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Abstract

We consider the sample paths of the order statistics of i.i.d. random variables with
common distribution function F . If F is strictly increasing but possibly having disconti-
nuities, we prove that the sample paths of the order statistics satisfy the large deviation
principle in the Skorohod M1 topology. Sanov’s Theorem is deduced in the Skorohod M ′

1

topology as a corollary to this result. A number of illustrative examples are presented,
including applications to the sample paths of trimmed means and Hill Plots.

1 Introduction

Let {Xn : n ≥ 1} be a sequence of i.i.d. real-valued random variables with distribution func-
tion F (x) = P (X1 ≤ x) that is assumed to be strictly increasing, but possibly having discon-
tinuities. Define a := inf{x : F (x) > 0} ∈ [−∞,∞) and b = inf{x : F (x) = 1} ∈ (−∞,∞].
For each n ≥ 1, let X1,n, . . . , Xn,n denote the ascending order statistics of X1, . . . , Xn, so that
X1,n ≤ X2,n ≤ . . . ≤ Xn,n and define X0,n := a and Xn+1,n := b. For each n ≥ 1 define the
sample path of the order statistics by

Xn(t) := X[(n+1)t],n for all t ∈ [0, 1], (1)

where [x] is the greatest integer that is less than x.

The purpose of the present article is to prove the functional Large Deviation Principle (LDP)
for order statistics in the sense of Varadhan [34]. We consider Xn(·) as a random element
of the space of non-decreasing càdlàg functions (right continuous functions with left hand
limits) φ such that φ(0) ≥ a and φ(1) = b.
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We equip this space with the Skorohod M1 topology [31] everywhere, apart from for Sanov’s
Theorem where we use the Skorohod M ′

1 topology [25][37]. We prove that the random paths
{Xn(·)} satisfy the Large Deviation Principle (LDP). That is, for all Borel sets B

− inf
φ∈B◦

JF (φ) ≤ lim inf
n→∞

1
n

logP (Xn(·) ∈ B) ≤ lim sup
n→∞

1
n

logP (Xn(·) ∈ B) ≤ − inf
φ∈B̄

JF (φ)

(2)

where B◦ denotes the interior of B and B̄ denotes its closure. The rate function JF takes
values in [0,∞], is lower semi-continuous and has compact level sets (i.e. it is a good rate
function, see e.g. [7]).

The sequence of order statistics sample paths {Xn(·)} defined in equation (1) is closely related
to the sequence of empirical distribution functions {Fn} defined by

Fn(x) =
1
n

n∑
i=1

1{Xn≤x},

for all n ≥ 1. Indeed, the right continuous generalized inverse of Xn(·) is approximately
Fn(·) (in a sense that is made precise in the proof of Corollary 5). This relationship suggests
that one way to prove that order statistics sample paths satisfy the LDP is to begin with
Sanov’s Theorem [28], the LDP for empirical measures in the space of probability measures,
and to deduce the LDP for {Xn(·)} from it. In a recent article, this is the approach taken by
Boistard [4] in order to prove large deviation results for L-statistics such as the trimmed mean
and Gini’s mean difference. For distribution functions with lighter than exponential tails she
strengthens the topology in Sanov’s Theorem from the topology of weak convergence to the
topology generated by the L2-Wasserstein metric. This enables her to deduce the LDP for L-
statistics of not-necessarily bounded random variables by use of the contraction principle. The
case of L-statistics for exponentially distributed random variables falls outside the conditions
of her general approach, but is treated using alternate arguments.

The work in this paper differs from Boistard [4] in two significant ways: (1) the method of
proof and (2) the topology in which the result holds. We take a completely different approach
to prove the LDP for {Xn(·)}. We begin by proving that the sample paths of the order
statistics for i.i.d. uniformly distributed random variables satisfy the LDP. This is achieved
by using an alternate characterization of the distribution of the sample paths of the order
statistics of uniformly distributed random variables in terms of self-normalized sums of i.i.d.
exponentially distributed random variables. By recalling a version of Mogul’skii’s Theorem
[19] due to Puhalskii [22] and then applying Puhalskii’s extension of the contraction principle
[22][24] with a function that embodies this representation, we obtain the LDP for the sample
paths of the order statistics of the i.i.d. uniformly distributed random variables. An additional
application of the contraction principle recovers the result for more general distributions
than the uniform. When the underlying distribution function is strictly increasing (although
possibly discontinuous), this approach leads to the functional LDP holding in the Skorohod
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M1 topology. From this result we deduce the LDP for trimmed means for any strictly
increasing distribution function.

We comment that the topology of uniform convergence would be too strong for these results
as even in the limit it is possible to have discontinuous sample paths. This is embodied by
the resultant rate functions being finite at discontinuous paths.

An expression for the rate function, JF in equation (2), is given in equation (6). If F (x) =∫ x
a f(y) dy where f(y) > 0 almost everywhere, this reduces to the formula in equation (9).

This functional large deviation principle enables not only the calculation of the exponential
decay in the probability of seeing unlikely sample paths of order statistics, but also the
identification of the most likely paths of the order statistics given a rare event occurred.

We illustrate the merits of this LDP by deducing the sample path LDP for the trimmed
means of any strictly increasing distribution function, even those with infinite mean. We also
establish the large deviation principle for Hill Plots, which enables estimates on the likelihood
that Hill’s [13] widely-used methodology misclassifies a non-Pareto law as being a Pareto law.

This article is organized as follows. In Section 2 we introduce the basic set-up and notation.
The functional LDP for order statistics is presented in Section 3. Applications of the results
are presented in Section 4.

2 Notation and terminology

We equip the real line R and its subsets with the Euclidean metric ρ1(x, y) = |x− y|, but we
equip the extensions of the real line (R ∪ {+∞}, R ∪ {−∞} and R ∪ {−∞,+∞}) with an
alternate metric, ρ2(x, y) = | arctan(x)−arctan(y)|, to ensure that they are Polish spaces [9].
The metrics ρ1 and ρ2 are topologically equivalent when restricted to [0, 1]. The use of ρ1 or
ρ2 is solely a technicality with the usage being dependent on if we are working with real or
extended-real valued functions.

Let D[0, 1] denote the space of real (or extended-real) valued càdlàg functions on the closed
interval [0, 1] equipped with the Skorohod M1 topology [31][37] induced by the metric

dM1(φ1, φ2) = inf
(uj ,rj)∈Π(φj),j=1,2

max{‖u1 − u2‖∞, ‖r1 − r2‖∞}

where ‖u‖∞ = sups∈[0,1] |u(s)| and Π(φ) is the set of all parametric representations (u, r) of
φ. A parametric representation (u, r) is a continuous nondecreasing function of the interval
[0, 1] onto the completed graph Γφ of φ, where the function u gives the spatial component,
while the function r gives the time component. In this context completed graph of φ means

Γφ = {(u, t) ∈ R× (0,∞) : u ∈ [min{φ(t−), φ(t)},max{φ(t−), φ(t)}]} ∪ {(φ(0), 0)},

where φ(t−) denotes the left limit of φ at t and we define an order on Γφ by saying that
(u1, t1) ≤ (u2, t2) if either (i) t1 < t2 or (ii) t1 = t2 and |φ(t1−) − u1| ≤ |φ(t2−) − u2|.
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In Corollary 5 we shall also consider D[0, 1] equipped with the weaker M ′
1 topology [25][37]

which is defined in the same way as M1 except that we change Γφ to

Γ′φ = {(u, t) ∈ R× (0,∞) : u ∈ [min{φ(t−), φ(t)},max{φ(t−), φ(t)}]},

where φ(0−) = 0.

