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Abstract

We revisit a simply stated problem of Knuth. Previous approaches rely on the
Bernoulli nature of the underlying stochastic process to recover the systems mean
behavior. We show that limiting results hold for a wide range of stochastic processes.
A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the
probability of rare–events. From the LDP, a weak law of large numbers is deduced.

1. Introduction

In D. Knuth’s 1984 paper [3], he describes a stochastic system which he calls the
‘The Toilet Paper Problem’. He considers the toilet paper dispensers in Stanford
University’s computer science building, in which each cubicle has two distinct rolls
of toilet–paper from which a “user” can choose. Initially there are two toilet–rolls,
each with n pieces. He considers the stochastic system where users have two distinct
behaviors: a user is a little–chooser if they take from the roll with the least number
of sheets; a user is a big–chooser if they take from the roll with the most number
of sheets.

Assuming users arrive to the cubicle independently, use the same unit amount of
toilet–roll and are little–choosers with probability p, big–choosers with probability
q := 1− p, we wish to know the expected amount of toilet–roll remaining just after
one of the two rolls has emptied, called the residue Rn. In the case p = 1/2, the
system reduces to the last problem in the Scottish Book [6], known as Banach’s
matchbox problem. Judicious use of combinatorial techniques lead Knuth to prove:

E[Rn] =
{

q/(q − p) + O(rn) if p < q,
n(p − q)/p + q/(p − q) + O(rn) if p > q,

where r is any value greater than 4pq. If big–choosers predominate, then on average
the system keeps self–leveling and there is very little residue. If little–choosers
predominate, then on average one roll drains quicker than the other, leaving a more
substantial residue.
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In D. Stirzaker’s 1988 paper, [7], the problem is reconsidered using martingale
techniques. This approach enables a solution to the slightly more general problem
where the two rolls may be initially unequal in size. He comments:

These methods provide alternative derivations of Knuth’s results. Whether they provide
the simple and easy proof he requests is perhaps a matter of taste. This approach does
allow quite a few more results to obtained at little extra cost...

With this comment in mind, we reconsider Knuth’s problem using large devi-
ations. Let {Xi : i ∈ N} denote the chooser process: Xi = +1 if the ith user is
a little–chooser; Xi = −1 if the ith user is a big–chooser. Define the partial sum
Sn :=

∑n
i=1 Xi. We identify general conditions on {Xi} under which the Large

Deviation Principle (LDP) and a Weak Law of Large Numbers (WLLN) can be
deduced for {Rn/n}.

In particular, we make two assumptions. The first ensures that a sample–path
LDP holds in the topology of uniform convergence. The second is a stability con-
dition.

Assumption 1. {Sn/n} satisfies the LDP with good convex rate–function I. For
each fixed m ∈ N and 0 = t0 < t1 < · · · < tm ≤ 1, define Yn := (Sn(t1), Sn(t2) −
Sn(t1), . . . , Sn(tm) − Sn(tm−1)). {Yn} satisfies the LDP with good rate–function:

Im(y) :=
m∑

i=1

(ti − ti−1)I
(

yi

ti − ti−1

)
,

where y = (y1, . . . , ym).

Assumption 2. The rate–function I is finite on [0, 1] and there exists unique m ∈
[−1, 1] such that I(m) = 0.

Using these assumptions, we prove the following LDP:

Proposition 1. Under assumptions 1 and 2, the residue process {Rn/n} satisfies
the LDP in [0, 1] with good convex rate–function L where, if m ≥ 0,

L(x) =

⎧
⎨

⎩
(2 − x)I

(
x

2 − x

)
if x ∈ [0, 1],

+∞ otherwise,

and if m < 0,

L(x) =

⎧
⎨

⎩
(2 − x) inf

a∈[x/(2−x),1]
aI

(
x

(2 − x)a

)
if x ∈ [0, 1],

+∞ otherwise.

As a corollary to this theorem, the following WLLN is deduced:

Corollary 2. Under assumptions 1 and 2, {Rn} satisfies a weak law of large num-
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bers with

lim
n→∞

E [Rn/n] =
{

2m/(1 + m) if m > 0,
0 if m ≤ 0.

