwise it is 0. The probability that Qk = 1
is called the queue-busy probability. It is commonly assumed
(e.g. [7][8][9][10]) that: (i) the sequence {Qk} consists of
independent random variables; and (ii) the sequence {Qk}
consists of identically distributed random variables that, in
particular, do not depend on the back-off stage at which
the most recent successful transmission was made. Rather
than checking these assumptions directly, finite load models
that adopt it are validated by comparing their predictions
of throughput and delay with simulations, typically in sym-
metrically loaded networks. Using detailed statistical analysis
of data from simulation [11] and experiment [12] we have
recently shown, inter alia, that Bianchi’s collision-decoupling
hypothesis is accurate even for non-saturated stations with
buffers. However, while the queue-decoupling approximation
makes mathematical analysis amenable, we have found that the
identically distributed hypothesis, (ii) above, is inappropriate.
Figure 7 in [11] illustrates the extreme dependence of queue-
busy probability on back-off stage and the failure of the queue-
decoupling hypothesis. This can be readily understood: the
more collisions a packet experiences, the longer its MAC
service time is and, therefore, it is more likely that there
is another packet awaiting service at that station upon its
successful transmission.

Our aim here is to show that even though models that
adopt the queue-decoupling assumption have been reported to
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make accurate predictions, caution is needed in using their
predictions. We do this by considering a setting where a
queueing model can be built with or without the queue-
decoupling approximation. In particular, we consider a model
where stations can buffer one packet beyond the MAC. This
enables us to show that even though the models make remark-
ably similar throughput predictions for symmetrically loaded
networks, that under asymmetric loads, which are common in
practice, they disagree.

II. MODELS

The basic structure of the models introduced here is similar
to nearly all of those developed from Bianchi’s paradigm.
Model specifics where chosen as they form the simplest
situation where an analytic model can be developed with or
without the queue-decoupling hypothesis. Bianchi’s approach
is well established, so we present only key equations rather
than their derivation. As in most analytic work, we assume
clear channel conditions so that transmission failure is only
caused by collisions and that there are no hidden stations. We
also assume that there is no post back-off, so that every packet
experiences at least one back-off period.

Consider a network of stations labeled {1, . . . , N}. Let
station i have Poisson arrival rate λi, minimum contention
window Wi, maximum contention window 2miWi and assume
that packets are discarded after Mi (≥ mi) collisions. Adopt-
ing Bianchi’s fundamental hypothesis, the conditional collision
probability given attempted transmission pi is assumed not
to depend on back-off stage. In addition, assume that each
station can buffer a single packet in addition to the one
being processed by the MAC. Temporarily suppressing the
station subscript i, each station’s back-off process is described
by the Markov chain depicted in Figure 1, where the state
(k, l) corresponds to the current packet in the MAC having
experienced k collisions and having a back-off counter with
value l. The Idle state corresponds to the station having
no packet awaiting transmission. The Markov chain has the
following parameters: r, the probability that at least one packet
arrives while the station is in the idle state, p the conditional
collision probability and {qj} the queue-busy probability at
back-off stage j. We will relate the r and {qj} parameters to
the Poisson packet arrival rate λ, depending on whether the
queue decoupling assumption is adopted or not. In the general
setting the stationary distribution, b(l, k), of this Markov chain
can be determined explicitly as a function of these parameters.
In particular, defining the normalization

1
η

:=
1
2

(
1− p− p(2p)m

(1− p)(1− 2p)
W − 2mpM+1

1− p
W − 1− pM+1

1− p

)
+

1− p

r

(
M−1∑
k=0

pk(1− qk) +
pM

1− p
(1− qM )

)
, (2)

the stationary probability of attempted transmission is

τ(p, r, {qj}) =
1− pM+1

1− p
η. (3)

In order to relate the offered load parameters r and {qj} we
consider two models, one with and one without the queue-
decoupling approximation.
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Fig. 1. Station back-off counter Markov chain