For each −∞ ≤ a < b ≤ ∞, let V+
a,b ⊂ D[0, 1] denote the closed set of non-decreasing

functions φ such that φ(t) ≥ a, for all t ∈ [0, 1], and φ(1) = b. We will equip each V+
a,b

with the Skorohod M1 topology, apart from for Sanov’s Theorem where we will use the M ′
1

variant. For both topologies, the space is metrizable as a separable metric space.

For each function φ ∈ D[0, 1] we use the following notation for its Lebesgue decomposition
with respect to Lebesgue measure:

φ(t) = φ(a)(t) + φ(s)(t) =
∫ t

0
φ̇(a)(s)ds+ φ(s)(t),

where φ(a) is its absolutely continuous component with φ(a)(0) := 0 and φ(s) is its singular
component.

The quantile function, F−1 : [0, 1] 7→ [a, b] defined by

F−1(u) := inf{x : F (x) > u} if u ∈ [0, 1) and F−1(1) := b, (3)

is the right continuous generalized inverse of F .

3 Functional LDP for order statistics

Theorem 3 is the cornerstone result. It proves the functional LDP in the Skorohod M1

topology for the sample paths of order statistics where the distribution function F is strictly
increasing, but possibly discontinuous. In order to do so, we shall appeal to the following
version of Mogul’skii’s Theorem1.

Theorem 1 (Puhalskii [22]) If {Yi} is i.i.d. with P (Yi > 0) = 1 and E(exp(θY1)) < ∞
for some θ > 0, then the sample paths

Sn(t) :=
1
n

[(n+1)t]∑
i=1

Yi (4)

1The version of Mogul’skii’s Theorem reported in Theorem 5.1.2 [7] is insufficient for our needs, as it does
not encompass the case of exponentially distributed random variables. See also [17][20][26][21].
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satisfy the LDP in D[0, 1], equipped with the Skorohod M1 topology, with a rate function that
is finite only for functions, φ, that are non-decreasing and of finite variation. For such a φ,
the rate function is

I(φ) =
∫ 1

0
Il(φ̇(a)(t))dt+ φ(s)(1), (5)

where Il(x) is the rate function for the partial sums {n−1
∑n

i=1 Yi}.

This is a deduction from Lemma 3.2 of [22] (see also [23]). Under the conditions of Theorem 1,
it proves that the LDP holds for {Sn} in the space of divergent càdlàg functions on the interval
[0,∞) equipped with the topology of weak convergence. We first restrict the argument to
[0, 1] by the contraction principle, which gives the rate function in equation (5). To obtain the
final result we note equivalence between the topology of weak convergence and the Skorohod
M1 topology for monotone functions (see, for example, Corollary 12.5.1 [37]).

We shall also make extensive use of Puhalskii’s extension of the contraction principle [22]. In
particular, we have the following, which can be found as Corollary 3.1.15 [24].

Theorem 2 (Puhalskii [24]) Assume {Xn} satisfies the LDP in a Hausdorff topological
space E with rate function IE. If f : E 7→ E′, where E′ is a Tychonoff space, is continuous
at all x such that IE(x) < ∞, then {f(Xn)} satisfies the LDP in E′ with rate function
IE′(y) = inf{IE(x) : f(x) = y}.

All of the spaces we consider are metric spaces, so the topological conditions of this theorem
are met.

Armed with Theorems 1 and 2, we now prove our cornerstone result.

Theorem 3 (LDP for order statistics) The sample paths {Xn(·)} satisfy the LDP in V+
a,b

equipped with the Skorohod M1 topology with the rate function

JF (χ) = inf
φ∈V+

0,1

{
−
∫ 1

0
log(φ̇(a)(t))dt : F−1(φ(t)) = χ(t) for all t ∈ [0, 1]

}
. (6)

Note that JF (χ) = 0 if χ(t) = F−1(t).

Proof: Begin by considering {Un : n ≥ 1}, a sequence of i.i.d. random variables that are
uniformly distributed on [0, 1]. For each n ≥ 1, let U1,n, . . . , Un,n be the order statistics of
U1, . . . , Un, with U0,n := 0 and Un+1,n := 1. For each n ≥ 1 define the sample path of the
order statistics by Un(t) := U[(n+1)t],n for all t ∈ [0, 1].

The distribution of the sample path Un(·) is equal to a distribution that can be constructed
from a sequence of i.i.d. exponentially distributed random variables. Let {Yn} be i.i.d.
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exponentially distributed random variables with mean 1. Define the self-normalized random
functions {Nn} by

Nn(t) :=

[(n+1)t]∑
i=1

Yi

 /

n+1∑
j=1

Yj

 , if
n+1∑
j=1

Yj > 0. (7)

As a consequence of Proposition 8.2.1 in Shorack and Wellner [30], Nn(·) is equal in distri-
bution to Un(·). As an application of Theorem 1, the sample paths

Sn(t) :=
1
n

[(n+1)t]∑
i=1

Yi

satisfy the LDP in D[0, 1] with rate function that is finite only for functions φ that are non-
decreasing and of finite variation, I(φ) =

∫ 1
0 Il(φ̇

(a)(t))dt+φ(s)(1), where Il(x) = x−log(x)−1
is the rate function for the partial sums of i.i.d. exponentially distributed random variables
{n−1

∑n
i=1 Yi}.

Define g : {φ ∈ D[0, 1] : φ(1) 6= 0} 7→ D[0, 1] by g(φ)(t) = φ(t)/φ(1). Note that if Sn(1) 6= 0,
then g(Sn) = Nn, where Sn(·) is defined in equation (4) and Nn(·) is defined in equation (7).
The map g is continuous at all φ such that φ(1) > 0 as if φn → φ in D[0, 1] equipped with
the Skorohod M1 topology, then φn(1) → φ(1). As Il(0) = − log(0)− 1 = ∞, I(φ) <∞ only
if φ(1) > 0. Puhalskii’s extension of the contraction principle, Theorem 2, only requires g
to be continuous at all limit points where the rate function is finite in order for the usual
contraction principle result to hold (e.g. Theorem 4.2.1 [7]). Thus as g is continuous at all
φ such that I(φ) < ∞, we deduce that {Nn(·)} satisfies the LDP in V+

0,1 with the following
rate function:

JU (ψ) = inf{I(φ) : g(φ) = ψ} = inf{I(φ) : φ(t)/φ(1) = ψ(t) for all t ∈ [0, 1]}
= inf

φ(1)>0
I(φ(1)ψ) = inf

z>0
I(zψ).