As Knuth’s approach involved moment generating function techniques, it is
surprising that the Gärtner–Ellis theorem does not appear to provide the best means
of tackling this problem. The approach we take uses two distinct methodologies from
large deviations: the first involves a relatively routine application of sample–path
results; the second method is that of Ruelle and Lanford (a clear exposition of which
appears in Lewis and Pfister [4]) developed by Ruelle to give a rigorous treatment
of statistical thermodynamics.

The most significant advance this approach admits is that it allows us to ex-
tend the little–chooser/big–chooser process from Bernoulli to a range of processes
including finite–state irreducible Markov chains. This paper is organized as follows:
in Section 2 we give a definition of the LDP; the proof of the main results appears
in Section 3; Section 4 contains examples.

2. Large Deviations

Let X be a Hausdorff topological space with Borel σ–algebra B and let {µn : n ∈ N}
be a sequence of probability measures on (X ,B). We say that µn satisfies the Large
Deviation Principle (LDP) with rate–function I : X → R+ ∪ {+∞} if I is lower
semi–continuous and, for all B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1
n

log µn(B) ≤ lim sup
n→∞

1
n

log µn(B) ≤ − inf
x∈B̄

I(x),

where B◦ denotes the interior of B and B̄ denotes the closure of B. We say that
{Zn} satisfies the LDP if for each n, Zn is a realization of µn. A rate–function is
good if its level sets {x : I(x) ≤ α} are compact for all α.

For a general process, {Zn : n ∈ N}, we define its sample–path process {Z̃n(·)}
as follows: for t ∈ [0, 2], let Zn(t) := Z[nt]/n, then

Z̃n(t) := Zn(t) +
(

t − [nt]
n

) (
Zn

(
[nt] + 1

n

)
− Zn

(
[nt]
n

))
. (2.1)

Note that Z̃n(·) is a polygonal approximation to Zn(·). We consider the LDP for
sample–paths in C[0, 2], the space of continuous functions on [0, 2] equipped with
the topology of uniform convergence (whose norm is: ∥φ∥ = supt∈[0,2] |φ(t)|).

The LDP is a “covariant” principle, in the sence that if µn satisfies the LDP
in X with good rate–function I and f : X → Y is continuous, where X and Y are
Hausdorff, then µn ◦ f−1 satisfies the LDP in Y with good rate–function given by
J(y) := inf{I(x) : f(x) = y}. This fact is called the Contraction Principle and a
proof can be found in Dembo and Zeitouni, Theorem 4.2.1 [2].
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3. Large Deviations for the Residue

Consider the following interpretation of the problem in terms of a random walk
with a reflecting barrier. The position of the walk at time k ≥ 0 is denoted by S∗

k
and represents the difference in roll lengths after k users have taken a piece each.
If we denote by {Xk} the underlying chooser process, taking values in {−1, +1},
then S∗

k evolves according to the rules:

S∗
0 := 0;

S∗
k+1 := S∗

k + Xk, if S∗
k > 0;

S∗
k+1 := 1, if S∗

k = 0.
(3.1)

If S∗
k = 0, then the rolls are of equal length and S∗

k+1 must be 1. Define

Tn := min{k ∈ [n, . . . , 2n − 1] : S∗
k = 2n − k} (3.2)

as the number of users that arrive until one of the rolls empties. As each roll initially
had n pieces, the residue is given by:

Rn = 2n − Tn. (3.3)

In order to prove the LDP for {Rn/n}, we first prove that the sample–path
process of the reflected random walk {S∗

n/n} satisfies the LDP. We then prove that
{Tn/n} satisfies the LDP using the Ruelle–Lanford approach. As subtraction is
continuous, the LDP for {Rn/n} follows by applying the contraction principle.

For each n ∈ N, define the partial sum of the chooser process, {Xk}, by

Sn :=
n∑

k=1

Xk,

and let S̃n(·) denote its sample–path.