Model (I): Const-q. Adopting the queue-decoupling approx-
imation, qj := q for all j and 1− q is the probability that no
packet arrives during an average MAC service time. With idle
slots being of length δ (20µs in 802.11b) and busy slots of
length Tb (for ease of presentation, we assume that collisions
and successful transmissions take the same time; 578µs plus
payload at 11Mbps in 802.11b with ACK header at 1Mbps),
the expected time between counter decrements is

T :=
N∏

i=1

(1− τi)δ +

(
1−

N∏
i=1

(1− τi)

)
Tb,

while the average time from when a packet starts being
processed by the MAC until it successful transmission is

E(B) =
W (1− p− p(2p)m)

2(1− 2p)(1− p)
+

pM+1(1−W2m)
2(1− p)

.

Based on the reasoning in [5], we use the standard approxima-
tions that 1− r = exp(−λT ) and 1− q = exp(−λE(B)T ) =
(1− r)E(B), so that the final term in equation (2) reduces to
(1 − r)E(B)/r. To solve the Const-q model, using (3), one
searches for a solution of fixed point equations (1).

Model (II): Var-q. For the model without the queue-
decoupling approximation, we wish to assume as little as
possible beyond Bianchi’s collision decoupling hypothesis.
This leads us to treating slots being idle or busy as an i.i.d.
process as well as having the queue-busy probability depend
on backoff stage. Again suppressing station-based subscripts,
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we have that

1− r =
∏
k 6=i

(1− τk)e−λδ +

1−
∏
k 6=i

(1− τk)

 e−λTb .

For 0 ≤ j < m, we have that

1− qj =

(
j∏

l=0

1
2lW

)
e−λTb(j+1)

(
j∏

l=0

1− (1− r)2
lW

r

)
and, for m ≤ i ≤ M , we have the equality

1− qj = (1− qj−1)
1− (1− r)2

mW

2mWr
e−λTb .

To solve the Var-q model, using (3), one searches for a solution
of these equations in addition to the fixed point equation (1).

III. RESULTS

Consider an 802.11b infrastructure mode network with N
stations that have 802.11b parameters identical to those in
Table I [5]. All packets have a 1000 byte payload. A model
validation scenario of the sort commonly used by authors
is where there are 10 stations and the arrival rates of all
stations are the same. In Figure 2, model predictions of station
throughputs are compared with the output of ns-2 packet
level simulations. It can be seen that the Const-q and Var-
q models are nearly inseparable and both make remarkably
accurate throughput predictions when compared with results
from simulations. Validation scenarios of this sort have led
many authors to deduce that the queue-decoupling hypothesis
is a good approximation. However, Figure 3 reports on the
same network, but where the arrival rate at one station is thirty
times that of the nine others: λ1 = 30λ2. The predictions
of the two models no longer coincide, with the Var-q model
continuing to make accurate predictions, while the Const-q
model does not. Other asymmetric slices through the through-
put versus offered load surface for networks of various sizes,
N , show similar differences in predictions. This indicates that
the flawed queue-decoupling hypotheses does follow through
to prediction inaccuracies.
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Fig. 2. Symmetric offered load. N = 10. Predictions and ns-2 simulation.
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Fig. 3. Asymmetric offered load. N = 10. One station with arrival rate λ1

and nine with rate λ2. Predictions and ns-2 simulation.

IV. CONCLUSIONS

We have shown how a commonly adopted, but flawed,
hypothesis used in modeling 802.11 infrastructure model net-
works can lead to predictive errors. As finite load models
are used, for example, to propose load-dependent 802.11e
parameterizations to achieve fair bandwidth allocation in in-
frastructure and mesh networks (e.g. [13], [14]), these inac-
curate predictions could lead to settings that perform poorly.
This work suggests that to build an analytic model that in-
corporates buffering, is tractable and has run-time advantages
over simulation, one must either accept the inaccuracies that
come with the queue-decoupling hypothesis or the research
community must rise to the challenge of providing new
modeling innovation.
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