For fixed z > 0 and ψ ∈ V+
0,1, we have that

I(zψ) =
∫ 1

0
Il(zψ̇(a)(t))dt+ zψ(s)(1)

=
∫ 1

0

(
zψ̇(a)(t)− log(z)− log(ψ̇(a)(t))− 1

)
dt+ zψ(s)(1)

= z(1− ψ(s)(1))− log(z)−
∫ 1

0
log(ψ̇(a)(t))dt− 1 + zψ(s)(1)

= z − log(z)− 1−
∫ 1

0
log(ψ̇(a)(t))dt,
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where we have used the fact that ψ(1) = 1 to deduce that
∫ 1
0 ψ̇

(a)(t)dt = 1−ψ(s)(1). However,
infz>0(z − log(z)− 1) = 0 and is attained at z = 1, thus

JU (ψ) = inf
z>0

I(zψ) = −
∫ 1

0
log(ψ̇(a)(t))dt. (8)

As the order statistics sample path Un(·) has the same distribution as the self-normalized
sample path Nn(·), the sample paths of the order statistics of uniformly distributed random
variables {Un(·)} satisfy the LDP in V+

0,1 with the rate function given in equation (8). As
log(0) = −∞, JU (ψ) = ∞ unless the absolutely continuous component of ψ’s Lebesgue
decomposition is strictly increasing almost everywhere with respect to Lebesgue measure.

Consider a sequence of i.i.d. random variables {Xn} with common distribution function
F (·). As is well known, e.g. Theorem 14.1 [3], with the quantile function F−1(u) defined
in equation (3) and {Un} being i.i.d. random variables distributed uniformly on [0, 1], then
{F−1(Un)} is an i.i.d. sequence of random variables with distribution function F (·). With a
slight abuse of notation, define the map F−1 : V+

0,1 7→ V+
a,b by F−1(φ)(t) = F−1(φ(t)) for all

t ∈ [0, 1]. As F−1(u) is a non-decreasing function of u, we have that F−1(Un(·)) is exactly the
sample path of the order statistics of F−1(U1), . . . , F−1(Un). As we have proved that {Un(·)}
satisfies the LDP, to deduce the LDP for the sample paths {Xn(·)} of the order statistics of
{Xn}, it suffices to show that the map F−1 : V+

0,1 7→ V+
a,b is sufficiently well behaved that the

contraction principle (e.g. Theorem 4.2.1 [7]) can be applied.

As F is assumed to be strictly increasing (although it can have discontinuities), F−1 is
continuous on [0, 1] (e.g. Lemma 13.6.4 [37]). Note that F−1(φ) := F−1 ◦ φ and Theorem
13.2.3 [37] proves that composition on D[0, 1] × D[0, 1] is continuous at all (F−1, φ) such
that F−1 is continuous and φ is non-decreasing. Thus F−1 : V+

0,1 7→ V+
a,b is continuous and

Theorem 3 follows from an application of the contraction principle (e.g. Theorem 4.2.1 [7]).

�

We now state a corollary of Theorem 3 that follows from the chain rule [35].

Corollary 4 (Distribution functions with positive densities a.e.) If F (x) =
∫ x
a f(y) dy

and f is continuous and positive almost everywhere, so that F (x) is strictly increasing and
continuous, then JF (χ) = ∞ unless χ ∈ V+

a,b (or equivalently F ◦χ ∈ V+
0,1) is strictly increas-

ing in which case

JF (χ) = −
∫ 1

0

(
log(f(χ(t))) + log(χ̇(a)(t))

)
dt. (9)

In the next subsection we present some illustrative examples based on Theorem 3 and Corol-
lary 4, which, inter alia, demonstrate that the rate functions defined in equations (6) and (9)
are not convex in general.
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3.1 Examples

Example I demonstrates why JF (·) is finite at paths with discontinuities: they correspond
to ranges where no sample has been observed. It also illustrates how the functional LDP
enables the deduction of conditional laws of large numbers. We say that the order statistics
of random variables with distribution function F can (cannot) emulate the order statistics
of random variables with distribution function G if JF (G−1) <∞ (= ∞). Examples II to V
below concern order statistics of given laws that can or cannot emulate the order statistics
of other distributions. In particular, Example IV shows that the order statistics of Pareto
distributions, even those with finite mean, can emulate those with infinite mean. Example V
shows that the order statistics of Pareto distributions can emulate those of any Exponential
distribution, but the order statistics of Exponential distributions cannot emulate the order
statistics of Pareto distributions with infinite mean. We return to this final point in Section
4.2 Example VII when we consider trimmed means.

Example I: discontinuous paths. If X1 is uniformly distributed on [0, 1], denoted F = U ,
then F (x) =

∫ x
0 dx. Thus F−1(u) = u, so that

JU (χ) = −
∫ 1

0
log(χ̇(a)(t)) dt

for any χ ∈ V+
0,1. As x 7→ − log(x) is a strictly convex function, note that JU is a strictly

convex rate function. Define the set A := {φ : φ(t) ≤ 1/3 for all t ∈ [0, 1)}. Note that
Xn(·) ∈ A if and only if Xn,n ∈ [0, 1/3], i.e. Xi ∈ [0, 1/3] for all i ∈ {1, . . . , n}, and therefore
P (Xn(·) ∈ A) = (1/3)n. The exponent in the decay of this probability is − log(1/3). This
can also be calculated from the LDP by considering the sample path large deviations for
P (Xn(·) ∈ A) and, in particular, by determining inf{JU (χ) : χ ∈ A}. As − log(u) is a convex
function for u > 0 we can use Jensen’s inequality to show that the infimum inf{JU (χ) : χ ∈ A}
is attained at χ̂(t) = t/3 for t ∈ [0, 1) and χ̂(1) = 1. For this path JU (χ̂) = − log(1/3) and
therefore limn−1 logP (Xn(·) ∈ A) = − log(1/3).

The sample path LDP gives more information than the direct calculation. It shows that the
most likely path to this event is that X1,n, . . . , Xn,n be spread uniformly over [0, 1/3], in the
following sense. By, for example, Theorem 3.1 (b) of Lewis, Pfister and Sullivan [16], for any
ε > 0

lim
n→∞

P (Xn(·) /∈ Bε(χ̂)|Xn(·) ∈ A) = 0,

where Bε(χ̂) is the open ball of radius ε around χ̂ ∈ V+
0,1. That is, conditioned on Xn,n ≤ 1/3,

the sample paths of the order statistics {Xn(·)} satisfy a weak law of large numbers at χ̂, the
path where the samples are uniformly distributed in [0, 1/3].