Theorem 3 (Dembo and Zajic, [1]). Under Assumption 1, the partial sums sample–
path process {S̃n(·)} satisfies the LDP in C[0, 2] with the good convex rate–function

I∞(φ) =
{ ∫ 2

0 I(φ̇(t))dt if φ ∈ A[0, 2],
+∞ otherwise,

(3.4)

where A[0, 2] is the space of absolutely continuous functions, φ, on [0, 2] with φ(0) =
0.

We bound the process {S∗
k} by two processes which are equivalent on the scale

of large deviations; for i ∈ {0, 1}, define the process {Si
k} by the evolution:

Si
0 := i;

Si
k+1 := Si

k + Xk, if Si
k > i;

Si
k+1 := i, if Si

k + Xk ≤ i.
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Note that S0
k ≤ S∗

k ≤ S1
k for all k ∈ Z+. With a ∨ b := max{a, b}, by induction,

Si
n = max

0≤k≤n−1

⎧
⎨

⎩

n∑

j=n−k

(Xj) + i

⎫
⎬

⎭ ∨ i. (3.5)

Theorem 4. Under Assumption 1, {S̃0
n(·)} satisfies the LDP in C[0, 2] with good

rate–function

J∞(ψ) := inf{I∞(φ) : f(φ) = ψ},

where f : C[0, 2] → C[0, 2] is defined by:

(f(φ))(t) := φ(t) − inf
t∗∈[0,t]

φ(t∗), for t ∈ [0, 2].

Proof. Note that f(Sk) = S0
k for all k ∈ N. That is, at the sample–path level,

f represents Equation (3.5) for i = 0. As f is continuous, the result follows by
invoking the contraction principle.

Two processes {Xn} and {Yn} are exponentially equivalent (definition 4.2.10 of [2])
if for each δ > 0,

lim sup
n→∞

1
n

log P[|Xn − Yn| > δ] = −∞.

Theorem 4.2.13 of [2] proves that if two processes are exponentially equivalent then,
if one satisfies the LDP with rate–function I, the other does.

Lemma 5. The processes {S̃0
n(·)}, {S̃∗

n(·)} and {S̃1
n(·)} are exponentially equiva-

lent.

Proof. S̃0
k ≤ S̃∗

k ≤ S̃1
k and, from (3.5), it is clear that S1

k − S0
k ≤ 1, for all k ∈ Z+.

Hence

lim sup
n→∞

1
n

log P[|S̃0
n(·) − S̃1

n(·)| > δ] = −∞,

for all δ > 0.

From Theorem 4, Lemma 5 and Theorem 4.2.13 of [2] we deduce the following:

Theorem 6. Under Assumption 1, {S̃∗
n(·)} satisfies the LDP in C[0, 2] with good

rate–function J∞ defined in Theorem 4.

Corollary 7. Under Assumptions 1 and 2, {S∗
n/n} satisfies the LDP in [0, 1] with

good convex rate–function J where, if m ≥ 0,

J(x) =
{

I(x) if x ∈ [0, 1],
+∞ otherwise,
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and if m < 0,

J(x) =

{
inf

a∈[x,1]
aI

(x

a

)
if x ∈ [0, 1],

+∞ otherwise.

Proof. As ψ → ψ(1) is continuous, J is a good rate–function defined by:

J(x) := inf{J∞(ψ) : ψ(1) = x}
= inf{I∞(φ) : f(φ)(1) = x}
= inf{I∞(φ) : φ(1) − inf0≤t∗≤1 φ(t∗) = x}
≥ inf0≤t∗≤1 inf{I∞(φ) : φ(t∗) ≤ 0, φ(1) − φ(t∗) = x}
≥ inf0≤t∗≤1{infh≤0 t∗I(h/t∗) + (1 − t∗)I(x/(1 − t∗))},

where the last inequality follows by Jensen’s inequality. If m ≤ 0, then infh≤0 t∗I(h/t∗) =
0 and J(x) ≥ inf0≤t∗≤1(1 − t∗)I(x/(1 − t∗)). Defining the function

ψ̂(t) := mt +
(

x

1 − t∗
− m

) ∫ t

0
1[t∗,1](t)dt,

gives f(ψ̂)(1) = x and I∞(ψ̂) = (1 − t∗)I(x/(1 − t∗)). Thus

J(x) = inf
0≤t∗≤1

(1 − t∗)I
(

x

1 − t∗

)
= inf

a∈[x,1]
aI

(x

a

)
,

since I(x) = ∞ for x > 1. If m = 0, this infimum occurs at a = 1 since I is convex.
If m > 0, then infh≤0 t∗I(h/t∗) = t∗I(0) > 0. Hence J(x) ≥ I(x) and equality

is obtained by the function ψ̂(t) := xt. In both cases, the convexity of J is readily
checked.