Example II: rate function for the Beta distribution. Assume that X1 is distributed as
a Beta(α, β) distribution, so that X1 takes values in [0, 1] with a strictly increasing continuous
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distribution function F (x;α, β) with density

f(x;α, β) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1,

where Γ(z) =
∫∞
0 tz−1e−tdt and α, β > 0. By Corollary 4, {Xn(·)} satisfies the LDP in V+

0,1

with rate function

JBeta(α,β)(χ) =− log
(

Γ(α+ β)
Γ(α)Γ(β)

)
− (α− 1)

∫ 1

0
log(χ(t))dt− (β − 1)

∫ 1

0
log(1− χ(t))dt

−
∫ 1

0
log(χ̇(a)(t))dt,

for any χ ∈ V+
0,1. Considering JBeta(α,β)(χ̂) where χ̂(t) := t for t ∈ [0, 1], we are evaluating the

large deviations rate of seeing the quantile function of a uniform law given that the underlying
distribution is actually a Beta(α, β) distribution. We obtain

JBeta(α,β)(χ̂) = − log
(

Γ(α+ β)
Γ(α)Γ(β)

)
+ α+ β − 2.

This function has its minimum, JBeta(α,β)(χ̂) = 0, when the random variables {Xn} have a
uniform distribution, α = β = 1. Note that if α = 1, then as Γ(1+β) = βΓ(β), JBeta(α,β)(χ̂) =
β− log(β)− 1. This is the rate function evaluated at β for the partial sums {n−1

∑n
i=1 Yi} of

i.i.d. exponentially distributed random variables {Yi} with mean 1. By symmetry, the same
result holds if β = 1 and α is varied.

Example III: rate function for the Exponential distribution. If F (x) = 1−exp(−λx)
for all x ≥ 0 so that a = 0 and b = +∞, then F−1(u) = − log(1− u)/λ. Thus by Corollary 4

JExp(λ)(χ) = − log(λ) + λ

∫ 1

0
χ(t) dt−

∫ 1

0
log(χ̇(a)(t)) dt, (10)

which can be readily seen to be strictly convex. For example, if χ̂(t) = F−1(t) = − log(1 −
t)/λ, then JExp(λ)(χ̂) = 0. That is, if the sample path is the quantile function of an expo-
nential distribution with rate λ, then the rate function is 0. If, for some K > 0, χ̂K(t) = Kt
for t ∈ [0, 1) and χ̂K(1) = ∞, then JExp(λ)(χ̂K) = − log(λ) + λK/2− log(K). Thus the most
likely λ to give rise to the quantile function of a uniform law on [0,K) is when λK = 2/K
and the mean of the exponential distribution corresponds to the mean of the corresponding
uniform distribution. For λK = 2/K, JExp(λK)(χ̂K) = − log(2) + 1 ≈ 0.307, irrespective of
K.

Example IV: rate function for the Pareto distribution. If F (x) = 1− x−α for α > 0
so that a = 1 and b = +∞, then F−1(u) = (1− u)−1/α. Thus by Corollary 4

JPareto(α)(χ) = − log(α) + (α+ 1)
∫ 1

0
log(χ(t)) dt−

∫ 1

0
log(χ̇(a)(t)) dt, (11)
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which is an example of a non-convex rate function. To see this consider, for k = 1, 2 and
ρ ∈ (0, 1), the functions:

χk,ε(t) =

{
t+ k for t ∈ [0, 1− ε)
exp((1− t)−ρ) for t ∈ [1− ε, 1)

,

then for any γ ∈ (0, 1)

lim
ε→0

JPareto(α)(γχ1,ε + (1− γ)χ2,ε) = − log(α) + (α+ 1)
∫ 1

0
log(γ(t+ 1) + (1− γ)(t+ 2))dt

> − log(α) + (α+ 1)
∫ 1

0
(γ log(t+ 1) + (1− γ) log(t+ 2)) dt,

= lim
ε→0

(
γJPareto(α)(χ1,ε) + (1− γ)JPareto(α)(χ2,ε)

)
,

by the strict concavity of x 7→ log(x). Thus for any ε sufficiently small, the lack of convexity
of JPareto(α)(·) is demonstrated.

If χ̂ corresponds to the quantile function of the Pareto(α), χ̂(t) = (1−t)−1/α, then JPareto(α)(χ̂) =
0. If K > 0 and χ̂(t) = 1 +Kt for t < 1 and χ̂(1) = ∞, corresponding to the quantile func-
tion of a uniform distribution on [1, 1 +K), then JPareto(α)(χ̂) = − log(αK) + (α+ 1)((K +
1)K−1 log(K+1)−1). The minimum over α is attained at αK = K/((K+1) log(K+1)−K) for
which JPareto(αK)(χ̂) = −2 log(K)+log((K+1) log(K+1)−K)+(K+1)K−1 log(K+1). This
has its infimum as K → 0, so that αK →∞ and JPareto(αK)(χ̂) tends to − log(2)+1 ≈ 0.307.
If χ̂(t) = (1− t)−1/β , for any β > 0, then

JPareto(α)(χ̂) =
α

β
− log

(
α

β

)
− 1.

The order statistics path φ̂ of the uniformly distributed random variables on [0, 1] that attains
this is φ̂(t) = F ◦ χ̂(t) = 1− (1− t)α/β. Thus it is possible on the scale of large deviations for
the sample path of the order statistics of any Pareto law to emulate that of any other.

Example V: Exponential and Pareto distribution. If χ̂(t) = − log(1 − t)/λ + 1 cor-
responding to a quantile function of an Exponential law on [1,∞), then JPareto(α)(χ̂) =
log(λ/α)− 1− exp(λ)(α+ 1)Ei(−λ), where Ei(−λ) = −

∫∞
λ exp(−t)/t dt. Thus, in the large

deviations limit with a finite rate, the order statistics of any i.i.d. Pareto distributed random
variables can emulate the quantile function of any i.i.d Exponentially distributed random
variables. On the other hand, if χ̂(t) = (1 − t)−1/α − 1, corresponding to the quantile func-
tion of a Pareto distribution on [0,∞), then JExp(λ)(χ̂) = +∞ if α ≤ 1 and, if α > 1,
JExp(λ)(χ̂) = log(α/λ)+(λα+1−α2)/(α(α−1)) <∞. That is, in the large deviations limit,
the order statistics of exponentially distributed random variables cannot emulate the order
statistics of Pareto distributed random variables with infinite mean. We return to this point
in Section 4.2, Example VII.
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3.2 Comment on Sanov’s Theorem

Sanov’s Theorem (e.g [7] Section 6.2) considers the empirical laws of a process of i.i.d. random
variables. With the laws considered as random elements of the space of probability measures
equipped with either the topology of weak convergence or the τ topology, Sanov’s Theorem
proves the empirical laws satisfy the LDP with relative entropy as the rate function. For
some modern developments, see for example [15] and references therein.

As stated in the Introduction, the empirical laws and the sample paths of order statistics
are closely related. The following corollary shows that a version of Sanov’s Theorem for
the empirical distribution functions can be recovered from the sample path LDP for the
order statistics. For the sequence {Xn}, the empirical distribution functions Fn ∈ D[0, 1] are
defined by

Fn(x) =
1
n

n∑
i=1

1{Xi≤x},

for all n ≥ 1.

For −∞ ≤ a < b ≤ ∞ and each χ ∈ V+
a,b define the right inverse χ−1 by χ−1(t) := inf{s :

χ(s) > t} for all t ∈ [a, b), χ−1(1) := b. Thus χ−1 is an element of V+
0,1[a, b], the set of non-

decreasing elements in the space of càdlàg functions on [a, b] with χ−1(a) ≥ 0 and χ−1(b) = 1.
For our purposes, it suffices to equip V+

0,1[a, b] with the Skorohod M ′
1 topology, which is finer

than the M1 topology and so than the topology of weak convergence.

Corollary 5 (Sanov’s Theorem) Assume that F (x) =
∫ x
a f(y) dy where f(y) > 0 almost

everywhere and −∞ ≤ a < b ≤ ∞. Then {Fn} satisfies the LDP in V+
0,1[a, b] equipped with

the Skorohod M ′
1 topology with rate function HF (η) = ∞ unless η is absolutely continuous,

in which case

HF (η) =
∫ b

a
η̇(s) log

(
η̇(s)
f(s)

)
ds. (12)

Proof: For any x ∈ (a, b],

Fn(x) =
1
n

(inf {m ∈ {0, 1, . . . , n+ 1} : Xm,n > x} − 1)

=
1
n

(
(n+ 1) inf

{
r ∈

{
0,

1
n+ 1

, . . . ,
n+ 1
n+ 1

}
: X(n+1)r,n > x

}
− 1
)

=
(

1 +
1
n

)
inf
{
s ∈ [0, 1] : X[(n+1)s],n > x

}
− 1
n
,

=
(

1 +
1
n

)
X−1
n (x)− 1

n
,
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where we have used the definition of pseudo-inverse above in our identification of X−1
n (x).

Hence supx∈[a,b] |Fn(x)−X−1
n (x)| ≤ 2/n and the sequences {Fn} and {X−1

n (·)} are exponen-
tially equivalent (e.g. Definition 4.2.10 [7]) in the uniform topology. Thus to prove {Fn}
satisfies the LDP, it suffices to show that {X−1

n (·)} does. By Theorem 13.6.2 [37] (with
straight-forward modifications if b < ∞), the function V+

a,b 7→ V+
0,1[a, b] such that φ 7→ φ−1

can be seen to be continuous from the M1 to M ′
1 topologies at all strictly increasing φ. It is

necessary to move to the M ′
1 topology as, in general, inversion is not continuous in the M1

topology. As JF (φ) = ∞ unless φ is strictly increasing, the LDP for {X−1
n (·)} follows from

an application of Theorem 2. Take η ∈ V+
0,1[a, b] so that η−1 is strictly increasing (i.e. η is

absolutely continuous) and let ` = `1 + `2 be the Lebesgue decomposition of the Lebesgue
measure ` with respect to the measure `◦η, i.e. the image measure of ` under η−1. By Lemma
3.6 in [22] we have

.

(η−1)(a)(t) =
d`1
dη

(η−1(t)), `-almost everywhere.

So, by Corollary 4 we deduce

HF (η) = JF (η−1) = −
∫ 1

0

(
log(f(η−1(t))) + log

.

(η−1)(a)(t)
)
dt

= −
∫ 1

0
log
(
f(η−1(t)))

d`1
dη

(η−1(t))
)
dt

= −
∫ b

η−1(0)
log
(
f(s)

d`1
dη

(s)
)
η̇(s) ds

= −
∫ b

η−1(0)
log
(
f(s)

d`

dη
(s)
)
η̇(s) ds (13)

=
∫ b

a
η̇(s) log

(
η̇(s)
f(s)

)
ds; (14)

indeed, the equality (13) follows by the absolute continuity of η (which implies ` = `1); (14)
follows as η̇(s) = 0 for s ∈ [a, η−1(0)) and 0 log(0) := 0.

�

4 Applications

4.1 Sample path large deviations for L-statistics

Let K : [0, 1] 7→ R and consider the sequence of random variables called L-statistics:

Tn :=
1

n+ 1

n∑
i=1

K

(
i

n+ 1

)
Xi,n for n ≥ 1.
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Much is known regarding the large n behavior of the sequence of random variables {Tn} and,
in particular, its central limit behavior, e.g. Stigler [32], Vandemaele and Veraverbeke [33],
Callaert, Vandemaele and Veraverbeke [5] and Aleshkyavichene [2]. Large deviation results
for L-statistics can be found in Groeneboom, Oosterhoff and Ruymgaart [10], Groeneboom
and Shorack [11], and Boistard [4].

Consider the measure on [0, 1] defined by

µn(ds) :=
1

n+ 1

n∑
i=1

δi/(n+1)(ds),

where δx is the Dirac delta measure at x, and set

Vn(t) :=
∫ t

0
K(s)X[(n+1)s],n µn(ds), t ∈ [0, 1].

Clearly Tn = Vn(1). For large values of n, approximating the empirical measure with the
Lebesgue measure on [0,1], we are led to consider the following sample paths

Tn(t) :=
∫ t

0
K(s)X[(n+1)s],n ds, t ∈ [0, 1].

The sample paths {Vn(·)} and {Tn(·)} record the shape of the L-statistics for the complete
range of quantile values, while Tn records it only over the whole range.

4.2 Trimmed means

The function K can be chosen to remove outliers. When

K(u) =

{
1/(1− 2γ) if u ∈ [γ, 1− γ]
0 otherwise,

(15)

for γ ∈ (0, 1/2), Tn is called the trimmed mean and is a robust statistic. It provides an
average value of the observations after the exclusion of large and small observations. It is
used, for example, in scoring at the Olympic Games. In the case where γ = 1/4, it is called
the interquartile mean.

In this case the sample paths Tn(·) are given by

Tn(t) = (1− 2γ)−1

∫ t

γ
X[(n+1)s],n ds for t ∈ [γ, 1− γ] (16)

Theorem 6 (Trimmed means) Assume that F is strictly increasing. If K is of the form
in equation (15) with γ ∈ (0, 1/2), then {Tn(·)} satisfies the LDP in C[γ, 1− γ], the space of
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continuous functions on [γ, 1 − γ] with φ(γ) = 0, equipped with the topology induced by the
uniform norm ||φ|| := supt∈[γ,1−γ] |φ(t)| and with the rate function

Hγ(χ) = inf
φ∈V+

a,b

{
JF (φ) : (1− 2γ)−1

∫ t

γ
φ(s)ds = χ(t) for all t ∈ [γ, 1− γ]

}
,

where JF (·) is defined in equation (6). Note that Hγ(χ) = 0 if χ(t) = (1−2γ)−1
∫ t
γ F

−1(u) du
for all t ∈ [γ, 1− γ].