Define the function τ : C[0, 2] → [1, 2] by τ(φ) := inf{t ∈ [1, 2] : φ(t) = 2 − t}.
Note that τ(S̃∗

n) = Tn, where Tn is defined in equation (3.2). Thus τ is the sample–
path equivalent of Tn, but is not continuous. For example, consider the sequence of
C[0, 2] functions

ηn(t) :=

⎧
⎨

⎩

0 if t ∈ [0, 1/n] ∪ [2 − 1/n, 2],
t − 1/n if t ∈ (1/n, 1],
2 − t − 1/n if t ∈ (1, 2 − 1/n),

for n ≥ 1. The discontinuity arises since limn→∞ τ(ηn) = 2, but τ(limn→∞ ηn) = 1
and hence the contraction principle cannot be invoked. In order to prove the LDP
for {Tn/n}, we need extra information from the process that led to the LDP for
{S̃∗

n(·)}. We use the Ruelle–Lanford approach.

Theorem 8. Under Assumptions 1 and 2, {Tn/n} satisfies the LDP with good
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1

1

S̃∗
n(t)

t

a + ϵ

a

a − ϵ

a − ϵ a a + ϵ

a − 3ϵ

Fig. 1—Equivalence of events.

convex rate-function

K(x) :=

⎧
⎨

⎩
xJ

(
2 − x

x

)
if x ∈ [1, 2],

+∞ otherwise,

where J is defined in Corollary 7.

Proof. As Tn/n takes values within the compact interval [1, 2], if one can prove
the large deviations upper bound for compact sets, then it holds for all closed sets.
Thus, in order to prove the full LDP, by Theorem 3.1 of [4] (or Theorem 4.1.11 of
[2]), it suffices to show that for all a ∈ [1, 2]

lim
ϵ→0

lim inf
n→∞

1
n

log P
[
Tn

n
∈ Bϵ(a)

]
= lim

ϵ→0
lim sup

n→∞

1
n

log P
[
Tn

n
∈ Bϵ(a)

]
,

where Bϵ(a) := (a − ϵ, a + ϵ).
For a > ϵ > 0, consider the following characterization of the event {Tn/n ∈ Bϵ (a)},

bearing Figure 1 in mind,
• At a − ϵ, S̃∗

n(·) must not have crossed, or touched, the line 2 − x. If it did
cross or touch the line, it could not return below it and the first crossing
would have occurred before a−ϵ. However, at a−ϵ, S̃∗

n(·) must be no further
than 4ϵ below the line or else it could not cross until after a + ϵ.

• At a + ϵ, the process S̃∗
n(·) must be on or above the line 2− x, in order that

the first crossing have occurred before a + ϵ.
Formally, for 0 < ϵ < a, the event {Tn/n ∈ Bϵ (a)} is equivalent to

{2−[n(a+ϵ)]/n < S̃∗
n(a−ϵ) < 2−[n(a−3ϵ)]/n}∩{S̃∗

n(a+ϵ) ≥ 2−[n(a+ϵ)]/n}. (3.6)
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For the upper bound, drop the second term in (3.6),

P
[
Tn

n
∈ Bϵ (a)

]
≤ P

[
S̃∗

n(a − ϵ) ∈
(

2 − [n(a − 3ϵ)]
n

, 2 − [n(a + ϵ)]
n

)]
.

Define the sets

A′(a, ϵ) := ((2 − a − ϵ)/(a − ϵ), (2 − a + 3ϵ)/(a− ϵ)),
A(a, ϵ) := {φ : φ(a − ϵ) ∈ A′(a, ϵ)}.