Proof: Consider the map gγ : D[0, 1] 7→ C[γ, 1− γ] defined by

gγ(φ)(t) =
1

1− 2γ

∫ t

γ
φ(s) ds for t ∈ [γ, 1− γ]

and note that gγ(X[(n+1)·],n) = Tn(·). As Theorem 3 proves that {Xn(·)} satisfies the LDP
in V+

a,b, in order to deduce the LDP by invoking the extended contraction principle, Theorem
2, we must check that gγ is continuous at all φ such that JF (φ) < ∞. When C[γ, 1 − γ] is
equipped with the topology of uniform convergence, gγ is continuous (e.g. Theorem 11.5.1
[37]) at all φ taking values in R. Thus concern only arises if a = −∞ or b = +∞. This
causes no difficulty as JF (φ) <∞ only if a < φ(γ) < φ(1− γ) < b. To see this, consider (for
example) φ(1− γ) = b. Then, using equation (6),

JF (φ) ≥ inf
ψ∈V+

0,1

{
−
∫ 1

0
log(ψ̇(a)(t)) dt : F−1(ψ(1− γ)) = φ(1− γ)

}
≥ inf

ψ∈V+
0,1

{
−
∫ 1

0
log(ψ̇(a)(t)) dt : ψ(1− γ) = 1

}
.

As ψ(1−γ) = 1, ψ(1) = 1 and ψ is non-decreasing, ψ̇(a)(t) = 0 for t ∈ (1−γ, 1], − log(0) = ∞
and thus JF (φ) = ∞. Hence the LDP follows from Theorem 3 and an application of Theorem
2.

�

In contrast to Example V, Section 3.1, the following example shows that for trimmed means,
Exponential Laws can emulate Pareto Laws with finite rate, even Pareto Laws with infinite
mean.

Example VIII: Exponential emulating Pareto. If F (x) = 1− exp(−λx) for all x ≥ 0 so
that a = 0 and b = +∞, then F−1(u) = − log(1 − u)/λ and JExp(λ)(χ) is given in equation
(10). Consider the test function χ(t) = (1 − 2γ)−1

∫ t
γ ((1 − s)−1/α − 1) ds for t ∈ [γ, 1 − γ]
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corresponding to the trimmed mean of a Pareto distribution on [0,∞) with parameter α (see
Section 3.1, Example V). Using the expression in Theorem 3,

Hγ(χ) = inf
φ∈V+

0,∞

{
JExp(λ)(φ) : φ(t) = (1− t)−1/α − 1 for all t ∈ [γ, 1− γ]

}
= inf
ψ∈V+

0,1

{
JU (ψ) : ψ(t) = 1− e−λ((1−t)−1/α−1) for all t ∈ [γ, 1− γ]

}
= inf
ψ∈V+

0,1

{
−
∫ 1

0
log(ψ̇(a)(s))ds : ψ(γ) = 1− e−λ((1−γ)−1/α−1),

ψ(1− γ) = 1− e−λ(γ−1/α−1),

ψ̇(t) =
λ

α
(1− t)−

(1+α)
α e−λ((1−t)−1/α−1) for all t ∈ [γ, 1− γ]

}
.

Our aim is to show that the right hand side of this expression is finite for all α > 0, demon-
strating that the trimmed means of exponentially distributed random variables can emulate
those of Pareto distributed random variables with infinite mean. Consider the following
function that is defined by its derivative:

ψ̇(t) =


1−exp(−λ((1−γ)−1/α−1))

γ if t ∈ [0, γ)
λ
α(1− t)−

(1+α)
α exp

(
−λ((1− t)−1/α − 1)

)
if t ∈ [γ, 1− γ)

exp(−λ(γ−1/α−1))
γ if t ∈ [1− γ, 1]

.

As ψ meets the constraints in the infimum, we can upper bound Hγ(χ) by evaluating JU (ψ).
If α 6= 1,

JU (ψ) = −
∫ 1

0
log(ψ̇(t)) dt

= 2γ log γ − γ log(1− exp(−λ((1− γ)−1/α − 1))) + λγ(γ−1/α − 1)

− (1− 2γ) log
(
λ

α

)
+
α+ 1
α

(2γ − 1 + (1− γ) log(1− γ)− γ log γ)

− λ(1− 2γ) +
λα

α− 1

(
(1− γ)(α−1)/α − γ(α−1)/α

)
.

If α = 1, the last term in is replaced with λ(log(1 − γ) − log(γ)). For any λ > 0 and any
γ ∈ (0, 1/2), this expression is finite for α ∈ (0, 1), although growing quickly as α → 0.
Thus the paths of trimmed means of exponential distributions can mimic those of a Pareto
distribution with infinite mean, even though Example V in Section 3.1 shows that this is not
possible for untrimmed means.
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4.3 Hill Plots

Consider a sequence of i.i.d. random variables {Xn} with common distribution function F
supported on [1,∞). Given a sample set of order statistics X1,n, . . . , Xn,n we wish to deter-
mine if the original distribution is ultimately a Pareto(α) law on [1,∞), i.e. if the distribution
function is F (x) = 1 − x−α for x sufficiently large. Hill’s [13] widely-used methodology to
answer this question employs the following empirical quantities: for each 1 ≤ k ≤ n, define

Hk,n :=
1

k + 1

n∑
i=n−k+1

log(Xi,n)−
k

k + 1
log(Xn−k,n). (17)

The approach is based on the following observation: if it was indeed the case that Xi ulti-
mately behaves as a Pareto(α) law, then log(Xi) is ultimately an exponentially distributed
random variable with mean 1/α. Thus determining that the tail of F is a Pareto distribution
function is equivalent to determining that the tail of the distribution function of log(Xi) is
exponential. In Hill’s methodology, one creates a “Hill Plot”: for a contiguous range of small
k, e.g k ∈ {[n/100], [n/100] + 1, . . . , [n/10]}, one plots Hk,n versus k. If the resulting plot
is almost a straight line, one deduces that the tail of the distribution function of log(X1) is
exponential and thus F ultimately coincides with a Pareto law with a parameter given by
one over the height of the line.

Due to its practical importance, much is known about properties of Hill’s estimator (e.g. de
Hann and Resnick [6], Resnick and Stărică [27], Drees, de Hann and Resnick [8], Segers [29],
Haeusler and Segers [12] and references therein). Here, as an application of Theorem 3, by
considering the sample paths of Hill’s estimator, we prove the LDP for Hill Plots and use it
to estimate the likelihood that a non-Pareto distribution is misidentified as being a Pareto
distribution.

Consider the sample paths of Hill’s estimator defined by Hn(0) := 0 and, for t ∈ (0, 1],

Hn(t) :=
1
t

∫ 1

1−t
log(Xn(s)) ds− log(Xn(1− t))

=
1

(n+ 1)t

n∑
i=[(n+1)(1−t)]+1

log(Xi,n)

− 1
(n+ 1)t

(n− [(n+ 1)(1− t)]) log(X[(n+1)(1−t)],n).

For k ∈ {1, . . . , n} we have

Hn((k + 1)/(n+ 1)) =
1

k + 1

n∑
i=n−k+1

log(Xi,n)−
k

k + 1
log(Xn−k,n) = Hk,n,

so that Hn(·) is, indeed, the sample path of Hill’s estimator with sample size n. That is,
Hn(·) is the Hill Plot with a sample of size n.
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The following theorem proves that Hill Plots satisfy the large deviation principle for i.i.d.
random variables with a continuous increasing distribution function F that have bounded
support or satisfy tail conditions. After the Theorem, we will show that these conditions
are verified, for example, for any Weibull law, including those with heavier than exponential
tails.

Theorem 7 (LDP for Hill Plots) Assume the same hypotheses of Theorem 3 with a ≥ 1.
In addition, suppose b < ∞, or alternatively, F (x) differentiable for all x sufficiently large,
there exists β ∈ (0, 1) such that

lim
ε→0

ε log
(
1− F (exp(ε−β))

)
= −∞ (18)

and, defining the function xF (t) := F (exp((1 − t)−β) + 1), for all t sufficiently close to 1,
xF (t) > t and

d

dt
xF (t) ≥ xF (t)(1− xF (t))

xF (t)− t
log
(

(1− t)xF (t)
t(1− xF (t))

)
. (19)

Then {Hn(·)} satisfies the LDP in D[0, 1], equipped with the Skorohod M1 topology with the
rate function:

LF (χ) = inf
φ∈V+

a,b

{
JF (φ) :

1
t

∫ 1

1−t
log(φ(s))ds− log(φ(1− t)) = χ(t) for all t ∈ (0, 1]

}
.

Note that LF (χ) = 0 if χ(t) = t−1
∫ 1
1−t log(F−1(s))ds− log(F−1(1− t)).

Proof: Define the function h : V+
a,b 7→ D[0, 1] by h(χ)(0) := 0 and

h(χ)(t) =
1
t

∫ 1

1−t
log(χ(s)) ds− log(χ(1− t)).

To prove the LDP for {h(Xn)(·)} we apply extensions of the contraction principle with h
after noting the following. The function h can be written as h = h4 ◦ h3 ◦ h2 ◦ h1, where

h1(χ)(t) = (χ(t), χ(1− t)), h2(χ, ψ)(t) = (logχ(t), logψ(t)),

h3(χ, ψ)(t) =
(∫ 1

1−t
χ(s)ds, ψ(t)

)
and h4(χ, ψ)(t) =

1
t
χ(t)− ψ(t).

The function h1 is continuous by arguments analogous to those in Theorem 8.1 [36], while
h2, using the continuity of log(·), is continuous by Theorem 13.2.3 [37]. For continuous χ, the
function h4 is continuous by Corollary 12.7.1 [37]. If b <∞, then we can appeal to Theorem
11.5.1 [37] to deduce the continuity of h3 and the result follows from an application of the
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contraction principle. However, if b = +∞, the function h3 is not continuous. In this case,
if the second set of additional conditions in the statement of the theorem holds, then we will
show that an approximate version of the contraction principle can be employed.

Consider the first component of the function h3 ◦ h2 ◦ h1. That is, g defined by

g(χ)(t) =
∫ 1

1−t
logχ(s)ds.

If χ(1) = +∞, then we cannot appeal to Theorem 11.5.1 [37] to deduce the continuity of g,
as this theorem holds only if χ is real valued. Instead we consider the family of functions
{gε : ε > 0} defined by

gε(χ)(t) =
∫ 1−ε

1−t
logχ(s)ds

that approximate the behavior of g(χ). By similar logic to that in Theorem 6, for any ε > 0
the function gε is continuous at all χ such that JF (χ) <∞, so that Theorem 2 can be applied,
obtaining the LDP for {gε(Xn)}.

Thus we will show that {g(Xn)} satisfies the LDP by applying the approximate contraction
principle Theorem 4.2.23 [7]. This approach requires {gε(Xn)} to be exponentially good
approximations of {g(Xn)},

lim
ε→0

lim sup
n→∞

1
n

logP
(∫ 1

1−ε
log(Xn(s)) ds ≥ δ

)
= −∞, (20)

as well as the verification of equation (4.2.24) [7] for which it suffices to prove that

lim sup
ε→0

sup
{χ∈V+

a,b:J
F (χ)≤α}

∫ 1

1−ε
log(χ(s)) ds = 0, for every α ∈ (0,∞). (21)

Given δ > 0, recalling that β ∈ (0, 1), choose εδ > 0 such that ε1−β/(1 − β) + ε < δ for all
0 < ε ≤ εδ. Then with χ ∈ V+

a,b,{
χ :
∫ 1

1−ε
log(χ(s)) ds ≥ δ

}
⊂
{
χ :
∫ 1

1−ε
log(χ(s)) ds >

ε1−β

1− β
+ ε

}
=
{
χ :
∫ 1

1−ε
log(χ(s)) ds >

∫ 1

1−ε

(
log
(
exp((1− s)−β)

)
+ 1
)
ds

}
⊂
{
χ :
∫ 1

1−ε
log
(

χ(s)
exp((1− s)−β) + 1

)
ds > 0

}
⊂

{
χ : sup

t∈[1−ε,1]

(
χ(t)− exp((1− t)−β)

)
≥ 1

}
=: Aε.



19

We can apply the large deviations upper bound on the closure of Aε, Āε, to obtain, for any
ρ > ε,

lim sup
n→∞

1
n

logP
(∫ 1

1−ε
log(Xn(s)) ds ≥ δ

)
≤ lim sup

n→∞

1
n

logP (Xn ∈ Aε)

≤ − inf
χ∈V+

a,b

{JF (χ) : χ ∈ Āε}

≤ − inf
t∈[1−ρ,1]

inf
χ∈V+

a,b

{
JF (χ) : χ(t) ≥ exp((1− t)−β) + 1

}
= − inf

t∈[1−ρ,1]
inf

φ∈V+
0,1

{
−
∫ 1

0
log(φ̇(a)(s))ds : φ(t) ≥ xF (t)

}
.