Taking limits gives,

lim sup
n→∞

1
n

log P
[
Tn

n
∈ Bϵ (a)

]
≤ − inf

φ∈A(a,ϵ)
J∞(φ) = −(a − ϵ) inf

x∈A′(a,ϵ)
J(x),

where J is defined in the statement of Corollary 7. Thus, as J is continuous on
[0, 1],

lim
ϵ→0

lim sup
n→∞

1
n

log P
[
Tn

n
∈ Bϵ (a)

]
≤ −aJ

(
2 − a

a

)
for all a ∈ [1, 2].

If a = 0, the lower bound is trivially equivalent to the upper bound. For a >
ϵ > 0, the set defined in (3.6) contains the set

{2 − [n(a + ϵ)]/n < S̃∗
n(a − ϵ) < 2 − [n(a − 3ϵ)]/n}∩ {S̃∗

n(a + ϵ)− S̃∗
n(a − ϵ) ≥ 2ϵ}.

Define the set

B := {φ : φ(a + ϵ) − φ(a − ϵ) ≥ 2ϵ}.

Again, taking limits gives,

lim inf
n→∞

n−1 log P [Tn/n ∈ Bϵ (a)] ≥ − infφ∈A∩B J∞(φ)
= − inf{I∞(ψ) : f(ψ)(a − ϵ) ∈ A,

ψ(a + ϵ) − ψ(a − ϵ) ≥ 2ϵ}
= − infφ∈A J∞(φ) − 2ϵI(1).

and so, as J is continuous on [0, 1],

lim
ϵ→0

lim inf
n→∞

1
n

log P
[
Tn

n
∈ Bϵ (a)

]
≥ −aJ

(
2 − a

a

)
for all a ∈ [1, 2].

Finally, as subtraction is continuous and Rn = 2n−Tn, we have the main result
for the residue process:

Proposition 9. Under assumptions 1 and 2, the residue process {Rn/n} satisfies
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the LDP in [0, 1] with good convex rate–function L where, if m ≥ 0,

L(x) =

⎧
⎨

⎩
(2 − x)I

(
x

2 − x

)
if x ∈ [0, 1],

+∞ otherwise,

and, if m < 0,

L(x) =

⎧
⎨

⎩
(2 − x) inf

a∈[x/(2−x),1]
aI

(
x

(2 − x)a

)
if x ∈ [0, 1],

+∞ otherwise.

Corollary 10. Under assumptions 1 and 2, {Rn} satisfies a weak law of large
numbers with

lim
n→∞

E [Rn/n] =
{

2m/(1 + m) if m > 0,
0 if m ≤ 0,

where m ∈ [−1, 1] is the unique point with I(m) = 0.

Proof. By Theorems 2.1 and 2.2 of Lewis, Pfister and Sullivan [5], in order to
determine the WLLN from the LDP, it suffices to determine the unique zero of L.
Straightforward calculation reveals the values given above.

4. Examples

The first example is the original problem of Knuth, where users arrive in an i.i.d.
Bernoulli manner.

Example 1. Let {Xn : n ∈ N} to be an i.i.d Bernoulli sequence taking values in
{−1, 1} with the probability of user i being a little–chooser P[Xi = +1] = p ∈ (0, 1)
and probability q := 1− p of being a big–chooser. {Xn} satisfies Assumption 1 with
rate–function:

Ip(x) :=

⎧
⎨

⎩

1 − x

2
log

(
1 − x

2q

)
+

1 + x

2
log

(
1 + x

2p

)
if x ∈ [−1, 1],

+∞ otherwise,

which satisfies Assumption 2 with Ip(m) = 0 for m = E[Xi] = p−q. By Proposition
9 and Corollary 7, the rate–function for {Rn/n} is given by: if p ≥ 1/2,

Lp(x) =

⎧
⎨

⎩
(1 − x) log

(
(1 − x)
q(2 − x)

)
+ log

(
1

p(2 − x)

)
if x ∈ [0, 1],

+∞ otherwise,
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Fig. 2—Bernoulli–chooser rate–functions, p ≤ 1/2.

and, if p < 1/2,

Lp(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x log
(

q

p

)
if x ∈ [0, (q − p)/q],

(1 − x) log
(

(1 − x)
q(2 − x)

)
+ log

(
1

p(2 − x)

)
if x ∈ ((q − p)/q, 1],

+∞ otherwise.

Figures 2 and 3 show graphs of Lp(x) for a range of values of x and p. The y–range
for the Figure 3 has been truncated to make the detail clearer. By Corollary 10,
the mean behavior of Rn/n is determined by:

lim
n→∞

E [Rn/n] =
{

(p − q)/p if p > 1/2,
0 if p ≤ 1/2.

The second example is a function of a Markov chain, in which users may use more
than one sheet.

Example 2. Extend the users’ behavior so that during a single visit to the cubicle,
a big–chooser may use 1 to N(> 1) sheets and a little–chooser use 1 to M(> 1).
Model this situation by introducing the irreducible recurrent Markov chain Yn on
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Fig. 3—Bernoulli–chooser rate–functions, p > 1/2.

F = [−N,−N + 1, . . . ,−1, 1, 2, . . . , M ] with transition matrix

Π(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1/(N + M) if i ∈ {−1, +1},
1 if i > +1 and i − j = 1,
1 if i < −1 and j − i = 1,
0 otherwise.

(4.1)

After each piece is taken, |Yn| counts down, remembering how many more pieces
a user wishes to take. After a user has taken his last piece, |Yn| = 1 and the
next users’ behavior is chosen uniformly from the N + M possible behaviors. Let
f : F → {−1, +1} be defined by

f(k) =
{

+1 if k > 0,
−1 if k < 0.

The piece-wise selection process is defined by Xi := f(Yi).
By Theorem 3.1.2 of [2], {Sn/n} satisfies the LDP in [0,1] with good convex

rate–function, I. Although it is not possible to determine a closed form for I, for
fixed values of N and M , it is readily calculated numerically (see section 3.1 of
[2]). By Theorem 3 of [1], its sample–paths, {S̃n}, satisfy the LDP in C[0, 2] with
rate–function, I∞, defined in Equation (3.4).

The unit left eigenvector, e⃗, of Π determines the mean behavior of Yn. Define
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c := (N(N + 1) + M(M + 1))/2, then

e⃗ =
(

1
c
,
2
c
, . . . ,

N

c
,
M

c
, . . . ,

2
c
,
1
c

)
.

The concentration point, m in Assumption 2, for {Sn/n} is given by the expectation
of f with respect to e⃗,

m =
M(M + 1) − N(N + 1)
M(M + 1) + N(N + 1)

.

Clearly, m ≤ 0 if and only if M ≤ N . Defining γ := M(M + 1)/(N(N + 1)),
m = (1 − γ)/(1 + γ)) and, using Corollary 10, the mean behavior of Rn/n is
determined by:

lim
n→∞

E [Rn/n] =
{

1 − γ if M > N (equivalently γ > 0),
0 if M ≤ N (equivalently γ ≤ 0).

Acknowledgement

K.D’s work supported by Science Foundation Ireland under the National Develop-
ment Plan.

References

[1] A. Dembo and T. Zajic, 1995 Large deviations: from empirical mean and measure to partial
sums. Stochastic Processes and their Applications 57, 191–224.

[2] A. Dembo and O. Zeitouni, 1998 Large deviation techniques and applications. Springer.
[3] D.E. Knuth, 1984 The toilet paper problem. American Mathematical Monthly 91, 465–470.
[4] J. T. Lewis and C. E. Pfister, 1995 Thermodynamic probability theory: some aspects of large

deviations. Russian Mathematical Surveys 50, no. 2, 279–317.
[5] J. T. Lewis, C. E. Pfister, and W. G. Sullivan, 1995 Entropy, concentration of probability and

conditional limit theorems. Markov Processes and Related Fields 1, 319–386.
[6] R.D. Mauldin (ED.), 1981 The Scottish Book. Birkhauser. Boston.
[7] David Stirzaker, 1988 A generalization of the matchbox problem. Mathematical Scientist 13,

104–114.