Using Jensen’s inequality, for x ≥ t, we have

inf
φ∈V+

0,1

{
−
∫ 1

0
log(φ̇(a)(s)) ds : φ(t) ≥ x

}
= −t log

(x
t

)
− (1− t) log

(
1− x

1− t

)
,

and this infimum is attained at φ(s) := sx/t if s < t and φ(s) := x + (s − t)(1 − x)/(1 − t)
if s ∈ [t, 1]. Let ρ ∈ (0, 1) be sufficiently small so that, for all t ∈ [1 − ρ, 1], xF (t) > t and
inequality (19) holds. Then the function

t→ −t log
(
xF (t)
t

)
− (1− t) log

(
1− xF (t)

1− t

)
, t ∈ [1− ρ, 1]

is increasing. Thus, we have

inf{JF (χ) : χ ∈ Āε} ≥ inf
t∈[1−ρ,1]

inf
φ∈V+

0,1

{
−
∫ 1

0
log(φ̇(a)(s))ds : φ(t) ≥ xF (t)

}
= inf

t∈[1−ρ,1]

(
−t log

(
xF (t)
t

)
− (1− t) log

(
1− xF (t)

1− t

))
≥ −(1− ρ) log

(
F (exp(ρ−β) + 1)

1− ρ

)
− ρ log

(
1− F (exp(ρ−β) + 1)

ρ

)
,

and this latter term tends to +∞ as ρ→ 0 by assumption (18). So equation (20) is satisfied
and the sequences {gε(Xn)} are exponentially good approximations of {g(Xn)}.

To establish (21), reasoning by contradiction, assume that there exists δ > 0 and a sequence
{εn} such that εn ↓ 0 and

sup
{χ∈V+

a,b:J
F (χ)≤α}

∫ 1

1−εn

log(χ(s)) ds ≥ δ.
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The function χ →
∫ 1
1−ε log(χ(s)) ds is continuous for any ε > 0. Therefore, by the goodness

of JF , there exist χεn,α which attains the supremum and JF (χεn,α) ≤ α. Thus we have a
contradiction because

α ≥ JF (χεn,α) ≥ −(1− εn) log

(
F (exp(ε−βn ) + 1)

1− εn

)
− εn log

(
1− F (exp(ε−βn ) + 1)

εn

)
and, using the hypothesis in equation (18), this final term tends to +∞ as n→∞.

�

Example IX: Every Law that is ultimately Weibull satisfies the conditions of
Theorem 7. Consider a law that is ultimately Weibull, F (x) = 1 − e−x

α
for some α > 0

and for all x sufficiently large. For any β ∈ (0, 1),

lim
ε→0

ε log
(
1− F (exp(ε−β))

)
= − lim

ε→0
ε exp

(
αε−β

)
= −∞.

and thus equation (18) is satisfied. Define

xF (t) = F (l(t))

where l(t) = exp((1− t)−β) + 1 for some β ∈ (0, 1). It is easy to check that xF (t) > t for all
t sufficiently close to 1. Equation (19) is equivalent to

αβ(1− t)−(β+1)(l(t)− 1)(l(t))α−1 ≥ 1− e−(l(t))α

1− e−(l(t))α − t
log

(
1− t

t

1− e−(l(t))α

e−(l(t))α

)
(22)

for all t sufficiently close to 1. Equation (22) holds if we can show that

lim
t→1

αβ(1− t)−(β+1)(l(t)− 1)(l(t))α−1(1− e−(l(t))α − t)

(1− e−(l(t))α) log
(

1−t
t

1−e−(l(t))α

e−(l(t))α

) = +∞.

For this note that, for all t close to 1 we have that

(1− e−(l(t))α
) log

(
1− t

t

1− e−(l(t))α

e−(l(t))α

)
≤ (1− e−(l(t))α

) log(e(l(t))
α − 1)

≤ (1− e−(l(t))α
)(l(t))α

and so

αβ(1− t)−(β+1)(l(t)− 1)(l(t))α−1(1− e−(l(t))α − t)

(1− e−(l(t))α) log
(

1−t
t

1−e−(l(t))α

e−(l(t))α

)
≥ αβ(1− t)−(β+1)(l(t)− 1)(1− e−(l(t))α − t)

(1− e−(l(t))α)l(t)
. (23)
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The claim follows noticing that the term in (23) goes to +∞ as t → 1 because it is asymp-
totically equivalent to αβ(1− t)−β.

Example X: Truncated-Pareto emulating Pareto. As an application of Theorem 7, we
determine estimates on the likelihood that the Hill Plot misclassifies the distribution function
F as having Pareto tails when it does not. For certain financial objects it has been suggested
that while on short time scales fluctuations in value are large, in the longer term they are not,
see e.g. Mantegna and Stanley [18]. Similar observations have been made in ground-water
hydrology, atmospheric science and many other fields; for examples see Aban, Meerschaert
and Panorska [1] and references therein. This has led to the proposal of, e.g., financial market
models based on random walks whose increments have apparent power-tail behavior near the
center of their support, but whose tails decay at least as fast as an exponential distribution.
Truncated Lévy distributions have been used with either a sudden truncation [18] or a tran-
sition to an exponential distribution beyond a given cut-off [14]. Similarly, truncated-Pareto
distributions have also been proposed. Consider a truncated Pareto distribution with param-
eter γ > 0 supported on [1,K) that changes into an exponential distribution on [K,∞) with
rate λ:

F (x) =

{
1− x−γ if x ∈ [1,K)
1−K−γe−λ(x−K) if x ∈ [K,∞)

and therefore its quantile function is:

F−1(u) =

{
(1− u)−1/γ if u ∈ [0, 1−K−γ)
K − λ−1 log(Kγ(1− u)) if u ∈ [1−K−γ , 1]

.

By the preceding example, the conditions of Theorem 7 are met.

Consider LF (χ̂) where χ̂ corresponds to the Hill Plot of the Pareto(α) distribution. Then,
for the quantile function φ̂(s) = (1− s)−1/α, we have

χ̂(t) =
1
t

∫ 1

1−t
log(φ̂(s)) ds− log(φ̂(1− t)) =

1
α
.

Referring to Corollary 4, the function f is defined by f(x) := Ḟ (x) = γx−γ−1 if x ∈ [1,K)
and f(x) := Ḟ (x) = λK−γ exp(−λ(x −K)) if x ∈ (K,∞). Thus by the expression of LF in
Theorem 7 and (9) we have

LF (χ̂) ≤ JF (φ̂)

= −
∫ 1

0

(
log(f(φ̂(t)) + log( ˙̂

φ(t))
)
dt = −

∫ 1−K−α

0
log(γ((1− t)−1/α)−γ−1) dt

−
∫ 1

1−K−α

log(λK−γ exp(−λ((1− t)−1/α −K))) dt−
∫ 1

0
log

(
(1− t)−1/α−1

α

)
dt.
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The second term in this equation, corresponding to the exponential part of the distribution
emulating the quantile function of a Pareto(α) law, leads the integral to be infinite if α ∈ (0, 1]
and finite if α > 1. That is, if the real distribution is a Pareto(γ) distribution truncated by
an Exponential(λ), then with finite rate one can observe a Pareto(α) Hill Plot so long as
α > 1.

Acknowledgment: We thank the anonymous reviewers for their careful reading of the paper
and, in particular, one of them for pointing out a topological error in the original submission.
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